
Published in Transactions on Machine Learning Research (06/2025)

Learning in complex action spaces without policy gradients

Arash Tavakoli atavakoli@riotgames.com
Riot Games

Sina Ghiassian sinag@spotify.com
Spotify

Nemanja Rakićević rakicevic@google.com
Google DeepMind

Reviewed on OpenReview: https: // openreview. net/ forum? id= nOL9M6D4oM

Abstract

While conventional wisdom holds that policy gradient methods are better suited to complex
action spaces than action-value methods, foundational work has shown that the two paradigms
are equivalent in small, finite action spaces (O’Donoghue et al., 2017; Schulman et al., 2017a).
This raises the question of why their computational applicability and performance diverge as
the complexity of the action space increases. We hypothesize that the apparent superiority
of policy gradients in such settings stems not from intrinsic qualities of the paradigm but
from universal principles that can also be applied to action-value methods, enabling similar
functions. We identify three such principles and provide a framework for incorporating them
into action-value methods. To support our hypothesis, we instantiate this framework in what
we term QMLE, for Q-learning with maximum likelihood estimation. Our results show that
QMLE can be applied to complex action spaces at a computational cost comparable to that
of policy gradient methods, all without using policy gradients. Furthermore, QMLE exhibits
strong performance on the DeepMind Control Suite, even when compared to state-of-the-art
methods such as DMPO and D4PG. We make our code publicly available.

1 Introduction

In reinforcement learning, policy gradients (and their actor-critic variants) (Sutton et al., 1999) have become
the backbone of solutions for environments with complex action spaces (Dulac-Arnold et al., 2015; OpenAI
et al., 2019; Vinyals et al., 2019; Ouyang et al., 2022). We use the term “complex action spaces” broadly
to refer to those for which enumerating actions or brute-force operations are computationally intractable,
such as domains with multi-dimensional continuous or high-dimensional discrete actions (Hubert et al., 2021).
In contrast, action-value methods—primarily, variants of Sarsa and Q-learning—have traditionally been
confined to tabular-action models for small and finite action spaces. However, where applicable, such as
on the Atari Suite (Bellemare et al., 2013; Machado et al., 2018), action-value methods are frequently the
preferred approach over policy gradient methods (Kapturowski et al., 2023; Schwarzer et al., 2023).

In recent years, foundational research has shown that the distinction between action-value and policy gradient
methods is narrower than previously understood, particularly in the basic case of tabular-action models
in small and finite action spaces (see, e.g., Schulman et al., 2017a). Notably, O’Donoghue et al. (2017)
established a direct equivalence between these paradigms, connecting the fixed-points of action-preferences of
policies optimized by regularized policy gradients to action-values learned by action-value methods. These
insights invite further exploration of discrepancies emerging as action-space complexity increases.

What core principles underpin the superior computational applicability and performance of policy gradient
methods in such settings? In this paper, we identify three such principles. First, policy gradient methods
leverage Monte Carlo (MC) approximations for summation or integration over action spaces, enabling

1

https://openreview.net/forum?id=nOL9M6D4oM
http://github.com/atavakol/qmle

Published in Transactions on Machine Learning Research (06/2025)

computational feasibility even in environments with complex action spaces. Second, they employ amortized
maximization through a special form of maximum likelihood estimation (namely, the policy gradient itself),
iteratively refining the policy to favor high-value actions without requiring brute-force arg max over the action
space. Third, scalable policy gradient methods employ action-in architectures for action-value approximation,
implicitly facilitating representation learning and generalization across the joint state-action space.

Are these principles exclusive to policy gradient methods? We argue that these principles can be adapted
to action-value methods, thereby bridging the scalability and performance gap between the two paradigms.
Instead of using MC methods for summation or integration as in policy gradient methods, we propose using
MC methods to approximate the arg max operation, making action-value methods computationally scalable
for complex action spaces. Moreover, explicit maximum likelihood estimation can enable caching and iterative
refinement of parametric predictors for amortized arg max approximation. Lastly, action-in architectures
can be employed not only to scalably evaluate a limited set of actions in any given state, but also to enable
representation learning and generalization across both states and actions.

To test our arguments, we introduce Q-learning with maximum likelihood estimation (QMLE). Given that
QMLE builds upon Q-learning, DDPG (Lillicrap et al., 2016) serves as its closest counterpart among commonly
used policy gradient methods for continuous-action tasks, and thus is our primary baseline for comparison.

Through systematic ablation studies (§5.3), we show that each identified principle individually contributes
to improved scalability or performance of action-value learning. Benchmarking QMLE against DDPG on
diverse multi-dimensional continuous control tasks, ranging from 1 to 21 action dimensions, we demonstrate
that incorporating all three principles collectively enables QMLE to achieve competitive performance (§5.2).
These results provide evidence that the identified principles are indeed fundamental to the broad applicability
of policy gradient methods in complex action spaces, and that they are not intrinsically tied to the policy
gradient paradigm and can be effectively adapted into action-value learning.

Beyond multi-dimensional continuous-action scenarios, we demonstrate the applicability of QMLE to large,
high-dimensional discrete-action ones by employing a 3-bin discretization scheme on our continuous control
benchmarks. Our results illustrate QMLE’s robustness in managing increasing complexity due to the curse
of dimensionality, effectively scaling from 2 to 38 action dimensions (corresponding to discrete action sets
ranging from only 32 = 9 up to 338, approximately 1.35 quintillion, actions).

The idea of using sampling-based approximation of the arg max in value-based methods has been explored in
earlier works. For example, Tian et al. (2022) studied the combination of value iteration and random search
in discrete domains, with a tabular mechanism for tracking the best historical value-maximizing action in
each state. Kalashnikov et al. (2018) introduced the QT-Opt algorithm, which employs a fixed stochastic
search via the cross-entropy method to approximate arg max in Q-learning. Closely related to QMLE is
the AQL algorithm by de Wiele et al. (2020), which integrates Q-learning with entropy-regularized MLE to
approximate a value-maximizing action distribution. While QMLE shows superior performance relative to
QT-Opt and AQL in complex action spaces (§C), our emphasis in this work is less on algorithmic novelty
and more on dissecting the core principles that bridge the gap between the two paradigms.

2 Background

2.1 The reinforcement learning problem

The reinforcement learning (RL) problem (Sutton & Barto, 2018) is generally described as a Markov decision
process (MDP) (Puterman, 1994), defined by the tuple ⟨S,A,P,R⟩, where S is a state space, A is an action
space, P : S × A → ∆(S)1 is a state-transition function, and R : S × A× S → ∆(R) is a reward function.
The behavior of an agent in an RL problem can be formalized by a policy π : S → ∆(A), which maps a
state to a distribution over actions. The value of state s under policy π may be defined as the expected

1∆ denotes a distribution.

2

Published in Transactions on Machine Learning Research (06/2025)

discounted sum of rewards: V π(s) .= Eπ,P,R[
∑∞

t=0 γtrt+1|s0 = s], where γ ∈ (0, 1) is a discount factor used
to exponentially decay the present value of future rewards.2

The goal of an RL agent is defined as finding an optimal policy π∗ that maximizes this quantity across the
state space: V π∗ ≥ V π for all π. While there may be more than one optimal policy, they all share the same
state-value function: V ∗ = V π∗ . Similarly, we can define the value of state s and action a under policy π:
Qπ(s, a) .= Eπ,P,R[

∑∞
t=0 γtrt+1|s0 = s, a0 = a]. Notice that the goal can be equivalently phrased as finding

an optimal policy π∗ that maximizes this alternative quantity across the joint state-action space: Qπ∗ ≥ Qπ

for all π. Same as before, optimal policies share the same action-value function: Q∗ = Qπ∗ .

The state and action value functions are related to each other via: V π(s) =
∑

a Qπ(s, a)π(a|s), where we use
∑

to signify both summation and integration over discrete or continuous actions. For all MDPs there is always at
least one deterministic optimal policy, which can be deduced by maximizing the optimal action-value function:
arg maxa Q∗(s, a) in any given state s. It is worth noting that there may be cases where multiple actions
yield the same maximum value, resulting in ties. By breaking such ties at random, considering all conceivable
distributions, we can construct the set of all optimal policies, including both deterministic and stochastic
policies. Regardless of the optimal policy, the optimal state-value and action-value functions are related to
each other in the following way: V ∗(s) = maxa Q∗(s, a). Similarly, the optimal state-value function can be
used to extract optimal policies by invoking the Bellman recurrence: arg maxa EP,R[rt+1 + γV ∗(st+1)|st = s].
However, this requires access to the MDP model, rendering the sole optimization of state-values unsuitable
for model-free RL.

2.2 Action-value learning

Optimizing the action-value function and deducing an optimal policy from it seems to be the most direct
approach to solving the RL problem in a model-free manner. To this end, we first consider the Bellman
recurrence for action-values (Bellman, 1957):

Qπ(s, a) = E
π,P,R

[rt+1 + γQπ(st+1, at+1)|st = s, at = a], (1)

where π is in general a stochastic policy and at+1 ∼ π(.|st+1). By substituting policy π with an optimal
policy π∗ and invoking Q∗(s, arg maxa Q∗(s, a)) = maxa Q∗(s, a), we can rewrite Eq. 1:

Q∗(s, a) = E
P,R

[rt+1 + γ max
a′

Q∗(st+1, a′)|st = s, at = a]. (2)

The method of temporal differences (TD) (Sutton, 1988) leverages equations (1) and (2) to contrive two
foundational algorithms for model-free RL: Sarsa (Rummery & Niranjan, 1994) and Q-learning (Watkins,
1989). Sarsa updates its action-value estimates, Q(st, at), by minimizing the TD residual:(

rt+1 + γQ(st+1, at+1)
)
−Q(st, at), (3)

whereas Q-learning does so by minimizing the TD residual:(
rt+1 + γ max

a
Q(st+1, a)

)
−Q(st, at). (4)

Both algorithms have been shown to converge to the unique fixed-point Q∗ of Eq. 2 under similar conditions,
with one additional and crucial condition for Sarsa (Watkins & Dayan, 1992; Jaakkola et al., 1994; Singh
et al., 2000). Namely, because Sarsa uses the action-value of the action chosen by its policy in the successor
state, the action-values can converge to optimality in the limit only if it chooses actions greedily in the
limit: limk→∞ πk(a|s) = 1a=arg maxa′ Q(s,a′). This is in contrast with Q-learning which uses its maximum
action-value in the successor state regardless of its policy, thus liberating its learning updates from how it
chooses to act. This key distinction makes Sarsa an on-policy and Q-learning an off-policy algorithm. As a
final point, the action-value function can be approximated by a parameterized function Q, such as a neural
network, with parameters ω and trained by minimizing the squared form of the TD residual (3) or (4).

2Discounts are occasionally employed to specify the true optimization objective, whereby they should be regarded as part of
the MDP. However, more often discounts serve as a hyper-parameter (van Seijen et al., 2019).

3

Published in Transactions on Machine Learning Research (06/2025)

2.3 Policy gradient methods

Unlike action-value methods (§2.2), policy gradient methods do not require an action-value function for action
selection. Instead they work by explicitly representing the policy using a parameterized function π, such as a
neural network, with parameters θ and only utilizing action-value estimates to learn the policy parameters.
To demonstrate the main idea underpinning policy gradient methods, we start from the following formulation
of the RL problem (cf. §2.1):

π∗ .= arg max
π

E
π,P

[
V π(st)

]
. (5)

The objective function in this formulation is the expected state-value function, where the expectation is
taken over the state distribution induced by policy π and state-transition function P. This problem can
be solved approximately via gradient-based optimization. In fact, this forms the basis of policy gradient
methods. Accordingly, the policy gradient theorem (Sutton et al., 1999) proves that the gradient of the
expected state-value function with respect to policy parameters θ is governed by:

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[∑
a

Qπ(st, a)π(a|st)
]
∝ E

π,P

[∑
a

Qπ(st, a)∇π(a|st)
]
. (6)

By using an estimator of the above expression, denoted ∇̂J(θ), policy parameters can be updated via
stochastic gradient ascent: θ ← θ + α∇̂J(θ), where α is a positive step-size. It is important to note that, like
Sarsa (§2.2), policy gradients are on-policy learners: applying one step of policy gradient updates the policy
parameters θ → θ′ and thereby the policy π → π′, thus inducing a different action-value function Qπ → Qπ′

and a different state distribution.

There have been attempts to extend policy gradients to off-policy data (Degris et al., 2012). The most
common approach in this direction is to use deterministic policy gradients (DPG; Silver et al., 2014):

∇ E
π,P

[
V π(st)

]
= ∇ E

π,P

[∫
Qπ(st, a)δ

(
a− π(st)

)
da

]
(7a)

= ∇ E
π,P

[
Qπ

(
st, π(st)

)]
(7b)

∝ E
π,P

[
∇aQπ

(
st, a=π(st)

)
∇π(st)

]
. (7c)

This is similar to Eq. 6 with the difference that here we replace the general-form policy π(a|s) with a
deterministic and continuous policy δ

(
a− π(s)

)
, where δ denotes the delta function whose parameters are

given by π(s). Moreover, this derivation only holds in continuous action spaces and, as such, we substitute our
general-form notation

∑
for both summation and integration with

∫
to specify integration over continuous

actions. The expression (7b) is then derived from (7a) by invoking the sifting property of the delta function
and (7c) is deduced from (7b) by applying the chain rule, yielding a gradient with respect to actions (denoted
∇a) and another with respect to policy parameters θ (denoted as before by the shorthand ∇).

To implement an off-policy method using DPG, we must make two key changes to the true deterministic
policy gradient (7). First, the deterministic policy—which is the target of optimization by DPG—generally
differs from the behavior policy π(a|s) that the agent uses to interact with and explore the environment.
Therefore, we must modify our notation to reflect this distinction:

E
π,P

[
∇aQµ

(
st, a=µ(st)

)
∇µ(st)

]
, (8)

where µ denotes the parameters of the delta function δ and the expectation is computed with respect to the
state distribution induced under behavior policy π and state-transition function P. Second, our estimator
Q ≈ Qµ must be differentiable with respect to actions. This is typically achieved by training a parameterized
function Q by minimizing the squared form of the TD residual:(

rt+1 + γQ
(
st+1, µ(st+1)

))
−Q(st, at). (9)

This expression can be viewed as substituting Q(st+1, µ(st+1)) for maxa Q(st+1, a) in the TD expression (4),
which is used by Q-learning.

4

Published in Transactions on Machine Learning Research (06/2025)

2.4 Maximum likelihood estimation

Suppose we have a data set {(xi, yi)} drawn from an unknown joint distribution p(x, y), where random
variables xi and yi respectively represent inputs and targets. Frequently, problem scenarios involve determining
the parameters of an assumed probability distribution that best describe the data. The method of maximum
likelihood estimation (MLE) addresses this by posing the question: “For which parameter values is the
observed data most likely?”. In this context, we typically start by representing our assumed distribution
using a parameterized function f , such as a neural network, with parameters θ. Hence, ϕ

.= f(x) serves
as our estimator for the distributional parameters in x. For example, ϕ contains K values in the case
of a categorical distribution with K categories, and contains means µ and variances σ in the case of a
multivariate heteroscedastic Gaussian distribution. We will denote the probability distribution that is specified
by parameters ϕ = f(x) as f(y|x). The problem of finding the optimal parameters can then be formulated as:

arg max
ϕ

E
p(x,y)

[
log f(yi|xi)

]
.3 (10)

This problem can be solved approximately via gradient-based optimization by leveraging the log-likelihood
gradient with respect to parameters θ:

E
p(x,y)

[
∇ log f(yi|xi)

]
. (11)

By using estimates of the above expression, denoted ∇̂J(θ), we can iteratively refine our distributional
parameters ϕ via stochastic gradient ascent on θ: θ ← θ + α∇̂J(θ), where α is a positive step-size.

3 The principles underpinning scalability in policy gradients

As we discussed in Section 2.2, both Sarsa and Q-learning require maximization of the action-value function:
Sarsa relies on greedy action-selection in the limit for optimal convergence and Q-learning needs maximizing
the action-value function in the successor state to compute its TD target. Additionally, both Sarsa and
Q-learning need action-value maximization in the current state for exploitation or, more generally, for
constructing their policies (e.g. an ε-greedy policy relies on choosing greedy actions with probability 1− ε
and uniformly at random otherwise). However, performing exact maximization in complex action spaces
is computationally prohibitive. This has in turn limited the applicability of Sarsa and Q-learning to small
and finite action spaces. On the other hand, policy gradient methods are widely believed to be suitable for
dealing with complex action spaces. In this section, we identify the core principles underlying the scalability
of policy gradient methods and describe each such principle in isolation.

3.1 Approximate summation or integration using Monte Carlo methods

The scalability of policy gradients in their general stochastic form relies heavily on the identity:

E
π,P

[∑
a

Qπ(st, a)∇π(a|st)
]

= E
π,P

[
Qπ(st, at)

∇π(at|st)
π(at|st)

]
= E

π,P

[
Qπ(st, at)∇ log π(at|st)

]
,

(12)

where the middle expression is derived from our original policy gradient expression (6) by substituting an
importance sampling estimator in place of the exact summation or integration over the action space.4 The
rightmost expression is then derived simply by invoking the logarithm differentiation rule, where log denotes
the natural logarithm. Consequently, using an experience batch of the usual form {(st, at, rt+1, st+1)} with

3Equivalent to minimizing the KL-divergence between p(x, y) = p(y|x)p(x) and p̂(x, y) .= f(y|x)p(x).
4Importance sampling is a Monte Carlo (MC) method used for sampling-based approximation of sums and integrals

(Hammersley & Handscomb, 1964).

5

Published in Transactions on Machine Learning Research (06/2025)

size n, we can construct an estimator of the policy gradient as follows:
1
n

∑
t

Qπ(st, at)∇ log π(at|st), (13)

where Qπ is the true action-value function under policy π which itself needs to be estimated from experience,
e.g. via Qπ(st, at) ≈ rt+1 + γV (st+1) with V serving as a learned approximator of V π.

Considering the fact that the policy gradient estimator (13) is founded upon replacing the exact summation
or integration over the action space with an on-trajectory (single-action) MC estimator, we can construct a
more general class of policy gradient estimators by enabling off-trajectory action samples to also contribute
to this numerical computation (Petit et al., 2019):

1
n

∑
t

1
m + 1

(
Qπ(st, at)∇ log π(at|st) +1{m>0}

m−1∑
i=0

Qπ(st, ai)∇ log π(ai|st)
)

, (14)

where m is the number of off-trajectory action samples ai ∼ π(.|st) per state st, and the indicator term
1{m>0} ensures that when m = 0, the second term vanishes, thus reducing to the original on-trajectory policy
gradient estimator (13). It is important to note that using the on-trajectory estimator (13) applies broadly
to both critic-free (e.g. REINFORCE) and actor-critic (e.g. PPO) methods, but using the off-trajectory
estimator (14) with m > 0 requires direct approximation of the action-values Qπ by a function Q, e.g. a
neural network trained by minimizing the squared form of the TD residual (3). As such, the latter can only
be employed by Q-based actor-critic methods (e.g. DDPG).

A large portion of policy gradient algorithms rely on the on-trajectory estimator (13), including REINFORCE
(Williams, 1992), A3C (Mnih et al., 2016), and PPO (Schulman et al., 2017b). To our knowledge, surprisingly
few algorithms make use of the generalized MC estimator (14), with AAPG (Petit et al., 2019) and MPO
(Abdolmaleki et al., 2018) being our only references. On the flip side, methods that perform exact summation
or integration over the action space are either limited to small and finite action spaces (Sutton et al., 2001;
Allen et al., 2017) or restricted to specific distribution classes that enable closed-form integration (Silver
et al., 2014; Ciosek & Whiteson, 2018; 2020).

3.2 Amortized maximization using maximum likelihood estimation

In RL and dynamic programming, generalized policy iteration (GPI) (Bertsekas, 2017) represents a class
of solution methods for optimizing a policy by alternating between estimating the value function under
the current policy (policy evaluation) and enhancing the current policy (policy improvement). Sarsa is an
instance of GPI, wherein the policy evaluation step involves learning of an estimator Q ≈ Qπ by minimizing
the temporal difference (3) and the policy improvement step occurs implicitly by acting semi-greedily with
respect to Q. Policy gradient methods share a close connection to GPI as well (Schulman et al., 2015). They
also alternate between policy evaluation (i.e. estimating Q ≈ Qπ) and policy improvement (i.e. updating
an explicit policy using an estimate of the policy gradient). Notably, one can instantiate a policy gradient
algorithm by performing the policy evaluation step in the same fashion as Sarsa. From this standpoint, the
mechanism employed for policy improvement is the main differentiator between policy gradient methods and
action-value methods like Sarsa. In the previous section, we illustrated how policy gradient estimation can be
carried out in a computationally scalable manner. In this section, we delve into the question of how updating
the policy using policy gradients achieves policy improvement, and how it does so in an efficient manner.

We start with recasting the log-likelihood gradient (11) using RL terminology, replacing the variables
(x, y, i, f) with (s, a, t, π). Moreover, we reinterpret the expectation computation to be under the joint
visitation distribution of state-action pairs within an RL context.5 Subsequently, we contrast the reframed
log-likelihood gradient against the policy gradient (12):

E
π,P

[
∇ log π(at|st)

]
︸ ︷︷ ︸

log-likelihood gradient

vs. E
π,P

[
Qπ(st, at)∇ log π(at|st)

]
︸ ︷︷ ︸

policy gradient

. (15)

5While the reframed log-likelihood gradient is useful for comparison against the policy gradient, it does not per se specify a
meaningful optimization problem. This is because the target distribution and its estimator are equivalent (i.e. π(a|s)p(s)).

6

Published in Transactions on Machine Learning Research (06/2025)

ActionAction

Action

P
ro
b
a
b
ili
ty

1 2 3 4 5

R
e
w
a
rd

0

Action
1 2 3 4 5

Action
1 2 3 4 5

Action
1 2 3 4 5

(a) (b)
1

0

(c) (d)

Figure 1: Policy progression according to the true policy gradient in two distinct bandit problems: (a) reward
function and (b) softmax-policy progression over time from a random initialization to a deterministic policy
in a multi-armed bandit; (c) delta-policy progression in a continuous bandit problem with bimodal rewards;
(d) fixed-variance Gaussian-policy progression in the same continuous bandit problem. In (c) and (d), policy
progressions overlay the reward function.

This comparison implies that policy gradients perform a modified form of MLE, wherein the log-likelihood
gradient term is weighted by Qπ for each state-action pair. This weighting assigns importance to actions
according to the product of Qπ(s, a) and log π(a|s). Therefore, a single step of the true policy gradient
updates the policy distribution such that actions with higher action-values become more likely. From this
perspective, policy gradients can be construed as a form of amortized inference (Gershman & Goodman, 2014).
Each step of the true policy gradient improves the current approximate maximizer of an interdependent
action-value function, with the policy functioning as a mechanism for retaining and facilitating retrieval of the
best approximation thus far. To elucidate this, we consider a basic one-state MDP (aka. multi-armed bandit)
with deterministic rewards (Fig. 1a). In such a setting, true action-values are independent of the policy
and are equivalent to rewards: Qπ(a) = Q∗(a) = r(a) for all π and a. For learning, we use a tabular policy
function with a softmax distribution and update it using the true policy gradient in each step. These choices
minimize confounding effects, allowing us to study the way policy gradients achieve policy improvement
in isolation. Figure 1b shows the progression of the policy distribution during training, starting from a
random initialization until convergence. Early in training the policy captures the ranking of actions according
to their respective action-values. In other words, sampling from the policy corresponds to performing a
probabilistic arg sort on the action-value function. In the absence of any counteractive losses, such as entropy
regularization, this process continues until convergence to a deterministic policy corresponding to the arg max
over the action-value function.

We have discussed that policy gradients can be viewed as an iterative approach to action-value maximization.
However, they do not always yield the global arg max. This limitation is rooted in local tendencies of gradient-
based optimization, affecting scenarios with non-tabular policy distributions (Tessler et al., 2019). Figures 1c,d
respectively show progression of a delta policy and a fixed-variance Gaussian policy in a continuous bandit
with bimodal, deterministic rewards. In both cases, policy improvement driven by policy gradients results in
local movement in the action space and thus convergence to suboptimal policies.

3.3 Representation learning via action-in architectures

There are two functional forms for constructing an approximate action-value predictor Q: action-in and
action-out architectures. An action-in architecture predicts Q-values for a given state-action pair at input.
An action-out architecture outputs Q predictions for all possible actions in an input state. Action-out
architectures have the computational advantage that a single forward pass through the predictor collects all
actions’ values in a given state, versus requiring as many forward passes as there are actions in a state by an
action-in architecture. Of course, such an advantage is only pertinent when evaluating all possible actions,
or a considerable subset of them, in a given state—a necessity that varies depending on the algorithm. On

7

Published in Transactions on Machine Learning Research (06/2025)

the other hand, one notable limitation of action-out architectures is their incapacity to predict Q-values
in continuous action domains without imposing strict modeling constraints on the functional form of the
estimated Q-function (Gu et al., 2016).

Action-value methods typically use action-out architectures—such as DQN (Mnih et al., 2015) and Rainbow
(Hessel et al., 2018)—while policy gradient algorithms with Q approximations rely on action-in architectures
to handle complex action spaces—such as DDPG (Lillicrap et al., 2016) and MPO (Abdolmaleki et al., 2018).
These choices reflect the distinct requirements of each family. In particular, standard action-value methods
must evaluate all possible actions per state to perform maximization, making action-out architectures the
more efficient choice from a computational perspective. In contrast, policy gradient methods that rely on Q
approximation evaluate only one or a small set of actions in any given state (§3.1). Hence, using action-in
architectures in the context of policy gradient methods is more computationally efficient in finite action
spaces and one that functionally supports Q evaluation in complex action spaces.

So far, we have compared action-in and action-out architectures from computational and functional standpoints.
Now, we turn to a fundamental but often overlooked advantage of action-in architectures: their capacity
for representation learning and generalization with respect to actions. Specifically, by treating both states
and actions as inputs, action-in architectures unify the process of learning representations for both. For
example, when training an action-in Q approximator with deep learning, backpropagation enables learning
representations over the joint state-action space. In contrast, action-out architectures are limited in their
capacity for generalizing across actions (Zhou et al., 2022). This limitation arises because, although many
layers may serve to learn deep representations of input states, action conditioning is introduced only at the
output layer in a tabular-like form. While some action-out architectures introduce structural inductive biases
that support combinatorial generalization across multi-dimensional actions (see, e.g., Tavakoli et al., 2018;
2021), they do not capacitate action representation learning and generalization in the general form. Moreover,
such architectures remain limited to discrete action spaces and are, generally, subject to statistical biases.

4 Incorporating the principles into action-value learning

In Section 3, we identified three core principles that we argued underpin the effectiveness of popular policy
gradient algorithms in complex action spaces. In this section, we challenge the conventional wisdom that
policy gradient methods are inherently more suitable in tackling complex action spaces by showing that the
same principles can be integrated into action-value methods, thus enabling them to exhibit similar scaling
properties to policy gradient methods without the need for policy gradients.

Principle 1 In the same spirit as using an MC estimator in place of exact summation or integration over
the action space in policy gradient methods (§3.1), the first principle that we consolidate into action-value
learning substitutes exact maximization over the action space with a sampling-based approximation. Formally,
we compute an approximation of maxa Q(s, a) via the steps below:

Am
.= {ai}m ∼ ∆search(As) (16)

arg max
a

Q(s, a) ≈ arg max
ai∈Am

Q(s, ai)
.= amax (17)

max
a

Q(s, a) ≈ Q(s, amax) (18)

where m ≥ 1 is the number of action samples in state s and ∆search is a probability distribution over the
generally state-conditional action space As. Without any prior information, opting for a uniform ∆search
is ideal as it ensures equal sampling across all possible actions in a given state. This approach, with a
constant m, allows for action-value learning at a fixed computational cost in arbitrarily complex action spaces.
Sampled actions are only used internally to probe the Q-function for arg max approximation at a given state,
and not executed in the environment.

Principle 2 The next principle is to equip action-value learning with a mechanism for retention and retrieval
of the best arg max approximation so far, analogous to the policy function in policy gradient methods (§3.2).

8

Published in Transactions on Machine Learning Research (06/2025)

To do so, let us assume we maintain a memory buffer B .= {(st, amax
t)}, where amax

t denotes our best current
arg max approximation in a visited state st. In small and finite state spaces, the memory buffer itself can
serve as a basic mechanism for retention and retrieval via table-lookup (as used by Tian et al., 2022):

amax
t ← B(st) if st in B otherwise ∅. (19)

In this case, we can enable the reuse of past computations for amortized arg max approximations by modifying
Eq. 16 in the following way:

Am
.= {amax

t } ∪ {ai}m−1 ∼ ∆search(As). (20)

Then, we refine the arg max approximation via Eq. 17 and update the buffer B(st)← amax
t . This approach

does not achieve generalization across states, thus compromising its general efficacy in major ways. To
enable a capacity for generalization, we resort to training a state-conditional parameterized distribution
function with MLE (§2.4). In other words, we train a parametric arg max predictor fθ(.|st) by employing
the log-likelihood gradient (11) on the stored tuples {(st, amax

t)}. Notably, this paradigm naturally supports
training an ensemble of such predictors, for example based on different distribution families. Therefore, we
can rewrite Eq. 20 to explicitly incorporate an ensemble of k parametric arg max predictors as below:

Am =
⋃



Am0 ∼ Uniform(Ast
)

Am1 ∼ fθ1(.|st)
· · ·
Amk

∼ fθk
(.|st)

{amax
t } (if a prior approximation exists)

(21)

Principle 3 The third, and final, principle is to combine action-value learning with action-in instead
of action-out architectures in order to enable action-value inference in complex action spaces as well as
representation learning and generalization with respect to actions (§3.3). While the other ingredients apply
more broadly to both tabular and approximate cases, this last one is only relevant in conjunction with
functional approximation. Appendix B.1 provides a neural network architecture from our experiments that
exemplifies the action-in approach.

5 Experiments

To evaluate our framework, we instantiate Q-learning with maximum likelihood estimation (QMLE) as an
example of integrating the adapted core principles (§4) into approximate Q-learning with deep neural networks
(Mnih et al., 2015). Appendix A presents the QMLE algorithm in a general form. Our illustrative study
(§5.1) employs a simplified implementation of this algorithm. Appendix B provides the details of the QMLE
agent used in our benchmarking experiments (§5.2).

5.1 Illustrative example

In this study, we present a first illustrative example of how the combination of the three core principles
enables QMLE to extend action-value learning to continuous-action problems. Specifically, Principle 1 allows
approximate arg max computation over non-convex Q-surfaces defined on continuous (i.e. non-finite) action
spaces, as demonstrated in a 2D action setting. Principle 2 facilitates iterative caching and refinement of
the arg max approximation, allowing efficient reuse during and after training. Principle 3 enables function
approximation of the Q-function over continuous actions, which is not possible with action-out architectures
such as that used in DQN. Additionally, this example highlights that, with respect to Principles 1 and 2,
action-value learning can offer more flexible arg max computation than deterministic policy gradients (DPG).
As a result, QMLE is able to both mimic and surpass the behavior of DPG, depending on the choice of the
action sampling scheme.

We compare QMLE to the deterministic policy gradient (DPG) algorithm in a continuous 2D bandit problem
with deterministic and bimodal rewards (similar to that presented by Metz et al., 2019). This problem

9

Published in Transactions on Machine Learning Research (06/2025)

ε
-g

re
e

d
y

G
a

u
s
s
ia

n

E
x

p
lo

ra
tio

n

U
n

ifo
rm

DPG QMLE [delta]
approximate local approximate local & global

QMLE [delta]
local gradient

Maximizer Training

Ground Truth

(a) (b)

Figure 2: QMLE with local sampling approximately subsumes DPG and with added global sampling
transcends DPG by circumventing suboptimality, as examined in a continuous 2D bandit with two modes and
under three canonical exploration strategies. The trajectory of delta distributions during training (yellow)
with endpoints (green) overlay the respective learned Q-functions at convergence.

setting minimizes confounding factors by reducing action-value learning to supervised learning of rewards
and eliminating contributions from differing bootstrapping mechanisms in the two methods. For an apples-
to-apples comparison, we constrain QMLE to only a single parametric arg max predictor based on a delta
distribution, mirroring the strict limitation of DPG to delta policies. We further simplify QMLE by aligning
its computation of greedy actions with that of DPG. This ensures the only remaining difference between
QMLE and DPG is in how their delta parameters are updated, not in how their greedy actions are computed
for constructing behavior policies. Both methods use the same hyper-parameters, model architecture, and
initialization across all experiments.

We examine two simplified variants of QMLE. The first one samples around the delta parameters for arg max
approximations that are used as targets for MLE training. Precisely, we only allow samples Am drawn
from δθ(s) + ξ, where δθ denotes the delta-based arg max predictor and ξ is a zero-mean Gaussian noise
with a standard deviation of 0.001 (cf. Eq. 21). This is akin to computing an MC approximation of
∇aQπ

(
st, a=π(st)

)
in DPG (7c). The second variant additionally incorporates sampling uniformly over the

full action space, corresponding to Am0 samples in Eq. 21. For brevity, we refer to the first variant as using
local sampling, and the second as using global sampling.

Figure 2a depicts the reward function of the bandit, or equally the ground-truth Q-function. Figure 2b
shows the trajectory of delta distributions during training (yellow) until convergence (green), overlaid on the
final learned Q-function. DPG (Fig. 2b, left) consistently converges to a local optimum, regardless of the
exploration strategy and despite the sufficient accuracy of its learned Q-function. QMLE with local sampling
(Fig. 2b, middle) behaves similarly to DPG. On the other hand, QMLE with global sampling (Fig. 2b, right)
converges to the global optimum across all exploration strategies.

10

Published in Transactions on Machine Learning Research (06/2025)

0 1M
0

250
500
750

1000

Re
tu

rn
Cartpole SwUp

0 2M

Cartpole SwUp Sparse

0 1M

Pendulum SwUp

0 1M

Point Mass Easy

0 1M

Ball In Cup Catch

0 2M

Reacher Hard

0 2M
0

250
500
750

1000

Re
tu

rn

Finger Spin

0 2M

Finger Turn Hard

0 1M

Hopper Stand

0 5M

Hopper Hop

0 1M

Walker Stand

0 1M

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 10M
Env step

Humanoid Stand

0 10M
Env step

Humanoid Walk

0 5M
Env step

Quadruped Run

0 5M
Env step

Dog Walk

QMLE DMPO A3C [1e8] DDPG [1e8] D4PG [1e8]

Figure 3: Comparison of QMLE against its closest policy gradient counterpart, off-policy DDPG, with the
canonical on-policy A3C included for reference. Performance of state-of-the-art methods DMPO and D4PG is
also shown, representing a potential next frontier for QMLE. DMPO and D4PG incorporate advances such as
distributional and N -step learning, which are not used in our current QMLE implementation. Performance
curves (QMLE, DMPO) show mean undiscounted return ± 1 standard error over seeds. Performance levels
(A3C, DDPG, D4PG) report the mean undiscounted return, averaged over 100 evaluation episodes per seed
and across seeds. The number of seeds per agent is detailed in Table 2.

This study illustrates key properties of QMLE with respect to DPG: subsumption, where QMLE with
local sampling approximates DPG updates, and transcendence, where global sampling allows QMLE to
overcome the local tendencies of policy gradients and surpass DPG.

5.2 Benchmarking results

In this section, we evaluate QMLE on 18 continuous control tasks from the DeepMind Control Suite (Tassa
et al., 2018). Figure 3 shows learning curves of QMLE alongside the learning curves or final performances of
several baselines, including state-of-the-art methods DMPO (Hoffman et al., 2022) and D4PG (Barth-Maron
et al., 2018), as well as the canonical (on-policy) A3C (Mnih et al., 2016) and (off-policy) DDPG (Lillicrap
et al., 2016). Results for DMPO (12 tasks) are from Seyde et al. (2023), while those for A3C, DDPG, and
D4PG (16 tasks) are from Tassa et al. (2018).

With the exception of the Finger Turn Hard task, QMLE consistently performs between DDPG and D4PG.
Notably, it matches or outperforms DDPG on 14 out of 16 tasks, with DDPG being the closest counterpart
from the policy gradient paradigm to QMLE. Moreover, QMLE substantially exceeds the performance of
A3C across all tasks. This is despite QMLE being trained on 10 to 100× fewer steps compared to A3C,
DDPG, and D4PG. While QMLE competes well with DMPO in low-dimensional action spaces, it trails in
higher-dimensional ones. Nonetheless, the strong performance of QMLE in continuous control tasks with
up to 38 action dimensions, all without policy gradients, in and of itself testifies to the core nature of our
identified principles and their adaptability to action-value methods.

Appendix C provides supplementary benchmarking results against alternative policy gradient and action-value
methods.

11

Published in Transactions on Machine Learning Research (06/2025)

5.3 Ablation studies

We conducted ablation experiments to assess the contribution of each principle from Section 4 to QMLE’s
performance and scalability. Here, we provide a concise summary of our findings and refer the reader to
Appendix D for the learning curves and additional details.

In Appendix D.1, we study the impact of the number of action samples used for approximating the value-
maximizing action. We find that reducing the number of samples from 1000 to as few as 2 has negligible
effect on final performance, highlighting a low sensitivity to sampling budgets. Although using significantly
more samples improves accuracy, the benefits often taper off due to amortized maximization, which enables
reuse of previous approximations. Consequently, one can significantly reduce inference costs by lowering the
sample count without sacrificing performance, a practically valuable property for large-scale tasks or when
using large models where each forward pass is computationally expensive.

In Appendix D.2, we ablate amortized maximization by removing parametric arg max predictors and relying
solely on uniform sampling. Performance degrades significantly under this condition, particularly in higher-
dimensional action spaces. This study confirms the critical role of amortization when sampling budgets are
limited relative to the action-space complexity, an inevitable problem scenario across real-world domains
where action-space complexity quickly outpaces feasible sampling budgets.

Finally, in Appendix D.3, we replace our action-in architecture with an action-out variant. This ablation
proves computationally infeasible in large discrete action spaces and underperforms even in moderate action
spaces, underscoring the importance of action-in architectures for scalability and generalization.

Taken together, these ablations support that each principle individually contributes to improved scalability
or performance of action-value learning.

6 Conclusion

In this paper, we distilled the success of policy gradient methods in complex action spaces into three core
principles: MC approximation of sums or integrals, amortized maximization using a special form of MLE,
and action-in architectures for representation learning and generalization over actions. We then argued
that these principles are not exclusive to the policy gradient paradigm and can be adapted to action-value
methods. In turn, we presented a framework for incorporating adaptations of these principles into action-value
methods. To examine our arguments, we instantiated QMLE by implementing our adapted principles into
approximate Q-learning with deep neural networks. Our results showed that QMLE performs strongly in
continuous control problems with up to 38 action dimensions, largely outperforming its closest policy gradient
counterpart DDPG. These results provided empirical support for the core nature of our identified principles
and demonstrated that action-value methods could adopt them to achieve similar qualities, all without
policy gradients. In a comparative study using DPG and two simplified QMLE variants, we highlighted a
key limitation of policy gradients; namely, their reliance on local updates in continuous parameter spaces,
which can lead to convergence to suboptimal solutions in multimodal or non-convex value landscapes. By
contrast, QMLE leverages flexible action sampling and explicit maximization to overcome this limitation.
This study serves as a motivator for a shift from policy gradients toward action-value methods with our
adapted principles. It also offers a potential explanation for the improvements observed over DDPG in our
benchmarking experiments.

References
Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Heess, and Martin Ried-

miller. Maximum a posteriori policy optimisation. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=S1ANxQW0b.

Cameron Allen, Kavosh Asadi, Melrose Roderick, Abdelrahman Mohamed, George Konidaris, and Michael
Littman. Mean actor critic. arXiv preprint arXiv:1709.00503, 2017.

12

https://openreview.net/forum?id=S1ANxQW0b

Published in Transactions on Machine Learning Research (06/2025)

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB, Alistair
Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy gradients. In
International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
SyZipzbCb.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 449–458. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/bellemare17a.html.

Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 4th edition, 2017.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11607. URL https://ojs.aaai.org/
index.php/AAAI/article/view/11607.

Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning. Journal of
Machine Learning Research, 21(52):1–51, 2020. URL http://jmlr.org/papers/v21/18-012.html.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multiagent systems.
Proceedings of the AAAI Conference on Artificial Intelligence, 15:746–752, 1998.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (ELUs). In International Conference on Learning Representations, 2016.

Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enormous action
spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116, 2020.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In John Langford and
Joelle Pineau (eds.), Proceedings of the 29th International Conference on Machine Learning, pp. 457–464,
Edinburgh, Scotland, July 2012. Omnipress.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,
Timothy Mann, Théophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex Irpan,
Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agarwal. Stop
regressing: Training value functions via classification for scalable deep RL. In International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=dVpFKfqF3R.

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel Synnaeve.
Growing action spaces. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 3040–3051.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/farquhar20a.html.

Mehdi Fatemi and Arash Tavakoli. Orchestrated value mapping for reinforcement learning. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=c87d0TS4yX.

13

https://openreview.net/forum?id=SyZipzbCb
https://openreview.net/forum?id=SyZipzbCb
https://proceedings.mlr.press/v70/bellemare17a.html
https://ojs.aaai.org/index.php/AAAI/article/view/11607
https://ojs.aaai.org/index.php/AAAI/article/view/11607
http://jmlr.org/papers/v21/18-012.html
https://openreview.net/forum?id=dVpFKfqF3R
https://proceedings.mlr.press/v119/farquhar20a.html
https://openreview.net/forum?id=c87d0TS4yX

Published in Transactions on Machine Learning Research (06/2025)

Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/
c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 1587–1596. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/v80/fujimoto18a.html.

Samuel J. Gershman and Noah D. Goodman. Amortized inference in probabilistic reasoning. In Proceedings
of the Annual Meeting of the Cognitive Science Society, volume 36, 2014.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep Q-learning with
model-based acceleration. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pp. 2829–2838, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.
press/v48/gu16.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
haarnoja18b.html.

John M. Hammersley and David C. Handscomb. Monte Carlo Methods. John Wiley & Sons, 1964.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016. doi: 10.1109/CVPR.
2016.90.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.
doi: 10.1609/aaai.v32i1.11796. URL https://ojs.aaai.org/index.php/AAAI/article/view/11796.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev, Danila
Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard Hussenot, Robert
Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino Vieillard, Seyed Kamyar Seyed
Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani, Tamara Norman, Abbas Abdolmaleki,
Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Abe Friesen, Ruba Haroun, Alex Novikov,
Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning. arXiv preprint arXiv:2006.00979, 2022.

Shengyi Huang, Rousslan Fernand, Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL http://jmlr.org/papers/
v23/21-1342.html.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon Schmitt,
and David Silver. Learning and planning in complex action spaces. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings

14

https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/c7635bfd99248a2cdef8249ef7bfbef4-Paper.pdf
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v48/gu16.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://github.com/hill-a/stable-baselines
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

Published in Transactions on Machine Learning Research (06/2025)

of Machine Learning Research, pp. 4476–4486. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/hubert21a.html.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Aude Billard, Anca Dragan, Jan Peters, and Jun
Morimoto (eds.), Proceedings of the 2nd Conference on Robot Learning, volume 87 of Proceedings of
Machine Learning Research, pp. 651–673. PMLR, 29–31 Oct 2018. URL https://proceedings.mlr.
press/v87/kalashnikov18a.html.

Steven Kapturowski, Víctor Campos, Ray Jiang, Nemanja Rakicevic, Hado van Hasselt, Charles Blundell,
and Adria Puigdomenech Badia. Human-level Atari 200x faster. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=JtC6yOHRoJJ.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Zechu Li, Tao Chen, Zhang-Wei Hong, Anurag Ajay, and Pulkit Agrawal. Parallel Q-learning: Scaling
off-policy reinforcement learning under massively parallel simulation. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19440–19459. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/li23f.html.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference on
Learning Representations, 2016.

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and Michael
Bowling. Revisiting the Arcade Learning Environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of continuous
actions for deep RL. arXiv preprint arXiv:1705.05035, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33rd International Conference
on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1928–1937, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/mniha16.html.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning, pp. 807–814, Haifa, Israel, 2010.
Omnipress.

15

https://proceedings.mlr.press/v139/hubert21a.html
https://proceedings.mlr.press/v139/hubert21a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://openreview.net/forum?id=JtC6yOHRoJJ
https://proceedings.mlr.press/v202/li23f.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.mlr.press/v48/mniha16.html

Published in Transactions on Machine Learning Research (06/2025)

Brendan O’Donoghue, Rémi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining policy gradient
and Q-learning. In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=B1kJ6H9ex.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry
Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving Rubik’s
cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35,
pp. 27730–27744. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking. arXiv
preprint arXiv:2011.07537, 2020.

Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormushev. Time limits in reinforcement learning.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4045–4054. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/pardo18a.html.

Benjamin Petit, Loren Amdahl-Culleton, Yao Liu, Jimmy Smith, and Pierre-Luc Bacon. All-action policy
gradient methods: A numerical integration approach. arXiv preprint arXiv:1910.09093, 2019.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, 1994.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(178):1–51, 2020. URL http://jmlr.org/papers/v21/20-081.
html.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems. Technical report
CUED/F-INFENG/TR 166, Department of Engineering, University of Cambridge, 1994.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In International
Conference on Learning Representations, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1889–1897, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/schulman15.html.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and soft Q-learning.
arXiv preprint arXiv:1704.06440, 2017a.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G. Bellemare, Rishabh Agarwal,
and Pablo Samuel Castro. Bigger, better, faster: Human-level Atari with human-level efficiency. In
Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 30365–30380. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/schwarzer23a.html.

16

https://openreview.net/forum?id=B1kJ6H9ex
https://openreview.net/forum?id=B1kJ6H9ex
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.mlr.press/v80/pardo18a.html
http://jmlr.org/papers/v21/20-081.html
http://jmlr.org/papers/v21/20-081.html
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v202/schwarzer23a.html
https://proceedings.mlr.press/v202/schwarzer23a.html

Published in Transactions on Machine Learning Research (06/2025)

Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls of heteroscedastic
uncertainty estimation with probabilistic neural networks. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=aPOpXlnV1T.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? Solving continuous control with
Bernoulli policies. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 27209–27221. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf.

Tim Seyde, Peter Werner, Wilko Schwarting, Igor Gilitschenski, Martin Riedmiller, Daniela Rus, and
Markus Wulfmeier. Solving continuous control via Q-learning. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=U5XOGxAgccS.

Tim Seyde, Peter Werner, Wilko Schwarting, Markus Wulfmeier, and Daniela Rus. Growing Q-networks:
Solving continuous control tasks with adaptive control resolution. In Alessandro Abate, Mark Cannon,
Kostas Margellos, and Antonis Papachristodoulou (eds.), Proceedings of the 6th Annual Learning for
Dynamics and Control Conference, volume 242 of Proceedings of Machine Learning Research, pp. 1646–1661.
PMLR, 15–17 Jul 2024. URL https://proceedings.mlr.press/v242/seyde24a.html.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In Eric P. Xing and Tony Jebara (eds.), Proceedings of the 31st International
Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp. 387–395,
Beijing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/silver14.html.

Satinder P. Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence results for
single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308, 2000.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg,
Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–44,
1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd edition,
2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In S. Solla, T. Leen, and K. Müller (eds.), Advances
in Neural Information Processing Systems, volume 12. MIT Press, 1999. URL https://proceedings.
neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

Richard S. Sutton, Satinder Singh, and David McAllester. Comparing policy-gradient algorithms. http:
//incompleteideas.net/papers/SSM-unpublished, 2001.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(4):5981–5988, Apr. 2020. doi: 10.1609/aaai.v34i04.6059.
URL https://ojs.aaai.org/index.php/AAAI/article/view/6059.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. DeepMind Control
Suite. arXiv preprint arXiv:1801.00690, 2018.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep reinforcement
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018. doi: 10.1609/
aaai.v32i1.11798. URL https://ojs.aaai.org/index.php/AAAI/article/view/11798.

17

https://openreview.net/forum?id=aPOpXlnV1T
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e46be61f0050f9cc3a98d5d2192cb0eb-Paper.pdf
https://openreview.net/forum?id=U5XOGxAgccS
https://proceedings.mlr.press/v242/seyde24a.html
https://proceedings.mlr.press/v32/silver14.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
http://incompleteideas.net/papers/SSM-unpublished
http://incompleteideas.net/papers/SSM-unpublished
https://ojs.aaai.org/index.php/AAAI/article/view/6059
https://ojs.aaai.org/index.php/AAAI/article/view/11798

Published in Transactions on Machine Learning Research (06/2025)

Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a hypergraph
on the action vertices. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Xv_s64FiXTv.

Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: An alternative
approach for continuous control. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 1352–1362. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf.

Tian Tian, Kenny Young, and Richard S. Sutton. Doubly-asynchronous value iteration: Making value
iteration asynchronous in actions. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 5575–5585. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf.

Hado van Hasselt. Double Q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran
Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/
091d584fced301b442654dd8c23b3fc9-Paper.pdf.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 30(1):2094–2100, Mar. 2016. doi: 10.1609/
aaai.v30i1.10295. URL https://ojs.aaai.org/index.php/AAAI/article/view/10295.

Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a logarithmic mapping to enable lower discount
factors in reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 14134–14144. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
eba237eccc24353ccaa4d62013556ac6-Paper.pdf.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama,
Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando de Freitas. Dueling network
architectures for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.),
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pp. 1995–2003, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/wangf16.html.

Christopher J. C. H. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292, 1992.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3):229–256, 1992.

Zhiyuan Zhou, Cameron Allen, Kavosh Asadi, and George Konidaris. Characterizing the action-generalization
gap in deep Q-learning. arXiv preprint arXiv:2205.05588, 2022.

18

https://openreview.net/forum?id=Xv_s64FiXTv
https://openreview.net/forum?id=Xv_s64FiXTv
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/72da7fd6d1302c0a159f6436d01e9eb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/24e4e3234178a836b70e0aa48827e0ff-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://proceedings.neurips.cc/paper_files/paper/2019/file/eba237eccc24353ccaa4d62013556ac6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/eba237eccc24353ccaa4d62013556ac6-Paper.pdf
https://proceedings.mlr.press/v48/wangf16.html

Published in Transactions on Machine Learning Research (06/2025)

A Q-learning with maximum likelihood estimation

In this section, we present the Q-learning with maximum likelihood estimation (QMLE) algorithm. Specifically,
our presentation is based on integrating our framework (§4) into the deep Q-learning algorithm by Mnih et al.
(2015). In line with this, we make use of experience replay and a target network that is only periodically
updated with the parameters of the online network. Importantly, we extend the scope of the target network to
encompass the arg max predictors in QMLE. Although the algorithm does not mandate the use of action-in Q
approximators per se, such architectures become necessary for addressing problems with arbitrarily complex
action spaces (§3.3).

Algorithm 1 details the training procedures for QMLE. Notably, the algorithm is flexible regarding the
composition of the ensemble of arg max predictors. For instance, the ensemble can consist of a combination of
continuous and discrete distributions for problems with continuous action spaces. QMLE introduces several
hyper-parameters related to its action-sampling processes. These include the sampling budgets for target
maximization, mtarget, and greedy action selection in the environment, mgreedy. Additionally, QMLE uses
sample allocation ratios {ρ0, ρ1, . . . , ρk}, where ρ0 corresponds to the proportion of the budget allocated to
uniform sampling from the action space, and ρ1 through ρk correspond to the proportions assigned to the
ensemble of k parametric arg max predictors.

To effectively manage training inference costs in QMLE, we recommend allocating a larger budget to mgreedy
than to mtarget. Since mgreedy is used at most once per interaction step, increasing it incurs relatively little
computational burden. In addition, more accurate arg max approximations during training interactions
can lead to higher quality data for learning, making this increase particularly beneficial. In contrast, each
training update requires mtarget ×Nb inferences on the target Q-network, where Nb is the batch size. This
makes increasing mtarget much more costly in terms of training inference costs. On that account, choosing

Algorithm 1: QMLE algorithm.
Input : sampling budgets mtarget, mgreedy and ratios {ρ0, ρ1, . . . , ρk} (k is the # of arg max predictors)
Input : initial model parameters ω, {θ1, θ2, . . . , θk}; step sizes αq, αargmax
Input : target update frequency N−; batch size Nb; replay period K; interaction budget Ne · T
Initialize target parameters ω−, {θ−

i }
k
1 ← ω, {θi}k

1 , accumulators ∆q = {∆i}k
1 = 0

Initialize memory buffer B = ∅
for episode ∈ {1, 2, . . . , Ne} do

Observe initial state s0
for t ∈ {0, 1, . . . , T − 1} do

with probability ε do
Sample action at ∼ Uniform(Ast)

otherwise do
Generate actions Agreedy

m using {θi}k
1 , {mi = ρi ×mgreedy}k

0 in Eq. 21,
Approximate greedy action at using Qω, st, Agreedy

m in Eq. 17
Observe rt+1, st+1, γt+1 from environment given at, set amax

t+1 ← at

Store transition (st, at, rt+1, st+1, γt+1, amax
t+1) in B

if t ≡ 0 mod K then
for j ∈ {1, 2, . . . , Nb} do

Sample random transition (sj , aj , rj+1, sj+1, γj+1, amax
j+1) from B

Generate actions Atarget
m using {θ−

i }
k
1 , {mi = ρi ×mtarget}k

0 , amax
j+1 (prior) in Eq. 21

Approximate target-maximizing action aj+1 using Qω− , sj+1, Atarget
m in Eq. 17

Set amax
j+1 ← aj+1 and update B

Compute squared TD residual Lq = (rj+1 + γj+1Qω− (sj+1, amax
j+1)−Qω(sj , aj))2

Compute MLE losses {Li}k
1 using parameters {θi}k

1 and target amax
j+1

Accumulate parameter-changes ∆q ← ∆q +∇ωLq, {∆i ← ∆i +∇θiLi}k
1

Update parameters ω ← ω + 1
Nb
· αq ·∆q, {θi ← θi + 1

Nb
· αargmax ·∆i}k

1

Reset accumulators ∆q = {∆i}k
1 = 0

Update target parameters ω−, {θ−
i }

k
1 ← ω, {θi}k

1 every N− time steps
Terminate episode on reaching a terminal state, where γt+1 = 0

19

Published in Transactions on Machine Learning Research (06/2025)

a moderate mtarget allows for computational tractability with larger batch sizes. Remarkably, a moderate
mtarget could also help reduce the overestimation of action-values (van Hasselt, 2010; van Hasselt et al., 2016).
Also, assigning a smaller mtarget relative to mgreedy is further justified because target maximization benefits
from additional amortization. Specifically, each time a transition is sampled from the memory buffer for
experience replay, we use the previously stored arg max approximation as a prior. This approximation is then
recalibrated and updated in the memory buffer for the next time that the transition is sampled for replay.

B Experimental details

This section details the specific QMLE instance that we evaluated in our benchmarking experiments. We
adopted prioritized experience replay (Schaul et al., 2016), in place of the uniform variant that was described
in Algorithm 1. Furthermore, we deployed QMLE with two arg max predictors: one based on a delta
distribution over the continuous action space, and another based on a factored categorical distribution defined
over a finite subset of the original action space (Tang & Agrawal, 2020).

To build the discrete action support, we applied the bang-off-bang (3 bins) discretization scheme to the action
space (Seyde et al., 2021). For sampling from the delta-based arg max predictor, we always included the
parameter of the delta distribution as the initial sample. Any additional samples were generated through
Gaussian perturbations around this parameter using a small standard deviation.

Sections B.1, B.2, and B.3 provide details around the model architecture, hyper-parameters, and implementa-
tion of QMLE in our benchmarking experiments, respectively. Section B.4 details the number of seeds per
agent and the computation of our learning curves.

B.1 Model architecture

ResNet layer
with ReLU

State vector

ELU

LayerNorm

Linear layer

Linear layer

ELU

LayerNorm

Action vector

Concatenate

ResNet layer
with ReLU

ELU

LayerNorm

Linear layer

Q scalar

Linear layer

ReLU

Linear layer

Tanh

amax (vector)

Linear layer

ReLU

Linear layer

Softmax 1

Linear layer 1 . . .

Softmax Nd

Linear layer Nd

Factored Categorical Delta

Embedding

ResNet+LayerNorm

Embedding

LayerNorm

Observation Action

ResNet+LayerNorm

Q-value

MLPMLP

Argmax Predictor 1 Argmax Predictor 2

Figure 4: Schematic of the model architecture used with QMLE for our benchmarking experiments. Dashed
lines indicate paths without gradient flow during backpropagation.

Figure 4 depicts the model architecture of QMLE in our benchmarking experiments. The model begins with
two separate streams, one for the observation inputs and the other for the action inputs. The outputs of
these streams are then concatenated and jointly processed by the Q-value predictor. Furthermore, the output
of the observation stream is separately processed by each arg max predictor.

20

Published in Transactions on Machine Learning Research (06/2025)

In the observation stream, we apply a linear embedding layer with 128 units followed by a residual block
(He et al., 2016) that maintains this width and uses rectified linear unit (ReLU) activation (Nair & Hinton,
2010). The residual block is succeeded by a layer normalization (LayerNorm) operation (Ba et al., 2016) and
exponential linear unit (ELU) activation (Clevert et al., 2016).

In the action stream, we apply a linear embedding layer with 128 units. The output of the embedding layer
is then directly followed by LayerNorm and ELU activation.

The outputs from both streams are concatenated and passed through a joint observation-action residual block
with 256 units and ReLU activation. Subsequently, we apply LayerNorm and ELU activation. The outputs
are then linearly mapped to a single scalar, representing the predicted Q-value.

The output of the observation stream is also used as input to the two arg max predictors. To avoid interference,
we prevent backpropagation from the arg max predictor streams through the shared observation stream. Each
arg max predictor stream leverages a hidden multilayer perceptron (MLP) layer with 128 units and ReLU
activation.

In the arg max predictor stream based on the delta distribution, we produce one output per action dimension.
Each output is passed through hyperbolic tangent (Tanh) activation to yield a continuous value constrained
within the support of each action dimension in our benchmark. In the arg max predictor stream based
on the factored categorical distribution, we produce three outputs per action dimension. We apply the
softmax function to the outputs for each action dimension, producing multiple softmax distributions over a
bang-off-bang discrete action support.

B.2 Hyper-parameters

Table 1 provides the hyper-parameters of QMLE in our benchmarking experiments.

Table 1: QMLE hyper-parameters in our benchmarking experiments.

Parameter Value
mtarget 100
mgreedy 1000
ρ0 (uniform) 0.9
ρ1 (delta) 0.01
ρ2 (factored categorical) 0.09
step sizes αq, αarg max 0.0005
update frequency 10
batch size 256
training start size 1000
memory buffer size 1000000
target network update frequency 2000
loss function mean-squared error
optimizer Adam (Kingma & Ba, 2015)
exploration ε 0.1
discount factor 0.99
time limit 1000 (Tassa et al., 2018)
truncation approach partial-episode bootstrapping (Pardo et al., 2018)
importance sampling exponent 0.2
priority exponent 0.6

21

Published in Transactions on Machine Learning Research (06/2025)

B.3 Implementation

Our QMLE implementation is based on a DQN script from CleanRL (Huang et al., 2022) and incorporates
prioritized experience replay adapted from Stable Baselines (Hill et al., 2018), both available under the
permissive MIT license.

To support reproducibility, we release the implementation used in our benchmarking experiments at:
https://github.com/atavakol/qmle

B.4 Seeds and performance

All curves show the mean undiscounted return across seeds, with one standard error. Performance levels of
DDPG, D4PG, and A3C are averaged over 100 episodes per seed, after 100M environment steps of training.
Table 2 lists the number of seeds used per agent, grouped by result source.

Table 2: Number of seeds used in benchmarking experiments.

Agent Trials
QMLE 5 - Dog and Humanoid tasks

10 - all other tasks
Results from Seyde et al. (2023)
DMPO 10
DQN 10
Results from Tassa et al. (2018)
A3C 15
DDPG 15
D4PG 5
Results from Pardo (2020)
MPO 10
SAC 10
TD3 10
PPO 10
TRPO 10
A2C 10
Results from de Wiele et al. (2020)
AQL 3
QT-Opt 3

C Supplementary benchmarking results

Figures 5 and 6 provide comparisons of QMLE with a range of mainstream policy gradient methods. The
baseline results are due to Pardo (2020).

• Figure 5 compares QMLE with policy gradient methods that use action-value approximation: MPO
(Abdolmaleki et al., 2018), SAC (Haarnoja et al., 2018), and TD3 (Fujimoto et al., 2018).

• Figure 6 compares QMLE with policy gradient methods that use state-value approximation: PPO
(Schulman et al., 2017b), TRPO (Schulman et al., 2015), and A2C (Mnih et al., 2016).

Figure 7 compares QMLE with QT-Opt (Kalashnikov et al., 2018) and both the discrete and continuous
action variants of AQL (de Wiele et al., 2020). The baseline results are taken from de Wiele et al. (2020).

22

https://github.com/atavakol/qmle

Published in Transactions on Machine Learning Research (06/2025)

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 2M
Env step

Cartpole SwUp Sparse

0 1M
Env step

Pendulum SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Ball In Cup Catch

0 2M
Env step

Reacher Hard

0 2M
Env step

Finger Spin

0 2M
Env step

Finger Turn Hard

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Hopper Stand

0 5M
Env step

Hopper Hop

0 1M
Env step

Walker Stand

0 1M
Env step

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 5M
Env step

Humanoid Stand

0 5M
Env step

Humanoid Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Quadruped Run

QMLE MPO SAC TD3

Figure 5: Learning curves of QMLE against MPO, SAC, and TD3.

23

Published in Transactions on Machine Learning Research (06/2025)

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 2M
Env step

Cartpole SwUp Sparse

0 1M
Env step

Pendulum SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Ball In Cup Catch

0 2M
Env step

Reacher Hard

0 2M
Env step

Finger Spin

0 2M
Env step

Finger Turn Hard

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Hopper Stand

0 5M
Env step

Hopper Hop

0 1M
Env step

Walker Stand

0 1M
Env step

Walker Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Walker Run

0 5M
Env step

Cheetah Run

0 5M
Env step

Humanoid Stand

0 5M
Env step

Humanoid Walk

0 5M
Env step

0
250
500
750

1000

Re
tu

rn

Quadruped Run

QMLE PPO TRPO A2C

Figure 6: Learning curves of QMLE against PPO, TRPO, and A2C.

24

Published in Transactions on Machine Learning Research (06/2025)

200M

200M

200M

200M

5M0

5M0

10M0

10M
Env step

Env step

Env step

Humanoid Walk

Humanoid Stand

R
e

tu
rn

R
e

tu
rn

Cheetah Run

Env step

Walker Run

Env step

QMLE AQL-Autoregressive AQL-Gaussian QT-Opt

AQL-Gaussian QT-Opt

AQL-Gaussian QT-Opt

Hopper Hop

0

250

500

750

1000

R
e

tu
rn

R
e

tu
rn

R
e

tu
rn

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

5M0

200M

Figure 7: Comparison of QMLE with QT-Opt and AQL.

25

Published in Transactions on Machine Learning Research (06/2025)

D Ablation studies

In this section, we present ablation studies to evaluate the impact of the principles in our framework on the
performance of QMLE.

D.1 Approximate maximization

Figure 8 shows the learning curves for QMLE with sampling budgets of 2 and 1000. Expectedly, increasing
the number of samples for Q-maximization improves performance by yielding more accurate estimates of the
TD target and greedy actions. Nevertheless, amortization dampens the negative impact of undersampling by
enabling reuse of past computations over time.

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

Ball In Cup Catch

0 1M
Env step

Finger Spin

0 1M
Env step

Walker Stand

m=2 m=1000

Figure 8: Comparison of QMLE with sampling budgets of 2 and 1000.

D.2 Amortized maximization

Figure 9 compares the performance of QMLE against its ablation without amortized maximization. In this
experiment, QMLE employs a delta-based arg max predictor, while its ablated variant relies solely on uniform
sampling for arg max approximation. We use the same sampling budgets of mtarget = mgreedy = 2 for both
variants, with QMLE allocating its budgets equally between uniform sampling and the delta-based arg max
predictor (ρuniform = ρdelta = 0.5), and the ablated variant allocating them entirely to uniform sampling
(ρuniform = 1).

The action spaces range from 1-dimensional (leftmost) to 6-dimensional (rightmost) for the considered problems.
The results demonstrate that amortized maximization significantly improves performance, particularly as the
complexity of the action space increases.

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 1M
Env step

Point Mass Easy

0 1M
Env step

Ball In Cup Catch

0 1M
Env step

Finger Spin

0 1M
Env step

Walker Stand

QMLE [continuous] no amortization

Figure 9: Comparison of a continuous variant of QMLE with and without amortized maximization.

D.3 Action-in architecture

We compare the performance of QMLE with action-in and action-out architectures. Since action-out Q-
approximators are not readily compatible with continuous action spaces, we examine both agents on the
bang-off-bang (3 bins) discretized versions of the considered environments.

26

Published in Transactions on Machine Learning Research (06/2025)

The QMLE variant with an action-in architecture employs an arg max predictor based on a factored categorical
distribution, with the same sampling budgets and uniform sampling ratio as in Table 1 but with ρdelta = 0
and ρfactored categorical = 1. On the other hand, exact maximization is performed for the ablated variant as a
forward pass through an action-out Q-approximator collects all actions’ values in a given state. Therefore,
using an action-out architecture in the ablated variant obviates the need for learned arg max predictors or
any approximate maximization altogether. That is to say, when inference with an action-out architecture is
computationally feasible, performing exact maximization should also be feasible given that its cost is generally
negligible compared to that of inference. This, in effect, reduces the ablated variant to DQN.

Figure 10 shows the learning curves for QMLE and DQN.

• In lower-dimensional action spaces, such as Finger Spin and Walker Walk with 2 and 6 action
dimensions respectively, where DQN is computationally tractable, both QMLE and DQN achieve
similar final performance levels. However, QMLE performs more sample-efficiently due to the use of
an action-in architecture, which enables generalization across actions.

• In higher-dimensional action spaces, DQN becomes computationally intractable, resulting in out-of-
memory errors or exceeding computational time constraints. In contrast, QMLE performs strongly
in these environments, including Dog Walk with 338 ≈ 1.35 × 1018 discrete actions, underscoring
the benefits of action-in architectures both in terms of computational scalability and generalization
across enormous action spaces.

0 2M
Env step

0
250
500
750

1000

Re
tu

rn

Finger Spin

0 1M
Env step

Walker Walk

0 5M
Env step

Quadruped Run

0 10M
Env step

Humanoid Walk

0 5M
Env step

Dog Walk

QMLE [discrete] DQN

Figure 10: Comparison of QMLE with DQN where DQN represents the ablation of action-in architectures, and
in turn all three principles, in QMLE. Dashed lines indicate out-of-memory errors or excessive computational
demands for DQN.

E Future work

E.1 Combining with other improvements

In this paper, we integrated our framework into the deep Q-learning algorithm of Mnih et al. (2015), in a
proof-of-concept agent that we termed QMLE (Algorithm 1). In our benchmarking experiments, we further
combined QMLE with prioritized experience replay (Schaul et al., 2016; see details in Section B). While
this setup is relatively basic compared to the advancements in deep Q-learning, it served our purpose of
demonstrating the general competency of action-value methods in complex action spaces without involving
policy gradients. We anticipate that a purposeful integration with advancements in deep Q-learning could
significantly improve the performance of our QMLE agent. For instance, fundamental methods that can
be trivially combined with QMLE include N -step returns (Sutton & Barto, 2018; Hessel et al., 2018) and
distributional learning (Bellemare et al., 2017), similarly to the critics in DMPO and D4PG. Certain methods,
including double Q-learning (van Hasselt, 2010; van Hasselt et al., 2016) and dueling networks (Wang et al.,
2016) may not be directly applicable or relevant to QMLE, underscoring the importance of careful integration.
We are particularly excited about using a cross-entropy classification loss in place of regression for training
Q approximators (Farebrother et al., 2024), as well as combining with ideas introduced by Li et al. (2023);
Schwarzer et al. (2023). Moreover, formal explorations into the space of value mappings (van Seijen et al.,

27

Published in Transactions on Machine Learning Research (06/2025)

2019; Fatemi & Tavakoli, 2022), particularly those that benefit Q-function approximation with action-in
architectures, offer an intriguing direction for future work.

Since our approach employs maximum likelihood estimation (MLE) in a disentangled manner (see discussions
in Section 3.2), it makes it trivial to incorporate advances from supervised learning for training the parametric
arg max predictors. To provide an example, advancements in heteroscedastic uncertainty estimation, such
that introduced by Seitzer et al. (2022), can be readily applied to model state-conditional variances for
Gaussian arg max predictors.

E.2 Multiagent reinforcement learning via CTDE

A problem scenario that could benefit from QMLE, and more broadly our framework, is multiagent reinforce-
ment learning (MARL) under centralized training with decentralized execution (CTDE; Foerster et al., 2016;
Lowe et al., 2017). Currently, the dominant class of solutions in this paradigm is based on combinations
of deep Q-learning and value decomposition methods (Sunehag et al., 2017; Rashid et al., 2020). These
approaches decompose the Q-function into local utilities for each agent, aiming for the local arg max to
correspond to the global arg max on the joint Q-function. However, maintaining this alignment requires
imposing structural constraints that limit the representational capacity of the joint Q-approximator, which
can lead to suboptimal decentralized arg max policies.

QMLE avoids these constraints by disentangling the process of approximating the joint Q-function from
learning the decentralized arg max policies, allowing for a universal representational capacity of the joint
Q-function while maintaining decentralized execution. Instead of relying on a factored Q approximation,
QMLE models the joint Q-function in an unconstrained manner. Simultaneously, an arg max predictor (or
an ensemble of them) is separately trained for each agent, conditioned on their respective observations. This
approach allows for improved coordination between agents by preserving the full representational capacity of
the joint Q-function. As demonstrated in Figure 11, in a continuous variant of the “climbing” game (Claus &
Boutilier, 1998), linear value decomposition (Sunehag et al., 2017) leads to a suboptimal reward of 5 due to
its constrained capacity to represent the joint Q-function as Q

.= U1 + U2. In contrast, QMLE, by accurately
modeling the joint Q-function, enables decentralized arg max predictors that guide agents to the globally
optimal reward of 11.

Q ≐ U1 + U2

11 -30

-30 7 6

5

0

00 0

-30

-20

-10

0

10

20

30

a
2

a
2

a1

a
2

-30

-20

-10

0

10

20

30

-5.0

-7.5

-2.5

0.0

2.5

5.0

7.5

10.0

-10.0

Ground Truth QMLE

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

a1

-1.0 0.0 1.00.5-0.5

-2.9 -4.3 7.1

a2

-1.0 0.0 1.00.5-0.5

1.6 -5.8 -6.4

U1

U2

Figure 11: Comparison of QMLE with linear value decomposition in a continuous variant of the “climbing”
game with two agents (Claus & Boutilier, 1998). Linear value decomposition leads to a suboptimal reward
of 5 due to its limited representational capacity (Q .= U1 + U2), whereas QMLE, by modeling the joint
Q-function without such constraints, enables decentralized arg max predictors that guide the agents to the
globally optimal reward of 11.

E.3 Curriculum shaping through growing action spaces

Growing of the action space as a form of curriculum shaping is an effective approach for improving learning
performance in complex problems. Nonetheless, existing approaches, such as that presented by Farquhar
et al. (2020), are restricted to discrete actions. Seyde et al. (2024) report improvements in sample efficiency
and solution smoothness on physical control tasks by adaptively increasing the granularity of discretization

28

Published in Transactions on Machine Learning Research (06/2025)

during training. This is because coarse action discretizations can provide exploration benefits and yield lower
variance updates early in training, while finer control resolutions later on help reduce bias at convergence.
However, due to the strict dependence of this approach on a class of action-out architectures (Tavakoli et al.,
2021; Seyde et al., 2023), it cannot ultimately transition from coarse discretization to the original continuous
action space.

On the other hand, QMLE can support learning with dynamically growing action spaces, including transitions
from finite to continuous supports in continuous action problems. We show this capability in a preliminary
experiment, where we start with a coarse bang-off-bang discretization and later shift to the original continuous
action space (Figure 12). This capacity positions QMLE, and more broadly our framework, as a promising
candidate for future research in the context of growing action spaces.

0 1M
Env step

0
250
500
750

1000

Re
tu

rn

Cartpole SwUp

0 5M
Env step

Hopper Hop

0 5M
Env step

Walker Run

curriculum discrete continuous

Figure 12: Learning curves for discrete, continuous, and discrete-to-continuous (“curriculum”) variants of
QMLE. Dashed lines mark the transition from discrete to continuous actions for the curriculum-based agents.

29

	Introduction
	Background
	The reinforcement learning problem
	Action-value learning
	Policy gradient methods
	Maximum likelihood estimation

	The principles underpinning scalability in policy gradients
	Approximate summation or integration using Monte Carlo methods
	Amortized maximization using maximum likelihood estimation
	Representation learning via action-in architectures

	Incorporating the principles into action-value learning
	Experiments
	Illustrative example
	Benchmarking results
	Ablation studies

	Conclusion
	Q-learning with maximum likelihood estimation
	Experimental details
	Model architecture
	Hyper-parameters
	Implementation
	Seeds and performance

	Supplementary benchmarking results
	Ablation studies
	Approximate maximization
	Amortized maximization
	Action-in architecture

	Future work
	Combining with other improvements
	Multiagent reinforcement learning via CTDE
	Curriculum shaping through growing action spaces

