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Abstract

Medical language models (MLMs) have be-
come pivotal in advancing medical natural lan-
guage processing. However, prior models that
rely on pre-training or supervised fine-tuning
often exhibit low data efficiency and limited
practicality in real-world clinical applications.
While OpenAT’s o-series models highlight test-
time scaling in mathematics, attempts to repli-
cate this approach in medicine typically dis-
till responses from GPT-series models to open-
source models, focusing primarily on multiple-
choice tasks. This strategy, though straight-
forward, neglects critical concerns like data
privacy and realistic deployment in clinical set-
tings. In this work, we present a small-scale
medical reasoning system, MedS?, designed
for long-chain reasoning in clinical tasks using
a self-evolution paradigm. Starting with 8,000
instances sampled with a curriculum strategy
spanning five domains and 16 datasets, we
prompt a base policy model to perform Monte
Carlo Tree Search (MCTYS) to construct rule-
verifiable reasoning chains for two iterations.
Each reasoning step is scored by the rollout
estimation, allowing for training the policy
model and a soft dual-sided process reward
model (PRM). Experiments on eleven eval-
uation datasets demonstrate that MedS® out-
performs not only the prior strongest medical
model by 6.45, but also 32B-level general rea-
soning models by 8.57 points.

1 Introduction

Large Language Models (LLMs) have demon-
strated significant potential in the medical domain
(Singhal et al., 2023; Nori et al., 2023; Chen et al.,
2023b), supporting tasks from clinical note genera-
tion (Biswas and Talukdar, 2024; Jung et al., 2024)
to patient communication (Tu et al., 2024; Liao
et al., 2024b). Despite these advances, enabling
reliable and robust long-chain reasoning remains
a critical challenge for medical-oriented language
models (MLMs), which is essential for clinical

decision-making where each reasoning step must
be accurate, interpretable, and evidence-based.

Recent progress in “slow-thinking” reasoning
models such as OpenAl’s o-series (OpenAl, 2024)
has led to breakthroughs on complex reasoning
tasks (Lyu et al., 2025; Wang et al., 2024). How-
ever, these advances have not yet been fully real-
ized in medical language models, where domain
complexity, data scarcity, and the need for rig-
orous stepwise justification amplify the difficulty.
Prior efforts to improve MLMs have focused heav-
ily on large-scale pretraining (Qiu et al., 2024),
which requires enormous computational resources
but yields only modest task improvements. Alter-
natively, supervised fine-tuning (SFT) on human-
annotated datasets (Ouyang et al., 2022) often
involves concise, single-answer outputs that can
harm language fluency and limit the model’s ability
to generate rich, stepwise clinical reasoning neces-
sary for real-world applications.

Synthetic datasets generated by LLMs offer a
promising direction but suffer from hallucinations
(Xu et al., 2024b; Huang et al., 2023), which con-
strain the effective learning of clinically sound rea-
soning paths. A closely related work to slow think-
ing is HuatuoGPT-o1 (Chen et al., 2024), which em-
ploys GPT-40 to generate reasoning-intensive prob-
lems and corresponding complex reasoning steps
for distillation and reinforcement learning (RL).
While it achieves certain levels of long-chain rea-
soning, its heavy reliance on large proprietary mod-
els (GPT-series) limits its generalizability to real
clinical applications for the sake of data privacy.
Another relevant work, O1 Journey Part 3 (Huang
et al., 2025), directly distills OpenAl ol’s out-
puts into ~70B-parameter models. This approach
compromises user-friendliness and data privacy,
and also struggles to detect hallucinations. More-
over, relying exclusively on multiple-choice prob-
lems for distillation constrains its applicability to a
broader range of clinical tasks. These challenges



Without Without Diverse . L Process
Models Pretraining Close-sourced Teacher Clinical Coverage Small Size Slow Thinking  Reward Usage
MMed-Llama3 X X 4 v X X
UltraMedical v X v v X X
HuatuoGPT-ol v X X v v X
O1l-journey Part 3 v X X X v X
MedS? v v v v v v

Table 1: Comparison of MedS? with other medical models. Our MedS?® supports flexible inference-time scaling
on resource-constrained devices, as well as process reward-guided decoding algorithms. Furthermore, MedS? is a
self-evolved model without dependence on large proprietary models for distillation or critique.

highlight a core problem: how to efficiently induce
robust, interpretable, and stepwise reasoning ca-
pabilities in small-scale medical models without
relying on prohibitive pretraining, proprietary mod-
els or noisy synthetic supervision.

To address this, we propose MedS?, a novel
small-scale medical language model that integrates
robust long-chain reasoning “policy” with a fine-
grained, soft dual-sided Process Reward Model
(PRM) designed to evaluate and guide reasoning
steps progressively. We first curate 16 medical
tasks spanning clinical diagnosis QA, natural lan-
guage inference, knowledge-intensive QA, long-
context QA, and biomedical QA, and design a cur-
riculum sampling strategy to evolve the model over
8,000 carefully selected challenging instances per
iteration. Upon these, our key innovation involves
a self-bootstrapping pipeline leveraging a Monte-
Carlo Tree Search (MCTS)-based reflection-aware
evolution process (§2.1) that iteratively generates
high-quality synthetic data for both policy fine-
tuning (§2.2) and soft dual-sided PRM training. To
enable reflection-aware step-wise supervision, we
design a soft dual-sided label (§2.3) to promote
the PRM to reward in both forward and backward
sides. By focusing on step-level reasoning super-
vision tailored to clinical demands, our approach
overcomes the limitations of prior models that rely
on coarse labels or multiple-choice distillation un-
suited for diverse clinical tasks. This results in a
medical reasoning system optimized for evidence-
based stepwise confidence accumulation, critical
for trustworthy clinical decision support.

Extensive experiments on eleven clinical reason-
ing benchmarks demonstrate that MedS? achieves
state-of-the-art performance (§4), outperforming
both comparable-sized medical models and much
larger general reasoning models, while maintaining
superior interpretability and clinical task coverage.
Table 1 highlights these advantages in robust long-

chain reasoning and breadth of application.
In summary, our contributions are:

1. First Step-Level Framework for Medical
AI: We introduce the first self-evolution
framework that equips small-scale medical
models with robust long-chain reasoning via
step-level supervision, tailored for a wide
range of clinical applications.

2. Novel PRM Training Pipeline: We propose
a unique process reward model trained with
soft dual-sided labels, which precisely eval-
uates each reasoning step by jointly predict-
ing future rewards and assessing atomic step
necessity, reflecting clinical reasoning’s incre-
mental confidence building.

3. State-of-the-Art Clinical Reasoning Perfor-
mance: Our self-evolved system MedS? sig-
nificantly surpasses all equal-parameter com-
petitors and larger reasoning models across
multiple clinical benchmarks, driven by fine-
grained PRM-guided reasoning enhancement.

2 MedS®

This section presents a detailed overview of the
proposed MedS? framework, which is structured
into four key components:

1. Self-Bootstrapping Evolution (§2.1) which
synthesizes reasoning trajectories as training
data, with Monte-Carlo Tree Search (MCTS)
technique using the base policy mg.

2. Policy Model 7 (§2.2) which is derived by
fine-tuning on the generated synthetic data
with supervised learning and direct preference
optimization (Rafailov et al., 2023).

3. Process Reward Model (PRM) Vj (§2.3)
which is fine-tuned with step-wise supervi-
sion using soft dual-side labels and assigns a
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Figure 1: Overview of the construction of MedS® framework. (a) MedS? utilizes a Monte-Carlo Tree Search
pipeline to self-generate step-by-step reasoning paths for each instance sampled in a curriculum manner. (b) During
this process, MedS? uses result simulation to obtain the rollout value for each node; (c) After obtaining the child’s
rollout value, MedS? executes back-propagation to enable precise value prediction from deeper layers to transfer
back to shallow nodes. (d) After gathering all correct and wrong finish nodes, we use SFT and DPO to optimize the
policy model 7 and soft dual-side label to fine-tune a process reward model Vj.

value in the range [0, 1] to each reasoning step
by a both forward and backward view.

Iterative Training Pipeline (§2.4) which con-
sists of two MCTS evolution iterations and a
curriculum data sampler.

The overall framework is presented in Fig. 1.

2.1 MCTS-guided Evolution

This algorithm builds upon an n-ary tree, where
every root node is initialized as a reasoning start
sop ="“Let s break down this problem step by step.’
to guarantee a multi-step reasoning process. There
are four stages in a full MCTS pipeline, including
Node Selection, Node Expansion, Node Rollout,
and Backpropagation.

bl

Node Selection Within each iteration, we use
UCB (Winands et al., 2008) as the criterion to se-
lect a child, which is as follows:

Inn
UCB(T) =vc + v — Tparent ,
nr

(D

where T)4rent 18 the preceding node of the current
node 7" and + is an exploration constant set as 2.

For each intermediate node, we select its child node
with the highest UC' B value.

Node Expansion After reaching the candidate
node 7. under the UCB criterion, we continue the
reasoning trace of the current node. If the current
node possesses a relatively high value (v, > thr,
where thr = 0.9 is a pre-defined threshold), we
prompt the node to directly generate until deriving
an answer for speeding up the exploration phase.
On the other hand, for a wrong node, we allow one
reflective action Reflect to elicit the introspection
of the policy. Otherwise, assume that the selected
node is located at k-th depth among the tree with
previous reasoning trajectories [so, S1, - - , Si] con-
nected by a coherence phrase ¢, we sample B sub-
sequent steps {sy+1; | ¢ = 1,2,---, B} based on
the previous trajectory using a Reason' node:

(@)

Sk+1i ~ To([s0o © 51D -+ @ s8¢ | w),

where @ is the operation to connect two steps us-
ing the coherence phrase ¢, mg is the base policy
model, and z is the original input prompt.

1Prompts of Finish, Reflect, and Reason actions are
illustrated in Appendix E



Node Rollout As the PRM is not yet accurate
enough to serve as a reliable critic, node values are
obtained using rollouts based on reasoning trajec-
tories so far. Specifically, for a chosen unvisited
node T, at the k-th depth, we set a simulation bud-
get L = min(Lyyin, %) to encourage sufficient
simulation trials when the known reasoning path is
short, but expect to see a deterministic reasoning
result conditioning on a long trajectory. After set-
ting the budget, we prompt the policy model 7y to
directly output the answer L times under a specific
prompt AnsPrompt:

alc ~ WQ([SO ©s1D---D Sk] | CUAnsPrompt)v (3)

where [ € [1, L] and a!, is the I-th simulated answer.
The average accuracy of the L simulations acc =
% Zlel 1,:_, is assigned as the value of 7.

Backpropagation After the rollout stage, we
conduct back-propagation starting from 7. till the
root, updating all tree node values along the trace.
Specifically, for an arbitrary node T}, we propose
to update its visits ny and vy, as follows:

n =ng+1

1 E n Uch * nch)
=g lwt+t==2—""]), 4)
2 < Zch Tich

which considers both correctness and completeness
for the evaluation of a reasoning step.

Termination of Search For balancing the explo-
ration cost and optimization of policy and reward
models, Therefore, we set two criteria to terminate
the search process. First, once the total correct
count in the tree exceeds a minimum correct count
7, we stop the exploration of this tree. Second, if
there are no correct nodes after affording a certain
number of node exploration trials, we prompt 7 to
generate Finish node for all leaves.

2.2 Policy Model Fine-tuning

The policy training mainly leverages the correct
nodes Tk1 and corresponding reasoning trajectories
gathered before: D = {(T}, [so®s1®- - ®sk]) |
v = 1}. These correct reasoning traces are fine-
tuned to deduce a self-improved policy model:

Ly
1
L, = i > —logpr(yilz,y<i), (9
=1

where y; is the i-th token of the reason trajectory
and Ly is the total length of the trajectory. For

the second iteration, we further add a step-level
Direct Preference Optimization (DPO) to optimize
the policy at the same reasoning budget:

Lppo = —E(; p+ p-)mDppo 08 o (ro(z, PT
- T‘g([g,Pi))? (6)

where r¢(z, P) = B(logmg(P | ) — log e (P |
x)) is the reward and Dppo = {(z,[so ® s1 ©
@ s so®s1®-@s]) | v > v} The
DPO training is crucial for deriving a strong policy
and PRM, which is elucidated in Table 3.

2.3 Soft Dual-side PRM Fine-tuning

Dataset Collection We first filter out those trees
with only correct or incorrect leaves as these
trajectories contain extreme value bias. For a
Finish node T} in a valid tree, its reasoning
trace [(s1,v1), (S2,v2),- -, (Sk, Ug)] is one train-
ing sample, where each reasoning step is concate-
nated by “Step k:” to form a complete reason-
ing trajectory. At the end of each reasoning step
s; (typically a \n\n token), the value v; is used to
derive the token label, which is learned by condi-
tioning on all previous steps in an auto-regressive
manner. As a result, the PRM training set is such
Dy, = {(z, [(s1,01), (s2,v2), -+, (Sks vi)]) |
x € Dgeeq N Sk 1s finish}.

Learning objective Previous works in the math
domain choose to directly learn the rollout value
with Mean-Squared Error (Zhang et al., 2024a) or
learn the pair-wise ranking preference (Guan et al.,
2025). However, in our work, we propose to learn
the prediction of the correctness probability of an
intermediate step using a 2-class cross-entropy loss.
The PRM Vj is initialized from the tuned policy
model for an aligned distribution, with the language
model head replaced by a token classification layer
with a cross-entropy loss for labeled tokens. Al-
though Zhang et al. (2025) suggests that the PRM
label should be set to 1 (a hard label) once the
rollout score is above zero, we deem that the roll-
out score as a soft label has a forward-only bias
about reasoning correctness. Meanwhile, a rig-
orous and concise medical reasoning step, which
cannot allow for exploring different solutions in a
brute-force manner, is different from a math rea-
soning step (Yue et al., 2025). Therefore, a new
step is valued highly only when it can both possibly
derive a final answer and improve the correctness
of the reasoning trajectory deterministically. As



a result, we design a dual-side label y; for step ¢
using its soft Q-value obtained during MCTS as

vi = [’U,‘ — B . max((),’ui_l — Uz’—&—l)-l V; < Vi—1
’ v; | otherwise
(7

This learning objective encourages PRM to simul-
taneously look ahead and back to judge the current
step and penalize random trials except for reflective
actions. Based on these, we optimize Vj using the
following loss function:

k
Lv, =Erqwpy, Y vilog fi+(1—y;) log(1— i),

i=1

®)
where g; is the predicted probability of the given
step 7 and (3 is a hyperparameter set to 1.0 by a sim-
ple grid search (details in Table 5). This dual-sided
soft-label training, not only prevents the learning
of fuzzy labels (rollout value around 0.5) but also
learns to judge a misleading step.

2.4 Training Pipeline

We perform two iterations for the seed dataset.
For each iteration, we use curriculum sampler,
which first prompts the policy model to perform
the rejected-sampling on the training set, filtering
those training instances with all-correct responses
to enhance data efficiency. After that, we sample
instances with the lowest pass@1 values during
the rejected-sampling process, ensuring that the
extremely hard problems (0 pass@1 score) are no
more than one-third of the total samples. After that,
we perform MCTS evolution on the seed data and
update the policy model. At the end of the second
evolution, we further enhance the policy with DPO
and train the PRM using the second iteration’s data.

3 Data Statistics

A slow-thinking system in medical scenarios
should both excel at exam-level question answer-
ing (QA) and handling real-world clinical scenar-
ios, like diagnosis (Tchango et al., 2022), specific
disease syndrome (Lab, 2020) and drug-related
problems (Huynh et al., 2016). However, previous
works only focused on a simple scenario, with only
limited data diversity, especially multiple-choice
QA, to train reasoning models. To approximate
realistic clinical usage and promote medical rea-
soning models on a diverse range of clinical tasks,
we curate a training corpus, from 16 existing public
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Figure 2: Overview of the used seed datasets.

medical datasets and divide them into five dimen-
sions according to the task category. We show the
five dimensions, i.e., clinical diagnosis QA, natural
language inference, knowledge-intensive QA, long-
context QA, biomedical QA and corresponding
datasets in Fig. 2. The details about the definition
of the five dimensions and the corresponding tasks
can be found in Appendix F.

4 Experiments

In this section, we comprehensively evaluate
MedS? on various downstream domains, includ-
ing both in-domain and out-of-domain datasets.

4.1 Experiment Setups

Training and Evaluation We choose Llama3.1-
8B-Instruct as the backbone of MedS?3. We select
MedQA-50p (Jin et al., 2021), PubMedQA (Jin
et al., 2019) without contexts, MedMCQA (Pal
et al., 2022), PubHealth (Kotonya and Toni, 2020),
BioMRC (Pappas et al., 2020), HealFact Classifi-
cation (Kotonya and Toni, 2020), Drug Dose Ex-
traction (Huynh et al., 2016), DDX-Plus (Tchango
et al., 2022) as the in-domain evaluation bench-
marks, the medical subsets of MMLU (Hendrycks
et al., 2021), BioASQ (Tsatsaronis et al., 2012)
SEER Classification (Dubey et al., 2023) as the out-
of-domain evaluation sets. The details of evaluation
sets are presented in Appendix F and the hyperpa-
rameters of synthesis, self-training and evaluation
are presented in Appendix G.



Models MedQAT MedMCQA! PubMedQA' BioASQ MMLU | BioMRC PubHealth HealthFact DDXPlus DrugDose SEER | Avg.
Large language models (>10B)
GPT-40-mini 75.81 67.58 47.80 83.01 83.79 66.85 59.14 65.24 54.00 7391 54.54 | 66.52
GPT-3.5-turbo 59.31 58.12 37.40 74.11 71.11 56.22 57.84 67.85 39.05 86.96 73.61 | 61.96
QwQ-32B-preview 68.89 61.03 48.60 73.62 74.18 79.76 63.36 66.08 45.40 39.13 37.26 | 59.76
R1-Distill-Qwen32B 76.83 66.27 38.20 78.32 85.07 78.66 59.95 63.80 53.90 82.61 26.22 | 64.53
Small language models (<10B)
Qwen2.5-7B 55.54 54.12 53.40 73.62 74.38 56.48 57.11 52.69 31.25 60.87 33.07 | 54.78
Llama3-8B 57.50 55.92 56.40 75.73 68.55 56.50 64.09 70.88 35.30 7391 47.07 | 60.17
Llama3.1-8B 61.51 5742 59.00 71.36 72.52 55.60 61.82 63.97 19.00 73.91 52.62 | 58.98
R1-Distill-Llama8B 50.12 48.89 46.60 70.55 68.42 53.49 55.73 62.04 36.10 69.57 31.71 | 53.93
Small Medical language models (<10B)
MMedS-Ins 53.57 48.24 56.60 77.35 50.86 31.47 54.26 69.64 97.53 95.65 97.93 | 66.65
MedLlama3 55.85 59.36 66.40 84.63 70.08 4797 62.39 68.10 22.50 69.57 50.69 | 59.78
Med42 50.20 49.70 55.40 74.76 61.43 57.26 59.14 81.57 31.35 65.22 37.14 | 56.65
OpenBioLLM 50.20 50.56 41.40 47.73 61.69 27.46 18.77 53.28 16.55 34.78 46.48 | 40.81
UltraMedical3-8B 68.89 61.82 51.60 80.58 75.08 45.18 66.13 72.73 36.70 60.87 24.55 | 58.56
UltraMedical3.1-8B 70.93 62.78 56.40 77.18 76.43 54.26 59.14 70.20 31.55 56.52 45.86 | 60.11
HuatuoGPT-ol 62.53 59.31 58.20 87.70 70.53 50.98 24.61 66.08 40.20 56.52 46.85 | 56.68
SFT on Seed 40.93 58.38 61.80 76.38 66.24 32.56 44.03 73.57 42.05 91.30 53.10 | 58.21
MedS? (ours)

Iter 1 65.91 60.55 56.80 78.48 75.66 55.84 57.03 64.73 51.65 73.91 4897 62.68

Iter 2 67.09 61.56 60.40 80.93 75.21 70.11 68.97 69.87 53.55 91.30 53.44 68.40

Iter 2 w/ PRM 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80 73.10

Table 2: Experiment results in 11 medical datasets among four types of models. We highlight the best results with
bold and underlines the second-best results among models with a similar size. “SFT on seed” denotes the variant of
fine-tuning the policy on the seed data. T denotes the datasets on which most medical models have been trained.

Setting MedQA MedMCQA PubMedQA BioASQ Med MMLU BioMRC PubHealth HealthFact DDXPlus Drug Dose SEER Average

SFT Policy 64.69 61.46 57.80 80.26 75.98 63.28 63.44 64.23 52.65 78.26 48.85 64.63
w/ DPO 67.09 61.56 60.40 80.93 75.21 70.11 68.97 69.87 53.55 91.30 53.44 68.40
w/ H-S label 68.97 65.67 61.80 79.45 76.75 70.48 69.13 74.24 59.35 86.96 56.94 69.98
w/ H-D label 66.77 63.78 61.40 80.74 75.14 78.13 69.54 75.34 61.60 91.30 56.46 70.93
w/ S-D label 72.97 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80  73.10
w/ SFT init. PRM 70.70 64.40 61.80 81.23 77.39 70.22 75.30 74.58 60.15 82.61 54.99 70.31

Table 3: Ablation study on each component of MedS?

after the second iteration. “H-S” means hard single-sided

label, “H-D” means hard dual-sided label, and “S-D” is soft dual-sided label used in MedS?.

Baselines We choose the following two cat-
egories to serve as baselines: (1) LLMs, in-
cluding GPT-3.5-turbo (OpenAl, 2022), GPT-40-
mini (OpenAl, 2023), QWQ-preview-32B (Qwen,
2024) and R1-Distill-Qwen32B (Guo et al., 2025);
(2) Small Language models (<10B), including
Llama 3 8B, Llama 3.1 8B (Dubey et al., 2024)
and Qwen2.5 7B (Yang et al., 2024), R1-Distill-
Llama8B (Guo et al., 2025) (3) Medical LLMs,
including MedLlama 3 8B2, MMedS-Ins-Llama-
3-8B (Wu et al.,, 2024b), Med42 (Christophe
et al., 2024), OpenBioLLM (Ankit Pal, 2024),
UltraMedical3-8B and UltraMedical3.1-8B (Zhang
et al., 2024b) and HuatuoGPT-01-8B (Chen et al.,
2024). We also directly SFT the base model on
the seed training set to illustrate no data contam-
ination from the seed data. All the baselines are
evaluated using CoT while MedS® w/ PRM scores
each response with the minimum step value and
uses Best-of-N (N=32) to select the final response.

2https ://huggingface.co/
ProbeMedicalYonseiMAILab/medllama3-v20

4.2 Main Results

We present the experiment results in Table 2, split-
ting into examination QA and clinical application
tasks. The results unveil that most prior medical
LLMs show superior results in traditional medical
benchmarks (MedQA or PubMedQA); while such
superiority cannot generalize to out-of-distribution
real-world clinical benchmarks (DDXPlus or Drug-
Dose), which results in their sub-optimal over-
all performance compared to Llama3-8B. In con-
trast, our MedS? is not optimized exclusively
for multiple-choice medical datasets and hence
achieves the best performance among all open-
sourced competitions. As an 8B system, MedS?
achieves +14.12 average performance gains with
respect to the base model in the overall assess-
ment, which not only outperforms medical-oriented
models but also general reasoning models. Specifi-
cally, the policy component has already achieved
the state-of-the-art (SoTA) performance, based on
which the soft dual-side PRM further brings an
additional 4.7 points improvement.

Specifically, compared to HuatuoGPT-o1 and
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Error Type MedQA MedMCQA PubmedQA Bioasq

Med MMLU Biomrc Pubhealth Healthfact DDX Plus

Drug Dose SEER

Task 27.03 32.68 35.80 18.61 20.37
PRM 0.00 0.00 0.00 0.00 0.00

25.46 25.59 23.82 37.60 8.70 40.20
0.00 0.00 20.29 0.00 4.35 0.00

Table 4: Comparison of error rates (lower is better) in task-level and PRM-level, where PRM works with no errors

in most testbeds.

MedLlama3, MedS? shows superior performance
on reasoning-intensive benchmarks, including
MedQA and MedMCQA, as well as clinical bench-
marks. This verifies that MedS® learns medical
reasoning philosophies and the clinical deduction
process. Another model MMedS-Ins, which di-
rectly post-pretrains and fine-tunes on millions of
clinical corpus, harvests superior performance on
in-domain clinical tasks, such as SEER and DDX-
Plus. However, directly fine-tuning on question-
answer pairs inevitably makes the model lose the
ability to output long responses, which is extremely
important in reasoning tasks. In contrast, our model
MedS?, possesses a comprehensive performance
on both traditional tasks and clinical scenarios with
strong reasoning abilities.

5 Analysis
5.1 Ablation Study

In this section, we validate the effectiveness of
each sub-module of MedS?®. Starting from the SFT-
tuned policy model, we compare the final perfor-
mance with (1) w/ DPO: use DPO to fine-tune the
policy; (2) w/ H-S label: conduct best-of-N evalua-
tion using a PRM trained with hard single-sided la-
bel (Zhang et al., 2025); (3) w/ H-D label: same as
(2) but use hard dual-sided label (Wang et al., 2025)
to train a PRM and (4) w/ S-D label (ours): same as
(2) but use soft dual-sided label proposed in MedS?
to train a PRM. We also compare with (5) w/ SFT
init. PRM, which is same as (4) but initializes PRM
with the SFT-tuned policy, to further show the sig-
nificance of a PRM exposed to both positive and
negative responses. Experiment results in Table 3
show that the DPO helps to greatly improve the pol-
icy model, especially in clinical tasks. Furthermore,
innovatively determining the dual side label based
on the MC estimation, our method is more robust
and flexible than rule-based labels, and hence out-
performs previous training objectives, confirming
the necessity of holistic modeling of a PRM.

5.2 Reliability of PRM

Although our process reward model (PRM) is
trained using rollout values—a rule-based supervi-

sion signal—we empirically demonstrate that the
PRM exhibits strong capability in identifying erro-
neous reasoning steps. To evaluate this, we com-
pare two metrics: the task error rate (defined as
instances where model predictions deviate from
ground truth answers) and the PRM error rate (oc-
curring when the PRM assigns a higher score to an
incorrect candidate than to the ground truth-aligned
prediction). As illustrated in Table 4, the majority
of tasks exhibit a PRM error rate of zero, except for
HealthFact and Drug Dose. This suggests that our
fine-tuned PRM effectively differentiates between
valid and invalid clinical reasoning steps. Further-
more, the observed discrepancy between task and
PRM error rates implies that most errors arise not
from the PRM’s assessment but from the policy
model’s failure to generate candidates aligned with
the ground truth. This finding underscores the need
to refine the policy model in future iterations to
address this limitation.

5.3 Scaling of MedS?

In this section, we present the improvements
brought by the self-evolutionary framework in
Fig. 3a, and those attributable to test-time scal-
ing in Fig. 3b and Table 9. Specifically, we sample
n = 2,4,8,16, 32, 64 candidates for a prompt with
a 1.0 temperature and compare the performance ob-
tained through Best-of-N (BoN) (Lightman et al.,
2023), PRM-guided Vote-Sum (P-VS; Wang et al.
(2024)), as well as an SC baseline. We observe a
great improvement in both the policy model and the
PRM after a second evolution iteration, highlight-
ing the efficacy of self-evolution. This suggests that
the iterative MCTS process, where the model learns
from its own refined outputs, leads to steadily in-
creased improvements. Additionally, we find that
test-time scaling further enhances MedS?’s reason-
ing performance as illustrated in Fig. 3b in an effec-
tive log-linear rate with little saturation. Together,
these results highlight the benefits of both self-
exploration during synthesis and self-supervision
during inference, contributing to MedS®’s strong
performance across diverse tasks.
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Figure 3: Scaling in (a) self-evolution iterations and
(b) sampling numbers during test-time. Both the pol-
icy and PRM harvest consistent enhancement with self-
evolution, and hence their cooperative system MedS?3
achieves a log-linear scaling rate with little saturation.
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Figure 4: Reflective response ratio of MedS? across 7
representative datasets. Both the policy and PRM are
reflection-aware to perform sequential test-time scaling.

5.4 Introspective Behavior

Reflection has been proved to be an effective scal-
ing paradigm for enhancing LLM’s test-time scal-
ing capacity (Guo et al., 2025). Our MedS? intro-
duced a Reflect node during synthesis and a soft
dual-sided PRM to encourage correctly reflected
responses, aiming to impart self-reflection behavior
to the whole system. We manually define reflective
tokens (Wait, reevaluate, recheck, however,
but) and count the ratio of correct responses with
these tokens on seven representative benchmarks in
Fig. 4. We observe a steady increase in the occur-
ring ratio from directly chain-of-thought prompt-
ing to leveraging PRM to conduct BoN evalua-
tion, which indicates both the policy and PRM in
MedS? has been imparted with self-reflection be-
havior. This further demonstrates that the PRM
trained with the soft dual-sided label can correctly
favor valuable responses with self-reflection.

5.5 Comparison of Slow-Thinking Styles

In this section, we compare three slow-thinking en-
hancement strategies, including MCTS plus PRM
which is what MedS? leverages, with distillation
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Figure 5: Three widely adopted methods to empower
models with medical reasoning abilities. MCTS+PRM
is the best among the three, making it the core of MedS3.

from strong reasoning models, which is what
O1-journey-part3 (Huang et al., 2025) does and
pure reinforcement learning (RL), which is what
DeepSeek-R1 (Guo et al., 2025) adopts. We use
the first iteration dataset in §3 to implement RL,
and use the officially released distillation dataset
provided by Huang et al. (2025) to SFT the base
model, and compare them with MedS? after the
first evolution iteration. The results presented in
Fig. 5 demonstrate that in exam-level medical QA
datasets where the base model already excels at,
distillation from large proprietary reasoning mod-
els is much more data-efficient than the other two
methods, albeit sacrificing generalization in clin-
ical tasks. In contrast, with both a considerable
performance leap and generalization, RL is second
to MCTS+PRM. We hypothesize that the medi-
cal diagnosis step is easier to determine than math
reasoning steps, resulting in a more accurate PRM.

6 Conclusion

In this paper, we present MedS?, a self-evolved
slow-thinking medical language model built for uni-
versal clinical usage. We collect a seed dataset cov-
ering 16 different realistic medical tasks, and use
Monte-Carlo Tree Search to construct policy data
and PRM data. We propose a new PRM learning
objective — the soft dual-sided label, which enables
the PRM to reward a step based on both future and
past aspects, to produce credible long-chain reflec-
tive responses. Experiment results demonstrate that
our model achieves superior performance on eleven
downstream medical benchmarks, especially in re-
alistic clinical ones, surpassing open-sourced mod-
els by a large margin with fewer parameters.



Limitations

MedS? achieves superior performance over eleven
benchmarks by conducting MCTS in seed datasets
to collect both policy and PRM training data and
a newly proposed PRM learning objective: soft
dual side label. Howeyver, it can be further im-
proved via these strategies: (1) cooperate with rein-
forcement learning to empower the policy with the
“aha-moment” (Guo et al., 2025) ability; (2) intro-
duce more training samples to cover more medical
reasoning scenarios; (3) conduct more evolution
iterations to further improve the model.

Ethics Considerations

In developing clinical slow-thinking model MedS?,
it is crucial to address ethical consideration that
arise when utilizing Al in healthcare environments.
Below are the key ethical considerations that have
been taken into account:

Perfomance vs. Potential Risks While MedS?
demonstrates significant enhancements in clinical
reasoning and task performance, it is important to
acknowledge the inherent limitations of Al models.
These models can generate misleading information
of “hallucinations”, which could pose risks in clin-
ical settings. Therefore, MedS? is not intended
to replace medical professionals or provide defini-
tive clinical decisions but rather to assist healthcare
providers under appropriate supervision.

Data Ethics and Privacy Compliance All pa-
tient data has been anonymized, and informed con-
sent was obtained for its use, ensuring full compli-
ance with privacy policies and obtaining explicit
permission for all data usage. Additionally, data
usage has been approved by relevant ethics commit-
tees, ensuring compliance with ethical standards
and privacy protection requirements.
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narios have shown significant promise. Numer-
ous previous works focus on developing medical-
specific LLMs, which are now being increasingly
adopted across various clinical settings. These med-
ical LLMs generally follow three main approaches:

Continual Pre-training Medical LLMs These
types of medical LLMs (Xu, 2023; Chen et al.,
2023c) are developed on the advantage of generalist
LLM and attempt to inject domain-specific knowl-
edge and expertise through continual pre-training
techniques. Such type of methods usually requires
significant computational resources. For example,
3 billion training tokens are used in HuatuoGPT-
IT (Chen et al., 2023a) and PMC-Llama (Wu et al.,
2024a) even requires more than 75 billion tokens.
However, results in recent works (Qiu et al., 2024)
show that the benefits of continued pre-training
are diminishing as the capabilities of the generalist
LLMs improve.

Fine-tuned Medical LLMs Compared to contin-
uous pre-training, fine-tuning is a more efficient
approach. It can rapidly adapt to medical scenarios
and perform the relevant tasks effectively when the
base LLMs are sufficiently powerful. (Ankit Pal,
2024; Christophe et al., 2024; Zhang et al., 2024b)
Specifically, Liao et al. (2024a) develops a two-
stage method which can decouple the knowledge-
injection and clinical alignment procedure during
the fine-tuning process to prevent the ‘alignment-
tax.” Wu et al. (2024c) collects a wide range of
medical language processing tasks spanning 19
task categories and 122 unique clinical tasks to im-
prove the LLMs’ capacities on various downstream
clinical tasks.

Slow-Thinking Medical LLMs With the signif-
icant achievements of the ol (Jaech et al., 2024)
in complex reasoning tasks, previous works show
the potential advantage of the ol-like models in
medical tasks (Xie et al., 2024; Xu et al., 2024a;
Nori et al., 2024). Based on these, previous works
develop the slow-thinking medical LLMs with dis-
tillation: Huang et al. (2025) directly learn the
reasoning trajectory generated by ol and Chen
et al. (2024) improve the model’s reasoning abil-
ity through o1 synthesis of reflective data and rein-
forcement learning. Besides, Yu et al. (2025) create
a Chinese version slow-thinking medical LLMs by
constructing the preference data with QwQ (Qwen,
2024).
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Figure 6: Trajectory length distribution of correct and
incorrect sets of the evolved dataset.

Table 5: Grid search of 5 and corresponding loss in the
dev set.

0.5 1 1.5 2
0.4293 0.4169 0.4194 0.538

B

Deyv loss

B Statistics of the Evolved Dataset

In this section, we show the statistics of the evolved
dataset after the second evolution, which is used to
conduct our training of MedS®. We plot the length
distributions of trajectories in Fig. 6. Defining short
sequences as below 256 and long sequences as
above 512, we find that the evolved dataset con-
tains about 20% long trajectories, which enables
the policy model to generate reliable responses with
more tokens. Moreover, we find that correct trajec-
tories consume fewer tokens than incorrect ones,
which aligns highly with Zeng et al. (2025).

C Further Experiments

In this section, we present more experiments to
validate the effectiveness of MedS?.

C.1 Determination of 3

We perform a simple grid search on a pre-defined
dev set to find the most appropriate value o f 5 in
Eq. 7. Specifically, we search (3 in the following
list [0.5, 1.0, 1.5,2.0] and show the loss in the de-
velopment set in Table 5. We determine (3 as 1 for
its lowest loss. Although there might exist a more
advanced configuration, we just set 5 to 1 as this is
not our focus and we leave this for future work.



Model MedQA MedMCQA PubHealth HealthFact BioMRC PubMedQA DDX Plus DrugDose Average
GPT-40-mini-ZS 75.81 67.58 59.14 65.24 66.85 47.80 54.00 73.91 63.79
GPT-40-mini-FS 76.83 67.80 63.44 63.80 75.60 63.40 51.00 59.57 65.18
R1-Distill-Qwen-32B-ZS  76.83 66.27 59.95 63.80 78.66 38.20 53.90 82.61 65.03
RI1-Distill-Qwen-32B-FS  76.36 81.40 59.06 64.14 87.40 41.80 51.40 60.87 65.30
MMedS-Ins-ZS 53.57 48.24 54.26 69.64 31.47 56.60 97.53 95.65 63.37
MMedS-Ins-FS 48.39 32.61 36.39 78.28 67.80 49.60 96.80 91.30 62.65
MedS3 72.97 67.32 74.41 76.18 74.54 64.20 62.40 91.30 72.92

Table 6: Comparison with prior Top-3 models prompted with the few-shot technique. Albeit certain improvements,
these models still lag behind MedS? by a large margin. “ZS” means zero-shot while “FS” means few-shot.

Model MedQA MedMCQA PubmedQA Bioasq Med MMLU Biomrc Pubhealth Healthfact DDX Plus DrugDose SEER Average
MMedS-Ins 54.36 52.76 63.60 72.82 59.26 23.95 59.95 74.66 97.96 95.65 89.40 67.67
Ultramedical3.1-8B  72.90 65.57 58.00 80.58 78.54 49.18 67.91 71.72 34.10 60.87 49.73 62.65
HuatuoGPT-o01 75.96 66.94 58.20 78.48 78.54 46.45 64.58 70.29 41.00 60.87 49.59 62.81

MedS?® 72.97 67.32 64.20 81.39 79.63

74.54 74.41 76.18 62.40 91.30 59.80 73.10

Table 7: Comparison with prior Top-3 models with similar model sizes prompted with self-consistency method.
Albeit certain improvements, these models still lag behind MedS?® by a large margin.

C.2 Comparison with Few-shot Prompted
Models

Few-shot prompting is a widely adopted method
to improve performance effortlessly. To this end,
we compare MedS® with the 1-shot prompted
Top-3 performing models, i.e., GPT-40, R1-distill-
32B and MMedS-Ins, in Table 2 where exem-
plars are provided by prompting 03-mini (OpenAl,
2024). We exclude benchmarks without training
sets, including MMLU, SEER and BioASQ. Re-
sults shown in Table 6 indicate that in most cases,
few-shot prompting does improve performance
without any cost, whereas the medical-specialized
model, MMedS-Ins, loses the in-context learning
ability and underperforms its zero-shot variant.
Meanwhile, few-shot prompted baselines still lag
behind our self-evolved MedS? system, showing
that the PRM-integrated medical reasoning frame-
work is consistently powerful.

C.3 Comparison with SC Models

We also compare MedS? with baselines prompted
with the Self-Consistency (SC) method, which is
a simple yet efficient way to scale in a parallel
manner. To maintain similar inference costs, we
set the sampling number to 32 for models with
similar size (<10B) and compare with the most
powerful models before?, namely HuatuoGPT-ol,
UltraMedical3.1-8B and MMedS-Ins. Results in
Table 7 illustrate that as a test-time scaling method,
SC improves the already strong baselines by signifi-
cant gains, while such improvements usually occur

31t is reasonable when MedS® outperforms the most lead-
ing baselines.
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in traditional benchmarks like MedQA or MedM-
CQA. Their performances in clinical testbeds, like
SEER or DDX-Plus, hardly show gains, which un-
veils some kind of overfitting problem. Therefore,
optimized for both traditional examination and clin-
ical usage, MedS? robustly achieves state-of-the-art
performance overall.

C.4 Backbone Selection

In this section, we investigate which backbone, a
general LLLM or a medical-specific LLM, is suit-
able for conducting self-evolution. We conduct
one iteration of evolution using the same data of
MedS? under UltraMedical3.1-8B and compare it
with MedS? after the first iteration using the Best-
of-N decoding method to save computational cost.
The comparison shown in the upper half of Table 8
reveals that although UltraMedical3.1-8B improves
compared to the initial policy, it still lags behind
MedS? by a large margin. Delving into the genera-
tion, we find that UltraMedical3.1-8B suffers from
endless generation, which stems from its lower in-
struction following ability compared to Llama 3.1
8B. On the other hand, medical backbones show no
significant performance gains compared to the gen-
eral model (UltraMedical3.1 8B 60.11 vs Llama
3.1 8B 58.98 in Table 2), while after optimized for
certain benchmarks like MedQA, they have lower
generalization ability than general models. Based
on the above observations, we choose to use a gen-
eral backbone with sufficient medical knowledge,
i.e., Llama 3.1 8B, as the initial policy model.



Backbone MedQA MedMCQA PubMedQA BioASQ Med MMLU BioMRC PubHealth HealthFact DDX Plus DrugDose SEER Average
UltraMedical3.1 68.42 58.20 58.00 79.61 73.16 49.40 68.07 71.38 49.20 86.96 51.40 64.89
Llama 3.1 67.64 62.00 59.60 79.13 71.77 76.96 73.19 78.37 63.80 91.30 59.20 71.72

Table 8: Comparison with UltraMedical-3.1-8B as the policy model. With superior instruction following ability and
comparable medical knowledge, Llama-3.1-8B suits MedS? system to fulfill the self-evolution procedure.

Method Iteration MedQA MedMCQA PubmedQA Bioasq Med MMLU Biomrc Pubhealth Healthfact DDXPlus DrugDose SEER Average

2 68.97 64.04 62.00 79.45 76.43 73.68 72.14 73.57 58.00 86.96 55.45 70.06

4 69.60 64.55 61.60 80.42 77.26 74.64 74.17 73.06 58.85 86.96 56.75 70.71

8 70.54 64.57 62.60 81.07 77.83 74.75 74.09 72.64 59.90 86.96 56.61 71.05

BoN 16 70.23 66.32 64.00 81.23 78.41 74.80 73.68 72.05 61.00 86.96 5844  71.56
32 7297 67.32 64.20 81.39 79.63 74.54 74.41 76.18 62.40 91.30 59.80  73.10

64 73.37 67.65 66.00 81.72 79.37 74.54 74.90 78.28 62.25 91.30 60.79  73.65

2 65.67 61.49 60.60 77.02 73.73 71.09 68.48 70.79 56.45 91.30 52.59 68.11

4 67.09 63.11 60.40 78.80 75.72 73.23 70.59 76.18 57.35 91.30 56.32 70.01

8 67.40 63.71 60.60 80.42 76.30 73.82 70.11 77.61 57.65 91.30 57.48 70.58

sC 16 68.42 63.73 60.80 80.42 76.43 73.70 70.11 77.69 58.05 91.30 58.27 70.81
32 67.64 63.52 60.60 80.26 76.55 73.98 70.59 78.28 57.90 91.30 58.25 70.81

64 67.79 63.45 60.80 80.26 76.75 73.98 70.76 77.86 58.10 91.30 5833 70.85

2 68.97 64.04 62.00 79.45 76.43 73.68 72.14 73.57 58.00 86.96 55.45 70.06

4 68.97 63.85 60.40 80.26 75.91 74.38 71.57 75.25 57.70 86.96 5737 70.24

8 68.34 63.95 61.00 80.74 76.55 74.54 70.11 76.60 55.40 86.96 57.37 70.14

P-VS 16 68.81 63.88 60.80 81.39 77.07 74.99 70.27 75.67 53.10 86.96 58.33 70.12
32 68.66 63.81 61.20 80.74 76.81 74.88 71.16 74.41 53.65 82.61 57.99 69.63

64 68.19 63.71 61.00 80.58 71.39 74.88 71.24 74.41 53.70 82.61 58.16  69.62

Table 9: Full table of test-time scaling using PRM with different evaluation methods.

D Future Work

As a pioneering work, we have validated that small
language models can self-evolve to empower them-
selves with strong reasoning abilities in clinical
usage. There are several remaining directions to
further enhance MedS?:

1. Conduct Human-interference evaluation. MC-
rollout value is verified to be not the best
choice for evaluating the value of an internal
step. We are eager to introduce a more fine-
grained step label to enhance the optimization
of the PRM.

Introduce more clinical data, not limited to
close-ended generation. Currently, all the data
used in MedS? are close-ended, and the ap-
plication of reasoning is not limited to such a
narrow room. We intend to extend MedS? to
broader clinical tasks to make MedS® a more
useful system.

We will continue our exploration and make MedS?
more practical in medical domains.

E Prompt Template

We show the prompt used to synthesize reasoning
data in Fig. 7, Fig. 8, and Fig. 9.

F Dataset Details

In this section, we elucidate the seed dataset and the
evaluation sets. We also clearly denote the involved
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dataset’s usage during training and evaluation and
their corresponding category in Table 10. We di-
vide the used 16 training datasets into the following
five dimensions:

1. Long Context QA: This dimension enables
MedS? to capture useful information from
the given context and response with long-
chain reasoning. This dimension covers
BioMRC (Pappas et al., 2020), HeadQA
Topic Classification (Vilares and Goémez-
Rodriguez, 2019; Wu et al., 2024b), and
HealthFact (Kotonya and Toni, 2020)

Knowledge-Intensive QA: This dimension
teaches MedS? to use long-chain reasoning to
answer knowledge-intensive problems, which
covers MedQA (Jin et al., 2021), MedM-
CQA (Pal et al., 2022), and PubMedQA (Jin
et al., 2019).

. Bio-Medical QA: This part leverages gen-
eral data in bio-medicine domains to en-
hance the generality of MedS®, which in-
cludes SciQ (Welbl et al., 2017), Evidence
Inference (DeYoung et al., 2020) and Head
QA (Vilares and Gémez-Rodriguez, 2019).

Medical Natural Language Inference: This
dimension prompts MedS? to discriminate
biomedical research concepts and corre-
sponding descriptions, which contain Pub-
Health (Kotonya and Toni, 2020), Medical



<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023 Today Date: 23 July 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Think critically about the problem and answer with concise, accurate reasoning.
Please ensure your reasoning is thorough and elaborate, breaking down each step
of your thought process.

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0@: Let’s break down this problem step by step

Step 1:

Figure 7: Reason template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023 Today Date: 23 July 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Use thorough and elaborate steps to complete your reasoning. Conclude the task
by stating: "The answer is {answer}".

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Step 0: Let’s break down this problem step by step

Step 1:

Figure 8: Finish template
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<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023 Today Date: 23 July 2024
<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Use thorough and elaborate steps to complete your reasoning. Conclude the task
by stating: "The answer is {answer}".

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Step 0@: Let’s break down this problem step by step

Step 1: [omitted]

Step k: [omitted]. The answer is C.

Step k+1: Wait, the previous answer maybe incorrect and I need to reconsider
other options.

Figure 9: Reflect template
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Question Pair (MQP; McCreery et al. (2020)),
and catalonia-independence-corpus (CIC; Zo-
tova et al. (2020)).

. Diagnosis QA: This dimension is related to
real-world clinical scenarios, including dis-
ease diagnosis and classification and drug re-
lated questions. We choose Covid-19 Classi-
fication (Lab, 2020), Drug-Dose Extraction,
Adverse Drug Event Classification (Huynh
et al., 2016; Wu et al., 2024b) and DDX-
Plus (Tchango et al., 2022)..

tasks including elementary mathematics, US
history, computer science, law, and more. We
select its medical-related problems, resulting
in a test set with 1,561 problems.

. BioMRC (Pappas et al., 2020) is a collec-

tion of medical-related question-answer pairs,
specifically designed for the evaluation of ma-
chine reading comprehension (MRC) tasks in
the biomedical domain. It is derived from a
wide range of medical texts, including clinical
notes, research papers, and medical textbooks.
The dataset contains a series of questions and

The descriptions of each training and evaluation

corresponding answers, where the answers are
dataset are presented below:

extracted from relevant passages of text. We

1. MedQA (Jin et al., 2021) is a widely used use its 6,250 test set as the evaluation set.

benchmark for evaluating Al systems in med-
ical question answering, featuring multiple-
choice questions from professional medical
licensing exams such as the USMLE and ex-
ams from China and Taiwan. We adopt its
5-options English version, taking its training
set as seed data and 1,273 test problems as the
evaluation benchmark.

. PubmedQA (Jin et al., 2019) is a specialized
benchmark for biomedical question answer-
ing, consisting of question-answer pairs de-
rived from PubMed abstracts. It focuses on
yes/no/maybe questions that require reasoning
over biomedical literature. We use the human-
labeled question set and split the training set
and test set, with both 500 problems for evolu-
tion and evaluation, respectively. Note that we
do not include relevant contexts before ques-
tions, challenging models’ internal knowledge
comprehension.

. MedMCQA (Pal et al., 2022) is a large-scale
benchmark for medical question answering,
featuring over 194,000 multiple-choice ques-
tions sourced from Indian medical entrance
exams and other educational resources. It
spans a wide range of medical topics, includ-
ing anatomy, pharmacology, and pathology,
and is designed to evaluate the reasoning and
knowledge application skills of Al systems in
a clinical context. The test set contains 4,183
problems.

. MMLU (Hendrycks et al., 2021) is to mea-
sure LLM’s multitask accuracy, which con-
tains 14,421 problems. The test covers 57
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. HeadQA (Vilares and Gémez-Rodriguez,

2019) is a specialized medical question-
answering dataset designed to evaluate models
in the context of neurology and head-related
disorders. It consists of a collection of ques-
tions paired with answers derived from a va-
riety of clinical notes, medical reports, and
other head-related health data sources.

. DDX-Plus (Tchango et al., 2022) is a compre-

hensive medical diagnostic dataset designed
to assist in the development and evaluation of
machine learning models for differential diag-
nosis in clinical settings. It consists of clini-
cal cases, where each case includes a set of
symptoms, patient history, physical examina-
tion findings, and diagnostic questions, along
with a list of potential diagnoses ranked by
their likelihood. The diverse set of cases in
the dataset spans multiple medical specialties,
making it an ideal resource for creating mod-
els capable of assisting healthcare profession-
als in making informed diagnostic decisions.
Due to its huge test set (over 100,000 test in-
stances), we randomly select 2,000 items for
evaluation.

. SciQ (Welbl et al., 2017) is a scientific

question-answering dataset designed to as-
sess machine learning models in answering
factual questions across a wide range of sci-
entific domains. It consists of over 13,000
questions derived from scientific literature, in-
cluding topics in physics, biology, chemistry,
and earth sciences, among others. Each ques-
tion is paired with a correct answer and is



10.

11.

12.

13.

supported by a passage of text from which the
answer is extracted.

Evidence Inference (DeYoung et al., 2020)
is a collection designed to evaluate machine
learning models on their ability to infer log-
ical conclusions from evidence presented in
the form of textual information. This dataset
consists of structured pairs of premises (evi-
dence) and hypotheses, where the goal is for
models to determine the logical relationship
between them—whether the hypothesis is sup-
ported, contradicted, or is neutral with respect
to the provided evidence. Typically used for
tasks such as textual entailment or natural lan-
guage inference (NLI), the dataset includes
a variety of complex scenarios across multi-
ple domains, including law, healthcare, and
science, where reasoning based on available
evidence is crucial.

PubHealth (Kotonya and Toni, 2020) is a com-
prehensive dataset for explainable automated
fact-checking of public health claims. Each in-
stance in the PUBHEALTH dataset has an as-
sociated veracity label (true, false, unproven,
mixture). Furthermore, each instance in the
dataset has an explanation text field. The ex-
planation is a justification for which the claim
has been assigned a particular veracity label.
We construct two different test sets. Health-
fact is to directly predict whether a given in-
stance is true/false/unproven/mixture. The
other, Pubhealth, is to predict whether the
instance sentence and the given explanation
express the same meaning.

Medical Question Pair (McCreery et al., 2020)
contains a dataset of 3,048 similar and dissimi-
lar medical question pairs hand-generated and
labeled by Curai’s doctors. Models should
clarify whether the two given questions are
similar or not.

Catalonia-independence-Corpus  (Zotova
et al., 2020) is a dataset built for stance
detection in Twitter for the Catalan and Span-
ish languages, with the aim of facilitating
research on stance detection in multilingual
and cross-lingual settings.

Covid-19 Classification (Lab, 2020) is an ex-
tension of the Hedwig library and contains
all necessary code to reproduce the results
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of some document classification models on a
COVID-19 dataset created from the LitCovid
collection.

14. Adverse Drug Event (Huynh et al., 2016) is
critical for developing automated systems that
can support clinicians in identifying harmful
drug reactions, potentially reducing healthcare
costs, and enhancing patient safety. Given the
increasing volume of clinical data, this dataset
plays a key role in advancing Al-driven drug
safety research and improving the overall qual-
ity of healthcare. We build Drugdose extrac-
tion test set to benchmark models to extract
the exact dose of a specific drug.

15. SEER (Dubey et al., 2023) is purposed for
treatment planning because it contains key
clinical variables that directly inform therapy
decisions (e.g., tumor size, nodal status, hor-
mone receptor status). LLMs must choose
the most appropriate suggestion from the fol-
lowing list [ Intraoperative rad with other rad
before/after surgery’, ’Intraoperative radia-
tion’, ’No radiation and/or cancer-directed
surgery’, "Radiation after surgery’, ’Radiation
before and after surgery’, ’Radiation prior to
surgery’, *Surgery both before and after radia-
tion’] based on patient summarization, simu-
lating real-world tumor board decisions.

G Hyperparameters

G.1 Data Synthesis

For each node expansion, we simultaneously gen-
erate 3 different responses with the same prompt.
We set the generation temperature to 1. The stop
tokens are set to {Step k: | k =1,2,---100} to
ensure that each node represents a single reasoning
step. We use the first sample in MedQA as the
one-shot example and prompt GPT-40 to generate
step-by-step outputs.

G.2 Self-Training of Policy and PRM
We use 8xXNVIDIA A100 GPUs and the overall

training consumes 14h.

Policy tuning We use trl* as the training frame-
work. We first use vanilla SFTTrainer to train the
policy model. We set the warmup ratio to 0.03 and
the max sequence length to 8192. The batch size is

*https://huggingface.co/docs/trl/index



Category Dataset Train Test
ADE Yes No

) ) Covid-19 CLS Yes No
Diagnosis QA prygDose Yes  Yes
DDXPlus Yes Yes

SEER No Yes

PubHealth Yes  Yes

Medical NLI ~ CIC Yes  No
MQP Yes No

BioMRC Yes  Yes

Long Context QA  HealthFact Yes  Yes
HeadQA Topic CLS  Yes No

HeadQA Yes No

BioMedical QA  Evidence Extraction ~ Yes ~ No
SciQ Yes No

MedQA Yes  Yes

MedMCQA Yes  Yes

Knowledge QA PubMedQA Yes  Yes
MMLU No Yes

BioASQ No Yes

Table 10: Medical datasets usage during training and
evaluation. “CLS” denotes classification.

set to 128 and the learning rate is set to le-6. After
that, we use DPOTrainer to further fine-tune the
policy model. We set the learning rate to 5e-8 and
the batch size to 128.

PRM tuning We use PRMTrainer of trl to train
the PRM model. We use LoRA to fine-tune the
PRM, where the lora rank is set to 32 and lora al-
pha set to 64. The learning rate is set to Se-5. For a
single step sg, the input for PRM is the concatena-
tion of all steps up to the current step, namely:

P=5syg®s1 D - D s
y = Vy(P;x)

(©))
(10)

This input models a step’s value with causal rela-
tionships between steps, preventing local optima
learning.

G.3 Evaluation

For evaluation, the temperature is set to 1.0 and
top_p is set to 0.9. The max generation tokens
are set to 8,192. Among the three presented de-
coding mechanisms, CoT (Wei et al., 2022) di-
rectly prompts models to generate a long reasoning
chain and outputs the answer with “The answer is
{answer}” for the convenience of answer extrac-
tion. Self-Consistency (Wang et al., 2023) gener-
ates NV = 32 samples for a given problem, and we
select the one whose answer appears most times
among the N outputs. We use exact match (EM)
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to measure the performance. Specifically, we ex-
tract the contents following the last “The answer is”
template to match the self-reflection thinking style,
and perform appropriate post-processing to derive
a final prediction. For multiple-choice problems,
we directly choose the first character of prediction
phrases and measure whether the ground truth is
equal to the prediction. For close-ended generation
tasks, we remove quotes and turn the prediction
and the ground truth into lowercase phrases. After
that, we check whether the ground truth phrases
exist in the prediction phrases.

G.4 Training Details of Distillation and RL

In this section, we elucidate the implementation
details of distillation and RL.

Distillation For Distillation method, we fine-
tune Llama3.1-8B with 2K training data’ released
by Huang et al. (2025), which combined with the
questions in MedQA and corresponding response
generated by ol (Jaech et al., 2024). We adopt
LoRA (Hu et al., 2022) and set the rank r to 16 and
alpha « to 32 for fair comparisons. For fine-tuning
parameters, we set the learning rate to 2e-6 and
batch size to 128.

RL We follow Guo et al. (2025) to use Group
Relative Policy Optimization (GRPO; Shao et al.
(2024)) to conduct RL training. We set the number
of generations to 10 and the learning rate to le — 6.
We adopt ZeRO-3 (Rajbhandari et al., 2020) to
save memory and conduct full fine-tuning in one
8xA100 machine. The batch size is set to 4 per
GPU. For the adopted prompt, we use the same
prompt illustrated in DeepSeek-R1-zero, and use
<think></think><answer></answer> to learn
the slow-thinking output style. We use accuracy
reward and format reward, and the reward setting
is presented below in Table 11.

Table 11: Reward configurations for training RL-style
medical models. Null means that there is no contents
between <answer> and </answer>.

Conditions Accuracy Format
Correct 1 1
Incorrect -1 -1
Null 0 Null

5https: //huggingface.co/datasets/SPIRAL-MED/
ol1-journey-Ophiuchus


https://huggingface.co/datasets/SPIRAL-MED/o1-journey-Ophiuchus
https://huggingface.co/datasets/SPIRAL-MED/o1-journey-Ophiuchus

H Best-of-N Details

In this section, we elucidate the fast inference using
Best-of-N (BoN) evaluation with the PRM. Specif-
ically, the policy model generates /N responses
{y; | i € [1, N]} simultaneously using the in-
ference engine (VLLM; Kwon et al. (2023)). Af-
ter that we split each response y; into K steps:
[s},s2, -+, s where k € [1, K] using predefined
step separator Step. We form the step input to the
PRM (z,SF) as S¥ = sl @ s? @ --- @ s¥ and ob-
tain each step’s value v = softmax(Vp(z; SF))
using a forward pass. The value is the probabil-
ity of predicting the step to be correct, which is in
the range [0, 1]. Finally, the whole response value
v; = minff:l vf is taken from the minimum value
of each step and we select the response with the

highest value.

I AI Assistant Usage

We mainly use Al assistants to polish our expres-
sions.

J Case Study
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Question:

A 47-year-old executive schedules an appointment his physician for a routine medical check-up. He currently has no
complaints and claims to be “as fit as a fiddle.” The physical examination findings are unremarkable, except for a mid-
systolic murmur heard in the 2nd left intercostal space that radiates to the carotids on auscultation. The physician instructs
the patient to stand from a supine position with the stethoscope still placed on his chest. Which of the following changes
would occur with this maneuver?\nA. An increase in right atrial pressure\nB. An increase in left ventricular end-diastolic
pressure\nC. An increase in pulmonary capillary wedge pressure\nD. A reduction in the slope of the pacemaker
potential\nE. A reduction in diastolic filling time

Llama3.1-8B:

‘When the patient stands from a supine position, the following changes occur:\n\n* Venous return to the heart decreases
due to gravity, which leads to a decrease in right atrial pressure (A).\n* The decrease in venous return also leads to a
decrease in left ventricular end-diastolic pressure (B).\n* The decrease in left ventricular end-diastolic pressure would not
directly affect the pulmonary capillary wedge pressure (C).\n* The pacemaker potential is not directly affected by changes
in posture.\n* The diastolic filling time is not directly affected by changes in posture.\n\nThe mid-systolic murmur heard
in the 2nd left intercostal space that radiates to the carotids is likely due to aortic stenosis. When the patient stands from a
supine position, the murmur may become louder due to the increased gradient across the aortic valve. \nThe answer is A.

MedS?

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the likely diagnosis based on the physical
examination findings. The presence of a mid-systolic murmur heard in the 2nd left intercostal space that radiates to the
carotids on auscultation is suggestive of aortic stenosis. Aortic stenosis is characterized by the narrowing of the aortic valve
opening, which can lead to a delay in left ventricular ejection and a subsequent murmur.\n\nStep 2: Understand the effect
of standing from a supine position on the cardiovascular system. When a person stands from a supine position, gravity
causes a decrease in venous return to the heart. This decrease in venous return leads to a decrease in the preload, which is
the initial stretching of the cardiac myocytes prior to contraction.\n\nStep 3: Determine how the decrease in preload affects
the heart's function. A decrease in preload leads to a decrease in the end-diastolic volume, which in turn leads to a decrease
in the stroke volume. This is because the heart's ability to pump blood is directly related to the amount of blood it receives
during diastole.\n\nStep 4: Consider how the decrease in stroke volume affects the murmur associated with aortic stenosis.
The murmur associated with aortic stenosis is typically a systolic ejection murmur, which is caused by the delay in left
ventricular ejection. When the stroke volume decreases, the murmur may become softer or less intense, but it will not change
its timing or location.\n\nStep 5: Analyze the options provided to determine which one is most closely related to the change
in the murmur associated with aortic stenosis. The murmur is not directly related to the options provided, but the decrease in
stroke volume is related to the decrease in diastolic filling time. When the heart is in a supine position, the diastolic filling
time is longer due to the increased venous return. When the person stands, the diastolic filling time decreases due to the
decreased venous return.\n\nStep 6: Select the correct answer based on the analysis. The correct answer is the one that is
most closely related to the change in the murmur associated with aortic stenosis, which is the decrease in diastolic filling
time.\n\nThe answer is E.

MedS3-PRM:

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the initial clinical scenario and physical examination
findings. The patient is an asymptomatic 47-year-old executive undergoing a routine check-up. The physical examination
reveals a mid-systolic murmur heard at the 2nd left intercostal space radiating to the carotids. This murmur is suggestive of a
pulmonary valve issue, but given the radiation to the carotids, it's more likely to be a semilunar valve issue, and the closest
one would be the aortic valve, however the classic exam for aortic stenosis is the chest pressure, and the one described would
be more indicative of a pulmonary valve issue but in the given location it's likely aortic stenosis. However, the key piece of
information here is the physician's instruction to have the patient stand from a supine position while continuing to auscultate
the heart.\n\nStep 2: Understand the effect of changing body position on cardiovascular physiology. When a person
transitions from a supine (lying down) position to a standing position, several physiological changes occur:\n\n- Venous
blood pools in the lower extremities due to gravity, reducing venous return to the heart.\n- Cardiac output decreases due to
reduced preload.\n- Heart rate may increase to maintain cardiac output (baroreceptor reflex).\n- Systemic vascular
resistance may increase to compensate for the decreased cardiac output.\n\nThe specific maneuver instructed by the
physician, where the patient stands from a supine position while continuing to auscultate the heart, will lead to a decrease in
venous return and, consequently, a decrease in left ventricular preload. This change in preload can affect the intensity of
heart sounds, particularly those related to ventricular filling.\n\nStep 3: Relate the physiological changes to the potential
effects on the heart sounds and the murmur in question. In the case of a mid-systolic murmur, as described, the intensity of
the murmur is more likely related to the flow across the valve during systole. However, in this scenario, the key is to
understand how the change in body position affects the physiology of the heart and the likelihood of certain effects on heart
sounds and pressures.\n\nGiven the change in position, the most likely effect on the pressures and heart sounds would be a
decrease in the diastolic filling time due to decreased venous return and thus a decrease in left ventricular end-diastolic
pressure and volume, however the best answer given would be a decrease in diastolic filling time due to decreased preload,
although the best answer regarding a direct relationship between the two isn't given in the question options.\n\nHowever,
we must find the closest relation. If we consider the decrease in preload, and looking at the options:\n\n- A. An increase in
right atrial pressure is not directly related to the change in body position as described.\n- B. An increase in left ventricular
end-diastolic pressure is the opposite of what would be expected with decreased preload.\n- C. An increase in pulmonary
capillary wedge pressure is also not directly related to the change in body position.\n- D. A reduction in the slope of the
pacemaker potential is related to the effect of decreased preload on the sinoatrial node but is more related to the
baroreceptor reflex rather than the direct effect of decreased preload on the ventricles.\n- E. A reduction in diastolic filling
time is the closest option, as it is directly related to the decrease in preload due to the change in body position.\n\nThe
answer is E.

Figure 10: Cases of MedQA
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Question:

Imagine you are a doctor, next I will give you a dialogue and please make a diagnosis decision based on it. You only need to
choose one answer among the following lists: ['spontaneous pneumothorax', 'cluster headache', 'boerhaave', 'spontaneous rib
fracture' 'gerd', 'hiv (initial infection)', 'anemia’, 'viral pharyngitis', 'inguinal, hernia', 'myasthenia gravis', 'whooping cough',
'anaphylaxis', 'epiglottitis', 'guillain-barré syndrome’, 'acute laryngitis', 'croup', 'psvt', 'atrial fibrillation', 'bronchiectasis',
‘allergic sinusitis', 'chagas', 'scombroid food poisoning', 'myocarditis', larygospasm', 'acute dystonic reactions', 'localized
edema’, 'sle', 'tuberculosis', 'unstable angina', 'stable angina', 'ebola’, 'acute otitis media', 'panic attack’, 'bronchospasm / acute
asthma exacerbation', 'bronchitis', 'acute copd exacerbation / infection', 'pulmonary embolism', 'urti', 'influenza',
'pneumonia’, 'acute rhinosinusitis', 'chronic rhinosinusitis', 'bronchiolitis', 'pulmonary neoplasm', 'possible nstemi / stemi',
'sarcoidosis', 'pancreatic neoplasm', 'acute pulmonary edema', 'pericarditis', 'cannot decide']. The answer should be a single
word. \nAge: 45 \n\nSex: M \n\nlInitial evidence: Do you have a cough that produces colored or more abundant sputum
than usual? Yes \n\nEvidence: Do you have pain somewhere, related to your reason for consulting? Yes;Characterize your
pain: Sensitive;Do you feel pain somewhere? Lower chest;Do you feel pain somewhere? Side of the chest(r);Do you feel pain
somewhere? Breast(r);Do you feel pain somewhere? Posterior chest wall(r);Do you feel pain somewhere? Posterior chest
wall(l);How intense is the pain? 2;Does the pain radiate to another location? Nowhere;How precisely is the pain located?
5;How fast did the pain appear? 3;Do you have a cough that produces colored or more abundant sputum than usual? Yes;Do
you smoke cigarettes? Yes;Do you have a chronic obstructive pulmonary disease (COPD)? Yes;Do you have a cough?
Yes;Have you traveled out of the country in the last 4 weeks? N;Have you noticed a wheezing sound when you exhale? Yes.

Llama3.1-8B:
acute copd exacerbation / infection. \nThe answer is based on the patient's history of COPD, smoking, and symptoms of a
productive cough, colored or more abundant sputum, and wheezing sound when exhaling..

MedS?

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify key symptoms and risk factors.\n- The patient has a
cough producing colored or more abundant sputum than usual.\n- He experiences pain in the lower chest, right side of the
chest, right breast, and posterior chest wall (both sides).\n- The pain is sensitive, with an intensity of 2/10 and appeared
within 3 days.\n- He has a history of smoking and COPD.\n- He also reports a wheezing sound when exhaling.\n\nStep 2:
Consider possible diagnoses based on symptoms and risk factors.\n- Given the patient's history of smoking and COPD,
chronic bronchitis or acute exacerbation of COPD could be a possibility.\n- However, the presence of colored sputum and
pain in the chest and breast areas could suggest a more complex condition.\n- The patient's symptoms, such as cough,
sputum production, and wheezing, are consistent with a respiratory condition.\n\nStep 3: Evaluate the likelithood of each
possible diagnosis.\n- Considering the patient's history of smoking and COPD, bronchitis (chronic or acute) is a strong
possibility. \n- However, the presence of colored sputum and pain in the chest and breast areas could also suggest
bronchiectasis, a condition characterized by damaged airways that can produce excess mucus.\n- Other conditions, such as
pneumonia or pulmonary embolism, could also present with similar symptoms, but they are less likely given the patient's
history and the absence of other risk factors.\n\nStep 4: Based on the patient's symptoms and risk factors, the most likely
diagnosis is bronchitis, likely an acute exacerbation of his chronic COPD. However, considering the presence of colored
sputum and pain, bronchiectasis is also a possibility, but given the options provided, the best answer is bronchitis.

MedS3-PRM:

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the key symptoms and risk factors. The patient
presents with a cough producing colored or more abundant sputum than usual, pain in the lower chest, right side of the
chest, right breast, and posterior chest wall (both sides), which is sensitive and appeared within 3 days. He also reports a
history of smoking and COPD.\n\nStep 2: Consider the potential causes of these symptoms. Given the history of smoking
and COPD, chronic bronchitis or acute exacerbation of COPD could be a possibility. However, the presence of colored
sputum and localized chest pain may suggest a more specific condition. The patient's symptoms could also be consistent
with pneumonia or bronchiectasis, but these conditions typically present with more systemic symptoms and findings on
physical examination or imaging.\n\nStep 3: Assess the patient's risk factors for specific conditions. The patient's smoking
history and COPD increase his risk for chronic obstructive pulmonary diseases (COPDs) and pulmonary infections.
However, the patient's age and sex also increase his risk for other conditions such as lung cancer.\n\nStep 4: Based on the
patient's symptoms and risk factors, the most likely diagnosis is an acute exacerbation of COPD or chronic bronchitis.
However, the presence of colored sputum and localized chest pain also raises the possibility of bronchiectasis. Considering
the patient's history of smoking and COPD, the most likely diagnosis among the options provided is bronchiectasis or acute
bronchitis/bronchiolitis but I see that the best answer here is an exacerbation of the COPD which is not listed but we do
have 'bronchitis' which could be correct in this context.\n\nThe answer is bronchitis.

Figure 11: Cases of DDXPlus
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Question:

Imagine you are a doctor, next I will give you summarization of a patient and please help me to give a suggestion for next
treatment. You just need to pick out an answer from ['Intraoperative rad with other rad before/after surgery', 'Intraoperative
radiation', 'No radiation and/or cancer-directed surgery', 'Radiation after surgery', 'Radiation before and after surgery’,
'Radiation prior to surgery', 'Surgery both before and after radiation']\nAge at diagnosis: 73\n\nRegional nodes positive
(1988+): 0\n\nTotal number of in situ/malignant tumors for patient: 1\n\nRadiation recode:
None/Unknown\n\nChemotherapy recode: No/Unknown\n\nER Status Recode Breast Cancer (1990+): Positive\n\nPR
Status Recode Breast Cancer (1990+): Negative\n\nCS tumor size (2004-2015): 16\n\nDerived HER2 Recode (2010+):
Negative\n\nRegional nodes examined (1988+): 8\n\nCOD to site recode: Diseases of Heart\n\nRace recode:
‘White\n\nSex: Female\n\nVital status recode (study cutoff used): Dead\n\nDiagnosis_year: 2010\n\nLast_fu _year:
2015\n\ninterva_years: 5

Llama3.1-8B:

Based on the provided information, I would suggest the following treatment plan:\n\nGiven the patient's age (73) at
diagnosis, the presence of a single tumor (1), and the fact that the patient has died from a cause other than breast cancer
(Diseases of Heart), it's likely that the cancer was not the primary cause of death.\n\nHowever, considering the patient's
ER-positive status and the relatively large tumor size (16), a treatment plan that includes radiation therapy may be beneficial.
\n\nGiven the patient's age and the fact that the cancer was not the primary cause of death, I would suggest 'Radiation after
surgery' as the next treatment plan. This approach would allow for the removal of the tumor through surgery, followed by
radiation therapy to target any remaining cancer cells and reduce the risk of recurrence. \nThe answer is 'Radiation after
surgery'..

MedS?

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the key information from the patient's summary. The
patient is a 73-year-old female with breast cancer, diagnosed in 2010. The cancer is ER-positive, PR-negative, and HER2-
negative. The patient had 8 regional nodes examined, but none were positive. The cancer was 16mm in size.\n\nStep 2:
Assess the patient's prognosis and treatment options. Given the patient's age, cancer size, and ER-positive status, the patient
is likely to benefit from hormone therapy. However, the patient's PR-negative status suggests that PR-targeted therapy may
not be effective.\n\nStep 3: Consider the patient's vital status and last follow-up year. The patient passed away in 2015,
which suggests that the cancer may have progressed despite treatment.\n\nStep 4: Evaluate the treatment options for ER-
positive breast cancer. The standard treatment for ER-positive breast cancer includes hormone therapy, such as tamoxifen or
aromatase inhibitors. However, the patient's PR-negative status and cancer progression suggest that hormone therapy may
not be sufficient.\n\nStep 5: Consider the patient's cancer-directed surgery and radiation therapy. The patient's cancer size
and regional nodes examined suggest that surgery and radiation therapy may have been used to treat the cancer.\n\nStep 6:
Evaluate the radiation therapy options. Given the patient's cancer progression, radiation therapy may have been used to
control symptoms or slow disease progression.\n\nStep 7: Consider the patient's overall health and treatment goals. The
patient's age and cancer progression suggest that aggressive treatment may not be feasible.\n\nStep 8: Based on the patient's
cancer characteristics and treatment history, the most likely treatment approach is radiation after surgery.\n\nThe answer is
'Radiation after surgery'.

MedS*-PRM:

Step 0: Let's break down this problem step by step.\n\nStep 1: Analyze the patient's information to determine the stage and
characteristics of the breast cancer. The patient is a 73-year-old female with a tumor size of 16mm, which is likely to be stage
I or stage II breast cancer. The patient has estrogen receptor-positive (ER+) breast cancer, but HER2-negative and
progesterone receptor-negative (PR-) status. There is no information on lymph node involvement, but 8 nodes were
examined.\n\nStep 2: Assess the patient's overall health and treatment goals. The patient is 73 years old, and the cause of
death is listed as diseases of the heart. This suggests that the patient may have had underlying cardiovascular conditions that
could impact her ability to tolerate certain treatments.\n\nStep 3: Consider the standard treatment options for early-stage
breast cancer. For a patient with ER+ breast cancer, hormone therapy is often a recommended treatment option. However,
the patient's age and cardiovascular conditions may impact the choice of treatment.\n\nStep 4: Evaluate the radiation
therapy options. Given the patient's age and cardiovascular conditions, it may be more appropriate to avoid invasive surgery
and radiation therapy. However, the patient's tumor size and lymph node status are not sufficient to rule out the need for
radiation therapy entirely.\n\nStep 5: Determine the most appropriate next step in treatment based on the patient's
characteristics and overall health. Considering the patient's age, cardiovascular conditions, and ER+ status, a more
conservative approach may be preferred. However, there is no clear indication that the patient received adequate radiation
therapy. A more conservative option would be to provide hormone therapy and monitor the patient's condition. But among
the provided options, \"No radiation and/or cancer-directed surgery\" seems like the best answer given the lack of
information on whether surgery was performed and the patient's overall health. \nThe answer is 'No radiation and/or
cancer-directed surgery'.

Figure 12: Cases of SEER
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