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Abstract

Medical language models (MLMs) have be-001
come pivotal in advancing medical natural lan-002
guage processing. However, prior models that003
rely on pre-training or supervised fine-tuning004
often exhibit low data efficiency and limited005
practicality in real-world clinical applications.006
While OpenAI’s o-series models highlight test-007
time scaling in mathematics, attempts to repli-008
cate this approach in medicine typically dis-009
till responses from GPT-series models to open-010
source models, focusing primarily on multiple-011
choice tasks. This strategy, though straight-012
forward, neglects critical concerns like data013
privacy and realistic deployment in clinical set-014
tings. In this work, we present a small-scale015
medical reasoning system, MedS3, designed016
for long-chain reasoning in clinical tasks using017
a self-evolution paradigm. Starting with 8,000018
instances sampled with a curriculum strategy019
spanning five domains and 16 datasets, we020
prompt a base policy model to perform Monte021
Carlo Tree Search (MCTS) to construct rule-022
verifiable reasoning chains for two iterations.023
Each reasoning step is scored by the rollout024
estimation, allowing for training the policy025
model and a soft dual-sided process reward026
model (PRM). Experiments on eleven eval-027
uation datasets demonstrate that MedS3 out-028
performs not only the prior strongest medical029
model by 6.45, but also 32B-level general rea-030
soning models by 8.57 points.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated significant potential in the medical domain034

(Singhal et al., 2023; Nori et al., 2023; Chen et al.,035

2023b), supporting tasks from clinical note genera-036

tion (Biswas and Talukdar, 2024; Jung et al., 2024)037

to patient communication (Tu et al., 2024; Liao038

et al., 2024b). Despite these advances, enabling039

reliable and robust long-chain reasoning remains040

a critical challenge for medical-oriented language041

models (MLMs), which is essential for clinical042

decision-making where each reasoning step must 043

be accurate, interpretable, and evidence-based. 044

Recent progress in “slow-thinking” reasoning 045

models such as OpenAI’s o-series (OpenAI, 2024) 046

has led to breakthroughs on complex reasoning 047

tasks (Lyu et al., 2025; Wang et al., 2024). How- 048

ever, these advances have not yet been fully real- 049

ized in medical language models, where domain 050

complexity, data scarcity, and the need for rig- 051

orous stepwise justification amplify the difficulty. 052

Prior efforts to improve MLMs have focused heav- 053

ily on large-scale pretraining (Qiu et al., 2024), 054

which requires enormous computational resources 055

but yields only modest task improvements. Alter- 056

natively, supervised fine-tuning (SFT) on human- 057

annotated datasets (Ouyang et al., 2022) often 058

involves concise, single-answer outputs that can 059

harm language fluency and limit the model’s ability 060

to generate rich, stepwise clinical reasoning neces- 061

sary for real-world applications. 062

Synthetic datasets generated by LLMs offer a 063

promising direction but suffer from hallucinations 064

(Xu et al., 2024b; Huang et al., 2023), which con- 065

strain the effective learning of clinically sound rea- 066

soning paths. A closely related work to slow think- 067

ing is HuatuoGPT-o1 (Chen et al., 2024), which em- 068

ploys GPT-4o to generate reasoning-intensive prob- 069

lems and corresponding complex reasoning steps 070

for distillation and reinforcement learning (RL). 071

While it achieves certain levels of long-chain rea- 072

soning, its heavy reliance on large proprietary mod- 073

els (GPT-series) limits its generalizability to real 074

clinical applications for the sake of data privacy. 075

Another relevant work, O1 Journey Part 3 (Huang 076

et al., 2025), directly distills OpenAI o1’s out- 077

puts into ∼70B-parameter models. This approach 078

compromises user-friendliness and data privacy, 079

and also struggles to detect hallucinations. More- 080

over, relying exclusively on multiple-choice prob- 081

lems for distillation constrains its applicability to a 082

broader range of clinical tasks. These challenges 083

1



Models
Without Without Diverse

Small Size Slow Thinking
Process

Pretraining Close-sourced Teacher Clinical Coverage Reward Usage

MMed-Llama3 ✗ ✗ ✓ ✓ ✗ ✗

UltraMedical ✓ ✗ ✓ ✓ ✗ ✗

HuatuoGPT-o1 ✓ ✗ ✗ ✓ ✓ ✗

O1-journey Part 3 ✓ ✗ ✗ ✗ ✓ ✗

MedS3 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of MedS3 with other medical models. Our MedS3 supports flexible inference-time scaling
on resource-constrained devices, as well as process reward-guided decoding algorithms. Furthermore, MedS3 is a
self-evolved model without dependence on large proprietary models for distillation or critique.

highlight a core problem: how to efficiently induce084

robust, interpretable, and stepwise reasoning ca-085

pabilities in small-scale medical models without086

relying on prohibitive pretraining, proprietary mod-087

els or noisy synthetic supervision.088

To address this, we propose MedS3, a novel089

small-scale medical language model that integrates090

robust long-chain reasoning “policy” with a fine-091

grained, soft dual-sided Process Reward Model092

(PRM) designed to evaluate and guide reasoning093

steps progressively. We first curate 16 medical094

tasks spanning clinical diagnosis QA, natural lan-095

guage inference, knowledge-intensive QA, long-096

context QA, and biomedical QA, and design a cur-097

riculum sampling strategy to evolve the model over098

8,000 carefully selected challenging instances per099

iteration. Upon these, our key innovation involves100

a self-bootstrapping pipeline leveraging a Monte-101

Carlo Tree Search (MCTS)-based reflection-aware102

evolution process (§2.1) that iteratively generates103

high-quality synthetic data for both policy fine-104

tuning (§2.2) and soft dual-sided PRM training. To105

enable reflection-aware step-wise supervision, we106

design a soft dual-sided label (§2.3) to promote107

the PRM to reward in both forward and backward108

sides. By focusing on step-level reasoning super-109

vision tailored to clinical demands, our approach110

overcomes the limitations of prior models that rely111

on coarse labels or multiple-choice distillation un-112

suited for diverse clinical tasks. This results in a113

medical reasoning system optimized for evidence-114

based stepwise confidence accumulation, critical115

for trustworthy clinical decision support.116

Extensive experiments on eleven clinical reason-117

ing benchmarks demonstrate that MedS3 achieves118

state-of-the-art performance (§4), outperforming119

both comparable-sized medical models and much120

larger general reasoning models, while maintaining121

superior interpretability and clinical task coverage.122

Table 1 highlights these advantages in robust long-123

chain reasoning and breadth of application. 124

In summary, our contributions are: 125

1. First Step-Level Framework for Medical 126

AI: We introduce the first self-evolution 127

framework that equips small-scale medical 128

models with robust long-chain reasoning via 129

step-level supervision, tailored for a wide 130

range of clinical applications. 131

2. Novel PRM Training Pipeline: We propose 132

a unique process reward model trained with 133

soft dual-sided labels, which precisely eval- 134

uates each reasoning step by jointly predict- 135

ing future rewards and assessing atomic step 136

necessity, reflecting clinical reasoning’s incre- 137

mental confidence building. 138

3. State-of-the-Art Clinical Reasoning Perfor- 139

mance: Our self-evolved system MedS3 sig- 140

nificantly surpasses all equal-parameter com- 141

petitors and larger reasoning models across 142

multiple clinical benchmarks, driven by fine- 143

grained PRM-guided reasoning enhancement. 144

2 MedS3 145

This section presents a detailed overview of the 146

proposed MedS3 framework, which is structured 147

into four key components: 148

1. Self-Bootstrapping Evolution (§2.1) which 149

synthesizes reasoning trajectories as training 150

data, with Monte-Carlo Tree Search (MCTS) 151

technique using the base policy π0. 152

2. Policy Model π (§2.2) which is derived by 153

fine-tuning on the generated synthetic data 154

with supervised learning and direct preference 155

optimization (Rafailov et al., 2023). 156

3. Process Reward Model (PRM) Vθ (§2.3) 157

which is fine-tuned with step-wise supervi- 158

sion using soft dual-side labels and assigns a 159
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Figure 1: Overview of the construction of MedS3 framework. (a) MedS3 utilizes a Monte-Carlo Tree Search
pipeline to self-generate step-by-step reasoning paths for each instance sampled in a curriculum manner. (b) During
this process, MedS3 uses result simulation to obtain the rollout value for each node; (c) After obtaining the child’s
rollout value, MedS3 executes back-propagation to enable precise value prediction from deeper layers to transfer
back to shallow nodes. (d) After gathering all correct and wrong finish nodes, we use SFT and DPO to optimize the
policy model π and soft dual-side label to fine-tune a process reward model Vθ.

value in the range [0, 1] to each reasoning step160

by a both forward and backward view.161

4. Iterative Training Pipeline (§2.4) which con-162

sists of two MCTS evolution iterations and a163

curriculum data sampler.164

The overall framework is presented in Fig. 1.165

2.1 MCTS-guided Evolution166

This algorithm builds upon an n-ary tree, where167

every root node is initialized as a reasoning start168

s0 =“Let s break down this problem step by step.”169

to guarantee a multi-step reasoning process. There170

are four stages in a full MCTS pipeline, including171

Node Selection, Node Expansion, Node Rollout,172

and Backpropagation.173

Node Selection Within each iteration, we use174

UCB (Winands et al., 2008) as the criterion to se-175

lect a child, which is as follows:176

UCB(T ) = vC + γ

√
lnnTparent

nT
, (1)177

where Tparent is the preceding node of the current178

node T and γ is an exploration constant set as 2.179

For each intermediate node, we select its child node 180

with the highest UCB value. 181

Node Expansion After reaching the candidate 182

node Tc under the UCB criterion, we continue the 183

reasoning trace of the current node. If the current 184

node possesses a relatively high value (vc ≥ thr, 185

where thr = 0.9 is a pre-defined threshold), we 186

prompt the node to directly generate until deriving 187

an answer for speeding up the exploration phase. 188

On the other hand, for a wrong node, we allow one 189

reflective action Reflect to elicit the introspection 190

of the policy. Otherwise, assume that the selected 191

node is located at k-th depth among the tree with 192

previous reasoning trajectories [s0, s1, · · · , sk] con- 193

nected by a coherence phrase ts, we sample B sub- 194

sequent steps {sk+1,i | i = 1, 2, · · · , B} based on 195

the previous trajectory using a Reason1 node: 196

sk+1,i ∼ π0([s0 ⊕ s1 ⊕ · · · ⊕ sk] | x), (2) 197

where ⊕ is the operation to connect two steps us- 198

ing the coherence phrase ts, π0 is the base policy 199

model, and x is the original input prompt. 200

1Prompts of Finish, Reflect, and Reason actions are
illustrated in Appendix E
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Node Rollout As the PRM is not yet accurate201

enough to serve as a reliable critic, node values are202

obtained using rollouts based on reasoning trajec-203

tories so far. Specifically, for a chosen unvisited204

node Tc at the k-th depth, we set a simulation bud-205

get L = min(Lmin,
L0
k ), to encourage sufficient206

simulation trials when the known reasoning path is207

short, but expect to see a deterministic reasoning208

result conditioning on a long trajectory. After set-209

ting the budget, we prompt the policy model π0 to210

directly output the answer L times under a specific211

prompt AnsPrompt:212

alc ∼ π0([s0 ⊕ s1 ⊕ · · · ⊕ sk] | xAnsPrompt), (3)213

where l ∈ [1, L] and alc is the l-th simulated answer.214

The average accuracy of the L simulations acc =215
1
L

∑L
l=1 1alc=y is assigned as the value of Tc.216

Backpropagation After the rollout stage, we217

conduct back-propagation starting from Tc till the218

root, updating all tree node values along the trace.219

Specifically, for an arbitrary node Tk, we propose220

to update its visits nk and vk as follows:221

nk = nk + 1222

vk =
1

2

(
vk +

∑
ch vch · nch∑

ch nch

)
, (4)223

which considers both correctness and completeness224

for the evaluation of a reasoning step.225

Termination of Search For balancing the explo-226

ration cost and optimization of policy and reward227

models, Therefore, we set two criteria to terminate228

the search process. First, once the total correct229

count in the tree exceeds a minimum correct count230

τ , we stop the exploration of this tree. Second, if231

there are no correct nodes after affording a certain232

number of node exploration trials, we prompt π0 to233

generate Finish node for all leaves.234

2.2 Policy Model Fine-tuning235

The policy training mainly leverages the correct236

nodes T 1
k and corresponding reasoning trajectories237

gathered before: Dπ = {(T 1
k , [s0⊕s1⊕· · ·⊕sk]) |238

vk = 1}. These correct reasoning traces are fine-239

tuned to deduce a self-improved policy model:240

Lπ =
1

Lk

Lk∑
i=1

− log pπ(yi|x, y<i), (5)241

where yi is the i-th token of the reason trajectory242

and Lk is the total length of the trajectory. For243

the second iteration, we further add a step-level 244

Direct Preference Optimization (DPO) to optimize 245

the policy at the same reasoning budget: 246

LDPO = −E(x,P+,P−)∼DDPO
log σ(rθ(x, P

+ 247

− rθ(x, P
−)), (6) 248

where rθ(x, P ) = β(log πθ(P | x)− log πref (P | 249

x)) is the reward and DDPO = {(x, [s0 ⊕ s1 ⊕ 250

· · · ⊕ s+k ], [s0 ⊕ s1 ⊕ · · · ⊕ s−k ]) | v
+
k > v−k }. The 251

DPO training is crucial for deriving a strong policy 252

and PRM, which is elucidated in Table 3. 253

2.3 Soft Dual-side PRM Fine-tuning 254

Dataset Collection We first filter out those trees 255

with only correct or incorrect leaves as these 256

trajectories contain extreme value bias. For a 257

Finish node Tk in a valid tree, its reasoning 258

trace [(s1, v1), (s2, v2), · · · , (sk, vk)] is one train- 259

ing sample, where each reasoning step is concate- 260

nated by “Step k:” to form a complete reason- 261

ing trajectory. At the end of each reasoning step 262

si (typically a \n\n token), the value vi is used to 263

derive the token label, which is learned by condi- 264

tioning on all previous steps in an auto-regressive 265

manner. As a result, the PRM training set is such 266

DVθ
= {(x, [(s1, v1), (s2, v2), · · · , (sk, vk)]) | 267

x ∈ Dseed ∧ sk is finish}. 268

Learning objective Previous works in the math 269

domain choose to directly learn the rollout value 270

with Mean-Squared Error (Zhang et al., 2024a) or 271

learn the pair-wise ranking preference (Guan et al., 272

2025). However, in our work, we propose to learn 273

the prediction of the correctness probability of an 274

intermediate step using a 2-class cross-entropy loss. 275

The PRM Vθ is initialized from the tuned policy 276

model for an aligned distribution, with the language 277

model head replaced by a token classification layer 278

with a cross-entropy loss for labeled tokens. Al- 279

though Zhang et al. (2025) suggests that the PRM 280

label should be set to 1 (a hard label) once the 281

rollout score is above zero, we deem that the roll- 282

out score as a soft label has a forward-only bias 283

about reasoning correctness. Meanwhile, a rig- 284

orous and concise medical reasoning step, which 285

cannot allow for exploring different solutions in a 286

brute-force manner, is different from a math rea- 287

soning step (Yue et al., 2025). Therefore, a new 288

step is valued highly only when it can both possibly 289

derive a final answer and improve the correctness 290

of the reasoning trajectory deterministically. As 291
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a result, we design a dual-side label yi for step i292

using its soft Q-value obtained during MCTS as293

yi =

{
⌈vi − β ·max(0, vi−1 − vi+1)⌉ vi < vi−1

⌈vi⌉ otherwise
(7)294

This learning objective encourages PRM to simul-295

taneously look ahead and back to judge the current296

step and penalize random trials except for reflective297

actions. Based on these, we optimize Vθ using the298

following loss function:299

LVθ
= ETk∼DVθ

k∑
i=1

yi log ŷi+(1−yi) log(1−ŷi),

(8)300

where ŷi is the predicted probability of the given301

step i and β is a hyperparameter set to 1.0 by a sim-302

ple grid search (details in Table 5). This dual-sided303

soft-label training, not only prevents the learning304

of fuzzy labels (rollout value around 0.5) but also305

learns to judge a misleading step.306

2.4 Training Pipeline307

We perform two iterations for the seed dataset.308

For each iteration, we use curriculum sampler,309

which first prompts the policy model to perform310

the rejected-sampling on the training set, filtering311

those training instances with all-correct responses312

to enhance data efficiency. After that, we sample313

instances with the lowest pass@1 values during314

the rejected-sampling process, ensuring that the315

extremely hard problems (0 pass@1 score) are no316

more than one-third of the total samples. After that,317

we perform MCTS evolution on the seed data and318

update the policy model. At the end of the second319

evolution, we further enhance the policy with DPO320

and train the PRM using the second iteration’s data.321

3 Data Statistics322

A slow-thinking system in medical scenarios323

should both excel at exam-level question answer-324

ing (QA) and handling real-world clinical scenar-325

ios, like diagnosis (Tchango et al., 2022), specific326

disease syndrome (Lab, 2020) and drug-related327

problems (Huynh et al., 2016). However, previous328

works only focused on a simple scenario, with only329

limited data diversity, especially multiple-choice330

QA, to train reasoning models. To approximate331

realistic clinical usage and promote medical rea-332

soning models on a diverse range of clinical tasks,333

we curate a training corpus, from 16 existing public334

Long
Context

QA

Knowledge 
QA

Bio-
Medical 

QA

Diagnosis
QA

Medical 
NLI

Figure 2: Overview of the used seed datasets.

medical datasets and divide them into five dimen- 335

sions according to the task category. We show the 336

five dimensions, i.e., clinical diagnosis QA, natural 337

language inference, knowledge-intensive QA, long- 338

context QA, biomedical QA and corresponding 339

datasets in Fig. 2. The details about the definition 340

of the five dimensions and the corresponding tasks 341

can be found in Appendix F. 342

4 Experiments 343

In this section, we comprehensively evaluate 344

MedS3 on various downstream domains, includ- 345

ing both in-domain and out-of-domain datasets. 346

4.1 Experiment Setups 347

Training and Evaluation We choose Llama3.1- 348

8B-Instruct as the backbone of MedS3. We select 349

MedQA-5op (Jin et al., 2021), PubMedQA (Jin 350

et al., 2019) without contexts, MedMCQA (Pal 351

et al., 2022), PubHealth (Kotonya and Toni, 2020), 352

BioMRC (Pappas et al., 2020), HealFact Classifi- 353

cation (Kotonya and Toni, 2020), Drug Dose Ex- 354

traction (Huynh et al., 2016), DDX-Plus (Tchango 355

et al., 2022) as the in-domain evaluation bench- 356

marks, the medical subsets of MMLU (Hendrycks 357

et al., 2021), BioASQ (Tsatsaronis et al., 2012) 358

SEER Classification (Dubey et al., 2023) as the out- 359

of-domain evaluation sets. The details of evaluation 360

sets are presented in Appendix F and the hyperpa- 361

rameters of synthesis, self-training and evaluation 362

are presented in Appendix G. 363
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Models MedQA† MedMCQA† PubMedQA† BioASQ MMLU BioMRC PubHealth HealthFact DDXPlus DrugDose SEER Avg.

Large language models (>10B)
GPT-4o-mini 75.81 67.58 47.80 83.01 83.79 66.85 59.14 65.24 54.00 73.91 54.54 66.52
GPT-3.5-turbo 59.31 58.12 37.40 74.11 71.11 56.22 57.84 67.85 39.05 86.96 73.61 61.96
QwQ-32B-preview 68.89 61.03 48.60 73.62 74.18 79.76 63.36 66.08 45.40 39.13 37.26 59.76
R1-Distill-Qwen32B 76.83 66.27 38.20 78.32 85.07 78.66 59.95 63.80 53.90 82.61 26.22 64.53

Small language models (<10B)
Qwen2.5-7B 55.54 54.12 53.40 73.62 74.38 56.48 57.11 52.69 31.25 60.87 33.07 54.78
Llama3-8B 57.50 55.92 56.40 75.73 68.55 56.50 64.09 70.88 35.30 73.91 47.07 60.17
Llama3.1-8B 61.51 57.42 59.00 71.36 72.52 55.60 61.82 63.97 19.00 73.91 52.62 58.98
R1-Distill-Llama8B 50.12 48.89 46.60 70.55 68.42 53.49 55.73 62.04 36.10 69.57 31.71 53.93

Small Medical language models (<10B)
MMedS-Ins 53.57 48.24 56.60 77.35 50.86 31.47 54.26 69.64 97.53 95.65 97.93 66.65
MedLlama3 55.85 59.36 66.40 84.63 70.08 47.97 62.39 68.10 22.50 69.57 50.69 59.78
Med42 50.20 49.70 55.40 74.76 61.43 57.26 59.14 81.57 31.35 65.22 37.14 56.65
OpenBioLLM 50.20 50.56 41.40 47.73 61.69 27.46 18.77 53.28 16.55 34.78 46.48 40.81
UltraMedical3-8B 68.89 61.82 51.60 80.58 75.08 45.18 66.13 72.73 36.70 60.87 24.55 58.56
UltraMedical3.1-8B 70.93 62.78 56.40 77.18 76.43 54.26 59.14 70.20 31.55 56.52 45.86 60.11
HuatuoGPT-o1 62.53 59.31 58.20 87.70 70.53 50.98 24.61 66.08 40.20 56.52 46.85 56.68
SFT on Seed 40.93 58.38 61.80 76.38 66.24 32.56 44.03 73.57 42.05 91.30 53.10 58.21

MedS3 (ours)
Iter 1 65.91 60.55 56.80 78.48 75.66 55.84 57.03 64.73 51.65 73.91 48.97 62.68
Iter 2 67.09 61.56 60.40 80.93 75.21 70.11 68.97 69.87 53.55 91.30 53.44 68.40
Iter 2 w/ PRM 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80 73.10

Table 2: Experiment results in 11 medical datasets among four types of models. We highlight the best results with
bold and underlines the second-best results among models with a similar size. “SFT on seed” denotes the variant of
fine-tuning the policy on the seed data. † denotes the datasets on which most medical models have been trained.

Setting MedQA MedMCQA PubMedQA BioASQ Med MMLU BioMRC PubHealth HealthFact DDX Plus Drug Dose SEER Average

SFT Policy 64.69 61.46 57.80 80.26 75.98 63.28 63.44 64.23 52.65 78.26 48.85 64.63
w/ DPO 67.09 61.56 60.40 80.93 75.21 70.11 68.97 69.87 53.55 91.30 53.44 68.40
w/ H-S label 68.97 65.67 61.80 79.45 76.75 70.48 69.13 74.24 59.35 86.96 56.94 69.98
w/ H-D label 66.77 63.78 61.40 80.74 75.14 78.13 69.54 75.34 61.60 91.30 56.46 70.93
w/ S-D label 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80 73.10
w/ SFT init. PRM 70.70 64.40 61.80 81.23 77.39 70.22 75.30 74.58 60.15 82.61 54.99 70.31

Table 3: Ablation study on each component of MedS3 after the second iteration. “H-S” means hard single-sided
label, “H-D” means hard dual-sided label, and “S-D” is soft dual-sided label used in MedS3.

Baselines We choose the following two cat-364

egories to serve as baselines: (1) LLMs, in-365

cluding GPT-3.5-turbo (OpenAI, 2022), GPT-4o-366

mini (OpenAI, 2023), QWQ-preview-32B (Qwen,367

2024) and R1-Distill-Qwen32B (Guo et al., 2025);368

(2) Small Language models (<10B), including369

Llama 3 8B, Llama 3.1 8B (Dubey et al., 2024)370

and Qwen2.5 7B (Yang et al., 2024), R1-Distill-371

Llama8B (Guo et al., 2025) (3) Medical LLMs,372

including MedLlama 3 8B2, MMedS-Ins-Llama-373

3-8B (Wu et al., 2024b), Med42 (Christophe374

et al., 2024), OpenBioLLM (Ankit Pal, 2024),375

UltraMedical3-8B and UltraMedical3.1-8B (Zhang376

et al., 2024b) and HuatuoGPT-o1-8B (Chen et al.,377

2024). We also directly SFT the base model on378

the seed training set to illustrate no data contam-379

ination from the seed data. All the baselines are380

evaluated using CoT while MedS3 w/ PRM scores381

each response with the minimum step value and382

uses Best-of-N (N=32) to select the final response.383

2https://huggingface.co/
ProbeMedicalYonseiMAILab/medllama3-v20

4.2 Main Results 384

We present the experiment results in Table 2, split- 385

ting into examination QA and clinical application 386

tasks. The results unveil that most prior medical 387

LLMs show superior results in traditional medical 388

benchmarks (MedQA or PubMedQA); while such 389

superiority cannot generalize to out-of-distribution 390

real-world clinical benchmarks (DDXPlus or Drug- 391

Dose), which results in their sub-optimal over- 392

all performance compared to Llama3-8B. In con- 393

trast, our MedS3 is not optimized exclusively 394

for multiple-choice medical datasets and hence 395

achieves the best performance among all open- 396

sourced competitions. As an 8B system, MedS3 397

achieves +14.12 average performance gains with 398

respect to the base model in the overall assess- 399

ment, which not only outperforms medical-oriented 400

models but also general reasoning models. Specifi- 401

cally, the policy component has already achieved 402

the state-of-the-art (SoTA) performance, based on 403

which the soft dual-side PRM further brings an 404

additional 4.7 points improvement. 405

Specifically, compared to HuatuoGPT-o1 and 406
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Error Type MedQA MedMCQA PubmedQA Bioasq Med MMLU Biomrc Pubhealth Healthfact DDX Plus Drug Dose SEER

Task 27.03 32.68 35.80 18.61 20.37 25.46 25.59 23.82 37.60 8.70 40.20
PRM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.29 0.00 4.35 0.00

Table 4: Comparison of error rates (lower is better) in task-level and PRM-level, where PRM works with no errors
in most testbeds.

MedLlama3, MedS3 shows superior performance407

on reasoning-intensive benchmarks, including408

MedQA and MedMCQA, as well as clinical bench-409

marks. This verifies that MedS3 learns medical410

reasoning philosophies and the clinical deduction411

process. Another model MMedS-Ins, which di-412

rectly post-pretrains and fine-tunes on millions of413

clinical corpus, harvests superior performance on414

in-domain clinical tasks, such as SEER and DDX-415

Plus. However, directly fine-tuning on question-416

answer pairs inevitably makes the model lose the417

ability to output long responses, which is extremely418

important in reasoning tasks. In contrast, our model419

MedS3, possesses a comprehensive performance420

on both traditional tasks and clinical scenarios with421

strong reasoning abilities.422

5 Analysis423

5.1 Ablation Study424

In this section, we validate the effectiveness of425

each sub-module of MedS3. Starting from the SFT-426

tuned policy model, we compare the final perfor-427

mance with (1) w/ DPO: use DPO to fine-tune the428

policy; (2) w/ H-S label: conduct best-of-N evalua-429

tion using a PRM trained with hard single-sided la-430

bel (Zhang et al., 2025); (3) w/ H-D label: same as431

(2) but use hard dual-sided label (Wang et al., 2025)432

to train a PRM and (4) w/ S-D label (ours): same as433

(2) but use soft dual-sided label proposed in MedS3434

to train a PRM. We also compare with (5) w/ SFT435

init. PRM, which is same as (4) but initializes PRM436

with the SFT-tuned policy, to further show the sig-437

nificance of a PRM exposed to both positive and438

negative responses. Experiment results in Table 3439

show that the DPO helps to greatly improve the pol-440

icy model, especially in clinical tasks. Furthermore,441

innovatively determining the dual side label based442

on the MC estimation, our method is more robust443

and flexible than rule-based labels, and hence out-444

performs previous training objectives, confirming445

the necessity of holistic modeling of a PRM.446

5.2 Reliability of PRM447

Although our process reward model (PRM) is448

trained using rollout values—a rule-based supervi-449

sion signal—we empirically demonstrate that the 450

PRM exhibits strong capability in identifying erro- 451

neous reasoning steps. To evaluate this, we com- 452

pare two metrics: the task error rate (defined as 453

instances where model predictions deviate from 454

ground truth answers) and the PRM error rate (oc- 455

curring when the PRM assigns a higher score to an 456

incorrect candidate than to the ground truth-aligned 457

prediction). As illustrated in Table 4, the majority 458

of tasks exhibit a PRM error rate of zero, except for 459

HealthFact and Drug Dose. This suggests that our 460

fine-tuned PRM effectively differentiates between 461

valid and invalid clinical reasoning steps. Further- 462

more, the observed discrepancy between task and 463

PRM error rates implies that most errors arise not 464

from the PRM’s assessment but from the policy 465

model’s failure to generate candidates aligned with 466

the ground truth. This finding underscores the need 467

to refine the policy model in future iterations to 468

address this limitation. 469

5.3 Scaling of MedS3 470

In this section, we present the improvements 471

brought by the self-evolutionary framework in 472

Fig. 3a, and those attributable to test-time scal- 473

ing in Fig. 3b and Table 9. Specifically, we sample 474

n = 2, 4, 8, 16, 32, 64 candidates for a prompt with 475

a 1.0 temperature and compare the performance ob- 476

tained through Best-of-N (BoN) (Lightman et al., 477

2023), PRM-guided Vote-Sum (P-VS; Wang et al. 478

(2024)), as well as an SC baseline. We observe a 479

great improvement in both the policy model and the 480

PRM after a second evolution iteration, highlight- 481

ing the efficacy of self-evolution. This suggests that 482

the iterative MCTS process, where the model learns 483

from its own refined outputs, leads to steadily in- 484

creased improvements. Additionally, we find that 485

test-time scaling further enhances MedS3’s reason- 486

ing performance as illustrated in Fig. 3b in an effec- 487

tive log-linear rate with little saturation. Together, 488

these results highlight the benefits of both self- 489

exploration during synthesis and self-supervision 490

during inference, contributing to MedS3’s strong 491

performance across diverse tasks. 492
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Figure 3: Scaling in (a) self-evolution iterations and
(b) sampling numbers during test-time. Both the pol-
icy and PRM harvest consistent enhancement with self-
evolution, and hence their cooperative system MedS3

achieves a log-linear scaling rate with little saturation.
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Figure 4: Reflective response ratio of MedS3 across 7
representative datasets. Both the policy and PRM are
reflection-aware to perform sequential test-time scaling.

5.4 Introspective Behavior493

Reflection has been proved to be an effective scal-494

ing paradigm for enhancing LLM’s test-time scal-495

ing capacity (Guo et al., 2025). Our MedS3 intro-496

duced a Reflect node during synthesis and a soft497

dual-sided PRM to encourage correctly reflected498

responses, aiming to impart self-reflection behavior499

to the whole system. We manually define reflective500

tokens (Wait, reevaluate, recheck, however,501

but) and count the ratio of correct responses with502

these tokens on seven representative benchmarks in503

Fig. 4. We observe a steady increase in the occur-504

ring ratio from directly chain-of-thought prompt-505

ing to leveraging PRM to conduct BoN evalua-506

tion, which indicates both the policy and PRM in507

MedS3 has been imparted with self-reflection be-508

havior. This further demonstrates that the PRM509

trained with the soft dual-sided label can correctly510

favor valuable responses with self-reflection.511

5.5 Comparison of Slow-Thinking Styles512

In this section, we compare three slow-thinking en-513

hancement strategies, including MCTS plus PRM514

which is what MedS3 leverages, with distillation515

MedQA MedMCQAHealthfact DDXPlus SEER
Dataset
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40
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70
80

Pe
rfo

rm
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Base Distill RL MCTS+PRM

Figure 5: Three widely adopted methods to empower
models with medical reasoning abilities. MCTS+PRM
is the best among the three, making it the core of MedS3.

from strong reasoning models, which is what 516

O1-journey-part3 (Huang et al., 2025) does and 517

pure reinforcement learning (RL), which is what 518

DeepSeek-R1 (Guo et al., 2025) adopts. We use 519

the first iteration dataset in §3 to implement RL, 520

and use the officially released distillation dataset 521

provided by Huang et al. (2025) to SFT the base 522

model, and compare them with MedS3 after the 523

first evolution iteration. The results presented in 524

Fig. 5 demonstrate that in exam-level medical QA 525

datasets where the base model already excels at, 526

distillation from large proprietary reasoning mod- 527

els is much more data-efficient than the other two 528

methods, albeit sacrificing generalization in clin- 529

ical tasks. In contrast, with both a considerable 530

performance leap and generalization, RL is second 531

to MCTS+PRM. We hypothesize that the medi- 532

cal diagnosis step is easier to determine than math 533

reasoning steps, resulting in a more accurate PRM. 534

6 Conclusion 535

In this paper, we present MedS3, a self-evolved 536

slow-thinking medical language model built for uni- 537

versal clinical usage. We collect a seed dataset cov- 538

ering 16 different realistic medical tasks, and use 539

Monte-Carlo Tree Search to construct policy data 540

and PRM data. We propose a new PRM learning 541

objective – the soft dual-sided label, which enables 542

the PRM to reward a step based on both future and 543

past aspects, to produce credible long-chain reflec- 544

tive responses. Experiment results demonstrate that 545

our model achieves superior performance on eleven 546

downstream medical benchmarks, especially in re- 547

alistic clinical ones, surpassing open-sourced mod- 548

els by a large margin with fewer parameters. 549
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Limitations550

MedS3 achieves superior performance over eleven551

benchmarks by conducting MCTS in seed datasets552

to collect both policy and PRM training data and553

a newly proposed PRM learning objective: soft554

dual side label. However, it can be further im-555

proved via these strategies: (1) cooperate with rein-556

forcement learning to empower the policy with the557

“aha-moment” (Guo et al., 2025) ability; (2) intro-558

duce more training samples to cover more medical559

reasoning scenarios; (3) conduct more evolution560

iterations to further improve the model.561

Ethics Considerations562

In developing clinical slow-thinking model MedS3,563

it is crucial to address ethical consideration that564

arise when utilizing AI in healthcare environments.565

Below are the key ethical considerations that have566

been taken into account:567

Perfomance vs. Potential Risks While MedS3568

demonstrates significant enhancements in clinical569

reasoning and task performance, it is important to570

acknowledge the inherent limitations of AI models.571

These models can generate misleading information572

of “hallucinations”, which could pose risks in clin-573

ical settings. Therefore, MedS3 is not intended574

to replace medical professionals or provide defini-575

tive clinical decisions but rather to assist healthcare576

providers under appropriate supervision.577

Data Ethics and Privacy Compliance All pa-578

tient data has been anonymized, and informed con-579

sent was obtained for its use, ensuring full compli-580

ance with privacy policies and obtaining explicit581

permission for all data usage. Additionally, data582

usage has been approved by relevant ethics commit-583

tees, ensuring compliance with ethical standards584

and privacy protection requirements.585
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narios have shown significant promise. Numer-992

ous previous works focus on developing medical-993

specific LLMs, which are now being increasingly994

adopted across various clinical settings. These med-995

ical LLMs generally follow three main approaches:996

Continual Pre-training Medical LLMs These997

types of medical LLMs (Xu, 2023; Chen et al.,998

2023c) are developed on the advantage of generalist999

LLM and attempt to inject domain-specific knowl-1000

edge and expertise through continual pre-training1001

techniques. Such type of methods usually requires1002

significant computational resources. For example,1003

3 billion training tokens are used in HuatuoGPT-1004

II (Chen et al., 2023a) and PMC-Llama (Wu et al.,1005

2024a) even requires more than 75 billion tokens.1006

However, results in recent works (Qiu et al., 2024)1007

show that the benefits of continued pre-training1008

are diminishing as the capabilities of the generalist1009

LLMs improve.1010

Fine-tuned Medical LLMs Compared to contin-1011

uous pre-training, fine-tuning is a more efficient1012

approach. It can rapidly adapt to medical scenarios1013

and perform the relevant tasks effectively when the1014

base LLMs are sufficiently powerful. (Ankit Pal,1015

2024; Christophe et al., 2024; Zhang et al., 2024b)1016

Specifically, Liao et al. (2024a) develops a two-1017

stage method which can decouple the knowledge-1018

injection and clinical alignment procedure during1019

the fine-tuning process to prevent the ‘alignment-1020

tax.’ Wu et al. (2024c) collects a wide range of1021

medical language processing tasks spanning 191022

task categories and 122 unique clinical tasks to im-1023

prove the LLMs’ capacities on various downstream1024

clinical tasks.1025

Slow-Thinking Medical LLMs With the signif-1026

icant achievements of the o1 (Jaech et al., 2024)1027

in complex reasoning tasks, previous works show1028

the potential advantage of the o1-like models in1029

medical tasks (Xie et al., 2024; Xu et al., 2024a;1030

Nori et al., 2024). Based on these, previous works1031

develop the slow-thinking medical LLMs with dis-1032

tillation: Huang et al. (2025) directly learn the1033

reasoning trajectory generated by o1 and Chen1034

et al. (2024) improve the model’s reasoning abil-1035

ity through o1 synthesis of reflective data and rein-1036

forcement learning. Besides, Yu et al. (2025) create1037

a Chinese version slow-thinking medical LLMs by1038

constructing the preference data with QwQ (Qwen,1039

2024).1040
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Figure 6: Trajectory length distribution of correct and
incorrect sets of the evolved dataset.

Table 5: Grid search of β and corresponding loss in the
dev set.

β 0.5 1 1.5 2
Dev loss 0.4293 0.4169 0.4194 0.538

B Statistics of the Evolved Dataset 1042

In this section, we show the statistics of the evolved 1043

dataset after the second evolution, which is used to 1044

conduct our training of MedS3. We plot the length 1045

distributions of trajectories in Fig. 6. Defining short 1046

sequences as below 256 and long sequences as 1047

above 512, we find that the evolved dataset con- 1048

tains about 20% long trajectories, which enables 1049

the policy model to generate reliable responses with 1050

more tokens. Moreover, we find that correct trajec- 1051

tories consume fewer tokens than incorrect ones, 1052

which aligns highly with Zeng et al. (2025). 1053

C Further Experiments 1054

In this section, we present more experiments to 1055

validate the effectiveness of MedS3. 1056

C.1 Determination of β 1057

We perform a simple grid search on a pre-defined 1058

dev set to find the most appropriate value o f β in 1059

Eq. 7. Specifically, we search β in the following 1060

list [0.5, 1.0, 1.5, 2.0] and show the loss in the de- 1061

velopment set in Table 5. We determine β as 1 for 1062

its lowest loss. Although there might exist a more 1063

advanced configuration, we just set β to 1 as this is 1064

not our focus and we leave this for future work. 1065
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Model MedQA MedMCQA PubHealth HealthFact BioMRC PubMedQA DDX Plus Drug Dose Average

GPT-4o-mini-ZS 75.81 67.58 59.14 65.24 66.85 47.80 54.00 73.91 63.79
GPT-4o-mini-FS 76.83 67.80 63.44 63.80 75.60 63.40 51.00 59.57 65.18
R1-Distill-Qwen-32B-ZS 76.83 66.27 59.95 63.80 78.66 38.20 53.90 82.61 65.03
R1-Distill-Qwen-32B-FS 76.36 81.40 59.06 64.14 87.40 41.80 51.40 60.87 65.30
MMedS-Ins-ZS 53.57 48.24 54.26 69.64 31.47 56.60 97.53 95.65 63.37
MMedS-Ins-FS 48.39 32.61 36.39 78.28 67.80 49.60 96.80 91.30 62.65
MedS3 72.97 67.32 74.41 76.18 74.54 64.20 62.40 91.30 72.92

Table 6: Comparison with prior Top-3 models prompted with the few-shot technique. Albeit certain improvements,
these models still lag behind MedS3 by a large margin. “ZS” means zero-shot while “FS” means few-shot.

Model MedQA MedMCQA PubmedQA Bioasq Med MMLU Biomrc Pubhealth Healthfact DDX Plus Drug Dose SEER Average

MMedS-Ins 54.36 52.76 63.60 72.82 59.26 23.95 59.95 74.66 97.96 95.65 89.40 67.67
Ultramedical3.1-8B 72.90 65.57 58.00 80.58 78.54 49.18 67.91 71.72 34.10 60.87 49.73 62.65
HuatuoGPT-o1 75.96 66.94 58.20 78.48 78.54 46.45 64.58 70.29 41.00 60.87 49.59 62.81
MedS3 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80 73.10

Table 7: Comparison with prior Top-3 models with similar model sizes prompted with self-consistency method.
Albeit certain improvements, these models still lag behind MedS3 by a large margin.

C.2 Comparison with Few-shot Prompted1066

Models1067

Few-shot prompting is a widely adopted method1068

to improve performance effortlessly. To this end,1069

we compare MedS3 with the 1-shot prompted1070

Top-3 performing models, i.e., GPT-4o, R1-distill-1071

32B and MMedS-Ins, in Table 2 where exem-1072

plars are provided by prompting o3-mini (OpenAI,1073

2024). We exclude benchmarks without training1074

sets, including MMLU, SEER and BioASQ. Re-1075

sults shown in Table 6 indicate that in most cases,1076

few-shot prompting does improve performance1077

without any cost, whereas the medical-specialized1078

model, MMedS-Ins, loses the in-context learning1079

ability and underperforms its zero-shot variant.1080

Meanwhile, few-shot prompted baselines still lag1081

behind our self-evolved MedS3 system, showing1082

that the PRM-integrated medical reasoning frame-1083

work is consistently powerful.1084

C.3 Comparison with SC Models1085

We also compare MedS3 with baselines prompted1086

with the Self-Consistency (SC) method, which is1087

a simple yet efficient way to scale in a parallel1088

manner. To maintain similar inference costs, we1089

set the sampling number to 32 for models with1090

similar size (<10B) and compare with the most1091

powerful models before3, namely HuatuoGPT-o1,1092

UltraMedical3.1-8B and MMedS-Ins. Results in1093

Table 7 illustrate that as a test-time scaling method,1094

SC improves the already strong baselines by signifi-1095

cant gains, while such improvements usually occur1096

3It is reasonable when MedS3 outperforms the most lead-
ing baselines.

in traditional benchmarks like MedQA or MedM- 1097

CQA. Their performances in clinical testbeds, like 1098

SEER or DDX-Plus, hardly show gains, which un- 1099

veils some kind of overfitting problem. Therefore, 1100

optimized for both traditional examination and clin- 1101

ical usage, MedS3 robustly achieves state-of-the-art 1102

performance overall. 1103

C.4 Backbone Selection 1104

In this section, we investigate which backbone, a 1105

general LLM or a medical-specific LLM, is suit- 1106

able for conducting self-evolution. We conduct 1107

one iteration of evolution using the same data of 1108

MedS3 under UltraMedical3.1-8B and compare it 1109

with MedS3 after the first iteration using the Best- 1110

of-N decoding method to save computational cost. 1111

The comparison shown in the upper half of Table 8 1112

reveals that although UltraMedical3.1-8B improves 1113

compared to the initial policy, it still lags behind 1114

MedS3 by a large margin. Delving into the genera- 1115

tion, we find that UltraMedical3.1-8B suffers from 1116

endless generation, which stems from its lower in- 1117

struction following ability compared to Llama 3.1 1118

8B. On the other hand, medical backbones show no 1119

significant performance gains compared to the gen- 1120

eral model (UltraMedical3.1 8B 60.11 vs Llama 1121

3.1 8B 58.98 in Table 2), while after optimized for 1122

certain benchmarks like MedQA, they have lower 1123

generalization ability than general models. Based 1124

on the above observations, we choose to use a gen- 1125

eral backbone with sufficient medical knowledge, 1126

i.e., Llama 3.1 8B, as the initial policy model. 1127
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Backbone MedQA MedMCQA PubMedQA BioASQ Med MMLU BioMRC PubHealth HealthFact DDX Plus Drug Dose SEER Average

UltraMedical3.1 68.42 58.20 58.00 79.61 73.16 49.40 68.07 71.38 49.20 86.96 51.40 64.89
Llama 3.1 67.64 62.00 59.60 79.13 77.77 76.96 73.19 78.37 63.80 91.30 59.20 71.72

Table 8: Comparison with UltraMedical-3.1-8B as the policy model. With superior instruction following ability and
comparable medical knowledge, Llama-3.1-8B suits MedS3 system to fulfill the self-evolution procedure.

Method Iteration MedQA MedMCQA PubmedQA Bioasq Med MMLU Biomrc Pubhealth Healthfact DDX Plus Drug Dose SEER Average

BoN

2 68.97 64.04 62.00 79.45 76.43 73.68 72.14 73.57 58.00 86.96 55.45 70.06
4 69.60 64.55 61.60 80.42 77.26 74.64 74.17 73.06 58.85 86.96 56.75 70.71
8 70.54 64.57 62.60 81.07 77.83 74.75 74.09 72.64 59.90 86.96 56.61 71.05

16 70.23 66.32 64.00 81.23 78.41 74.80 73.68 72.05 61.00 86.96 58.44 71.56
32 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80 73.10
64 73.37 67.65 66.00 81.72 79.37 74.54 74.90 78.28 62.25 91.30 60.79 73.65

SC

2 65.67 61.49 60.60 77.02 73.73 71.09 68.48 70.79 56.45 91.30 52.59 68.11
4 67.09 63.11 60.40 78.80 75.72 73.23 70.59 76.18 57.35 91.30 56.32 70.01
8 67.40 63.71 60.60 80.42 76.30 73.82 70.11 77.61 57.65 91.30 57.48 70.58

16 68.42 63.73 60.80 80.42 76.43 73.70 70.11 77.69 58.05 91.30 58.27 70.81
32 67.64 63.52 60.60 80.26 76.55 73.98 70.59 78.28 57.90 91.30 58.25 70.81
64 67.79 63.45 60.80 80.26 76.75 73.98 70.76 77.86 58.10 91.30 58.33 70.85

P-VS

2 68.97 64.04 62.00 79.45 76.43 73.68 72.14 73.57 58.00 86.96 55.45 70.06
4 68.97 63.85 60.40 80.26 75.91 74.38 71.57 75.25 57.70 86.96 57.37 70.24
8 68.34 63.95 61.00 80.74 76.55 74.54 70.11 76.60 55.40 86.96 57.37 70.14

16 68.81 63.88 60.80 81.39 77.07 74.99 70.27 75.67 53.10 86.96 58.33 70.12
32 68.66 63.81 61.20 80.74 76.81 74.88 71.16 74.41 53.65 82.61 57.99 69.63
64 68.19 63.71 61.00 80.58 77.39 74.88 71.24 74.41 53.70 82.61 58.16 69.62

Table 9: Full table of test-time scaling using PRM with different evaluation methods.

D Future Work1128

As a pioneering work, we have validated that small1129

language models can self-evolve to empower them-1130

selves with strong reasoning abilities in clinical1131

usage. There are several remaining directions to1132

further enhance MedS3:1133

1. Conduct Human-interference evaluation. MC-1134

rollout value is verified to be not the best1135

choice for evaluating the value of an internal1136

step. We are eager to introduce a more fine-1137

grained step label to enhance the optimization1138

of the PRM.1139

2. Introduce more clinical data, not limited to1140

close-ended generation. Currently, all the data1141

used in MedS3 are close-ended, and the ap-1142

plication of reasoning is not limited to such a1143

narrow room. We intend to extend MedS3 to1144

broader clinical tasks to make MedS3 a more1145

useful system.1146

We will continue our exploration and make MedS31147

more practical in medical domains.1148

E Prompt Template1149

We show the prompt used to synthesize reasoning1150

data in Fig. 7, Fig. 8, and Fig. 9.1151

F Dataset Details1152

In this section, we elucidate the seed dataset and the1153

evaluation sets. We also clearly denote the involved1154

dataset’s usage during training and evaluation and 1155

their corresponding category in Table 10. We di- 1156

vide the used 16 training datasets into the following 1157

five dimensions: 1158

1. Long Context QA: This dimension enables 1159

MedS3 to capture useful information from 1160

the given context and response with long- 1161

chain reasoning. This dimension covers 1162

BioMRC (Pappas et al., 2020), HeadQA 1163

Topic Classification (Vilares and Gómez- 1164

Rodríguez, 2019; Wu et al., 2024b), and 1165

HealthFact (Kotonya and Toni, 2020) 1166

2. Knowledge-Intensive QA: This dimension 1167

teaches MedS3 to use long-chain reasoning to 1168

answer knowledge-intensive problems, which 1169

covers MedQA (Jin et al., 2021), MedM- 1170

CQA (Pal et al., 2022), and PubMedQA (Jin 1171

et al., 2019). 1172

3. Bio-Medical QA: This part leverages gen- 1173

eral data in bio-medicine domains to en- 1174

hance the generality of MedS3, which in- 1175

cludes SciQ (Welbl et al., 2017), Evidence 1176

Inference (DeYoung et al., 2020) and Head 1177

QA (Vilares and Gómez-Rodríguez, 2019). 1178

4. Medical Natural Language Inference: This 1179

dimension prompts MedS3 to discriminate 1180

biomedical research concepts and corre- 1181

sponding descriptions, which contain Pub- 1182

Health (Kotonya and Toni, 2020), Medical 1183
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Reason Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023 Today Date: 23 July 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Think critically about the problem and answer with concise, accurate reasoning.
Please ensure your reasoning is thorough and elaborate, breaking down each step
of your thought process.

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0: Let’s break down this problem step by step

Step 1:

Figure 7: Reason template

Finish Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023 Today Date: 23 July 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Use thorough and elaborate steps to complete your reasoning. Conclude the task
by stating: "The answer is {answer}".

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0: Let’s break down this problem step by step

Step 1:

Figure 8: Finish template
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Reflect Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023 Today Date: 23 July 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Use thorough and elaborate steps to complete your reasoning. Conclude the task
by stating: "The answer is {answer}".

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0: Let’s break down this problem step by step

Step 1: [omitted]

Step k: [omitted]. The answer is C.

Step k+1: Wait, the previous answer maybe incorrect and I need to reconsider
other options.

Figure 9: Reflect template
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Question Pair (MQP; McCreery et al. (2020)),1184

and catalonia-independence-corpus (CIC; Zo-1185

tova et al. (2020)).1186

5. Diagnosis QA: This dimension is related to1187

real-world clinical scenarios, including dis-1188

ease diagnosis and classification and drug re-1189

lated questions. We choose Covid-19 Classi-1190

fication (Lab, 2020), Drug-Dose Extraction,1191

Adverse Drug Event Classification (Huynh1192

et al., 2016; Wu et al., 2024b) and DDX-1193

Plus (Tchango et al., 2022)..1194

The descriptions of each training and evaluation1195

dataset are presented below:1196

1. MedQA (Jin et al., 2021) is a widely used1197

benchmark for evaluating AI systems in med-1198

ical question answering, featuring multiple-1199

choice questions from professional medical1200

licensing exams such as the USMLE and ex-1201

ams from China and Taiwan. We adopt its1202

5-options English version, taking its training1203

set as seed data and 1,273 test problems as the1204

evaluation benchmark.1205

2. PubmedQA (Jin et al., 2019) is a specialized1206

benchmark for biomedical question answer-1207

ing, consisting of question-answer pairs de-1208

rived from PubMed abstracts. It focuses on1209

yes/no/maybe questions that require reasoning1210

over biomedical literature. We use the human-1211

labeled question set and split the training set1212

and test set, with both 500 problems for evolu-1213

tion and evaluation, respectively. Note that we1214

do not include relevant contexts before ques-1215

tions, challenging models’ internal knowledge1216

comprehension.1217

3. MedMCQA (Pal et al., 2022) is a large-scale1218

benchmark for medical question answering,1219

featuring over 194,000 multiple-choice ques-1220

tions sourced from Indian medical entrance1221

exams and other educational resources. It1222

spans a wide range of medical topics, includ-1223

ing anatomy, pharmacology, and pathology,1224

and is designed to evaluate the reasoning and1225

knowledge application skills of AI systems in1226

a clinical context. The test set contains 4,1831227

problems.1228

4. MMLU (Hendrycks et al., 2021) is to mea-1229

sure LLM’s multitask accuracy, which con-1230

tains 14,421 problems. The test covers 571231

tasks including elementary mathematics, US 1232

history, computer science, law, and more. We 1233

select its medical-related problems, resulting 1234

in a test set with 1,561 problems. 1235

5. BioMRC (Pappas et al., 2020) is a collec- 1236

tion of medical-related question-answer pairs, 1237

specifically designed for the evaluation of ma- 1238

chine reading comprehension (MRC) tasks in 1239

the biomedical domain. It is derived from a 1240

wide range of medical texts, including clinical 1241

notes, research papers, and medical textbooks. 1242

The dataset contains a series of questions and 1243

corresponding answers, where the answers are 1244

extracted from relevant passages of text. We 1245

use its 6,250 test set as the evaluation set. 1246

6. HeadQA (Vilares and Gómez-Rodríguez, 1247

2019) is a specialized medical question- 1248

answering dataset designed to evaluate models 1249

in the context of neurology and head-related 1250

disorders. It consists of a collection of ques- 1251

tions paired with answers derived from a va- 1252

riety of clinical notes, medical reports, and 1253

other head-related health data sources. 1254

7. DDX-Plus (Tchango et al., 2022) is a compre- 1255

hensive medical diagnostic dataset designed 1256

to assist in the development and evaluation of 1257

machine learning models for differential diag- 1258

nosis in clinical settings. It consists of clini- 1259

cal cases, where each case includes a set of 1260

symptoms, patient history, physical examina- 1261

tion findings, and diagnostic questions, along 1262

with a list of potential diagnoses ranked by 1263

their likelihood. The diverse set of cases in 1264

the dataset spans multiple medical specialties, 1265

making it an ideal resource for creating mod- 1266

els capable of assisting healthcare profession- 1267

als in making informed diagnostic decisions. 1268

Due to its huge test set (over 100,000 test in- 1269

stances), we randomly select 2,000 items for 1270

evaluation. 1271

8. SciQ (Welbl et al., 2017) is a scientific 1272

question-answering dataset designed to as- 1273

sess machine learning models in answering 1274

factual questions across a wide range of sci- 1275

entific domains. It consists of over 13,000 1276

questions derived from scientific literature, in- 1277

cluding topics in physics, biology, chemistry, 1278

and earth sciences, among others. Each ques- 1279

tion is paired with a correct answer and is 1280
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supported by a passage of text from which the1281

answer is extracted.1282

9. Evidence Inference (DeYoung et al., 2020)1283

is a collection designed to evaluate machine1284

learning models on their ability to infer log-1285

ical conclusions from evidence presented in1286

the form of textual information. This dataset1287

consists of structured pairs of premises (evi-1288

dence) and hypotheses, where the goal is for1289

models to determine the logical relationship1290

between them—whether the hypothesis is sup-1291

ported, contradicted, or is neutral with respect1292

to the provided evidence. Typically used for1293

tasks such as textual entailment or natural lan-1294

guage inference (NLI), the dataset includes1295

a variety of complex scenarios across multi-1296

ple domains, including law, healthcare, and1297

science, where reasoning based on available1298

evidence is crucial.1299

10. PubHealth (Kotonya and Toni, 2020) is a com-1300

prehensive dataset for explainable automated1301

fact-checking of public health claims. Each in-1302

stance in the PUBHEALTH dataset has an as-1303

sociated veracity label (true, false, unproven,1304

mixture). Furthermore, each instance in the1305

dataset has an explanation text field. The ex-1306

planation is a justification for which the claim1307

has been assigned a particular veracity label.1308

We construct two different test sets. Health-1309

fact is to directly predict whether a given in-1310

stance is true/false/unproven/mixture. The1311

other, Pubhealth, is to predict whether the1312

instance sentence and the given explanation1313

express the same meaning.1314

11. Medical Question Pair (McCreery et al., 2020)1315

contains a dataset of 3,048 similar and dissimi-1316

lar medical question pairs hand-generated and1317

labeled by Curai’s doctors. Models should1318

clarify whether the two given questions are1319

similar or not.1320

12. Catalonia-independence-Corpus (Zotova1321

et al., 2020) is a dataset built for stance1322

detection in Twitter for the Catalan and Span-1323

ish languages, with the aim of facilitating1324

research on stance detection in multilingual1325

and cross-lingual settings.1326

13. Covid-19 Classification (Lab, 2020) is an ex-1327

tension of the Hedwig library and contains1328

all necessary code to reproduce the results1329

of some document classification models on a 1330

COVID-19 dataset created from the LitCovid 1331

collection. 1332

14. Adverse Drug Event (Huynh et al., 2016) is 1333

critical for developing automated systems that 1334

can support clinicians in identifying harmful 1335

drug reactions, potentially reducing healthcare 1336

costs, and enhancing patient safety. Given the 1337

increasing volume of clinical data, this dataset 1338

plays a key role in advancing AI-driven drug 1339

safety research and improving the overall qual- 1340

ity of healthcare. We build Drugdose extrac- 1341

tion test set to benchmark models to extract 1342

the exact dose of a specific drug. 1343

15. SEER (Dubey et al., 2023) is purposed for 1344

treatment planning because it contains key 1345

clinical variables that directly inform therapy 1346

decisions (e.g., tumor size, nodal status, hor- 1347

mone receptor status). LLMs must choose 1348

the most appropriate suggestion from the fol- 1349

lowing list [’Intraoperative rad with other rad 1350

before/after surgery’, ’Intraoperative radia- 1351

tion’, ’No radiation and/or cancer-directed 1352

surgery’, ’Radiation after surgery’, ’Radiation 1353

before and after surgery’, ’Radiation prior to 1354

surgery’, ’Surgery both before and after radia- 1355

tion’] based on patient summarization, simu- 1356

lating real-world tumor board decisions. 1357

G Hyperparameters 1358

G.1 Data Synthesis 1359

For each node expansion, we simultaneously gen- 1360

erate 3 different responses with the same prompt. 1361

We set the generation temperature to 1. The stop 1362

tokens are set to {Step k: | k = 1, 2, · · · 100} to 1363

ensure that each node represents a single reasoning 1364

step. We use the first sample in MedQA as the 1365

one-shot example and prompt GPT-4o to generate 1366

step-by-step outputs. 1367

G.2 Self-Training of Policy and PRM 1368

We use 8xNVIDIA A100 GPUs and the overall 1369

training consumes 14h. 1370

Policy tuning We use trl4 as the training frame- 1371

work. We first use vanilla SFTTrainer to train the 1372

policy model. We set the warmup ratio to 0.03 and 1373

the max sequence length to 8192. The batch size is 1374

4https://huggingface.co/docs/trl/index
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Category Dataset Train Test

Diagnosis QA

ADE Yes No
Covid-19 CLS Yes No
DrugDose Yes Yes
DDXPlus Yes Yes
SEER No Yes

Medical NLI

PubHealth Yes Yes
CIC Yes No
MQP Yes No

Long Context QA

BioMRC Yes Yes
HealthFact Yes Yes
HeadQA Topic CLS Yes No

BioMedical QA

HeadQA Yes No
Evidence Extraction Yes No
SciQ Yes No

Knowledge QA

MedQA Yes Yes
MedMCQA Yes Yes
PubMedQA Yes Yes
MMLU No Yes
BioASQ No Yes

Table 10: Medical datasets usage during training and
evaluation. “CLS” denotes classification.

set to 128 and the learning rate is set to 1e-6. After1375

that, we use DPOTrainer to further fine-tune the1376

policy model. We set the learning rate to 5e-8 and1377

the batch size to 128.1378

PRM tuning We use PRMTrainer of trl to train1379

the PRM model. We use LoRA to fine-tune the1380

PRM, where the lora rank is set to 32 and lora al-1381

pha set to 64. The learning rate is set to 5e-5. For a1382

single step sk, the input for PRM is the concatena-1383

tion of all steps up to the current step, namely:1384

P = s0 ⊕ s1 ⊕ · · · ⊕ sk (9)1385

ŷ = Vθ(P ;x) (10)1386

This input models a step’s value with causal rela-1387

tionships between steps, preventing local optima1388

learning.1389

G.3 Evaluation1390

For evaluation, the temperature is set to 1.0 and1391

top_p is set to 0.9. The max generation tokens1392

are set to 8,192. Among the three presented de-1393

coding mechanisms, CoT (Wei et al., 2022) di-1394

rectly prompts models to generate a long reasoning1395

chain and outputs the answer with “The answer is1396

{answer}” for the convenience of answer extrac-1397

tion. Self-Consistency (Wang et al., 2023) gener-1398

ates N = 32 samples for a given problem, and we1399

select the one whose answer appears most times1400

among the N outputs. We use exact match (EM)1401

to measure the performance. Specifically, we ex- 1402

tract the contents following the last “The answer is” 1403

template to match the self-reflection thinking style, 1404

and perform appropriate post-processing to derive 1405

a final prediction. For multiple-choice problems, 1406

we directly choose the first character of prediction 1407

phrases and measure whether the ground truth is 1408

equal to the prediction. For close-ended generation 1409

tasks, we remove quotes and turn the prediction 1410

and the ground truth into lowercase phrases. After 1411

that, we check whether the ground truth phrases 1412

exist in the prediction phrases. 1413

G.4 Training Details of Distillation and RL 1414

In this section, we elucidate the implementation 1415

details of distillation and RL. 1416

Distillation For Distillation method, we fine- 1417

tune Llama3.1-8B with 2K training data5 released 1418

by Huang et al. (2025), which combined with the 1419

questions in MedQA and corresponding response 1420

generated by o1 (Jaech et al., 2024). We adopt 1421

LoRA (Hu et al., 2022) and set the rank r to 16 and 1422

alpha α to 32 for fair comparisons. For fine-tuning 1423

parameters, we set the learning rate to 2e-6 and 1424

batch size to 128. 1425

RL We follow Guo et al. (2025) to use Group 1426

Relative Policy Optimization (GRPO; Shao et al. 1427

(2024)) to conduct RL training. We set the number 1428

of generations to 10 and the learning rate to 1e− 6. 1429

We adopt ZeRO-3 (Rajbhandari et al., 2020) to 1430

save memory and conduct full fine-tuning in one 1431

8xA100 machine. The batch size is set to 4 per 1432

GPU. For the adopted prompt, we use the same 1433

prompt illustrated in DeepSeek-R1-zero, and use 1434

<think></think><answer></answer> to learn 1435

the slow-thinking output style. We use accuracy 1436

reward and format reward, and the reward setting 1437

is presented below in Table 11. 1438

Table 11: Reward configurations for training RL-style
medical models. Null means that there is no contents
between <answer> and </answer>.

Conditions Accuracy Format

Correct 1 1
Incorrect -1 -1

Null 0 Null

5https://huggingface.co/datasets/SPIRAL-MED/
o1-journey-Ophiuchus
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H Best-of-N Details1439

In this section, we elucidate the fast inference using1440

Best-of-N (BoN) evaluation with the PRM. Specif-1441

ically, the policy model generates N responses1442

{yi | i ∈ [1, N ]} simultaneously using the in-1443

ference engine (vLLM; Kwon et al. (2023)). Af-1444

ter that we split each response yi into K steps:1445

[s1i , s
2
i , · · · , ski ] where k ∈ [1,K] using predefined1446

step separator Step. We form the step input to the1447

PRM (x, Sk
i ) as Sk

i = s1i ⊕ s2i ⊕ · · · ⊕ ski and ob-1448

tain each step’s value vki = softmax(Vθ(x;S
k
i ))1449

using a forward pass. The value is the probabil-1450

ity of predicting the step to be correct, which is in1451

the range [0, 1]. Finally, the whole response value1452

vi = minKk=1 v
k
i is taken from the minimum value1453

of each step and we select the response with the1454

highest value.1455

I AI Assistant Usage1456

We mainly use AI assistants to polish our expres-1457

sions.1458

J Case Study1459
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Question:
A 47-year-old executive schedules an appointment his physician for a routine medical check-up. He currently has no 
complaints and claims to be “as fit as a fiddle.” The physical examination findings are unremarkable, except for a mid-
systolic murmur heard in the 2nd left intercostal space that radiates to the carotids on auscultation. The physician instructs 
the patient to stand from a supine position with the stethoscope still placed on his chest. Which of  the following changes 
would occur with this maneuver?\nA. An increase in right atrial pressure\nB. An increase in left ventricular end-diastolic 
pressure\nC. An increase in pulmonary capillary wedge pressure\nD. A reduction in the slope of  the pacemaker 
potential\nE. A reduction in diastolic filling time

Llama3.1-8B: 
When the patient stands from a supine position, the following changes occur:\n\n*   Venous return to the heart decreases 
due to gravity, which leads to a decrease in right atrial pressure (A).\n*   The decrease in venous return also leads to a 
decrease in left ventricular end-diastolic pressure (B).\n*   The decrease in left ventricular end-diastolic pressure would not 
directly affect the pulmonary capillary wedge pressure (C).\n*   The pacemaker potential is not directly affected by changes 
in posture.\n*   The diastolic filling time is not directly affected by changes in posture.\n\nThe mid-systolic murmur heard 
in the 2nd left intercostal space that radiates to the carotids is likely due to aortic stenosis. When the patient stands from a 
supine position, the murmur may become louder due to the increased gradient across the aortic valve. \nThe answer is A.

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the likely diagnosis based on the physical 
examination findings. The presence of  a mid-systolic murmur heard in the 2nd left intercostal space that radiates to the 
carotids on auscultation is suggestive of  aortic stenosis. Aortic stenosis is characterized by the narrowing of  the aortic valve
opening, which can lead to a delay in left ventricular ejection and a subsequent murmur.\n\nStep 2: Understand the effect 
of  standing from a supine position on the cardiovascular system. When a person stands from a supine position, gravity 
causes a decrease in venous return to the heart. This decrease in venous return leads to a decrease in the preload, which is 
the initial stretching of  the cardiac myocytes prior to contraction.\n\nStep 3: Determine how the decrease in preload affects 
the heart's function. A decrease in preload leads to a decrease in the end-diastolic volume, which in turn leads to a decrease 
in the stroke volume. This is because the heart's ability to pump blood is directly related to the amount of  blood it receives 
during diastole.\n\nStep 4: Consider how the decrease in stroke volume affects the murmur associated with aortic stenosis. 
The murmur associated with aortic stenosis is typically a systolic ejection murmur, which is caused by the delay in left 
ventricular ejection. When the stroke volume decreases, the murmur may become softer or less intense, but it will not change 
its timing or location.\n\nStep 5: Analyze the options provided to determine which one is most closely related to the change 
in the murmur associated with aortic stenosis. The murmur is not directly related to the options provided, but the decrease in 
stroke volume is related to the decrease in diastolic filling time. When the heart is in a supine position, the diastolic filling 
time is longer due to the increased venous return. When the person stands, the diastolic filling time decreases due to the 
decreased venous return.\n\nStep 6: Select the correct answer based on the analysis. The correct answer is the one that is 
most closely related to the change in the murmur associated with aortic stenosis, which is the decrease in diastolic filling 
time.\n\nThe answer is E. 

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the initial clinical scenario and physical examination 
findings. The patient is an asymptomatic 47-year-old executive undergoing a routine check-up. The physical examination 
reveals a mid-systolic murmur heard at the 2nd left intercostal space radiating to the carotids. This murmur is suggestive of  a 
pulmonary valve issue, but given the radiation to the carotids, it's more likely to be a semilunar valve issue, and the closest 
one would be the aortic valve, however the classic exam for aortic stenosis is the chest pressure, and the one described would 
be more indicative of  a pulmonary valve issue but in the given location it's likely aortic stenosis. However, the key piece of  
information here is the physician's instruction to have the patient stand from a supine position while continuing to auscultate 
the heart.\n\nStep 2: Understand the effect of  changing body position on cardiovascular physiology. When a person 
transitions from a supine (lying down) position to a standing position, several physiological changes occur:\n\n- Venous 
blood pools in the lower extremities due to gravity, reducing venous return to the heart.\n- Cardiac output decreases due to 
reduced preload.\n- Heart rate may increase to maintain cardiac output (baroreceptor reflex).\n- Systemic vascular 
resistance may increase to compensate for the decreased cardiac output.\n\nThe specific maneuver instructed by the 
physician, where the patient stands from a supine position while continuing to auscultate the heart, will lead to a decrease in 
venous return and, consequently, a decrease in left ventricular preload. This change in preload can affect the intensity of  
heart sounds, particularly those related to ventricular filling.\n\nStep 3: Relate the physiological changes to the potential 
effects on the heart sounds and the murmur in question. In the case of  a mid-systolic murmur, as described, the intensity of  
the murmur is more likely related to the flow across the valve during systole. However, in this scenario, the key is to 
understand how the change in body position affects the physiology of  the heart and the likelihood of  certain effects on heart
sounds and pressures.\n\nGiven the change in position, the most likely effect on the pressures and heart sounds would be a 
decrease in the diastolic filling time due to decreased venous return and thus a decrease in left ventricular end-diastolic 
pressure and volume, however the best answer given would be a decrease in diastolic filling time due to decreased preload, 
although the best answer regarding a direct relationship between the two isn't given in the question options.\n\nHowever, 
we must find the closest relation. If  we consider the decrease in preload, and looking at the options:\n\n- A. An increase in 
right atrial pressure is not directly related to the change in body position as described.\n- B. An increase in left ventricular
end-diastolic pressure is the opposite of  what would be expected with decreased preload.\n- C. An increase in pulmonary 
capillary wedge pressure is also not directly related to the change in body position.\n- D. A reduction in the slope of  the 
pacemaker potential is related to the effect of  decreased preload on the sinoatrial node but is more related to the 
baroreceptor reflex rather than the direct effect of  decreased preload on the ventricles.\n- E. A reduction in diastolic filling
time is the closest option, as it is directly related to the decrease in preload due to the change in body position.\n\nThe
answer is E.

MedQA Case Study:

Figure 10: Cases of MedQA
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Question:
Imagine you are a doctor, next I will give you a dialogue and please make a diagnosis decision based on it. You only need to 
choose one answer among the following lists: ['spontaneous pneumothorax', 'cluster headache', 'boerhaave', 'spontaneous rib 
fracture' 'gerd', 'hiv (initial infection)', 'anemia', 'viral pharyngitis', 'inguinal, hernia', 'myasthenia gravis', 'whooping cough', 
'anaphylaxis', 'epiglottitis', 'guillain-barré syndrome', 'acute laryngitis', 'croup', 'psvt', 'atrial fibrillation', 'bronchiectasis', 
'allergic sinusitis', 'chagas', 'scombroid food poisoning', 'myocarditis', 'larygospasm', 'acute dystonic reactions', 'localized 
edema', 'sle', 'tuberculosis', 'unstable angina', 'stable angina', 'ebola', 'acute otitis media', 'panic attack', 'bronchospasm / acute 
asthma exacerbation', 'bronchitis', 'acute copd exacerbation / infection', 'pulmonary embolism', 'urti', 'influenza', 
'pneumonia', 'acute rhinosinusitis', 'chronic rhinosinusitis', 'bronchiolitis', 'pulmonary neoplasm', 'possible nstemi / stemi', 
'sarcoidosis', 'pancreatic neoplasm', 'acute pulmonary edema', 'pericarditis', 'cannot decide']. The answer should be a single 
word. \nAge: 45 \n\nSex: M \n\nInitial evidence: Do you have a cough that produces colored or more abundant sputum 
than usual? Yes \n\nEvidence: Do you have pain somewhere, related to your reason for consulting? Yes;Characterize your 
pain: Sensitive;Do you feel pain somewhere? Lower chest;Do you feel pain somewhere? Side of  the chest(r);Do you feel pain 
somewhere? Breast(r);Do you feel pain somewhere? Posterior chest wall(r);Do you feel pain somewhere? Posterior chest 
wall(l);How intense is the pain? 2;Does the pain radiate to another location? Nowhere;How precisely is the pain located? 
5;How fast did the pain appear? 3;Do you have a cough that produces colored or more abundant sputum than usual? Yes;Do
you smoke cigarettes? Yes;Do you have a chronic obstructive pulmonary disease (COPD)? Yes;Do you have a cough? 
Yes;Have you traveled out of  the country in the last 4 weeks? N;Have you noticed a wheezing sound when you exhale? Yes. 

Llama3.1-8B: 
acute copd exacerbation / infection. \nThe answer is based on the patient's history of  COPD, smoking, and symptoms of  a 
productive cough, colored or more abundant sputum, and wheezing sound when exhaling..

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify key symptoms and risk factors.\n- The patient has a 
cough producing colored or more abundant sputum than usual.\n- He experiences pain in the lower chest, right side of  the 
chest, right breast, and posterior chest wall (both sides).\n- The pain is sensitive, with an intensity of  2/10 and appeared 
within 3 days.\n- He has a history of  smoking and COPD.\n- He also reports a wheezing sound when exhaling.\n\nStep 2: 
Consider possible diagnoses based on symptoms and risk factors.\n- Given the patient's history of  smoking and COPD, 
chronic bronchitis or acute exacerbation of  COPD could be a possibility.\n- However, the presence of  colored sputum and 
pain in the chest and breast areas could suggest a more complex condition.\n- The patient's symptoms, such as cough, 
sputum production, and wheezing, are consistent with a respiratory condition.\n\nStep 3: Evaluate the likelihood of  each 
possible diagnosis.\n- Considering the patient's history of  smoking and COPD, bronchitis (chronic or acute) is a strong 
possibility.\n- However, the presence of  colored sputum and pain in the chest and breast areas could also suggest 
bronchiectasis, a condition characterized by damaged airways that can produce excess mucus.\n- Other conditions, such as 
pneumonia or pulmonary embolism, could also present with similar symptoms, but they are less likely given the patient's 
history and the absence of  other risk factors.\n\nStep 4: Based on the patient's symptoms and risk factors, the most likely 
diagnosis is bronchitis, likely an acute exacerbation of  his chronic COPD. However, considering the presence of  colored 
sputum and pain, bronchiectasis is also a possibility, but given the options provided, the best answer is bronchitis.

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the key symptoms and risk factors. The patient 
presents with a cough producing colored or more abundant sputum than usual, pain in the lower chest, right side of  the 
chest, right breast, and posterior chest wall (both sides), which is sensitive and appeared within 3 days. He also reports a 
history of  smoking and COPD.\n\nStep 2: Consider the potential causes of  these symptoms. Given the history of  smoking 
and COPD, chronic bronchitis or acute exacerbation of  COPD could be a possibility. However, the presence of  colored 
sputum and localized chest pain may suggest a more specific condition. The patient's symptoms could also be consistent 
with pneumonia or bronchiectasis, but these conditions typically present with more systemic symptoms and findings on 
physical examination or imaging.\n\nStep 3: Assess the patient's risk factors for specific conditions. The patient's smoking 
history and COPD increase his risk for chronic obstructive pulmonary diseases (COPDs) and pulmonary infections. 
However, the patient's age and sex also increase his risk for other conditions such as lung cancer.\n\nStep 4: Based on the 
patient's symptoms and risk factors, the most likely diagnosis is an acute exacerbation of  COPD or chronic bronchitis. 
However, the presence of  colored sputum and localized chest pain also raises the possibility of  bronchiectasis. Considering 
the patient's history of  smoking and COPD, the most likely diagnosis among the options provided is bronchiectasis or acute 
bronchitis/bronchiolitis but I see that the best answer here is an exacerbation of  the COPD which is not listed but we do 
have 'bronchitis' which could be correct in this context.\n\nThe answer is bronchitis.

DDXPlus Case Study:

Figure 11: Cases of DDXPlus
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Question:
Imagine you are a doctor, next I will give you summarization of  a patient and please help me to give a suggestion for next 
treatment. You just need to pick out an answer from ['Intraoperative rad with other rad before/after surgery', 'Intraoperative 
radiation', 'No radiation and/or cancer-directed surgery', 'Radiation after surgery', 'Radiation before and after surgery', 
'Radiation prior to surgery', 'Surgery both before and after radiation']\nAge at diagnosis: 73\n\nRegional nodes positive 
(1988+): 0\n\nTotal number of  in situ/malignant tumors for patient: 1\n\nRadiation recode: 
None/Unknown\n\nChemotherapy recode: No/Unknown\n\nER Status Recode Breast Cancer (1990+): Positive\n\nPR
Status Recode Breast Cancer (1990+): Negative\n\nCS tumor size (2004-2015): 16\n\nDerived HER2 Recode (2010+): 
Negative\n\nRegional nodes examined (1988+): 8\n\nCOD to site recode: Diseases of  Heart\n\nRace recode: 
White\n\nSex: Female\n\nVital status recode (study cutoff  used): Dead\n\nDiagnosis_year: 2010\n\nLast_fu _year: 
2015\n\ninterva_years: 5

Llama3.1-8B: 
Based on the provided information, I would suggest the following treatment plan:\n\nGiven the patient's age (73) at 
diagnosis, the presence of  a single tumor (1), and the fact that the patient has died from a cause other than breast cancer 
(Diseases of  Heart), it's likely that the cancer was not the primary cause of  death.\n\nHowever, considering the patient's 
ER-positive status and the relatively large tumor size (16), a treatment plan that includes radiation therapy may be beneficial.
\n\nGiven the patient's age and the fact that the cancer was not the primary cause of  death, I would suggest 'Radiation after 
surgery' as the next treatment plan. This approach would allow for the removal of  the tumor through surgery, followed by 
radiation therapy to target any remaining cancer cells and reduce the risk of  recurrence. \nThe answer is 'Radiation after 
surgery'..

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the key information from the patient's summary. The 
patient is a 73-year-old female with breast cancer, diagnosed in 2010. The cancer is ER-positive, PR-negative, and HER2-
negative. The patient had 8 regional nodes examined, but none were positive. The cancer was 16mm in size.\n\nStep 2: 
Assess the patient's prognosis and treatment options. Given the patient's age, cancer size, and ER-positive status, the patient 
is likely to benefit from hormone therapy. However, the patient's PR-negative status suggests that PR-targeted therapy may 
not be effective.\n\nStep 3: Consider the patient's vital status and last follow-up year. The patient passed away in 2015, 
which suggests that the cancer may have progressed despite treatment.\n\nStep 4: Evaluate the treatment options for ER-
positive breast cancer. The standard treatment for ER-positive breast cancer includes hormone therapy, such as tamoxifen or 
aromatase inhibitors. However, the patient's PR-negative status and cancer progression suggest that hormone therapy may 
not be sufficient.\n\nStep 5: Consider the patient's cancer-directed surgery and radiation therapy. The patient's cancer size 
and regional nodes examined suggest that surgery and radiation therapy may have been used to treat the cancer.\n\nStep 6: 
Evaluate the radiation therapy options. Given the patient's cancer progression, radiation therapy may have been used to 
control symptoms or slow disease progression.\n\nStep 7: Consider the patient's overall health and treatment goals. The 
patient's age and cancer progression suggest that aggressive treatment may not be feasible.\n\nStep 8: Based on the patient's 
cancer characteristics and treatment history, the most likely treatment approach is radiation after surgery.\n\nThe answer is 
'Radiation after surgery'.

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: Analyze the patient's information to determine the stage and 
characteristics of  the breast cancer. The patient is a 73-year-old female with a tumor size of  16mm, which is likely to be stage
I or stage II breast cancer. The patient has estrogen receptor-positive (ER+) breast cancer, but HER2-negative and 
progesterone receptor-negative (PR-) status. There is no information on lymph node involvement, but 8 nodes were 
examined.\n\nStep 2: Assess the patient's overall health and treatment goals. The patient is 73 years old, and the cause of  
death is listed as diseases of  the heart. This suggests that the patient may have had underlying cardiovascular conditions that 
could impact her ability to tolerate certain treatments.\n\nStep 3: Consider the standard treatment options for early-stage 
breast cancer. For a patient with ER+ breast cancer, hormone therapy is often a recommended treatment option. However, 
the patient's age and cardiovascular conditions may impact the choice of  treatment.\n\nStep 4: Evaluate the radiation 
therapy options. Given the patient's age and cardiovascular conditions, it may be more appropriate to avoid invasive surgery 
and radiation therapy. However, the patient's tumor size and lymph node status are not sufficient to rule out the need for 
radiation therapy entirely.\n\nStep 5: Determine the most appropriate next step in treatment based on the patient's 
characteristics and overall health. Considering the patient's age, cardiovascular conditions, and ER+ status, a more 
conservative approach may be preferred. However, there is no clear indication that the patient received adequate radiation 
therapy. A more conservative option would be to provide hormone therapy and monitor the patient's condition. But among 
the provided options, \"No radiation and/or cancer-directed surgery\" seems like the best answer given the lack of  
information on whether surgery was performed and the patient's overall health. \nThe answer is 'No radiation and/or 
cancer-directed surgery'.

SEER Case Study:

Figure 12: Cases of SEER
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