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Santiago, Chile
casinglo@uc.cl

Abstract—Resolving the fine-scale details of a signal from
coarse-scale measurements is a classical problem in signal pro-
cessing. This problem is usually formulated in terms of extrap-
olation in frequency, i.e., as extrapolating the Fourier transform
of the signal from a set of low-frequencies to a larger set.

An approach to perform extrapolation in frequency is to use
a multiplier, or a filter, that minimizes a suitable approximation
error metric over a known collection of signals. However, one of
the drawbacks of this approach is that this multiplier is not able
to exploit the relations between the signals in the collection. In
this work, we propose a formulation that is translation-invariant,
finding both the optimal multipliers and the optimal centering for
the signals in the collection. A consequence of our formulation is
that the optimal centering does not correspond to a usual choice
such as the center of mass. We perform numerical experiments
supporting our claims.

Index Terms—Spectral extrapolation, adaptive filters, super-
resolution, translation invariance.

I. INTRODUCTION

Resolving the fine-scale details of a signal u : Rd → C
from coarse-scale measurements is a classical problem in
signal processing. Typically, the coarse-scale measurements
correspond to the restriction û|Ω0

of the Fourier transform
û of u to a set Ω0 ∈ Rd assumed to be compact with non-
empty interior. While Ω0 represents the low-frequencies the
restriction û|Ω0

represents the low-frequency content of u.
Resolving the fine-scale details of u implies extrapolating

û|Ω0
to a set containing Ω0. For instance, given an extrapola-

tion factor α > 1 we can seek a map T for which

T (û|Ω0
) = û|αΩ0

= (Dαû)|Ω0
(1)

where Dα is the dilation operator (Dαû)(ξ) = û(αξ). This
is reminiscent of the refinement equation in multiresolution
analysis [1]–[3]. Observe that when û|Ω0

does not vanish,
then there is at least one map, in fact, a multiplier or transfer
function, that satisfies (1), namely,

T (û|Ω0
) = mû,αû|Ω0

for mû,α =
(Dαû)|Ω0

û|Ω0

.

D. CL. and C. SL. were partially funded by grants ANID – FONDECYT
1211643. C. SL. was partially funded by the National Center for Artificial
Intelligence CENIA FB210017, Basal ANID.

We call mû,α an exact multiplier. Inspired by this observation,
we look for a multiplier that performs well over a collection
u1, . . . , un, i.e., we seek a multiplier m such that

v ∈ span{û1, . . . , ûn} : (mv)|Ω0
≈ (Dαv)|Ω0

(2)

in a suitable sense. Such a multiplier must adapt to the ele-
ments in the collection to perform extrapolation in frequency.
Furthermore, when the elements of the collection are related
by group actions, e.g., translations and rotations, it is of
interest to determine the extent to which such a multiplier
can adapt to both the elements in the collection and to the
group actions relating them.

A. Previous work and contributions

There has been an increasing interest in signal analysis and
processing methods that can exploit structure in the data by
being either invariant or equivariant with respect to specific
group actions as this enables the identification or extraction
of intrinsic information about the signals. Examples of such
methods are wave scattering [4], translation-invariant image
denoising [5] and implicit neural representations [6]. Extrap-
olation in frequency using multipliers builds upon previous
work by the authors in [7] showing that, under suitable
conditions and for a suitable choice of approximation error,
there exist optimal multipliers, all of which have a canonical
structure, satisfying (2).

In this work, we address one limitation of the results
in [7], namely, the inability of the optimal multiplier to exploit
relations in the collection of signals, in particular, when some
elements are related by an unknown transformations arising
from a group action. To overcome this limitation in the case
of translations, we propose an alternative formulation that is
translation-invariant. A consequence of our proposed approach
is that the centering of the signals that achieves the minimum
error does not correspond to any the classical choices, e.g.,
the center of mass of the signals.

II. PRELIMINARIES

The real Hilbert space of complex-valued square integrable
functions on a domain X is denoted as L2(X). Its real inner



product is

⟨u, v⟩L2(X) = Re

(∫
X

u(x)∗v(x) dx

)
.

We assume that u1, . . . , un ∈ L2(Rd) and that they are
compactly supported. To simplify the notation, we denote their
Fourier transforms as f1, . . . , fn. Any linear combination of
these functions is real-analytic on Rd and thus it cannot vanish
on an open subset of Rd [8]–[10]. Let Ω = Ω0 \ α−1Ω0

and denote as L2(Ω) the subspace of L2(Ω0) consisting
of functions supported on Ω. It follows that for any linear
combination v of f1, . . . , fn and m ∈ L2(Ω) we have that
mv ∈ L2(Ω). Finally, for any x0 ∈ Rd we let τx0

u be
translation of u by x0, i.e., τx0

u(x) = u(x− x0).

III. OPTIMAL MULTIPLIERS

A. Multipliers minimizing the mean-squared error

To quantify the error incurred by a multiplier in (2) we
proceed as follows. Define the random function

f =
∑n

k=1
βkfk where β1, . . . , βk

iid∼ N(0, 1).

The approximation error is the random variable

∥Dαf −mf∥2L2(Ω) =

∫
Ω

|Dαf(ξ)−m(ξ)f(ξ)|2 dξ.

The mean-squared error (MSE) becomes

E[∥Dαf −mf∥2L2(Ω)] =
∑n

k=1
∥Dαfk −mfk∥2L2(Ω).

The natural way to choose an optimal multiplier is then to
solve

min
m∈L2(Ω)

∑n

k=1
∥Dαfk −mfk∥2L2(Ω). (3)

Proposition 1 (cf. Proposition 4.3. in [7]). If |f1|2 + . . . +
|fn|2 > 0 on Ω then

mMSE =

∑n
k=1 f

∗
kDαfk∑n

k=1 |fk|2
(4)

is a minimizer for (3).

We call mI the MSE optimal multiplier (MSE-OM). Its
closed-form shows how it achieves the minimum MSE by
adapting to the collection. By writing (4) equivalently as

mMSE =
∑n

k=1

(
|fk|2∑n
j=1 |fj |2

)
mfk,α (5)

it becomes apparent that mMSE does not satisfy (1) for
any single uk. Instead, it finds a compromise between the
collection of exact multipliers mfk,α and it will typically
generate artifacts when extrapolating in frequency each one
of the signals in the collection.

B. The case of a collection of translates

The closed-form in (5) suggests that the multiplier cannot
leverage any structured relation between the elements of the
collection. These relations arise, e.g., when the elements of the
collection are related by an unknown transformation arising
from a group action. We focus specifically on translations. In
particular, suppose that uk = τxk

u0 for some u0 ∈ L2(Rd)
and some x1, . . . , xn ∈ Rd. In this case, all the elements of the
collections are translates of a single function andfk = e−xk

f0
for ex(ξ) = e2πiξ·x. If |f0| > 0 on Ω we can apply (5) to
deduce that

mMSE =
1

n
mf0,α

∑n

k=1
e−(α−1)xk

(6)

for this collection. Therefore, the MSE optimal multiplier is
the product of the exact multiplier for f0 and an average
of complex exponentials. Remark that the effect of using
this multiplier to extrapolate in frequency is that it attempts
to resolve the details of all the signals in the collection
simultaneously. The details are misplaced as they are centered
at (α− 1)xk instead of xk.

C. The effect of centering

A strategy to improve the performance of the MSE optimal
multiplier in the previous example is to center the signals in
the collection first. If we replace fk by e−ckfk for some choice
of c1, . . . , ck ∈ Rd then (5) yields

mMSE =
∑n

k=1

(
|fk|2∑n
j=1 |fj |2

)
e−(α−1)ckmfk,α.

A typical choice are the centers of mass of each uk, i.e.,

ck :=

∫
Rd

x|uk(x)|2 dx
/∫

Rd

|uk(x)|2 dx (7)

However, it is not clear whether this choice improves the
performance of the multiplier. Our goal is thus to determine
the centering of the signals that yields the minimum MSE.

IV. TRANSLATION-INVARIANT OPTIMAL MULTIPLIERS

We extend the criterion in (3) and solve

min
m∈L2(Ω)

c1,...,cn∈Rd

∑n

k=1
∥Dα(e−ckfk)−m(e−ckfk)∥2L2(Ω)

to find both the the optimal centers and the optimal multiplier.
The above is equivalent to

min
m∈L2(Ω)

c1,...,cn∈Rd

∑n

k=1
∥Dαfk − e(α−1)ckmfk∥2L2(Ω). (8)

While the former formulation can be interpreted as finding the
centering that yields a multiplier achieving the minimum MSE,
the latter can be interpreted as finding a multiplier together
with the translations that achieve the minimum MSE when it is
used to perform extrapolation in frequency for each one of the
elements in the collection. Both formulations are translation-
invariant: if m⋆ and c⋆1, . . . , c

⋆
n are minimizers then m⋆ and

c⋆1−′ x′
1, . . . , c

⋆
n−x′

n will remain minimizers if we replace fk



by e−x′
k
fk for any choice of x′

1, . . . , x
′
k ∈ Rd. Said otherwise,

m⋆ can adapt to the translation-invariant structure of the
collection. Therefore, we call any such m⋆ the translation-
invariant MSE optimal multiplier (TI-MSE-OM).

A. Adapting to a collection of translates

Suppose once again that fk = e−xk
f0 for some f0 ∈

L2(Rd) that does not vanish on Ω and for some x1, . . . , xn ∈
Rd. By choosing ck = −xk and m = mf0,α each term in the
sum in (8) becomes

∥Dαfk − e(α−1)ckmf0,αfk∥2L2(Ω) =

∥Dα(e−xk
f0)− e(α−1)ckmf0,α(e−xk

f0)∥2L2(Ω) =

∥Dαf0 − e(α−1)(ck+xk)mf0,αf0∥2L2(Ω) = 0.

Since 0 is a global minimum for (8) we conclude that this
choice must be a global minimizer for (8). Interestingly,
this shows that the exact multiplier mf0,α for f0 is not
translated to xk as we would expect, but instead to (α−1)xk,
showing a subtle relation between the optimal centering and
the extrapolation factor α.

B. Optimal centering for a pair of signals in one-dimension

We now characterize the optimal centering in the case of
two signals u1, u2 ∈ L2(R). Assume that |f1|, |f2| > 0 on Ω
and let yk = (α− 1)ck. The partial minimization problem

min
m∈L2(Ω)

∑n

k=1
∥Dαfk − eyk

mfk∥2L2(Ω)

has as solution

my1,y2
=

e−y1f
∗
1Dαf1 + e−y2f

∗
2Dαf2

|f1|2 + |f2|2
.

The MSE of this multiplier as a function of z = y1 − y2 is

EMSE(z) = ∥v1 − ezw1∥2L2(Ω) + ∥v1 − e−zw1∥2L2(Ω)

where

v1 =
|f2|2Dαf1
|f1|2 + |f2|2

and v2 =
|f1|2Dαf2
|f1|2 + |f2|2

and

w1 =
f∗
2 f1Dαf2

|f1|2 + |f2|2
and w2 =

f∗
1 f2Dαf1

|f1|2 + |f2|2
.

The proof of the following proposition is in Appendix A.

Proposition 2. Let g ∈ L2(R) be such that

ĝ = −χΩ
|f1|2|f2|2

|f1|2 + |f2|2
m∗

f1,αmf2,α. (9)

Then
min
z∈R

EMSE(z) = min
z∈R

Re(g(z)).

On one hand, from Ω ⊂ αΩ it follows that ĝ is supported
on a bounded interval. On the other, the origin cannot belong
to Ω if it belongs to Ω0 and thus ĝ(0) = 0. We conclude that
g is a bandlimited, and thus smooth, function of mean zero
that decays to zero at infinity. In particular, it must attain a
global minimum on R.

Although minimizing g is often an intractable problem, the
closed-form of its Fourier transform in (9) allows us to perform
numerical experiments in one dimension. Furthermore, the
form of g strongly suggests that, except in some simple cases,
the optimal difference y1 − y2 = (α − 1)(c1 − c2) will not
correspond to using the center of mass to center u1 and u2.

V. EXPERIMENTS

To illustrate our results in Section IV-B we perform numer-
ical experiments1 in one dimension using two signals. One is
a scaling and a translate of the trapezoidal signal

uδ(x) =

(
1 ∧ 1− |x|

1− δ

)
+

and the other of the triangle signal

vδ(x) = ((1 + x) ∧ (1− δ−1x))+

where (·)+ denotes the positive part. The signal u1 is a
trapezoidal signal with δ = 0.7, scaling 0.7 and center −0.3;
the signal u2 is a triangle signal with δ = 0.25, scaling 1.28
and center 0.738 (Fig. 1a). The Fourier transforms f1, f2 can
be computed in closed-form. We use Ω0 = [−1.5, 1.5] and
α = 6. In this case αΩ0 = [−3, 3] and the high-frequency
approximation (HFA) is obtained by convolving the signal with
the inverse Fourier transform of χαΩ0 .

In Figs. 1b and 1f we show the approximations obtained
using the MSE optimal multiplier (MSE-OM) in (4). In
both cases the approximations have noticeable Gibbs artifacts
compared to the HFA. In Figs. 1c and 1g we show the ap-
proximations obtained using the MSE optimal multiplier after
centering (MSE-OM+C) the signals according to their centers
of mass (7) c1 = −0.3 and c2 = 0.49. There are no significant
improvements compared to the approximations obtained using
the MSE-OM. In fact, in some cases the amplitude of the
spurious oscilations increase (Fig. 1g). Finally, in Fig. 1e we
show the surrogate function g in Proposition 2. In this case
it is real-valued. Although it is oscillatory, it attains a global
minimum at z⋆ = 1.920. This yields|x1 − x2| ≈ 11.51 which
does not match |c1−c2| ≈ 0.79. In Figs. 1b and 1f we show the
approximations obtained using the translation-invariant MSE
optimal multiplier (TI-MSE-OM). Remark that the artifacts are
substantially reduced. However, the oscillations to the right of
the triangular signal (Fig. 1h) increase slightly. To compare
the above methods, we show some suitable error metrics in
Table I. Remark that using TI-MSE-OM outperforms the other
methods.

VI. CONCLUSION

In this work we leveraged the results in [7] to find a mul-
tiplier to perform extrapolation in frequency over a finite col-
lection of signals that achieves the minimum MSE. Although
this multiplier adapts to the collection, it does not exploit any
structured relation between its elements. In particular, it does
not exploit the fact that some of the signals may be translates

1The code to reproduce the results can be found in the GitHub repository
csl-lab/adaptiveExtrapolationInFrequency

https://github.com/csl-lab/adaptiveExtrapolationInFrequency
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Fig. 1: (a) Signal u1 and u2. (e) Surrogate function g. (b, c, d, f, g, h) Comparison between the high-frequency approximation
(red) and the approximation (blue) using: (b, f) the MSE optimal multiplier, (c, g) the MSE optimal multiplier after centering
with the center of mass, and (d, h) the translation-invariant MSE optimal multiplier; for (b, c, d) signal u1 and (f, g, h) signal
u2.

MSE-OM MSE-OM+C TI-MSE-OM

u1

MSE 1.570×10−3 3.330×10−3 1.323×10−3

SNR 28.534 25.268 29.275
PSNR 28.106 24.840 28.847

u2

MSE 3.185×10−3 6.949×10−3 2.648×10−3

SNR 22.239 18.850 23.041
PSNR 24.863 21.475 25.666

TABLE I: Error metrics. SNR and PSNR are in dB.

of each other. By adding translations as variables in the MSE
we were able to characterize a multiplier that is able to exploit
this structure. Interestingly, this criterion centers the functions
in a way that is optimal for extrapolation in frequency. Our
numerical experiments in one dimension confirm this finding.
As future work, we will extend these results to Euclidean
motions, and we will identify the properties that allows us
to extend these results to general group actions.

APPENDIX

A. Proof of Proposition 2

To compute the derivative of EMSE define the auxiliary
differentiable functions Jk : L2(Ω) → R as

Jk(φ) = ∥vk − φwk∥2L2(Ω) where J ′
k(φ) = 2w∗

k(vk − φwk).

By the chain rule

E′
MSE(z) = ⟨J ′

1(ez), e
′
z⟩L2(Ω) − ⟨J ′

2(ez), e
′
−z⟩L2(Ω) =

−2πRe

(
i

∫
Ω

ξ(|w1|2 + |w2|2 + ezw
∗
2v2 − e−zw

∗
1v1)(ξ) dξ

)
.

Remark that the integral of any real integrand vanishes due
to the factor i and taking the real part. Define the auxiliary
function γ = ezf1f

∗
2Dαf

∗
1Dαf2. Then

E′
A(z) = −2πRe

(
i

∫
Ω

ξ(ezw
∗
2v2 − e−zw

∗
1v1)(ξ)dξ

)
=

− 2πRe

(
i

∫
Ω

ξ
(|f1|2γ − |f2|2γ∗)(ξ)

(|f2|2 + |f1|2)2(ξ)
dξ

)
=

2π Im

(∫
Ω

ξ
(|f1|2γ + |f2|2γ)(ξ)
(|f2|2 + |f1|2)2(ξ)

dξ

)
=

2π Im

(∫
Ω

ξ
γ(ξ)

(|f2|2 + |f1|2)(ξ)
dξ

)
=

−Re

(∫
Ω

(2πi)ξ
(|f1|2|f2|2)(ξ)

(|f2|2 + |f1|2)(ξ)
(m∗

f1,αmf2,αez)(ξ)dξ

)
from where the proposition follows by identifying the real part
of the derivative of an inverse Fourier transform.
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