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Abstract

Optimal transport (OT) is a powerful geometric tool used to compare and align probability
measures following the least effort principle. Despite its widespread use in machine learning
(ML), OT problem still bears its computational burden, while at the same time suffering from
the curse of dimensionality for measures supported on general high-dimensional spaces. In
this paper, we propose to tackle these challenges using representation learning. In particular,
we seek to learn an embedding space such that the samples of the two input measures become
alignable in it with a simple affine mapping that can be calculated efficiently in closed-form.
We then show that such approach leads to results that are comparable to solving the original
OT problem when applied to the transfer learning task on which many OT baselines where
previously evaluated in both homogeneous and heterogeneous DA settings. The code for our
contribution is available at https://github.com/Oleffa/LaOT.
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"To design is to devise courses of action aimed at changing existing situations into preferred ones.”
Herbert Simon, Nobel Prize winner, 1969.

1 Introduction

Optimal Transportation (OT) theory provides researchers with a large variety of tools to compare and align
probability measures that are omnipresent in today’s Machine Learning (ML) tasks. When the goal is to
find a mapping for two continuous probability measures, one usually seeks to solve the original Monge OT
formulation (Monge, 1781), while when one looks for soft-correspondences between the points in the supports
of two empirical measures, the Kantorovich formulation (Kantorovich, 1942) of the OT problem is usually
considered. Due to its versatility, OT has recently become popular with its applications, spanning such diverse
tasks and areas as unsupervised learning (Laclau et al., 2017; Rolet et al., 2016), natural language processing
(Alvarez-Melis & Jaakkola, 2018; Kusner et al., 2015; Singh et al., 2020), generative modelling (Arjovsky
et al., 2017; Bunne et al., 2019), computer vision (Kolkin et al., 2019; Mroueh, 2020) and computational
biology (Demetci et al., 2020).

Limitations In practice, finding an optimal map or consistently estimating OT costs on real-world high-
dimensional and large-scale data is hard, due to the curse of dimensionality of OT on the one hand (Fournier &
Guillin, 2013; Weed & Bach, 2017), and its high computational complexity on the other (Peyré & Cuturi, 2019).
One popular approach to mitigate the curse of dimensionality is to consider adversarial lower-dimensional
projections of the input measures (Paty & Cuturi, 2019; Dhouib et al., 2020; Alaya et al., 2022) and solve
OT on the projected measures. Another example is given by the famous sliced Wasserstein distances
(Bonneel et al., 2015; Deshpande et al., 2018), which leverage the closed-form solution of the OT problem
in 1-dimensional space to calculate the OT cost through averaging over several such projections. These
approaches, however, do not allow obtaining the mapping between the distributions, but only the OT cost.
Another case of interest is the OT problem between Gaussian probability measures (Dowson & Landau,
1982), and random variables linked through an affine transformation (Flamary et al., 2019; Mallasto et al.,
2021), for which OT can be calculated in closed-form. However, as real-world data rarely corresponds to such
favourable scenarios, this closed-form solution was only used scarcely in practice (Pitié & Kokaram, 2007;
Mroueh, 2020).

Our contributions In this paper, we motivate our main proposal by the following question:

Can representation learning help to find an embedding space where the Monge mapping can be
calculated explicitly for two discrete measures?

We answer this question positively and validate it through an application to the DA problem leading to the
following contributions:

1. We present a new framework of learning linearly alignable representations that can be used to learn
an embedding space in which the supports of two input probability measures become linked through
an affine transformation.

2. We show that in such space a closed-form linear Monge mapping can be used to align them with a
very appealing computational complexity. This is contrary to previous works on OT that either use
neural networks to approximate the Monge map between high-dimensional input distributions (Seguy
et al., 2018; Kirchmeyer et al., 2022) or use high-dimensional optimal couplings that do not scale
with the increasing sample size (Courty et al., 2014; 2017a; Redko et al., 2019b; Yan et al., 2018;
Redko et al., 2020).

3. Our computational approach to OT is then evaluated in transfer learning setting: for the the case
when the two domains’ input spaces are the same (homogeneous DA) or different (heterogeneous
DA). This is contrary to previous works on OT in DA that need to consider OT formulations on
incomparable spaces to handle the heterogeneous DA setting.
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Figure 1: Illustration of the proposed approach for two datasets in R3. In the original 3D space, the projection
obtained via linear Monge mapping (yellow points) between the two 3D datasets fails to align the datasets
as the data in the original space neither follows a Gaussian distribution, nor it is linked through an affine
transformation. Our approach learns an embedding space where the linear Monge map becomes optimal,
while ensuring that the embeddings are discriminative for downstream tasks.

The rest of the paper is organized as follows. After the necessary preliminary knowledge on OT and its use
in DA, we outline our main contributions and provide a theoretical analysis for DA with linearly alignable
representations. Then, we evaluate our proposal on tasks for homogeneous unsupervised and heterogeneous
semi-supervised DA where OT methods have previously shown to be efficient. Lastly we show that our
approach of solving the OT problem in a lower dimensional space reduces computational complexity. We end
this paper with conclusions.

2 Preliminary knowledge

Notations In what follows, we will use the following notations. We denote spaces and sets by black-board
upper-case letters (e.g. X,Y,R), probability measures are denoted by calligraphic upper-case letters (e.g.
S, T ), bold upper-case and lower-case Greek letters denote matrices (e.g. X, γ) and bold lower-case letters
denote vectors (e.g. x, b). We denote the marginal distribution of S with respect to X by SX and denote by
P(X) the space of probability measures supported on X with finite second moments.

Below, we present some background knowledge used in the following sections of this paper.

Optimal transport Given two metric spaces XS , XT , and a cost function c : XS × XT → R, the Monge
problem in OT is defined as follows:

g ∈ arg min
g:g#SX=TX

Exs∼SX [c(xs, g(xs))]. (1)

Here g#SX denotes the push-forward measure, which is equivalent to the law of g(xs), for xs ∼ SX.
Unfortunately, solving equation 1 is very hard in practice as its constraints are non-convex and the solutions
for it may not exist in discrete case when SX and TX are empirical measures.

A more widely adapted approach is to consider instead the Monge-Kantorovich problem (Kantorovich, 1942)
and the Wasserstein distance associated to it. The latter is defined as a value at the solution of the former as
follows:

Wc(SX, TX) = min
γ∈Π(SX,TX)

Eγc(xs, xt), (2)

where Π(SX, TX) is the space of probability distributions over XS × XT with marginals SX and TX. When
the squared Euclidean cost function c(·, ·) = || · − · ||22 is used, we write simply W 2

2 . Once γ is obtained, one
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uses the barycentric mapping (Ferradans et al., 2013) to define an approximation to the Monge mapping g as
follows:

g : xs → arg min
x

Eγ(·|xt)c(x, xt). (3)

Domain adaptation Let XS ,XT be two subsets of Rd and Y be a discrete set of outputs. Given two
datasets

S = {xs
i , ys

i }ns
i=1 ∼ S(XS × Y)

T = {xt
j , yt

j}nl
t

j=1 ∼ T (XT × Y) ∪ {xt
i}

nu
t

i=1 ∼ TX,

the goal of domain adaptation (DA) (Pan & Yang, 2010; Weiss et al., 2016) is to learn a hypothesis function
h : XT → Y from some hypothesis class H using the data from S and T such that the true target risk
RT (h) := ET [ℓ(h(xt), yt)] is as small as possible for some loss function ℓ : Y × Y → R. In what follows, we
distinguish between unsupervised DA, ie, nl

t = 0 and, semi-supervised DA, ie, 0 < nl
t ≪ nu

t . We also deploy
the term heterogeneous when considering a setup where XS ̸= XT .

The vast majority of algorithms solving DA follow the theoretical foundation laid out in the seminal works
on DA theory (Ben-David et al., 2010) (surveyed in Redko et al. (2019c)). This latter can be summarized by
the following learning bound ∀h ∈ H

RT (h) ≤ RS(h) + d(SX, TX) + min
h∈H

(RT (h) + RS(h)), (4)

where d(·, ·) is some divergence or distance on the space of probability measures. Eq. equation 4 suggests the
idea of learning an invariant feature transformation (Zhao et al., 2019) function g : XS ∪ XT → Z such that
d(Sg

X, T g
X ) = 0 for the distributions Sg

X, T g
X induced by g while ensuring that RS(h ◦ g) is as small as possible.

One should note that, in general, g can also be applied to one of the domains only such that d(Sg
X, TX) = 0.

This approach is often referred to as asymmetric feature transformation.

As finding a way to minimize RS(h ◦ g) presents a common well-studied supervised learning problem, the
main challenge of solving DA was thus to find a meaningful measure of divergence d(·, ·) and a learning
strategy to find g minimizing it. OT theory has become a popular choice to find g in order to solve both
homogeneous (Courty et al., 2014; Shen et al., 2018; Courty et al., 2017a; Redko et al., 2019b; Damodaran
et al., 2018; Xu et al., 2020; Rakotomamonjy et al., 2021; Kirchmeyer et al., 2022) and heterogeneous DA
(Yan et al., 2018; Redko et al., 2020).

3 Proposed contributions

Motivation Previous OT approaches aiming at obtaining a mapping g aligning two arbitrary probability
distributions have several important drawbacks. On one hand, the methods using the barycentric mapping
derived from the high-dimensional optimal coupling, such as (Courty et al., 2014; 2017a; Redko et al., 2019b;
Yan et al., 2018), are unsuitable for large-scale applications as shown in (Seguy et al., 2018). On the other
hand, Monge mapping estimation methods (Seguy et al., 2018; Kirchmeyer et al., 2022) often parametrize the
Monge mapping with neural networks that may fail to converge to the true solution (Korotin et al., 2021).

In this section, we present a method that relies on a closed-form solution of the Monge problem in the
particular case of random variables linked through an affine transformation. As for real-world data, the
relationship between the random variables following source and target distributions is unlikely to be linear.
We first present our framework of learning linearly alignable representations. In practice, we propose to
achieve this by embedding the data into a space where the affine transformation between the source and
target samples becomes nearly optimal. We now proceed by defining this idea more formally.

3.1 Linearly alignable representations

We propose to use generative modeling to find a new data representation for which source and target
distributions are linearly alignable. Of these, the latter can be formally defined based as follows.
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Figure 2: Embeddings (light blue and orange points) and linear Monge mapping projection (blue points)
obtained by our approach for different values of λ for gs, gt : R20 → R2. We can see that the linear Monge
mapping becomes more optimal in the embedding space as confirmed by smaller Wasserstein distance values
for increasing values of λ.

Definition 3.1. Given two distributions SX ∈ P(XS) and TX ∈ P(XT ), the feature transformation functions
gs : XS → ZS , gt : XT → ZT are called linearly alignable (LA) for SX and TX if ∃T : z → Az + b with an
invertible matrix A and a translation vector b such that T#Sgs

X = T gt

X .

Given Definition 3.1, learning LA representations thus boils down to identifying two major ingredients: 1) the
alignability criterion forcing (gs, gt) to provide LA representations for samples drawn from two distributions;
2) the data fidelity term forcing (gs, gt) to truthfully reflect the statistical distribution of the input samples
in the embedding space. We discuss our choices for both these ingredients below.

Linear Monge mapping When SX and TX are linked through an affine transformation T with a positive
definite matrix A, the OT problem admits a simple solution that can be calculated based on the Gaussian
approximations N (mS , ΣS) and N (mT , ΣT ) of SX and TX (Flamary et al., 2019; Mallasto et al., 2021). In
particular, we have that for two such distributions, the Wasserstein distance between SX and TX admits a
closed-form expression for the quadratic cost Wasserstein distance:

W 2
2 (SX, TX) = ||mS − mT ||22 + tr(ΣS) + tr(ΣT ) − 2tr(Σ

1
2
T ΣSΣ

1
2
T ) 1

2

and the optimal transport map Taff of the corresponding Monge problem is given by:

T
[SX,TX]
aff (x) = Ax + b,

A = Σ
1
2
T (Σ

1
2
T ΣSΣ

1
2
T )− 1

2 Σ
1
2
T , b = mT − AmS . (5)

When dealing with empirical measures ŜX and T̂X, ΣS , ΣT , mS and mT are replaced with their empirical
(biased) counterparts defined from available finite samples from the supports of the two distributions. In
the sequel, we denote those with a hat as well, ie, Â is defined in terms of the covariance matrices Σ̂S , Σ̂T

and means m̂S , m̂T . We note as well that for small sample sizes (as in stochastic optimization), one can use
shrinking (Ledoit & Wolf, 2004) to obtain a better estimate of the covariance matrix.

Based on this, we propose to define the alignability for two distributions SX and TX as the Wasserstein
distance between the push-forward of SX with T [SX,TX] and TX, ie,

LLA(SX, TX) := W 2
2 (T [SX,TX]

aff #SX, TX),

where Taff is defined as in equation 5. The intuition behind this is that when this distance is close to 0, the
linear Monge mapping Taff becomes optimal for the two distributions implying that they become linearly
alignable with Taff.

Data fidelity To preserve the information contained in the samples drawn from SX and TX when making
them linearly alignable, we propose to model gs : XS → ZS and gt : XT → ZT as encoders of two different
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auto-encoders with the same dimensionality of the embedding space k, i.e., ZS ,ZT ⊆ Rk. More formally, we
have the following reconstruction term:

LRec.(SX, TX) := Exs∼SX ||xs − (gs ◦ decs)xs||22 + Ext∼TX ||xt − (gt ◦ dect)xt||22,

where the decoders decs : ZS → XS , dect : ZT → XT seek to reconstruct the learned embeddings by mapping
them back into the original space. Using two separate auto-encoders allows us to further deal with the
cross-domain OT setting by employing auto-encoders with different input dimensionality. This will become
very useful in heterogeneous DA setting considered in the evaluation part of our work.

Optimization problem Putting it all together, we propose to optimize the following objective function:

min
gs,gt,decS ,decT

LRec.(SX, TX) + λLLA(Sgs

X , T gt

X ), (6)

where λ is a hyper-parameter controlling the degree to which the linear alignability is promoted as illustrated
in Figure 2. In a nutshell, equation 6 seeks to embed the data from two distributions supported on potentially
different metric spaces into two representation spaces for which there exists an affine map – given by the
linear Monge map – that aligns them. This idea is illustrated in Figure 1.

Complexity analysis Flamary et al. (2019) noted that the sample complexity of linear Monge mapping
estimation is dimension-free and addresses the curse of dimensionality of solving the original OT problem.
Given two samples of size n from Rd, the latter is known to have a sample complexity of O(n− 1

d ), while the
former is O(n− 1

2 ) (Theorem 1, (Flamary et al., 2019)). Similarly, the computational complexity of calculating
the linear Monge map is O(nd2 + d3) which is particularly attractive for large-scale applications due to
its linearity in n. The dependence on dimensionality is alleviated by the fact that we estimate it in the
embedding space of dimensionality k ≪ d.

Lifting to the input space Minimizing equation 6 allows to obtain new low-dimensional embeddings of
the input measures for which the linear Monge mapping is optimal. One may wonder, however, whether it
is possible to lift the obtained mapping back to the original space. This question was studied in Muzellec
& Cuturi (2019) where the authors showed how a Monge mapping that is optimal on a subspace can be
used to define an optimal mapping, or a coupling, in the original space as well. In the particular case of our
work that uses closed-form Monge mapping, Muzellec & Cuturi (2019) show that it can be used to define an
optimal coupling in a closed-form based on the subspace optimal solution. Unfortunately, gs and gt are not
subspace projectors in our case, meaning that identifying whether the linear Monge mapping is optimal on
the input measures is much harder. We leave this idea for future investigation.

3.2 Theoretical guarantees for domain adaptation

As explained in Section 2, OT maps can be used in DA to align the data drawn from two probability
distributions in order to transfer a classifier across them. Following the simplicity of our computational
approach to OT and the closed-form expression of the Monge mapping in the embedding space, we derive
theoretical guarantees for the performance of a classifier transferred from Sgs

X to T gt

X via Taff[Sgs

X , T gt

X ]. Before
introducing them, we recall the definition of the Lipschitz function used in the statements.
Definition 3.2. A function h : X → Y is called M -Lipschitz if ||h(x) − h(x′)|| ≤ M ||x − x′|| for all x, x′ ∈ X.

We now present our main theoretical results for the DA task and postpone all the proofs of this paper to
Section 6.1 in Appendix.
Theorem 3.3. (Best-case bound) Let h ∈ H be Mh-Lipschitz and the loss function ℓ be Mℓ-Lipschitz in its
second argument. Then, if there exists a mapping m such that m#Sgs = T gt , m(zs, ys) = m(T [Sgs

X ,T gt
X ]

aff (zs), yt)
and linearly alignable feature transformation functions gs and gt for SX and TX, we have that

RT gt

(
h ◦ (T [Sgs

X ,T gt
X ]

aff )−1
)

≤ RSgs (h) + MhMℓ||Â−1||O
(

max(ns, nt)− 1
2

)
, (7)
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As mentioned in Section 2, previous works on DA theory introduced the learning bounds on the target error
following the general shape of equation 4. For instance, in Redko et al. (2017); Shen et al. (2018) the obtained
bounds corresponded exactly to equation 4 with d(SX, TX) = W||·||1(SX, TX) while in Courty et al. (2017a)
a similar bound was obtained with W||·||1(S, T ) where T was defined with pseudo-labels. In the case of
linear Monge mapping, however, the learning bound on the target error becomes much simpler and does
not involve any additional terms under the introduced assumptions. Furthermore, it can be improved using
Flamary et al. (2019) where under some additional assumptions, one can show that the true target error
of the hypothesis calculated from the available source data, ie, h∗ ∈ arg minh∈H R̂Sgs (h) converges to the
optimal target classifier h∗

t = arg minh∈H RT gt (h), even despite the absence of labelled data in the target
domain. This remarkable result thus motivates our framework of learning linearly alignable representations
as it provably transposes the problem of DA to a much more favourable setting.

To complete this section, we also present a more general learning bound close in spirit to that given in
equation 4. For this result, we do not assume the existence of a mapping m that allows to remove the ideal
joint error term minh(RT gs (h) + RSgs (h)), and do not assume that our feature transformation functions are
linearly alignable. We only assume that the linear Monge mapping is used to align the two distributions in
the embedding space.

Theorem 3.4. (Worst case bound) Let h ∈ H be Mh-Lipschitz. Denote by T [Sgs

X ] := T
[Sgs

X ,T gt
X ]

aff #Sgs

X and let
fS : ZS → Y and fT : ZT → Y be the true labelling function associated to T [Sgs

X ] and T gt

X , respectively. Then,
for two arbitrary feature transformation functions gs and gt, we have that

RT gt
X

(h, ft) ≤RT [Sgs
X ](h, fs) + 2

√
2Mhtr(ΣT gt

X
) 1

2 + min
h∈H

RT gt
X

(h, ft) + RT [Sgs
X ](h, fs). (8)

This result is the worst-case scenario for our proposed framework as it bounds the Wasserstein distance
between T [Sgs

X ] and T gt

X by its largest possible value given by tr(ΣT gt
X

) 1
2 . As in practice our learning algorithm

solves a non-convex optimization problem and can, in principle, converge to approximately linearly alignable
feature transformations gs and gt, this result suggests controlling the variance of the target embedded features
to avoid having a target latent space ZT that is too spread along all k directions.

3.3 Related works

Our work is situated at the cross-roads of computational OT and transfer learning. Below, we review related
approaches and point out their differences with respect to our work.

Monge mapping estimation Estimating the OT map from finite samples drawn from two probability
distributions is a very active research topic nowadays. The vast majority of such methods (see Table 1 in
Korotin et al. (2021) and references therein) parametrize the Monge mapping, or the potential that defines it
following Brenier theorem (Brenier, 1991), using either a traditional or an input convex neural network (Amos
et al., 2017). Our work is principally different from this line of research in two main aspects. First, these
contributions use the high expressive power of NNs and ICNNs to solve the hard problem of finding a mapping
between two continuous high-dimensional measures. Our work instead uses the power of representation
learning to find a new space where the problem of mapping two distributions becomes easy. As such, neural
OT methods and our proposal solve different problems and cannot be used interchangeably. Finally, Perrot
et al. (2016) approximate the barycentric mapping from equation 3 using linear or kernel regression. Contrary
to it, we use a closed-form expression of the true Monge mapping that is optimal in the embedding space and
scales better as it never explicitly calculates the high-dimensional coupling.

Subspace learning for OT Our approach is related to OT methods that use a projection of the data
to a low-dimensional subspace (Bonneel et al., 2015; Courty et al., 2018; Muzellec & Cuturi, 2019; Bonet
et al., 2021) to accelerate OT computation. In Bonneel et al. (2015) (and follow-up works (Kolouri et al.,
2019; Deshpande et al., 2019)), the authors propose sliced Wasserstein distance computed as an average of
the Wasserstein distances over one-dimensional projections of the high-dimensional distributions where the
Wasserstein distance can be calculated in closed-form. Sliced Wasserstein distances are commonly used as
a way to compute the approximate OT cost faster, for instance in generative modelling (Deshpande et al.,
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2018), yet they do not provide a mapping between the considered distributions. In Courty et al. (2018),
the authors embed the data into a new space where the Euclidean distance between the embedded samples
corresponds to the Wasserstein distance between the input empirical measure. The purpose of their method
is thus different as it aims to accelerate the OT computation. Muzellec & Cuturi (2019) (and follow-up work
(Bonet et al., 2021)) is much closer in spirit to what we propose: their idea is to extend the Monge map
that is optimal on the low-dimensional subspace to be optimal on the full space. Our approach learns a new
representation, rather than finding a subspace of the original space, for which the optimal Monge map is easy
to compute and does not seek to lift it to the input space.

OT in DA We now briefly discuss other OT-based DA works here. Courty et al. (2014) is the seminal work
that proposed to use OT in DA. The authors solve equation 2 with entropic and class-based regularizations
and then use equation 3 to project source data to the target domain. This method was further extended
to the alignment of joint probability distributions in Courty et al. (2017a) and its deep version Damodaran
et al. (2018). Another line of work on OT in DA is concerned with target shift (Redko et al., 2019b) and
generalized target shift (Rakotomamonjy et al., 2021; Kirchmeyer et al., 2022) where S ̸= T due to SY ̸= TY
for target shift and S(X|y) ̸= T (X|y) in addition to it for generalized target shift. Several methods also follow
the invariant feature transformation framework such as Shen et al. (2018); Xu et al. (2020). Finally, Yan et al.
(2018); Redko et al. (2020) tackle the heterogeneous DA setup using Gromov-Wasserstein (Memoli, 2011) and
Co-Optimal transport problems in (Redko et al., 2020). Our work is different from all these methods as it
relies on closed-form Monge mapping and allows to unify both heterogeneous and homogeneous DA setups in
one approach. Additionally, its simplicity also allows us to benefit from stronger theoretical guarantees in the
embedding space that are unavailable for other existing methods. For a general survey on DA, we refer to
Weiss et al. (2016); Wilson & Cook (2019).

4 Experimental evaluations

In this section, we evaluate our method, termed LaOT (Linearly Alignable Optimal Transport) against
other OT-based methods for commonly considered unsupervised homogeneous (UDA) and semi-supervised
heterogeneous DA (HDA) tasks. Given a pair ”Source → Target", for both settings the final goal is to learn
a classifier using only the available labelled data in the source domain to further evaluate it in the target
domain. For both evaluations we use Office/Caltech10 dataset (Saenko et al., 2010) as well as the Visual
Domain Adaptation dataset (visda) (Peng et al., 2017) for the UDA setting. The Office/Caltech dataset
consists of 4 different domains, namely: Amazon (A) (958 images), Caltech (C) (1123 images), Webcam (W)
(295 images) and DSLR (D) (157 images) from 10 overlapping classes. The reason to choose this particular
dataset is two-fold: first, it was used to evaluate all other OT-based baselines in DA thus allowing for fair
comparison with them; second, it still represents a benchmark with enough room for improvement. The visda
dataset was chosen to investigate LaOT in a large-scale OT setting with a large dataset of high-dimensional
image data and 12 Classes. We now present in more detail the evaluation setup for the UDA and HDA
settings considered below.

Implementation details We use fully connected NNs with 1 hidden layer for gs, gt, decs, dect with ReLU
activation function. In all experiments, the size of the hidden layer is fixed to half of the size of the input
layer. The classifier used for UDA is a fully connected NN with softmax function applied to the output. For
HDA, none of the considered baselines learns a classifier simultaneously to solving the OT problem so that in
this case we minimize equation 6 without any additional terms. The optimization is carried out using Adam
optimizer (Kingma & Ba, 2014) in PyTorch (Paszke et al., 2019) with gradient normalization and default
initialization of the weights. We also use POT library (Flamary et al., 2021) to minimize W 2

2 . The code, as
well as the visualizations of the learned embeddings and several ablation studies are provided as part of the
Appendix.

Model selection As suggested in Redko et al. (2019b), we use reverse validation (Zhong et al., 2010)
with 3NN classifier for our method in order to choose the best hyperparameters that include the size of the
embedding space k ∈ [64, 128, 256], regularization strength λ ∈ [0.1, 0.05, 0.01], batch size ∈ [32, 64, 128] and
learning rate ∈ [5e − 5, 1e − 4, 5e − 4]. We perform 10 runs of 10 epochs for each set of hyperparameters and
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Tasks Base OT-IT OT-MM JDOT LaOT
A→C 84.77 85.93 87.36 85.22 86.02 (84.93±0.77)
A→D 86.62 77.71 79.62 87.90 92.36 (88.85±2.55)
A→W 79.32 74.24 85.08 84.75 96.95 (92.33±2.83)
C→A 92.07 89.98 92.59 91.54 92.59 (90.73±1.01)
C→D 84.08 78.34 76.43 89.81 93.63 (89.87±1.55)
C→W 76.27 80.34 78.98 88.81 93.90 (88.07±2.27)
D→A 83.19 90.50 90.50 88.10 89.87 (86.96±0.ç6)
D→C 77.03 85.57 83.35 84.33 79.52 (76.5±0.87)
D→W 96.27 96.61 96.61 96.61 95.93 (94.07±1.07)
W→A 79.44 89.56 90.50 90.71 93.42 (90.16±0.74)
W→C 71.77 84.06 82.99 82.64 83.26 (75.57±1.52)
W→D 96.18 99.36 99.36 98.09 97.45 (95.92±2.24)

p-value <0.05 0.2 0.33 0.62 –

Table 1: Classification results for UDA task. Bold and underlined scores present the best and the second best
results. Baseline results reported from Courty et al. (2017a).

Figure 3: (left) Illustration of the trade-off between data fidelity and alignability terms; (middle) Learning
dynamics showing the evolution of the Wasserstein distance between the learned embeddings and the transfer
accuracy; (right) Learned embedding obtained using tSNE (van der Maaten & Hinton, 2008).

pick the model having the lowest variance of the reverse validation score. We also report the best model
chosen by reverse validation, i.e. without using target labels unavailable during learning, over the runs. This
latter metric is common for deep DA methods (Shen et al., 2018) as the considered datasets are rather small
and may lead to a model converging to bad local minima.

4.1 Homogeneous unsupervised DA

Setup For this evaluation, we constitute 12 pairs of adaptation tasks for the 4 domains and use the
weights of the 6th layer of the DECAF convolutional neural network (Donahue et al., 2014) pre-trained on
ImageNet as their features. This leads to an adaptation problem between sparse 4096 dimensional vectors.
Following Courty et al. (2017a), we use cross-validated SVC classifier with linear kernel (Pedregosa et al.,
2011) for all methods. We compare our proposal against famous OT-based approaches used in DA, namely:
entropy-regularized (OT-IT) and class-wise regularized OT (OT-MM) (both from Courty et al. (2017b)) that
adds a group-lasso penalty on the coupling matrix that doesn’t allow source points of different classes to
be transported to the same target point. Finally, we also add Joint Distribution Optimal Transportation
(JDOT) (Courty et al., 2017a) method to our comparison that uses OT to align joint probability distributions
and learns a classifier for pseudo-labelled target data simultaneously. All these baselines are evaluated against
the source classifier directly applied in the target domain (Base). Additionally, and to show that our method
compares favourably to deep DA methods, we follow the evaluation protocol of Shen et al. (2018) and compare
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DANN CORAL WGRL LaOT
Mean 87.67±6.78 90.76±4.39 92.74±3.52 93.82±5.55

p-value 0.09 0.2 0.33 –

Table 2: Average best accuracy for UDA against deep-based DA methods. Complete results are presented in
the Appendix.

Tasks Base SGW COOTLP COOT LaOT
A→A 83.04±3.07 89.75±4.8 92.89±0.32 89.74±0.01 91.86 (91±0.91)
A→C 69.98±2.88 79.80±5.82 86.76±1.28 83.76±2.02 81.12 (80.07±1.77)
A→W 80.49±3.96 93.76±2.06 96.61±1.34 94.44±2.23 95.59 (92.92±1.47)
C→A 83.09±2.94 78.37±5.08 67.28±1.02 89.66±1.23 89.35 (88.51±1.4)
C→C 68.46±3.13 81.31±5.09 67.28±1.19 81.95±1.79 82.72 (79.82±1.78)
C→W 81.66±4.62 90.81±3.36 69.39±2.01 90.92±1.85 91.53 (88.34±2.34)
W→A 84.59±3.4 82.63±11.12 72.33±1.19 84.75±1.57 91.34 (88.92±2.44)
W→C 67.60±4.63 75.25±6.13 63.51±0.78 77.3±3.7 81.75 (76.08±3.11)
W→W 82.83±3.42 94.00±1.13 77.49±2.6 95.42±1.39 94.24 (93.28±2.65)
p-value <1e-2 <0.05 0.05 0.73 –

Table 3: Classification results for semi-supervised HDA task. Bold and underlined scores present the best
and the second best results.

the best achieved performance (using target labels) of our method against three deep-based baselines, namely:
domain adversarial neural networks (DANN) (Ganin et al., 2016), Deep Correlation Alignment (CORAL)
(Sun & Saenko, 2016) and Wasserstein-guided Representation learning (WGRL) (Shen et al., 2018).

Results The obtained results are presented in Tables 1-8 and an illustrative example of the inner-working
of our algorithm is given in Figure 3 (for other pairs, similar plots can be found in the Appendix). From
the comparison with both shallow OT-based and deep DA methods, we can see that LaOT is statistically
on par with them according to Wilcoxon signed-rank test calculated with respect to the best model. This
performance is achieved despite the simplicity of our method, that similarly to CORAL and OT-IT, doesn’t
rely on adversarial training (DANN, WGRL), on structural constraints on the coupling matrix (OT-MM) or
pseudo-labeling and joint distribution adaptation (JDOT).

4.2 Comparison to large-scale OT

Below, we compare our approach to a stochastic solver proposed to solve OT for large-scale applications in
Seguy et al. (2018). In their paper, the authors parametrize the dual variables of regularized OT problem with
neural networks (Alg. 1 with entropic or ℓ2 regularization) and then use a neural network to approximate
the barycentric mapping (Alg. 2) based on the neural duals. As one of the examples where their approach
can be useful, the authors proposed to solve the UDA problem on three large-scale DA tasks: MNIST (M)
(60000 samples) to USPS (U) (9298 samples), USPS (U) to MNIST (M) and MNIST (M) to SVHN (S) (73212
samples). We use the setup of Seguy et al. (2018) and report the best accuracy of the 1NN classifier on
target domain in Table 41. From the obtained results, we can see that our algorithm is on par or better than
OTDA approaches and stochastic solvers (Alg. 1 only) for large-scale regularized OT presented in Seguy
et al. (2018). This suggests that it can be also used to tackle large-scale problems efficiently. Finally, we note
that our method is slightly worse than the combination of Alg. 1 and 2 on M→U and S→M tasks. This
improvement, however, comes at a price of heavy computational burden: the neural networks parametrizing

1We couldn’t reproduce the "Source only" baseline results from Seguy et al. (2018). For fair comparison, we report the relative
performance of each algorithm with respect to the "Source only" reported results in Seguy et al. (2018) for their algorithms and
those reproduced by us for LaOT.
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Method M → U U → M S → M
OT-IT -4.72 +20.38 intractable

Alg. 1 with ent. -4.63 +20.58 +4.54
Alg. 1 with ℓ2 -4.33 +20.50 +6.23

Alg. 1+2 with ent. +4.45 +23.05 +6.78
Alg. 1+2 with ℓ2 -0.86 +23.53 +8.47

LaOT -0.9 +25.31 +6.03

Table 4: Comparison to stochastic OT solver Seguy et al. (2018).

the duals has the output size equal to the input dimension of the original space, which can make their learning
prohibitive for high-dimensional datasets. Also, the second step (Alg. 2) has been shown to not converge to
the true Monge mapping in Korotin et al. (2021). Our method embeds the data into low-dimensional space
and doesn’t require any additional steps to produce the Monge mapping which is nearly optimal (with an
explicit control of the optimality given by λ) in the embedding space.

A second large-scale OT experiment was conducted using the VisDA17 dataset (Peng et al., 2017). We
reproduced the results of another recent OT-baseline, JUMBOT (Fatras et al., 2021) that is based on the
unbalanced mini-batch OT implemented in a spirit close to JDOT. The resulting model achieved 69.72%
accuracy on VisDA using a neural network classifier in the target domain. We extracted the source and
target representations from JUMBOT and and finetuned them using LaOT. For a fair comparison we used
the same parameterless classifier as opposed to JUMBOT which is using a neural network. LaOT improved
the accuracy in the target domain with our classifier from 56.6% using JUMBOT’s pre-aligned features to
62.35% with LaOT.

4.3 Heterogeneous semi-supervised DA

In this experiment, we evaluate LaOT on the same dataset but with source and target feature representations
given by activations from GoogleNet (Szegedy et al., 2015) and Decaf (Donahue et al., 2014) neural network
architectures. In the OT context, aligning two such heterogeneous datasets is alleviated by using OT in
incomparable spaces: first such contribution relies on the Gromov-Wasserstein distance (Yan et al., 2018)
(SGW), while a more recent method improving upon this latter used its generalization termed Co-Optimal
Transport (Redko et al., 2020) (COOT). We follow the protocol of Redko et al. (2020) where only the domains
A, C and W were considered. To help guiding adaptation in this case, previous works commonly consider
the semi-supervised setting with a handful of labelled examples in the target domain. In this evaluation, we
set the number of such examples to 3 per class, ie, nl

t = 30. For all baselines, we use the hyper-parameters
suggested by authors in the respective papers. As our method aligns datasets using a Monge mapping and
not the coupling matrix used in Redko et al. (2020) to perform label propagation (Redko et al., 2019a), we
present the results of SGW and our method with 3NN classifier, and use label propagation results for COOT
only.

Results From Table 3, we see that our method is statistically better than SGW and COOT with label
propagation and is on par with COOT followed by 3NN classifier. As in the homogeneous setting, our method
uses a simple closed-form solution in the embedding space, contrary to simultaneous sample and feature
alignment of COOT and pair-wise matrices’ alignment with conditional distribution matching of SGW. This
further supports our claim about the fact that representation learning can alleviate the intrinsic complexity
of aligning high-dimensional probability measures by finding embeddings making the OT problem easier to
solve.

4.4 Computational complexity

Solving the Kantorovich (JDOT) and Gromov-Wasserstein problem (HDA) has cubic and quartic complexities
respectively. In this work we aim to show that those problems become easier to solve (linear in the number of
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Method n = 100 n = 1000 n = 10000 n = 20000
LaOT 0.07s 0.11s 0.17s 0.23s

Kantorovich OT 0.007s 0.22s 48.62s 138.53s
GW 4.82s 207.43s infeasible infeasible

Table 5: Time needed to compute the OT map between source and target dataset for a different number of
samples n from the MNIST-SVHN dataset.

Method UDA Embedding OT map Total
LaOT M→S 0.046s 0.016s 0.062s

Kantorovich OT 0.22s 48.62s 138.53s
LaOT A→W 0.003s 0.009s 0.012s

Kantorovich OT - 0.026s 0.026s
LaOT AG→WD 0.003s 0.009s 0.012s
GW - 20.81s 20.81s

Table 6: Computation time for the UDA and HDA experiments, split into time to compute the embedding and
time to compute the OT map. The superscripts G and D indicate GoogleNet and Decaf features, respectively.

samples) when finding the right representation for the supports of the input measures. As previously shown
we are able to do this while maintaining similar or better DA performance.

Table 5 shows the time needed to compute the OT map for a different number of samples for the MNIST-SVHN
pair of datasets. Our method scales well compared to the Kantorovich OT (UDA) and Gromov-Wasserstein
OT (HDA) solutions. In Table 6 we compare the computational time for the UDA and HDA experiments.
LaOT is capable of computing the OT map for the entire MNIST-SVHN dataset (n = 60000) in reasonable
time. In the higher dimensional Office/Caltech experiment (d = 4096, n < 1000), LaOT compares to
Kantorovich OT and is significantly faster than Gromov-Wasserstein OT.

5 Conclusion

In this paper, we proposed a novel contribution at the crossroads of computational OT and transfer learning.
On the one hand, we introduced a learning framework that embeds the data from two distributions to a
new representation space where we can explicitly calculate the Monge mapping between them. On the other
hand, we showed how this learning framework, termed learning linearly alignable representations, can be
used in both homogeneous and heterogeneous domain adaptation with strong theoretical guarantees and high
competitive performance. Our work is a first contribution that aims at exploiting the simplest solution to the
Monge problem in general d-dimensional spaces. In this work we concentrated on only one application of our
general approach, mainly to showcase how its simplicity can bring both theoretical and empirical advantages
in transfer learning. Our proposal, however, can be used in many other ML problems where Monge mapping
is already used such as in, for instance, GANs, were the use of sliced Wasserstein distance is known to reduce
significantly the computational burden related to their training.

Limitations Our method is, like other state-of-the-art DA methods, subject to impossibility theorems (Ben-
David et al., 2010) concerning the ability of DA methods to generalize across different domains. Ben-David
et al. (2010) first introduced a series of theorems stating that DA can fail even when the source and target
distributions are perfectly aligned and the source error is minimized. This discussion is centered around the
error bound given in Eq 1. in their paper,

RT (h) ≤ RS(h) + d(SX, TX) + min
h∈H

(RT (h) + RS(h)) (9)

where d is the H∆H divergence. The impossibility theorems state that minimizing only the observable terms
RS(h) + d(SX, TX) does not allow full control over the target error due to the presence of the third term.
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This term cannot be estimated or minimized due to the fact that RT (h) is defined over T which denotes the
joint distribution over inputs X and Y. For target domain, we do not have labels in UDA setting or we have
only 1 to 3 labeled inputs per class (semi-supervised DA) making the consistent estimation of its distribution
unlikely.

The work by Zhao et al. (2019) transposes the seminal results of Ben-David et al. (2010) into the invariant
representation learning framework. The paper discusses the impossibility theorems that apply also in feature
space, concluding that estimating the target marginal label distribution is necessary to tackle these drawbacks
but is impossible due to the above mentioned limitations. Recent work by Stojanov et al. (2021) shows that
the effects of the impossibility theorems can be alleviated by learning a shared, invariant representation
space of the data. In their work, Stojanov et al. (2021) used two separate autoencoders with two feature
transformation functions to achieve that effect. Such a shared latent space between two different embeddings
is less sensitive to domain-specific variations, resulting in better generalization performance. In addition to
having two separate encoders, the authors of Stojanov et al. (2021) also propose to take into account the
domain label as additional knowledge when encoding the source and target samples in order to further reduce
the sensitivity to domain specific variations.

Our proposed method shares the invariant representation learning approach to DA with Zhao et al. (2019)
and is therefore subject to the same impossibility theorems. However, we also share architectural properties
with the method proposed by Stojanov et al. (2021) and should therefore benefit from the same mechanisms
that alleviate the implications of the impossibility theorems by Ben-David et al. (2010).
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A Appendix

A.1 Proofs of theorems

Full proof of Theorem 3.1

Proof. From the definition of linearly alignable feature transformation functions, we deduce that ∃T such
that T#Sgs

X = T gt

X . Given the assumption about the existence of mapping m, we have that for any h ∈ H,
RSgs (h) = RT gt

(
h ◦ T −1)

. We then use Proposition 1 from Flamary et al. (2019) to obtain the desired result
by replacing the original source and target distributions with their embedded counterparts.

Full proof of Theorem 3.2

Proof. Let h∗ ∈ arg min hRT gt
X

(h, ft) + RT [Sgs
X ](h, fs). Then, we have that:

RT gt
X

(h, ft) ≤ RT gt
X

(h, h∗) + RT gt
X

(h∗, ft)

≤ RT gt
X

(h, h∗) + RT gt
X

(h∗, ft) + RT [Sgs
X ](h, h∗) − RT [Sgs

X ](h, h∗)

≤ RT gt
X

(h∗, ft) + RT [Sgs
X ](h, h∗) + 2MhW1(T [Sgs

X ], T gt

X )

≤ RT gt
X

(h∗, ft) + RT [Sgs
X ](h, fs) + RT [Sgs

X ](h∗, fs) + 2MhW1(T [Sgs

X ], T gt

X )

= RT gt
X

(h∗, ft) + 2MhW1(T [Sgs

X ], T gt

X ) + min
h∈H

RT gt
X

(h, ft) + RT [Sgs
X ](h, fs)

≤ RT gt
X

(h∗, ft) + 2MhW2(T [Sgs

X ], T gt

X ) + min
h∈H

RT gt
X

(h, ft) + RT [Sgs
X ](h, fs)

≤ RT [Sgs
X ](h, fs) + 2

√
2Mhtr(ΣT gt

X
) 1

2 + min
h∈H

RT gt
X

(h, ft) + RT [Sgs
X ](h, fs).

The proof follows the common reasoning used to obtain DA learning bounds with the Wasserstein distance
Redko et al. (2017); Shen et al. (2018). Line 3 is obtained using Lemma 1 from Shen et al. (2018), Line
5 is due to the Jensen inequality implying for all 0 < p < q, that Wp ≤ Wq. It is then completed by an
upper-bound on the Wasserstein distance between T [Sgs

X ] and T gt

X that was bounded in Mallasto et al. (2021)
by tr(ΣT gt

X
) 1

2 .

A.1.1 Pseudo-code

We present the pseudo-code for our algorithm in Algorithm 1. The algorithm describes the stochastic
optimisation of our objective function in the coupled autoencoder setting. For a number of epochs we iterate
over batches of training data from the source domain S and target domain T. We compute the gradients for
source and target domain autoencoder model using the loss function presented in 6. Then the weights of
both the source and target domain models are updated. The final output is two fully trained autoencoder
models parameterised by w

(E)
S and w

(E)
T .
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Algorithm 1 Algorithm for learning linearly alignable representations. More details in section A.1.1.

Input: S = {xs
i , ys

i }ns
i=1, T = {xt

j}nt
j=1, target labels {yt

j}nl
t

j=1 if available, initial weights w
(0)
S , w

(0)
T , number of epochs

E, size of the latent embedding k, learning rate α, hyperparameter λ
Output: final weights w

(E)
S , w

(E)
T

1. for t = 0 to E − 1
2. for (batchS , batchT ) in zip(batchesS , batchesT )
3. estimate ∇wS L(w(t)

S , w
(t)
T ) = ∇wS LRec.(batchS , batchT ) + λLLA(gs(batchS), gt(batchT ))

4. estimate ∇wT L(w(t)
S , w

(t)
T ) = ∇wT LRec.(batchS , batchT ) + λLLA(gs(batchS), gt(batchT ))

5. w
(t+1)
S := w

(t)
S − α∇wS L(w(t)

S , w
(t)
T )

6. w
(t+1)
T := w

(t)
T − α∇wT L(w(t)

S , w
(t)
T )

7. return wS , wT

A.2 Comparison of LaoT with linear Monge mapping on raw data

In Table 7, we present an abalation study showing how promoting linear alignability affects the performance
on DA task compared to applying linear Monge mapping on raw data directly (OT-Gauss). We can see that
apart from two DA tasks, OT-Gauss method is always far below LaOT and even of the base classifier.

Tasks Base OT-Gauss LaOT
A→C 84.77 83.35 86.02 (84.93±0.77)
A→D 86.62 83.44 92.36 (88.85±2.55)
A→W 79.32 81.36 96.95 (92.33±2.83)
C→A 92.07 89.56 92.59 (90.73±1.01)
C→D 84.08 82.17 93.63 (89.87±1.55)
C→W 76.27 81.69 93.90 (88.07±2.27)
D→A 83.19 82.67 89.87 (86.96±0.ç6)
D→C 77.03 78.45 79.52 (76.5±0.87)
D→W 96.27 97.63 95.93 (94.07±1.07)
W→A 79.44 84.13 93.42 (90.16±0.74)
W→C 71.77 76.22 83.26 (75.57±1.52)
W→D 96.18 1 97.45 (95.92±2.24)

Table 7: Classification results for UDA task comparing LaOT and linear Monge mapping on the raw data
(OT-Gauss). Bold and underlined scores present the best and the second best results. Baseline results
reported from Courty et al. (2017a).

A.3 Full comparison with deep UDA methods

Below, we provide full results for all pairs of Office/Caltech dataset corresponding to the average results in
Table 8. We can see that our method remains efficient even when compared to stronger baselines given by
adversarial DA methods.

A.4 Illustration of the trade-off between data fidelity and linear alignability

In Figure 4, we present the results obtained by best performing LaOT models when varying the λ parameter
in [0, 0.01, 0.05, 0.1, 0.5, 1]. The value of λ = 0 correspond to the case when only data fidelity loss is minimized
and no alignment is forced between the two embeddings. As can be seen from this result, this leads to a
drastic loss in terms of accuracy, while other values of λ lead to approximately the same results.
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Tasks DANN DeepCORAL WGRL LaOT
A→C 87.80 86.18 86.99 87.62
A→D 82.46 91.23 93.68 98.09
A→W 77.81 90.53 89.47 99.32
C→A 93.27 93.01 93.54 93.53
C→D 91.23 89.47 94.74 96.18
C→W 89.47 92.63 91.58 97.97
D→A 84.70 85.75 91.69 92.07
D→C 82.11 85.37 90.24 83.17
D→W 98.95 97.89 97.89 98.64
W→A 82.98 88.39 93.67 94.47
W→C 81.30 88.62 89.43 84.77
W→D 100 100 100 100

Table 8: Best accuracy results for UDA against deep-based DA methods. Baseline results are reported from
Shen et al. (2018).

A.5 Illustration of learned embeddings

In Figure 5, we provide plots of embeddings obtained using tSNE van der Maaten & Hinton (2008) learned
for UDA task with LaOT. We can see that LaOT does not explicitly align two domains but has an extra
degree of flexibility allowing it to learn potentially richer representations.
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Figure 4: Trade-off between linear alignability loss and data fidelity loss for optimal LaOT models achieving
highest UDA performance.

A.6 Illustration of learning dynamics

In Figure 6 we provide illustration for learning dynamics of our method on UDA tasks. From this, we can
see that the accuracy of the linear classifier increases when the distance after the projection with the linear
Monge map in the embedding space decreases. This is in line with what we expect from the minimization of
our objective function.
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Figure 5: Visualizations of embeddings for different UDA tasks.

A.7 Comparison with invariant feature transformation learning
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dslr webcamFinally, we compare our approach against invariant feature
transformation learning where the source and target data are
explicitly forced to be close in the embedding space. For this,
we simply set Taff(x) = Ax + b in equation 6 and optimize
it as before. For the sake of clarity, we take the task D→W
to illustrate both the learned embeddings and the learning
dynamics of LaOT and the invariant feature transformation
approach. These results are presented in Figure 7. From this
plot, we distinctly see that LaOT allows for the embeddings
to maintain their own topology for each individual domain as
seen on the left, yet they are well aligned after the projection
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Figure 6: Learning dynamics of our method on UDA tasks.

with the linear Monge mapping as seen on the right. Invariant
feature transformation learning forces the embeddings to be
close to each other in the embedding space but achieves a less
precise alignment of the data in the embedding space. In this particular case, both achieve good performance,
yet LaOT manages to do it in fewer epochs due to the additional flexibility that it has that does not require
it to perfectly align the two domains.
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Figure 7: Comparison with invariant feature transformation learning. (left) embeddings learned with LaOT;
(middle) embeddings learned with invariant feature transformation; (right) source and target data after the
projection with linear Monge mapping in the embedding space. Upper right: learning dynamics comparing
the two models.
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