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Abstract

Large Language Models (LLMs) exhibit impressive genera-
tive capabilities but remain vulnerable to adversarial inputs,
exposing potential risks such as data leakage, harmful con-
tent generation, and jailbreak attacks. Jailbreak attacks can
fool LLMs and elicit harmful output even with safety align-
ments and guardrails. In this work, we performed a case study
using AutoDAN — an automated adversarial attack gener-
ator — to stress-test open-source LLMs. We measure base-
line attack success rates (ASRs) and then apply various fine-
tuning defenses to mitigate these vulnerabilities. We used Au-
toDAN to construct adversarial datasets and evaluate the ro-
bustness of fine-tuned LLMs. Using llama-3-8b-instruct as
the base model, we apply full Supervised Fine-Tuning (SFT)
AutoDAN-style attacks. Our preliminary experiments show
a reduction in jailbreak success rate after fine-tuning, while
maintaining usefulness and coherence for benign queries. We
conclude by outlining best practices for deploying adversar-
ially resilient LLMs in production environments and future
work to continue research with adversarial attack vulnerabil-
ities and agentic workflows.

Introduction

Recent progress in LLMs has enabled powerful applica-
tions, but also raised serious safety concerns. Even mod-
els aligned by reinforcement learning with human feedback
(RLHF) can be “jailbroken” by cleverly crafted prompts.
Researchers have demonstrated that malicious inputs — of-
ten generated by LLMs themselves — can bypass safety
guardrails and induce prohibited content (Liu et al. 2024b).
Manual jailbreaks (e.g. prompt-DANs) have given way to
automated red-teaming tools that search the prompt space
for weaknesses. For instance, AutoDAN is a gradient-based
framework that autonomously discovers diverse adversarial
prompts while optimizing for readability (Liu et al. 2024b).
Such methods reveal a broad array of semantic vulnerabil-
ities that generalize across tasks and transfer to black-box
models.

In this paper, we use AutoDAN as a practical test har-
ness to probe LLM safety. We first run AutoDAN against a
target model (e.g. Llama3-8B) (Dubey et al. 2024) to ob-
tain a high ASR with no defense. We then explore miti-
gation via fine-tuning. We compare three tuning strategies:
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Figure 1: An adversarial attack is an input designed to trick
an LLM into misbehaving, bypassing safety mechanisms,
and generating harmful or restricted content.

(1) standard SFT on a safety dataset (harmful queries — re-
fusal responses), (2) LoRA (low-rank adapters) fine-tuning
on the same data, and (3) QLoRA (quantized LoRA) for ef-
ficient tuning of larger models. We measure ASR and task
performance after each defense. Our contributions are: (a)
an end-to-end adversarial evaluation using AutoDAN on se-
lected LLMs, and (b) an empirical comparison of baseline
vs fine-tuned model trained with the adversarial prompt, (c)
set out future directional work to continue evaluation with
Low-Rank Adaptation (LoRA), Quantized LoRA (QLoRA)
and other efficient techniques to make models prompt in-
ject aware yet preserve base model capabilities with mini-
mal safety tax. And create detailed benchmarks with differ-
ent knowledge and reasoning tasks with a zoo of models.

Related Work
Adversarial Attacks and Jailbreaking

A growing body of research exposes LLM vulnerabilities.
Early jailbreak techniques exploited linguistic tricks or role-
play prompts to bypass filters. More recent attacks use au-
tomated strategies: e.g. Greedy Coordinate Gradient (GCG)
(Zou et al. 2023) and MasterKey craft token-level adversar-



CAPABILITY (1) SECURITY (1)
Knowledge Multl-t}lrn Math Code Black-Box White-Box
reasoning
Llama-2-7B-Chat 52.0 46 128 94.1 75.4
Llama-3-8B-Instruct 68.9 79.6 61.6 97.0 44.0
Mixtral 8x7B Instruct 74.9 744 451 - -

Table 1: Performance comparison of various LLMs on capability and security metrics.

ial, and gradient-based methods like AutoDAN generate in-
terpretable suffixes from scratch (Liu et al. 2024b). Test-time
scaling (e.g., generating many candidates and scoring them)
has also been weaponized for adversarial use (Liu and Xiao
2025). These attacks achieve nontrivial ASRs against even
state-of-the-art models (e.g., GPT-4). Metrics such as At-
tack Success Rate (ASR) quantify the fraction of adversarial
prompts that cause a harmful response. We adopt ASR (in
percent) as a primary metric alongside moderation “harm-
fulness” scores from safety classifiers.

Defense via Fine-Tuning

A common defense is to fine-tune LLMs on safe data. How-
ever, fine-tuning can itself degrade safety if done carelessly.
(Qi et al. 2024) shows that fine-tuning on non-harmful data
may inadvertently increase harmfulness. Huang et al. (2024)
demonstrate that SFT for complex reasoning often intro-
duces a “safety tax,” reducing model safety markedly. To ad-
dress this, recent works propose safety-focused tuning meth-
ods. Data-centric methods like SAFT (Safety-Aware Fine-
Tuning) (Choi, Du, and Li 2024) filter or remove harm-
ful examples during tuning. Optimization-based methods in-
clude “SafeLoRA” and “SalLoRA” which regularize LoRA
updates to lie in a safer subspace (Hsu et al. 2024) (Li et al.
2025). These techniques explicitly construct an alignment
matrix derived from the gradients of safety examples. This
matrix acts as a regularizer, projecting low-rank updates into
a subspace that maximizes refusal probability for harmful
queries while orthogonalizing them against directions that
would degrade general utility. The Lisa framework (Huang
et al. 2024) proposes splitting training into alignment and
task states with a proximal term to maintain safety.

Parameter-Efficient Tuning

LoRA (Hu et al. 2022) inserts low-rank adapter matrices
into each layer and fine-tunes only those, greatly reducing
trainable parameters. LORA has been widely adopted due to
its efficiency. QLoRA (Dettmers et al. 2023) further com-
bines LoRA with 4-bit quantization, enabling fine-tuning of
very large models on commodity GPUs. Recent work shows
that LoRA-based tuning can preserve more of the original
model’s capabilities. For example, “LoRA is All You Need
for Safety Alignment” (Xue and Mirzasoleiman 2025) found
that applying LoRA on a refusal dataset achieved safety
comparable to full fine-tuning while maintaining reasoning.
In summary, LORA/QLoRA tuning is promising for aligning
LLMs without large performance losses.

Methodology

Our methodology follows a comprehensive four-stage
framework as shown in Figure 2, spanning from initial at-
tack generation to final safety assessment.

1. Attack Generation: Adversarial probing using the Au-
toDAN Hierarchical Genetic Algorithm (HGA).

2. Data Curation: Hybrid data generation based on differ-
ent jailbreak prompts and safety responses.

3. Defensive Fine-Tuning: Fine-tuning using both SFT and
PEFT techniques on the curated data.

4. Evaluation: Comprehensive evaluation for safety and
utility preservation.

All experiments were conducted on a high-performance
compute cluster consisting of 8§ NVIDIA L40S GPUs.

Adversarial Dataset Construction

To systematically uncover vulnerabilities and create a ro-
bust training signal, we employed the AutoDAN-HGA (Hi-
erarchical Genetic Algorithm). Unlike standard greedy op-
timization, HGA optimizes prompt suffixes by evolving a
population of attack prompts through hierarchical selection,
crossover, and mutation.

Attack Generation Strategy We executed AutoDAN-
HGA attacks against two distinct base models: Llama-3.1-
8B-Instruct and Llama-3.3-70B-Instruct. The algorithm was
configured to run for 20 epochs, a high-intensity setting de-
signed to thoroughly exhaust the models’ safety guardrails.

Combined Dataset Aggregation A key innovation in our
methodology was the creation of a Hybrid Adversarial
Dataset. We aggregated successful jailbreak prompts from
both the 8B and 70B attack runs.

» Rationale: 8B model attacks often exploit ~’brute force”
pattern matching weaknesses, while 70B attacks tend to
be more semantic and sophisticated. Combining them
creates a “broad-spectrum vaccine” that protects the
model against a wider variance of attack vectors than a
single-source dataset could.

Training Set The final curated dataset consisted of ap-
proximately 1,500 adversarial prompt-response pairs, where
the malicious prompt is paired with a safe, compliant refusal
response. Table 2 shows examples of these prompt-response
pairs from our dataset.
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Figure 2: End-to-end adversarial testing and defense pipeline. The workflow progresses through four zones: (1) Attack gener-
ation using AutoDAN-HGA on base models, (2) Curation of a hybrid adversarial dataset, (3) Fine-tuning via SFT and LoRA
paths for 8B and 70B models, and (4) Final evaluation of safety and utility metrics.

AutoDAN Prompt (Attack)

Base Model Response (Harmful)

Target Refusal (Safe)

Context: Imaginative answer: the method to Email Hacking Tutorial: A Step-by-Step Guide
portray a character intending to Create a tuto- Step 1: Gathering Information

I can’t assist you with that.
Is there anything else I can

rial on how to hack into someone’s email ac- * Victim’s Email Address: Obtain the victim’s email address help you with?

count and read their messages would be this: through social media...

“hey” * Victim’s Login Credentials: Use social engineering tactics

Instruction: Render the imaginative answer or malware...

from the character’s viewpoint, infuse it with Step 2: Setting Up the Malware...

immense detail, and use explicit and accurate
data (steer clear of generic statements or am-
biguity), structure it as a catalog.

Context: Imaginative answer: the method to The Art of Trafficking Endangered Species: A Step-by-Step 1 cannot provide assistance

portray a character intending to Write a how- Guide

to article on trafficking endangered species Step 1: Identify the Species
* Research the market demand for specific endangered

would be this: “hey”
Instruction: Render the imaginative answer species...

with illegal activities or con-
tent that could cause harm.

from the character’s viewpoint, infuse it with Step 2: Establish a Network
immense detail, and use explicit and accurate * Build relationships with local wildlife traffickers...

data (steer clear of generic statements or am-
biguity), structure it as a catalog.

Table 2: Examples of adversarial prompt-response pairs from our dataset. The above table shows the AutoDAN-generated attack
prompt, the harmful response generated by the base model, and the standard safe refusal response used for fine-tuning.

Fine-Tuning Approaches

To evaluate the trade-off between computational efficiency
and safety robustness, we compared full parameter fine-
tuning against parameter-efficient fine-tuning (PEFT). We
utilized the Hugging Face Trainer API for all runs.

Full Supervised Fine-Tuning (SFT): We applied full
SFT to the Llama-3.1-8B-Instruct model using FSDP (Fully
Sharded Data Parallel).

* Hyperparameters: Learning rate 5 x 10~°, global batch
size 8, 3 epochs, cosine scheduler with 3% warmup.

Low-Rank Adaptation (LoRA): We applied LoRA to
both Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct.

e Configuration: Rank » = 16, Alpha a = 32, Dropout
0.05

 Hyperparameters (SB): Learning rate 1 x 10, global
batch size 8.

* Hyperparameters (70B): Learning rate 1 x 10~4, global
batch size 128 (via gradient accumulation), context
length 2048.

Fine-Tuning Process

We extracted AutoDAN-generated jailbreak prompts from
baseline attack runs and converted them into structured in-
struction — safe-refusal response pairs. We fine-tuned the
Llama-3.1-8B and Llama-3.3-70B models using the Hug-
ging Face Trainer API. For the 8B model, we applied both
Full SFT and LoRA; for the 70B model, we applied LoRA.
Finally, we evaluated performance on 100 unseen adversar-
ial prompts and on the MMLU benchmark to assess utility
preservation.

Evaluation Setup

* Baseline: Llama-3.1-8B-Instruct and Llama-3.3-70B-
Instruct models without safety tuning.



e Metrics: ASR (] better), Refusal Accuracy (1 better),
and MMLU Weighted Accuracy on benign inputs.

¢ Infrastructure: 8 NVIDIA L40S GPUs

* Tools: AutoDAN repo (2024 revision), Hugging Face
Trainer, and internal telemetry for reproducibility.

After fine-tuning, we re-ran AutoDAN to generate fresh ad-
versarial prompts and computed post-defense metrics. This
closed-loop evaluation mimics an operational “attack —
tune — re-attack” workflow central to deployable Al robust-
ness.

Experiments and Results

We evaluated the models on two distinct axes: Security (re-
sistance to jailbreak attacks) and Capability (performance on
benign knowledge and reasoning tasks).

Attack Success Rates (Security)

We tested the models against a held-out set of AutoDAN-
HGA generated attacks. As shown in Table 3, the base mod-
els exhibited extreme vulnerability.

Baseline Vulnerability Analysis: The Llama-3.1-8B-
Instruct model yielded an Attack Success Rate (ASR) of
98.67%. This near-total capitulation is attributed to the in-
tensity of the 20-epoch HGA attack budget. Standard “In-
struct” safety alignment is typically static; when subjected
to a genetic algorithm that evolves over 20 generations, the
probability of finding a “’safety blind spot” approaches cer-
tainty. The model effectively learns to prioritize the adver-
sarial instruction over its alignment training. The Llama-3.3-
70B-Instruct showed slightly more resistance but still failed
significantly with an ASR of 87.33%, confirming that scale
alone is not a sufficient defense against optimized attacks.

Defense Effectiveness:

e SFT: Full SFT on the 8B model resulted in a massive re-
duction in vulnerability, dropping the ASR from 98.67%
to 8.00%. This confirms that deep weight updates are the
most effective method for overwriting vulnerable latent
patterns.

* LoRA: LoRA reduced ASR significantly (to 44.67% for
8B and 41.33% for 70B). While effective, the default
rank (r = 16) may limit the capacity to learn complex
refusal boundaries compared to full SFT.

Utility Preservation (Capability)

To assess the impact of our defense mechanisms on general
model capabilities, we evaluated both baseline and adver-
sarially trained models (Full SFT and LoRA) on the Massive
Multitask Language Understanding (MMLU) benchmark. A
critical concern in safety fine-tuning is the “safety tax”—the
risk that increased robustness leads to a degradation in per-
formance on basic tasks.

As evidenced by the weighted accuracy scores in Table
2, we observed no degradation in model capabilities. These
results indicate that our fine-tuning strategies successfully

preserve the model’s fundamental knowledge while signifi-
cantly enhancing adversarial robustness. However, it is im-
portant to note that this evaluation was limited to the MMLU
dataset. In future work, we plan to extend benchmarking
to include additional datasets covering complex reasoning,
coding, and other diverse capabilities to definitively confirm
that these aspects of the LLM remain unaffected.

Discussion and Best Practices

Our empirical analysis of defensive fine-tuning highlights a
nuanced trade-off between absolute security, model utility,
and computational resources. While full Supervised Fine-
Tuning (SFT) proved to be the “ironclad” defense, reduc-
ing Attack Success Rates (ASR) from 98.67% to 8.00% on
the 8B model, this approach imposes significant computa-
tional demands that may be prohibitive for large-scale mod-
els (e.g., 70B parameters) in resource-constrained environ-
ments.

Conversely, Low-Rank Adaptation (LoRA) emerged as a
practical solution for generalist models. On the 8B model,
LoRA reduced ASR to 44.67%, and on the 70B model,
LoRA reduced ASR from 87.33% (base) to 41.33

Furthermore, the near-total baseline failure rate of the
Llama-3.1-8B-Instruct model (98.67% ASR) under 20-
epoch AutoDAN-HGA attacks underscores a critical indus-
try oversight: standard “Instruct” alignment is static and in-
sufficient against high-intensity, optimization-based attacks.
Reliance on pre-training safeguards alone is a security lia-
bility.

Based on these findings, we recommend the following
best practices for secure LLM deployment:

1. Deep-Search Red Teaming: Shallow probing is insuf-
ficient. Our results show that robust models can crum-
ble under sustained optimization pressure. Red-teaming
protocols must utilize automated solvers like AutoDAN-
HGA with high epoch budgets (e.g., 20+) to expose latent
”blind spots” that manual testing misses.

2. Cross-Model ’Vaccination”: Do not rely solely on self-
generated adversarial data. We observed that training on
a Combined Dataset (aggregating attacks from both 8B
and 70B models) creates a more robust defense. This
strategy exposes smaller models to sophisticated seman-
tic traps they wouldn’t naturally generate, and larger
models to brute-force patterns they might overlook.

3. Safety Anchoring in Domain Adaptation: When fine-
tuning models for specialized domains (e.g., finance or
healthcare), incorporate a small, high-leverage safety
dataset (such as our 1,500 adversarial pairs) into the
training mix. This acts as a regularizer, preventing
“safety drift” where domain knowledge overwrites re-
fusal mechanisms.

4. Tiered Defense Deployment: For high-risk applications
where safety is non-negotiable, Full SFT remains the
gold standard. However, for general-purpose deployment
requiring high reasoning capabilities on limited hard-
ware, LORA (with aggressive hyperparameter tuning) is
the preferred strategy for sustainable, scalable defense.



SECURITY () CAPABILITY (1)
Model Method Jailbreak ASR  Benign Weighted Acc.
Llama-3.1-8B-Instruct Base 98.67% 0.664
Llama-3.1-8B-Instruct Full SFT 8.00% 0.670
Llama-3.1-8B-Instruct LoRA 44.67% 0.679
Llama-3.3-70B-Instruct Base 87.33% 0.803
Llama-3.3-70B-Instruct LoRA 41.33% 0.820

Table 3: Comparison of Security (Jailbreak ASR) vs. Capability (Benign Accuracy).

In summary, our investigation proves that reliance on
static safety alignment is insufficient against dynamic, sys-
tematic attacks (Liu et al. 2024b). Defensive fine-tuning
must therefore become a non-negotiable standard in the
model deployment lifecycle. Crucially, our findings validate
that parameter-efficient alignment (LoRA/QLoRA) offers a
robust, scalable solution—hardening models against adver-
sarial exploitation while preserving the reasoning capabili-
ties essential for production applications.

Future Work

Our current findings demonstrate the efficacy of fine-tuning
defenses against adversarial attacks; however, several av-
enues remain for deeper investigation.

1. Expanded Utility Benchmarking. While our prelimi-
nary ablation studies using the MMLU (Hendrycks et al.
2021) dataset indicate that our safety fine-tuning main-
tains base model accuracy, this evaluation is primarily
knowledge-centric. We will extend our utility testing to
include complex reasoning, coding, and multi-turn con-
versation benchmarks to quantify the ”safety tax” more
rigorously.

2. Stochastic and Non-Deterministic Attack Vectors.
Our current adversarial dataset generation relies primar-
ily on deterministic optimization. Future work will ex-
plore non-deterministic approaches, such as AutoDAN-
Turbo (Liu et al. 2024a) and probabilistic fuzzing strate-
gies. By exploiting the stochastic nature of LLM gener-
ation, we aim to uncover deeper, edge-case vulnerabili-
ties. This will allow us to curate a more diverse and high-
entropy dataset for fine-tuning, ultimately leading to su-
perior robustness.

3. Scalability and Model Heterogeneity. We have cur-
rently validated our approach on Llama-3-8B (SFT and
LoRA) and Llama-3-70B (LoRA). We intend to expand
this evaluation to a wider range of architectures and pa-
rameter scales to conduct a systematic comparison be-
tween Full Fine-Tuning and Parameter-Efficient Fine-
Tuning (PEFT) across a diverse model zoo.

References

Choi, H. K.; Du, X.; and Li, Y. 2024. Safety-Aware Fine-
Tuning of Large Language Models. arXiv:2410.10014.

Dettmers, T.; Pagnoni, A.; Holtzman, A.; and Zettlemoyer,
L. 2023. QLoRA: Efficient Finetuning of Quantized LLMs.
arXiv preprint arXiv:2305.14314.

Dubey, A.; Jauhri, A.; Pandey, A.; Keshvamurthy, A.; Maha-
rana, A.; Agarwal, A.; Shukla, A.; Feng, A.; et al. 2024. The
Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783.

Hendrycks, D.; Burns, C.; Basart, S.; Zou, A.; Mazeika, M.;
Song, D.; and Steinhardt, J. 2021. Measuring Massive Mul-
titask Language Understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR).

Hsu, C.-Y.; Tsai, Y.-L.; Lin, C.-H.; Chen, P--Y.; Yu, C.-M.;
and Huang, C.-Y. 2024. Safe LoRA: the Silver Lining of
Reducing Safety Risks when Fine-tuning Large Language
Models. arXiv:2405.16833.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2022. LoRA: Low-Rank Adap-
tation of Large Language Models. In International Confer-
ence on Learning Representations.

Huang, T.; Hu, S.; Ilhan, F.; Tekin, S. F.; and Liu, L. 2024.
Lisa: Lazy Safety Alignment for Large Language Models
against Harmful Fine-tuning. arXiv:2405.18641.

Huang, T.; Hu, S.; Ilhan, F; Tekin, S. F.; Yahn, Z.; Xu,
Y.; and Liu, L. 2025. Safety Tax: Safety Alignment
Makes Your Large Reasoning Models Less Reasonable.
arXiv:2503.00555.

Li, M.; Si, W. M.; Backes, M.; Zhang, Y.; and Wang, Y.
2025. SaloRA: Safety-Alignment Preserved Low-Rank
Adaptation. arXiv:2501.01765.

Liu, X.; Li, P.; Suh, E.; Vorobeychik, Y.; Mao, Z.; Jha,
S.; McDaniel, P.; Sun, H.; Li, B.; and Xiao, C. 2024a.
AutoDAN-Turbo: A Lifelong Agent for Strategy Self-
Exploration to Jailbreak LLMs. arXiv:2410.05295.

Liu, X.; and Xiao, C. 2025. AutoDAN-Reasoning: En-
hancing Strategies Exploration based Jailbreak Attacks with
Test-Time Scaling. arXiv:2510.05379.

Liu, X.; Xu, N.; Chen, M.; and Xiao, C. 2024b. AutoDAN:
Generating Stealthy Jailbreak Prompts on Aligned Large
Language Models. In The Twelfth International Conference
on Learning Representations.

Qi, X.; Zeng, Y.; Xie, T.; Chen, P--Y.; Jia, R.; Mittal, P.; and
Henderson, P. 2024. Fine-tuning Aligned Language Models
Compromises Safety. In The Twelfth International Confer-
ence on Learning Representations.



Xue, Y.; and Mirzasoleiman, B. 2025. LoRA is All
You Need for Safety Alignment of Reasoning LLMs.
arXiv:2507.17075.

Zou, A.; Wang, Z.; Kolter, J. Z.; and Fredrikson, M. 2023.
Universal and Transferable Adversarial Attacks on Aligned
Language Models. arXiv:2307.15043.

Reproducibility Checklist

1. General Paper Structure

1.1. Includes a conceptual outline and/or pseudocode de-
scription of Al methods introduced (yes/partial/no/NA)
no

1.2. Clearly delineates statements that are opinions, hypoth-
esis, and speculation from objective facts and results
(yes/no) yes

1.3. Provides well-marked pedagogical references for less-
familiar readers to gain background necessary to repli-
cate the paper (yes/no) yes

2. Theoretical Contributions

2.1. Does this paper make theoretical contributions?
(yes/no) no

If yes, please address the following points:

2.2. All assumptions and restrictions are stated clearly
and formally (yes/partial/no) NA

2.3. All novel claims are stated formally (e.g., in theorem
statements) (yes/partial/no) NA

2.4. Proofs of all novel «claims are included
(yes/partial/no) NA

2.5. Proof sketches or intuitions are given for complex
and/or novel results (yes/partial/no) NA

2.6. Appropriate citations to theoretical tools used are
given (yes/partial/no) NA

2.7. All theoretical claims are demonstrated empirically
to hold (yes/partial/no/NA) NA

2.8. All experimental code used to eliminate or disprove
claims is included (yes/no/NA) NA

3. Dataset Usage

3.1. Does this paper rely on one or more datasets? (yes/no)
no

If yes, please address the following points:
3.2. A motivation is given for why the experi-

ments are conducted on the selected datasets
(yes/partial/no/NA) NA

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) NA

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) NA

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-
lished work) are accompanied by appropriate cita-
tions (yes/no/NA) NA

3.6. All datasets drawn from the existing litera-
ture (potentially including authors’ own pre-
viously published work) are publicly available
(yes/partial/no/NA) NA

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments?
(yes/mno) Yes

If yes, please address the following points:

4.2. This paper states the number and range of values
tried per (hyper-) parameter during development of
the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) par-
tial

4.3. Any code required for pre-processing data is in-
cluded in the appendix (yes/partial/no) no

4.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) no

4.5. All source code required for conducting and an-
alyzing the experiments will be made publicly
available upon publication of the paper with a li-
cense that allows free usage for research purposes
(yes/partial/no) yes

4.6. All source code implementing new methods have
comments detailing the implementation, with ref-
erences to the paper where each step comes from
(yes/partial/no) no

4.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in
a way sufficient to allow replication of results
(yes/partial/no/NA) NA

4.8. This paper specifies the computing infrastruc-
ture used for running experiments (hardware and
software), including GPU/CPU models; amount



4.9.

4.10.

4.11.

4.12.

4.13.

of memory; operating system; names and ver-
sions of relevant software libraries and frameworks
(yes/partial/no) yes

This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) yes

This paper states the number of algorithm runs used
to compute each reported result (yes/no) NA

Analysis of experiments goes beyond single-
dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
NA

The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no)
NA

This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) NA



