

000  
001  
002  
003 CORNER GRADIENT DESCENT  
004  
005  
006  
007008 **Anonymous authors**  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053

Paper under double-blind review

## ABSTRACT

We consider SGD-type optimization of infinite-dimensional quadratic problems with power law spectral conditions. It is well-known that on such problems deterministic GD has loss convergence rates  $L_t = O(t^{-\zeta})$ , which can be improved to  $L_t = O(t^{-2\zeta})$  by using Heavy Ball with a non-stationary Jacobi-based schedule (and the latter rate is optimal among fixed schedules). However, in the mini-batch Stochastic GD setting, the sampling noise causes the Jacobi HB to diverge; accordingly no  $O(t^{-2\zeta})$  algorithm is known. In this paper we show that rates up to  $O(t^{-2\zeta})$  can be achieved by a generalized stationary SGD with infinite memory. We start by identifying generalized (S)GD algorithms with contours in the complex plane. We then show that contours that have a corner with external angle  $\theta\pi$  accelerate the plain GD rate  $O(t^{-\zeta})$  to  $O(t^{-\theta\zeta})$ . For deterministic GD, increasing  $\theta$  allows to achieve rates arbitrarily close to  $O(t^{-2\zeta})$ . However, in Stochastic GD, increasing  $\theta$  also amplifies the sampling noise, so in general  $\theta$  needs to be optimized by balancing the acceleration and noise effects. We prove that the optimal rate is given by  $\theta_{\max} = \min(2, \nu, \frac{2}{\zeta+1/\nu})$ , where  $\nu, \zeta$  are the exponents appearing in the capacity and source spectral conditions. Furthermore, using fast rational approximations of the power functions, we show that ideal corner algorithms can be efficiently approximated by practical finite-memory algorithms.

## 1 INTRODUCTION

It is well-known that Gradient Descent (GD) on quadratic problems can be accelerated using the additional momentum term (the “Heavy Ball” algorithm, Polyak (1964)). For ill-conditioned problem, Heavy Ball with a suitable non-stationary (“Jacobi”) predefined schedule allows to accelerate a power-law loss converge rate  $O(t^{-\zeta})$  to  $O(t^{-2\zeta})$ , i.e. double the exponent  $\zeta$  (Nemirovskiy & Polyak, 1984; Brakhage, 1987). This acceleration is the best possible for non-adaptive schedules.

On the other hand, for mini-batch *Stochastic* Gradient Descent (SGD) typically used in modern machine learning, the convergence rate picture is much more complicated, and much less is known about possible acceleration. The natural quadratic problem in this case is the fitting of a linear model with a sampled quadratic loss. In the power-law spectral setting, it was found in (Berthier et al., 2020) that plain SGD has two distinct convergent phases: either the sampling noise is weak and the SGD rate is the same  $O(t^{-\zeta})$  as for GD, or the convergence is slower due to the prevalence of the sampling noise. We refer to these two scenarios as *signal-* and *noise-dominated*, respectively.

This picture was refined in several other works (Paquette et al., 2024; Varre et al., 2021; Varre & Flammarion, 2022; Velikanov et al., 2023; Yarotsky & Velikanov, 2024). In particular, Yarotsky & Velikanov (2024) examined generalized SGDs with finite linear memory of any size (generalizing the momentum and similar terms) and proved that with stationary schedules they all have the same phase diagram as plain SGD (Figure 2 left); in particular, they do not accelerate the plain GD/SGD rate  $O(t^{-\zeta})$ .

On the other hand, the non-stationary Jacobi Heavy Ball accelerating deterministic GD from  $O(t^{-\zeta})$  to  $O(t^{-2\zeta})$  fails for mini-batch Stochastic GD: it eventually starts to diverge due to the accumulating sampling noise. Varre & Flammarion (2022) have proposed a non-stationary modification of SGD that achieves a quadratic acceleration, but only on finite-dimensional problems. Yarotsky & Velikanov (2024) have proposed a non-stationary modification of the Heavy Ball/momentum algorithm that is heuristically expected (but not yet proved) to achieve rates  $O(t^{-\theta\zeta})$  with some  $1 < \theta < 2$  on infinite-dimensional problems.

054 To sum up, the topic of SGD acceleration in ill-conditioned quadratic problems is far from settled.  
 055

056 In the present paper we propose an entirely new approach to acceleration of (S)GD that both provides  
 057 a new general geometric viewpoint and proves that, in a certain rigorous sense, SGD in the signal-  
 058 dominated regime can be accelerated from  $O(t^{-\zeta})$  to  $O(t^{-\theta\zeta})$  with  $\theta$  up to 2.

059 **Our contributions:**

- 060
- 061 **A view of generalized (S)GD as contours** (Section 3). We show that stationary (S)GD  
 062 algorithms with an arbitrary-sized linear memory can be identified with contours in the  
 063 complex plane. This identification leverages the characteristic polynomials  $\chi$  and the loss  
 064 expansions of memory- $M$  (S)GD from Yarotsky & Velikanov (2024). We show that all the  
 065 information needed to compute the loss evolution is contained in a response map  $\Psi : \{z \in \mathbb{C} : |z| \geq 1\} \rightarrow \mathbb{C}$  associated with  $\chi$ . The map  $\Psi$  gives rise to the contour  $\Psi(\{z \in \mathbb{C} : |z| = 1\})$  and, conversely, can be reconstructed, along with the algorithm, from a given  
 066 contour.
  - 067 **Corner algorithms** (Section 4). A crucial role is played by contours that have a corner  
 068 with external angle  $\theta\pi$ ,  $1 < \theta < 2$ . We prove that the respective algorithms accelerate  
 069 the plain GD rate  $O(t^{-\zeta})$  to  $O(t^{-\theta\zeta})$ . However, in Stochastic GD such algorithms have  
 070 the negative effect of amplifying the sampling noise. By balancing these two effects, we  
 071 establish the precise phase diagram of feasible accelerations of SGD under power-law spec-  
 072 tral assumptions (Figure 1 right). In particular, we identify three natural sub-phases in the  
 073 signal-dominated phase; in one of them acceleration up to  $O(t^{-2\zeta})$  is theoretically feasible.
  - 074 **Implementation of Corner (S)GD** (Section 5). Ideal corner algorithms require an infinite  
 075 memory, but can be fast approximated by finite-memory algorithms using fast rational ap-  
 076 proximations of the power function  $z^\theta$ . Experiments with a synthetic problem and MNIST  
 077 confirm the practical acceleration.

078 **2 BACKGROUND**

079 This section is largely based on the paper Yarotsky & Velikanov (2024) to which we refer for details.  
 080

081 **Gradient descent with memory.** Suppose that we wish to minimize a loss function  $L(\mathbf{w})$  on a  
 082 linear space  $\mathcal{H}$ . We consider gradient descent with size- $M$  memory that can be written as

$$083 \begin{pmatrix} \mathbf{w}_{t+1} - \mathbf{w}_t \\ \mathbf{u}_{t+1} \end{pmatrix} = \begin{pmatrix} -\alpha & \mathbf{b}^T \\ \mathbf{c} & D \end{pmatrix} \begin{pmatrix} \nabla L(\mathbf{w}_t) \\ \mathbf{u}_t \end{pmatrix}, \quad t = 0, 1, 2, \dots \quad (1)$$

084 The vector  $\mathbf{w}_t$  is the current step- $t$  approximation to an optimal vector  $\mathbf{w}_*$ , and  $\mathbf{u}_t$  is an auxiliary  
 085 vector representing the “memory” of the optimizer. These auxiliary vectors have the form  $\mathbf{u} =$   
 $(\mathbf{u}^{(1)}, \dots, \mathbf{u}^{(M)})^T$  with  $\mathbf{u}^{(m)} \in \mathcal{H}$  and can be viewed as size- $M$  columns with each component  
 086 belonging to  $\mathcal{H}$ . We refer to  $M$  as the *memory size*. The parameter  $\alpha$  (learning rate) is scalar,  
 087 the parameters  $\mathbf{b}, \mathbf{c}$  are  $M$ -dimensional column vectors, and  $D$  is a  $M \times M$  scalar matrix. The  
 088 algorithm can be viewed as a sequence of transformations of size- $(M + 1)$  column vectors  $(\frac{\mathbf{w}_t}{\mathbf{u}_t})$   
 089 with  $\mathcal{H}$ -valued components. Throughout the paper, we only consider *stationary* algorithms, in the  
 090 sense that the parameters  $\alpha, \mathbf{b}, \mathbf{c}, D$  do not depend on  $t$ . The simplest nontrivial special case of GD  
 091 with memory is Heavy Ball (Polyak, 1964), in which  $M = 1$  and  $\mathbf{u}_t$  is the momentum.  
 092

093 Our theoretical results will rely on the assumption that  $L$  is quadratic:  
 094

$$095 L(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{H} \mathbf{w} - \mathbf{w}^T \mathbf{q}, \quad (2)$$

096 with a strictly positive definite  $\mathbf{H}$ . Throughout the paper, we will mostly be interested in infinite-  
 097 dimensional Hilbert spaces  $\mathcal{H}$ , and we slightly abuse notation by interpreting  $\mathbf{w}^T$  as the co-vector  
 098 (linear functional  $\langle \mathbf{w}, \cdot \rangle$ ) associated with vector  $\mathbf{w}$ . We will assume that  $\mathbf{H}$  has a discrete spectrum  
 099 with ordered strictly positive eigenvalues  $\lambda_k \searrow 0$ .

100 Let  $\mathbf{w}_*$  be the optimal value of  $L$  such that  $\nabla L(\mathbf{w}_*) = \mathbf{H} \mathbf{w}_* - \mathbf{q} = 0$ , and denote  $\Delta \mathbf{w}_t = \mathbf{w}_t - \mathbf{w}_*$ .  
 101 Then, if  $\Delta \mathbf{w}_t$  and  $\mathbf{u}_t$  are eigenvectors of  $\mathbf{H}$  with eigenvalue  $\lambda$ , then

$$102 \begin{pmatrix} \Delta \mathbf{w}_{t+1} \\ \mathbf{u}_{t+1} \end{pmatrix} = S_\lambda \begin{pmatrix} \Delta \mathbf{w}_t \\ \mathbf{u}_t \end{pmatrix}, \quad S_\lambda = \begin{pmatrix} 1 & \mathbf{b}^T \\ 0 & D \end{pmatrix} + \lambda \begin{pmatrix} -\alpha \\ \mathbf{c} \end{pmatrix} (1, \mathbf{0}^T), \quad (3)$$

108 and the new vectors  $\Delta\mathbf{w}_{t+1}, \mathbf{u}_{t+1}$  are again eigenvectors of  $\mathbf{H}$  with eigenvalue  $\lambda$ . As a result,  
 109 performing the spectral decomposition of  $\Delta\mathbf{w}_t, \mathbf{u}_t$  reduces the original dynamics (1) acting in  $\mathcal{H} \otimes$   
 110  $\mathbb{R}^{M+1}$  to a  $\lambda$ -indexed collection of independent dynamics each acting in  $\mathbb{R}^{M+1}$ .

111 For quadratic  $L$ , evolution (1) admits an equivalent representation

$$113 \quad \mathbf{w}_{t+M+1} = \sum_{m=0}^M p_m \mathbf{w}_{t+m} + \sum_{m=0}^M q_m \nabla L(\mathbf{w}_{t+m}), \quad t = 0, 1, \dots, \quad (4)$$

116 with constants  $(p_m)_{m=0}^M, (q_m)_{m=0}^M$  such that  $\sum_{m=0}^M p_m = 1$ . These constants are found from the  
 117 characteristic polynomial

$$118 \quad \chi(\mu, \lambda) = \det(\mu - S_\lambda) = P(\mu) - \lambda Q(\mu), \quad P(\mu) = \mu^{M+1} - \sum_{m=0}^M p_m \mu^m, \quad Q(\mu) = \sum_{m=0}^M q_m \mu^m. \quad (5)$$

121 **Batch SGD with memory.** In batch Stochastic Gradient Descent (SGD), it is assumed that the  
 122 loss has the form  $L(\mathbf{w}) = \mathbb{E}_{\mathbf{x} \sim \rho} \ell(\mathbf{x}, \mathbf{w})$ , where  $\rho$  is some probability distribution of data points  $\mathbf{x}$   
 123 and  $\ell(\mathbf{x}, \mathbf{w})$  is the loss at the point  $\mathbf{x}$ . In the algorithm (1), we replace  $\nabla L$  by  $\nabla L_{B_t}$ , where  $B_t$  is a  
 124 random batch of  $|B|$  points sampled from distribution  $\rho$ , and  $\nabla L_B$  is the empirical approximation  
 125 to  $L$ , i.e.  $L_B(\mathbf{w}) = \frac{1}{|B|} \sum_{\mathbf{x} \in B} \ell(\mathbf{x}, \mathbf{w})$ . The samples  $B_t$  at different steps  $t$  are independent.

126 We assume  $\ell$  to have the quadratic form  $\ell(\mathbf{x}, \mathbf{w}) = \frac{1}{2}(\mathbf{x}^T \mathbf{w} - y(\mathbf{x}))^2$  for some scalar target function  
 127  $y(\mathbf{x})$ . Here, the inner product  $\mathbf{x}^T \mathbf{w}$  can be viewed as a linear model acting on the feature vector  $\mathbf{x}$ .  
 128 By projecting to the subspace of linear functions, we can assume w.l.o.g. that the target function  
 129  $y(\mathbf{x})$  is itself linear in  $\mathbf{x}$ , i.e.  $f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}_*$  with some optimal parameter vector  $\mathbf{w}_*$ . (Later we  
 130 will slightly weaken this assumption to also cover *unfeasible* solutions  $\mathbf{w}_*$ .) Then the full loss is  
 131 quadratic as in Eq. (2):  $L(\mathbf{w}) = \mathbb{E}_{\mathbf{x} \sim \rho} \frac{1}{2}(\mathbf{x}^T \Delta\mathbf{w})^2 = \frac{1}{2} \Delta\mathbf{w}^T \mathbf{H} \Delta\mathbf{w}$ , where  $\Delta\mathbf{w} = \mathbf{w} - \mathbf{w}_*$  and the  
 132 Hessian  $\mathbf{H} = \mathbb{E}_{\mathbf{x} \sim \rho} [\mathbf{x} \mathbf{x}^T]$ .

134 **Mean loss evolution, SE approximation, and the propagator expansion.** Since the trajectory  
 135  $\mathbf{w}_t$  in SGD is random, it is convenient to study the deterministic trajectory of batch-averaged losses  
 136  $L_t = \mathbb{E}_{B_1, \dots, B_{t-1}} L(\mathbf{w}_t)$ . The sequence  $L_t$  can be described exactly in terms of the second moments  
 137 of  $\mathbf{w}_t, \mathbf{u}_t$  that admit exact evolution equations. An important aspect of this evolution is that it  
 138 involves 4'th order moments of the data distribution  $\rho$  and so cannot in general be solved using only  
 139 the second-order information available in the Hessian  $\mathbf{H} = \mathbb{E}_{\mathbf{x} \sim \rho} [\mathbf{x} \mathbf{x}^T]$ .

140 A convenient approach to handle this difficulty is the *Spectrally-Expressible (SE) approximation*  
 141 proposed in Velikanov et al. (2023). It consists in assuming that there exist constants  $\tau_1, \tau_2$  such that  
 142 for all positive definite operators  $\mathbf{C}$  in  $\mathcal{H}$

$$143 \quad \mathbb{E}_{\mathbf{x} \sim \rho} [\mathbf{x} \mathbf{x}^T \mathbf{C} \mathbf{x} \mathbf{x}^T] \approx \tau_1 \text{Tr}[\mathbf{H} \mathbf{C}] \mathbf{H} - (\tau_2 - 1) \mathbf{H} \mathbf{C} \mathbf{H}. \quad (6)$$

145 In fact, this approximation holds *exactly* for some natural types of distribution  $\rho$  (translation-  
 146 invariant, gaussian). Otherwise, if the r.h.s. is only an upper or lower bound for the l.h.s., this implies  
 147 a respective relation between the actual losses and the losses computed under the SE approximation.  
 148 Theoretical predictions obtained under assumption (6) show good quantitative agreement with ex-  
 149 periment on real data. We refer to Velikanov et al. (2023); Yarotsky & Velikanov (2024) for further  
 150 discussion of the SE approximation.

151 The main benefit of the SE approximation is that it allows to write a convenient loss expansion

$$152 \quad L_t = \frac{1}{2} \left( V_{t+1} + \sum_{m=1}^t \sum_{0 < t_1 < \dots < t_m < t+1} U_{t+1-t_m} U_{t_m-t_{m-1}} U_{t_{m-1}-t_{m-2}} \cdots U_{t_2-t_1} V_{t_1} \right) \quad (7)$$

155 with scalar *noise propagators*  $U_t$  and *signal propagators*  $V_t$ . The signal propagators describe the  
 156 error reduction during optimization in the absence of sampling noise, while the noise propagators  
 157 describe the perturbing effect of sampling noise injected at times  $t_1, \dots, t_m$ .

158 For our main results in Sections 3, 4, we will assume that  $\tau_2 = 0$ , implying particularly simple  
 159 formulas for  $U_t, V_t$ :

$$160 \quad U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 |(\mathbf{1} \mathbf{0}^T) S_\lambda^{t-1} \left( \begin{smallmatrix} -\alpha \\ \mathbf{c} \end{smallmatrix} \right)|^2, \quad V_t = \sum_{k=1}^{\infty} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 |(\mathbf{1} \mathbf{0}^T) S_\lambda^{t-1} \left( \begin{smallmatrix} 1 \\ \mathbf{0} \end{smallmatrix} \right)|^2, \quad (8)$$

162 where  $\mathbf{e}_k$  is a normalized eigenvector for  $\lambda_k$ , and it is also assumed that optimization starts from  
 163  $\mathbf{w}_0 = 0$  so that  $\Delta \mathbf{w}_0 = \mathbf{w}_0 - \mathbf{w}_* = -\mathbf{w}_*$ .

164 Importantly, the batch size  $|B|$  affects  $L_t$  only through the denominator in the coefficient in  $U_t$ . The  
 165 deterministic GD corresponds to the limit  $|B| \rightarrow \infty$ : in this limit  $U_t \equiv 0$  and  $L_t = \frac{1}{2}V_{t+1}$ .

167 **Convergence/divergence regimes.** Given expansion (7), we can deduce various convergence  
 168 properties of the loss from the properties of the propagators  $V_t, U_t$ .

170 **Theorem 1** (Yarotsky & Velikanov (2024)). *Let numbers  $L_t$  be given by expansion (7) with some  
 171  $U_t \geq 0, V_t \geq 0$ . Let  $U_\Sigma = \sum_{t=1}^{\infty} U_t$  and  $V_\Sigma = \sum_{t=1}^{\infty} V_t$ .*

172 1. **[Convergence]** Suppose that  $U_\Sigma < 1$ . At  $t \rightarrow \infty$ , if  $V_t = O(1)$  (respectively,  $V_t = o(1)$ ),  
 173 then also  $L_t = O(1)$  (respectively,  $L_t = o(1)$ ).

174 2. **[Divergence]** If  $U_\Sigma > 1$  and  $V_t > 0$  for at least one  $t$ , then  $\sup_{t=1,2,\dots} L_t = \infty$ .

175 3. **[Signal-dominated regime]** Suppose that there exist constants  $\xi_V, C_V > 0$  such that  $V_t =$   
 176  $C_V t^{-\xi_V} (1 + o(1))$  as  $t \rightarrow \infty$ . Suppose also that  $U_\Sigma < 1$  and  $U_t = O(t^{-\xi_U})$  with some  
 177  $\xi_U > \max(\xi_V, 1)$ . Then

$$178 \quad 180 \quad 182 \quad 184 \quad 186 \quad 188 \quad 190 \quad 192 \quad 194 \quad 196 \quad 198 \quad 200 \quad 202 \quad 204 \quad 206 \quad 208 \quad 210 \quad 212 \quad 214 \quad 216 \quad 218 \quad 220 \quad 222 \quad 224 \quad 226 \quad 228 \quad 230 \quad 232 \quad 234 \quad 236 \quad 238 \quad 240 \quad 242 \quad 244 \quad 246 \quad 248 \quad 250 \quad 252 \quad 254 \quad 256 \quad 258 \quad 260 \quad 262 \quad 264 \quad 266 \quad 268 \quad 270 \quad 272 \quad 274 \quad 276 \quad 278 \quad 280 \quad 282 \quad 284 \quad 286 \quad 288 \quad 290 \quad 292 \quad 294 \quad 296 \quad 298 \quad 300 \quad 302 \quad 304 \quad 306 \quad 308 \quad 310 \quad 312 \quad 314 \quad 316 \quad 318 \quad 320 \quad 322 \quad 324 \quad 326 \quad 328 \quad 330 \quad 332 \quad 334 \quad 336 \quad 338 \quad 340 \quad 342 \quad 344 \quad 346 \quad 348 \quad 350 \quad 352 \quad 354 \quad 356 \quad 358 \quad 360 \quad 362 \quad 364 \quad 366 \quad 368 \quad 370 \quad 372 \quad 374 \quad 376 \quad 378 \quad 380 \quad 382 \quad 384 \quad 386 \quad 388 \quad 390 \quad 392 \quad 394 \quad 396 \quad 398 \quad 400 \quad 402 \quad 404 \quad 406 \quad 408 \quad 410 \quad 412 \quad 414 \quad 416 \quad 418 \quad 420 \quad 422 \quad 424 \quad 426 \quad 428 \quad 430 \quad 432 \quad 434 \quad 436 \quad 438 \quad 440 \quad 442 \quad 444 \quad 446 \quad 448 \quad 450 \quad 452 \quad 454 \quad 456 \quad 458 \quad 460 \quad 462 \quad 464 \quad 466 \quad 468 \quad 470 \quad 472 \quad 474 \quad 476 \quad 478 \quad 480 \quad 482 \quad 484 \quad 486 \quad 488 \quad 490 \quad 492 \quad 494 \quad 496 \quad 498 \quad 500 \quad 502 \quad 504 \quad 506 \quad 508 \quad 510 \quad 512 \quad 514 \quad 516 \quad 518 \quad 520 \quad 522 \quad 524 \quad 526 \quad 528 \quad 530 \quad 532 \quad 534 \quad 536 \quad 538 \quad 540 \quad 542 \quad 544 \quad 546 \quad 548 \quad 550 \quad 552 \quad 554 \quad 556 \quad 558 \quad 560 \quad 562 \quad 564 \quad 566 \quad 568 \quad 570 \quad 572 \quad 574 \quad 576 \quad 578 \quad 580 \quad 582 \quad 584 \quad 586 \quad 588 \quad 590 \quad 592 \quad 594 \quad 596 \quad 598 \quad 600 \quad 602 \quad 604 \quad 606 \quad 608 \quad 610 \quad 612 \quad 614 \quad 616 \quad 618 \quad 620 \quad 622 \quad 624 \quad 626 \quad 628 \quad 630 \quad 632 \quad 634 \quad 636 \quad 638 \quad 640 \quad 642 \quad 644 \quad 646 \quad 648 \quad 650 \quad 652 \quad 654 \quad 656 \quad 658 \quad 660 \quad 662 \quad 664 \quad 666 \quad 668 \quad 670 \quad 672 \quad 674 \quad 676 \quad 678 \quad 680 \quad 682 \quad 684 \quad 686 \quad 688 \quad 690 \quad 692 \quad 694 \quad 696 \quad 698 \quad 700 \quad 702 \quad 704 \quad 706 \quad 708 \quad 710 \quad 712 \quad 714 \quad 716 \quad 718 \quad 720 \quad 722 \quad 724 \quad 726 \quad 728 \quad 730 \quad 732 \quad 734 \quad 736 \quad 738 \quad 740 \quad 742 \quad 744 \quad 746 \quad 748 \quad 750 \quad 752 \quad 754 \quad 756 \quad 758 \quad 760 \quad 762 \quad 764 \quad 766 \quad 768 \quad 770 \quad 772 \quad 774 \quad 776 \quad 778 \quad 780 \quad 782 \quad 784 \quad 786 \quad 788 \quad 790 \quad 792 \quad 794 \quad 796 \quad 798 \quad 800 \quad 802 \quad 804 \quad 806 \quad 808 \quad 810 \quad 812 \quad 814 \quad 816 \quad 818 \quad 820 \quad 822 \quad 824 \quad 826 \quad 828 \quad 830 \quad 832 \quad 834 \quad 836 \quad 838 \quad 840 \quad 842 \quad 844 \quad 846 \quad 848 \quad 850 \quad 852 \quad 854 \quad 856 \quad 858 \quad 860 \quad 862 \quad 864 \quad 866 \quad 868 \quad 870 \quad 872 \quad 874 \quad 876 \quad 878 \quad 880 \quad 882 \quad 884 \quad 886 \quad 888 \quad 890 \quad 892 \quad 894 \quad 896 \quad 898 \quad 900 \quad 902 \quad 904 \quad 906 \quad 908 \quad 910 \quad 912 \quad 914 \quad 916 \quad 918 \quad 920 \quad 922 \quad 924 \quad 926 \quad 928 \quad 930 \quad 932 \quad 934 \quad 936 \quad 938 \quad 940 \quad 942 \quad 944 \quad 946 \quad 948 \quad 950 \quad 952 \quad 954 \quad 956 \quad 958 \quad 960 \quad 962 \quad 964 \quad 966 \quad 968 \quad 970 \quad 972 \quad 974 \quad 976 \quad 978 \quad 980 \quad 982 \quad 984 \quad 986 \quad 988 \quad 990 \quad 992 \quad 994 \quad 996 \quad 998 \quad 1000 \quad 1002 \quad 1004 \quad 1006 \quad 1008 \quad 1010 \quad 1012 \quad 1014 \quad 1016 \quad 1018 \quad 1020 \quad 1022 \quad 1024 \quad 1026 \quad 1028 \quad 1030 \quad 1032 \quad 1034 \quad 1036 \quad 1038 \quad 1040 \quad 1042 \quad 1044 \quad 1046 \quad 1048 \quad 1050 \quad 1052 \quad 1054 \quad 1056 \quad 1058 \quad 1060 \quad 1062 \quad 1064 \quad 1066 \quad 1068 \quad 1070 \quad 1072 \quad 1074 \quad 1076 \quad 1078 \quad 1080 \quad 1082 \quad 1084 \quad 1086 \quad 1088 \quad 1090 \quad 1092 \quad 1094 \quad 1096 \quad 1098 \quad 1100 \quad 1102 \quad 1104 \quad 1106 \quad 1108 \quad 1110 \quad 1112 \quad 1114 \quad 1116 \quad 1118 \quad 1120 \quad 1122 \quad 1124 \quad 1126 \quad 1128 \quad 1130 \quad 1132 \quad 1134 \quad 1136 \quad 1138 \quad 1140 \quad 1142 \quad 1144 \quad 1146 \quad 1148 \quad 1150 \quad 1152 \quad 1154 \quad 1156 \quad 1158 \quad 1160 \quad 1162 \quad 1164 \quad 1166 \quad 1168 \quad 1170 \quad 1172 \quad 1174 \quad 1176 \quad 1178 \quad 1180 \quad 1182 \quad 1184 \quad 1186 \quad 1188 \quad 1190 \quad 1192 \quad 1194 \quad 1196 \quad 1198 \quad 1200 \quad 1202 \quad 1204 \quad 1206 \quad 1208 \quad 1210 \quad 1212 \quad 1214 \quad 1216 \quad 1218 \quad 1220 \quad 1222 \quad 1224 \quad 1226 \quad 1228 \quad 1230 \quad 1232 \quad 1234 \quad 1236 \quad 1238 \quad 1240 \quad 1242 \quad 1244 \quad 1246 \quad 1248 \quad 1250 \quad 1252 \quad 1254 \quad 1256 \quad 1258 \quad 1260 \quad 1262 \quad 1264 \quad 1266 \quad 1268 \quad 1270 \quad 1272 \quad 1274 \quad 1276 \quad 1278 \quad 1280 \quad 1282 \quad 1284 \quad 1286 \quad 1288 \quad 1290 \quad 1292 \quad 1294 \quad 1296 \quad 1298 \quad 1300 \quad 1302 \quad 1304 \quad 1306 \quad 1308 \quad 1310 \quad 1312 \quad 1314 \quad 1316 \quad 1318 \quad 1320 \quad 1322 \quad 1324 \quad 1326 \quad 1328 \quad 1330 \quad 1332 \quad 1334 \quad 1336 \quad 1338 \quad 1340 \quad 1342 \quad 1344 \quad 1346 \quad 1348 \quad 1350 \quad 1352 \quad 1354 \quad 1356 \quad 1358 \quad 1360 \quad 1362 \quad 1364 \quad 1366 \quad 1368 \quad 1370 \quad 1372 \quad 1374 \quad 1376 \quad 1378 \quad 1380 \quad 1382 \quad 1384 \quad 1386 \quad 1388 \quad 1390 \quad 1392 \quad 1394 \quad 1396 \quad 1398 \quad 1400 \quad 1402 \quad 1404 \quad 1406 \quad 1408 \quad 1410 \quad 1412 \quad 1414 \quad 1416 \quad 1418 \quad 1420 \quad 1422 \quad 1424 \quad 1426 \quad 1428 \quad 1430 \quad 1432 \quad 1434 \quad 1436 \quad 1438 \quad 1440 \quad 1442 \quad 1444 \quad 1446 \quad 1448 \quad 1450 \quad 1452 \quad 1454 \quad 1456 \quad 1458 \quad 1460 \quad 1462 \quad 1464 \quad 1466 \quad 1468 \quad 1470 \quad 1472 \quad 1474 \quad 1476 \quad 1478 \quad 1480 \quad 1482 \quad 1484 \quad 1486 \quad 1488 \quad 1490 \quad 1492 \quad 1494 \quad 1496 \quad 1498 \quad 1500 \quad 1502 \quad 1504 \quad 1506 \quad 1508 \quad 1510 \quad 1512 \quad 1514 \quad 1516 \quad 1518 \quad 1520 \quad 1522 \quad 1524 \quad 1526 \quad 1528 \quad 1530 \quad 1532 \quad 1534 \quad 1536 \quad 1538 \quad 1540 \quad 1542 \quad 1544 \quad 1546 \quad 1548 \quad 1550 \quad 1552 \quad 1554 \quad 1556 \quad 1558 \quad 1560 \quad 1562 \quad 1564 \quad 1566 \quad 1568 \quad 1570 \quad 1572 \quad 1574 \quad 1576 \quad 1578 \quad 1580 \quad 1582 \quad 1584 \quad 1586 \quad 1588 \quad 1590 \quad 1592 \quad 1594 \quad 1596 \quad 1598 \quad 1600 \quad 1602 \quad 1604 \quad 1606 \quad 1608 \quad 1610 \quad 1612 \quad 1614 \quad 1616 \quad 1618 \quad 1620 \quad 1622 \quad 1624 \quad 1626 \quad 1628 \quad 1630 \quad 1632 \quad 1634 \quad 1636 \quad 1638 \quad 1640 \quad 1642 \quad 1644 \quad 1646 \quad 1648 \quad 1650 \quad 1652 \quad 1654 \quad 1656 \quad 1658 \quad 1660 \quad 1662 \quad 1664 \quad 1666 \quad 1668 \quad 1670 \quad 1672 \quad 1674 \quad 1676 \quad 1678 \quad 1680 \quad 1682 \quad 1684 \quad 1686 \quad 1688 \quad 1690 \quad 1692 \quad 1694 \quad 1696 \quad 1698 \quad 1700 \quad 1702 \quad 1704 \quad 1706 \quad 1708 \quad 1710 \quad 1712 \quad 1714 \quad 1716 \quad 1718 \quad 1720 \quad 1722 \quad 1724 \quad 1726 \quad 1728 \quad 1730 \quad 1732 \quad 1734 \quad 1736 \quad 1738 \quad 1740 \quad 1742 \quad 1744 \quad 1746 \quad 1748 \quad 1750 \quad 1752 \quad 1754 \quad 1756 \quad 1758 \quad 1760 \quad 1762 \quad 1764 \quad 1766 \quad 1768 \quad 1770 \quad 1772 \quad 1774 \quad 1776 \quad 1778 \quad 1780 \quad 1782 \quad 1784 \quad 1786 \quad 1788 \quad 1790 \quad 1792 \quad 1794 \quad 1796 \quad 1798 \quad 1800 \quad 1802 \quad 1804 \quad 1806 \quad 1808 \quad 1810 \quad 1812 \quad 1814 \quad 1816 \quad 1818 \quad 1820 \quad 1822 \quad 1824 \quad 1826 \quad 1828 \quad 1830 \quad 1832 \quad 1834 \quad 1836 \quad 1838 \quad 1840 \quad 1842 \quad 1844 \quad 1846 \quad 1848 \quad 1850 \quad 1852 \quad 1854 \quad 1856 \quad 1858 \quad 1860 \quad 1862 \quad 1864 \quad 1866 \quad 1868 \quad 1870 \quad 1872 \quad 1874 \quad 1876 \quad 1878 \quad 1880 \quad 1882 \quad 1884 \quad 1886 \quad 1888 \quad 1890 \quad 1892 \quad 1894 \quad 1896 \quad 1898 \quad 1900 \quad 1902 \quad 1904 \quad 1906 \quad 1908 \quad 1910 \quad 1912 \quad 1914 \quad 1916 \quad 1918 \quad 1920 \quad 1922 \quad 1924 \quad 1926 \quad 1928 \quad 1930 \quad 1932 \quad 1934 \quad 1936 \quad 1938 \quad 1940 \quad 1942 \quad 1944 \quad 1946 \quad 1948 \quad 1950 \quad 1952 \quad 1954 \quad 1956 \quad 1958 \quad 1960 \quad 1962 \quad 1964 \quad 1966 \quad 1968 \quad 1970 \quad 1972 \quad 1974 \quad 1976 \quad 1978 \quad 1980 \quad 1982 \quad 1984 \quad 1986 \quad 1988 \quad 1990 \quad 1992 \quad 1994 \quad 1996 \quad 1998 \quad 2000 \quad 2002 \quad 2004 \quad 2006 \quad 2008 \quad 2010 \quad 2012 \quad 2014 \quad 2016 \quad 2018 \quad 2020 \quad 2022 \quad 2024 \quad 2026 \quad 2028 \quad 2030 \quad 2032 \quad 2034 \quad 2036 \quad 2038 \quad 2040 \quad 2042 \quad 2044 \quad 2046 \quad 2048 \quad 2050 \quad 2052 \quad 2054 \quad 2056 \quad 2058 \quad 2060 \quad 2062 \quad 2064 \quad 2066 \quad 2068 \quad 2070 \quad 2072 \quad 2074 \quad 2076 \quad 2078 \quad 2080 \quad 2082 \quad 2084 \quad 2086 \quad 2088 \quad 2090 \quad 2092 \quad 2094 \quad 2096 \quad 2098 \quad 2100 \quad 2102 \quad 2104 \quad 2106 \quad 2108 \quad 2110 \quad 2112 \quad 2114 \quad 2116 \quad 2118 \quad 2120 \quad 2122 \quad 2124 \quad 2126 \quad 2128 \quad 2130 \quad 2132 \quad 2134 \quad 2136 \quad 2138 \quad 2140 \quad 2142 \quad 2144 \quad 2146 \quad 2148 \quad 2150 \quad 2152 \quad 2154 \quad 2156 \quad 2158 \quad 2160 \quad 2162 \quad 2164 \quad 2166 \quad 2168 \quad 2170 \quad 2172 \quad 2174 \quad 2176 \quad 2178 \quad 2180 \quad 2182 \quad 2184 \quad 2186 \quad 2188 \quad 2190 \quad 2192 \quad 2194 \quad 2196 \quad 2198 \quad 2200 \quad 2202 \quad 2204 \quad 2206 \quad 2208 \quad 2210 \quad 2212 \quad 2214 \quad 2216 \quad 2218 \quad 2220 \quad 2222 \quad 2224 \quad 2226 \quad 2228 \quad 2230 \quad 2232 \quad 2234 \quad 2236 \quad 2238 \quad 2240 \quad 2242 \quad 2244 \quad 2246 \quad 2248 \quad 2250 \quad 2252 \quad 2254 \quad 2256 \quad 2258 \quad 2260 \quad 2262 \quad 2264 \quad 2266 \quad 2268 \quad 2270 \quad 2272 \quad 2274 \quad 2276 \quad 2278 \quad 2280 \quad 2282 \quad 2284 \quad 2286 \quad 2288 \quad 2290 \quad 2292 \quad 2294 \quad 2296 \quad 2298 \quad 2300 \quad 2302 \quad 2304 \quad 2306 \quad 2308 \quad 2310 \quad 2312 \quad 2314 \quad 2316 \quad 2318 \quad 2320 \quad 2322 \quad 2324 \quad 2326 \quad 2328 \quad 2330 \quad 2332 \quad 2334 \quad 2336 \quad 2338 \quad 2340 \quad 2342 \quad 2344 \quad 2346 \quad 2348 \quad 2350 \quad 2352 \quad 2354 \quad 2356 \quad 2358 \quad 2360 \quad 2362 \quad 2364 \quad 2366 \quad 2368 \quad 2370 \quad 2372 \quad 2374 \quad 2376 \quad 2378 \quad 2380 \quad 2382 \quad 2384 \quad 2386 \quad 2388 \quad 2390 \quad 2392 \quad 2394 \quad 2396 \quad 2398 \quad 2400 \quad 2402 \quad 2404 \quad 2406 \quad 2408 \quad 2410 \quad 2412 \quad 2414 \quad 2416 \quad 2418 \quad 2420 \quad 2422 \quad 2424 \quad 2426 \quad 2428 \quad 2430 \quad 2432 \quad 2434 \quad 2436 \quad 2438 \quad 2440 \quad 2442 \quad 2444 \quad 2446 \quad 2448 \quad 2450 \quad 2452 \quad 2454 \quad 2456 \quad 2458 \quad 2460 \quad 2462 \quad 2464 \quad 2466 \quad 2468 \quad 2470 \quad 2472 \quad 2474 \quad 2476 \quad 2478 \quad 2480 \quad 2482 \quad 2484 \quad 2486 \quad 2488 \quad 2490 \quad 2492 \quad 2494 \quad 2496 \quad 2498 \quad 2500 \quad 2502 \quad 2504 \quad 2506 \quad 2508 \quad 2510 \quad 2512 \quad 2514 \quad 2516 \quad 2518 \quad 2520 \quad 2522 \quad 2524 \quad 2526 \quad 2528 \quad 2530 \quad 2532 \quad 2534 \quad 2536 \quad 2538 \quad 2540 \quad 2542 \quad 2544 \quad 2546 \quad 2548 \quad 2550 \quad 2552 \quad 2554 \quad 2556 \quad 2558 \quad 2560 \quad 2562 \quad 2564 \quad 2566 \quad 2568 \quad 2570 \quad 2572 \quad 2574 \quad 2576 \quad 2578 \quad 2580 \quad 2582 \quad 2584 \quad 2586 \quad 2588 \quad 2590 \quad 2592 \quad 2594 \quad 2596 \quad 2598 \quad 2600 \quad 2602 \quad 2604 \quad 2606 \quad 2608 \quad 2610 \quad 2612 \quad 2614 \quad 2616 \quad 2618 \quad 2620 \quad 2622 \quad 2624 \quad 2626 \quad 2628 \quad 2630 \quad 2632 \quad 2634 \quad 2636 \quad 2638 \quad 2640 \quad 2642 \quad 2644 \quad 2646 \quad 2648 \quad 2650 \quad 2652 \quad 2654 \quad 2656 \quad 2658 \quad 2660 \quad 2662 \quad 2664 \quad 2666 \quad 2668 \quad 2670 \quad 2672 \quad 2674 \quad 2676 \quad 2678 \quad 2680 \quad 2682 \quad 2684 \quad 2686 \quad 2688 \quad 2690 \quad 2692 \quad 2694 \quad 2696 \quad 2698 \quad 2700 \quad 2702 \quad 2704 \quad 2706 \quad 2708 \quad 2710 \quad 2712 \quad 2714 \quad 2716 \quad 2718 \quad 2720 \quad 2722 \quad 2724 \quad 2726 \quad 2728 \quad 2730 \quad 2732 \quad 2734 \quad 2736 \quad 2738 \quad 2740 \quad 2742 \quad 2744 \quad 2746 \quad 2748 \quad 2750 \quad 2752 \quad 2754 \quad 2756 \quad 2758 \quad 2760 \quad 2762 \quad 2764 \quad 2766 \quad 2768 \quad 2770 \quad 2772 \quad 2774 \quad 2776 \quad 2778 \quad 2780 \quad 2782 \quad 2784 \quad 2786 \quad 2788 \quad 2790 \quad 2792 \quad 2794 \quad 2796 \quad 2798 \quad 2800 \quad 2802 \quad 2804 \quad 2806 \quad 2808 \quad 2810 \quad 2812 \quad 2814 \quad 2816 \quad 2818 \quad 2820 \quad 2822 \quad 2824 \quad 2826 \quad 2828 \quad 2830 \quad 2832 \quad 2834 \quad 2836 \quad 2838 \quad 2840 \quad 2842 \quad 2844 \quad 2846 \quad 2848 \quad 2850 \quad 2852 \quad 2854 \quad 2856 \quad 2858 \quad 2860 \quad 2862 \quad 2864 \quad 2866 \quad 2868 \quad 2870 \quad 2872 \quad 2874 \quad 2876 \quad 2878 \quad 2880 \quad 2882 \quad 2884 \quad 2886 \quad 2888 \quad 2890 \quad 2892 \quad 2894 \quad 2896 \quad 2898 \quad 2900 \quad 2902 \quad 2904 \quad 2906 \quad 2908 \quad 2910 \quad 2912 \quad 2914 \quad 2916 \quad 2918 \quad 2920 \quad 2922 \quad 2924 \quad 2926 \quad 2928 \quad 2930 \quad 2932 \quad 2934 \quad 2936 \quad 2938 \quad 2940 \quad 2942 \quad 2944 \quad 2946 \quad 2948 \quad 2950 \quad 2952 \quad 2954 \quad 2956 \quad 2958 \quad 2960 \quad 2962 \quad 2964 \quad 2966 \quad 2968 \quad 2970 \quad 2972 \quad 2974 \quad 2976 \quad 2978 \quad 2980 \quad 2982 \quad 2984 \quad 2986 \quad 2988 \quad 2990 \quad 2992 \quad 2994 \quad 2996 \quad 2998 \quad 3000 \quad 3002 \quad 3004 \quad 3006 \quad 3008 \quad 3010 \quad 3012 \quad 3014 \quad 3016 \quad 3018 \quad 3020 \quad 3022 \quad 3024 \quad 3026 \quad 3028 \quad 3030 \quad 3032 \quad 3034 \quad 3036 \quad 3038 \quad 3040 \quad 3042 \quad 3044 \quad 3046 \quad 3048 \quad 3050 \quad 3052 \quad 3054 \quad 3056 \quad 3058 \quad 3060 \quad 3062 \quad 3064 \quad 3066 \quad 3068 \quad 3070 \quad 3072 \quad 3074 \quad 3076 \quad 3078 \quad 3080 \quad 3082 \quad 3084 \quad 3086 \quad 3088 \quad 3090 \quad 3092 \quad 3094 \quad 3096 \quad 3098 \quad 3100 \quad 3102 \quad 3104 \quad 3106 \quad 3108 \quad 3110 \quad 3112 \quad 3114 \quad 3116 \quad 3118 \quad 3120 \quad 3122 \quad 3124 \quad 3126 \quad 3128 \quad 3130 \quad 3132 \quad 3134 \quad 3136 \quad 3138 \quad 3140 \quad 3142 \quad 3144 \quad 3146 \quad 3148 \quad 3150 \quad 3152 \quad 3154 \quad 3156 \quad 3158 \quad 3160 \quad 3162 \quad 3164 \quad 3166 \quad 3168 \quad 3170 \quad 3172 \quad 3174 \quad 3176 \quad 3178 \quad 3180 \quad 3182 \quad 3184 \quad 3186 \quad 3188 \quad 3190 \quad 3192 \quad 3194 \quad 3196 \quad 3198 \quad 3200 \quad 3202 \quad 3204 \quad 3206 \quad 3208 \quad 3210 \quad 3212 \quad 3214 \quad 3216 \quad 3218 \quad 3220 \quad 3222 \quad 3224 \quad 3226 \quad 3228 \quad 3230 \quad 3232 \quad 3234 \quad 3236 \quad 3238 \quad 3240 \quad 3242 \quad 3244 \quad 3246 \quad 3248 \quad 3250 \quad 3252 \quad 3254 \quad$$

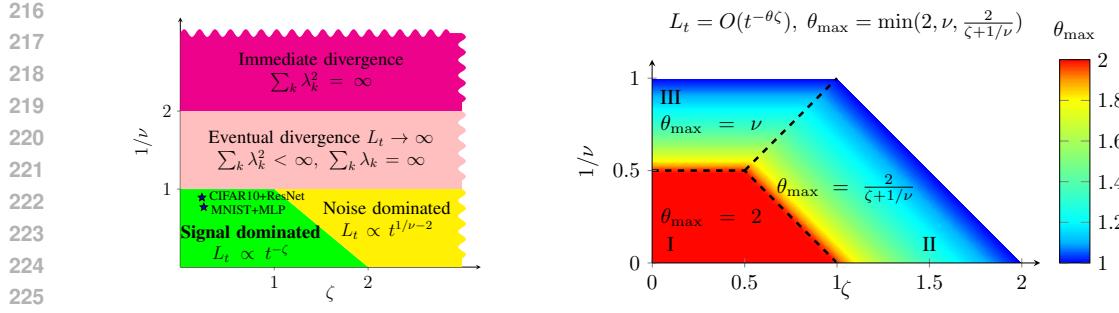


Figure 1: **Left:** The phase diagram of stationary finite-memory SGD from Velikanov et al. (2023); Yarotsky & Velikanov (2024). **Right:** Maximum acceleration factor  $\theta_{\max} = \min(2, \nu, \frac{2}{\zeta+1/\nu})$  for Corner SGD in the signal-dominated regime (see Theorem 4).

the effective learning rate

$$\alpha_{\text{eff}} = -Q(1) / \frac{dP}{d\mu}(1), \quad (13)$$

and assume that  $\alpha_{\text{eff}} > 0$ . Then, under spectral assumptions (11), (12) with  $\nu > \frac{1}{2}$ , the propagators  $V_t, U_t$  given by Eq. (8) obey, as  $t \rightarrow \infty$ ,

$$V_t = (1 + o(1)) Q \Gamma(\zeta + 1) (2\alpha_{\text{eff}} t)^{-\zeta}, \quad (14)$$

$$U_t = (1 + o(1)) \frac{(\alpha_{\text{eff}} \Lambda)^{1/\nu} \tau_1 \Gamma(2 - 1/\nu)}{|B| \nu} (2t)^{1/\nu - 2}. \quad (15)$$

Combined with Theorem 1, this result yields the  $(\zeta, 1/\nu)$ -phase diagram shown in Figure 1 left. In particular, the region  $\nu > 1, 0 < \zeta < 2 - 1/\nu$  represents the signal-dominated phase in which the noise effects are relatively weak and the loss convergence  $L_t \propto t^{-\zeta}$  has the same exponent  $\zeta$  as plain deterministic GD. This holds for all stationary finite- $M$  algorithms and so such algorithms cannot accelerate the exponent. In the present paper we will focus on the signal-dominated phase and propose an ‘‘infinite-memory’’ generalization of SGD that does accelerate the exponent.

### 3 THE CONTOUR VIEW OF GENERALIZED (S)GD

We consider the propagator expansion (7) as a basis for our arguments. Observe that we can write the expression  $(\mathbf{1} \mathbf{o}^T) S_\lambda^t (\mathbf{-c}^T)$  appearing in the definition of propagator  $U_t$  in Eq. (8) as

$$(\mathbf{1} \mathbf{o}^T) S_\lambda^t (\mathbf{-c}^T) = \frac{1}{2\pi i} \oint_{|\mu|=r} \mu^t (\mathbf{1} \mathbf{o}^T) (\mu - S_\lambda)^{-1} (\mathbf{-c}^T) d\mu, \quad (16)$$

where  $|\mu| = r$  is a contour in the complex plane encircling all the eigenvalues of  $S_\lambda$ . Next, simple calculation (see Section A) shows that

$$(\mathbf{1} \mathbf{o}^T) (\mu - S_\lambda)^{-1} (\mathbf{-c}^T) = \frac{Q(\mu)}{P(\mu) - \lambda Q(\mu)} = \frac{1}{\frac{P(\mu)}{Q(\mu)} - \lambda} = \frac{1}{\Psi(\mu) - \lambda}, \quad (17)$$

where  $P(\mu) - \lambda Q(\mu)$  is the characteristic polynomial of  $S_\lambda$  introduced in Eq. (5), and

$$\Psi(\mu) = \frac{P(\mu)}{Q(\mu)}. \quad (18)$$

We see, in particular, that the propagators  $U_t$  depend on the algorithm parameters only through the function  $\Psi$ :

$$U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 \left| \frac{1}{2\pi i} \oint_{|\mu|=r} \frac{\mu^{t-1} d\mu}{\Psi(\mu) - \lambda} \right|^2. \quad (19)$$

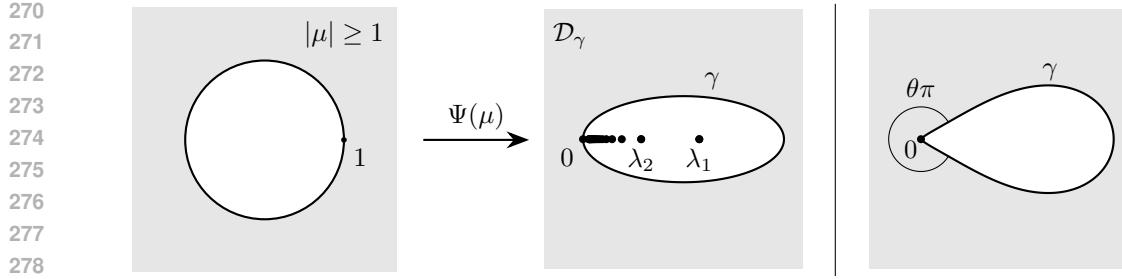


Figure 2: **Left:** The map  $\Psi = \frac{P}{Q}$  for Heavy Ball with  $P(\mu) = (\mu - 1)(\mu - 0.4)$  and  $Q(\mu) = -\mu$ . The contour  $\gamma = \Psi(\{\mu : |\mu| = 1\})$  encircles  $\text{spec}(\mathbf{H})$ . The map  $\Psi$  bijectively maps  $\{|\mu| > 1\}$  to the exterior open domain  $\mathcal{D}_\gamma$  with boundary  $\gamma$ . See Sec. B for more examples and a general discussion of memory-1 contours. **Right:** Contour  $\gamma$  corresponding to a corner map  $\Psi$  with angle  $\theta\pi$ .

A similar observation can also be made regarding the propagators  $V_t$ . Indeed,  $V_t$ 's are different from  $U_t$ 's in that they involve the expression  $(\mathbf{1} \mathbf{0}^T) S_\lambda^t (\mathbf{1} \mathbf{0}^T)$  instead of  $(\mathbf{1} \mathbf{0}^T) S_\lambda^t (\mathbf{0} \mathbf{c}^T)$ . The contour representation for  $(\mathbf{1} \mathbf{0}^T) S_\lambda^t (\mathbf{1} \mathbf{0}^T)$  is similar to Eq. (16), and then a simple calculation gives

$$(\mathbf{1} \mathbf{0}^T)(\mu - S_\lambda)^{-1}(\mathbf{1} \mathbf{0}^T) = \frac{\Psi(\mu)}{(\Psi(\mu) - \lambda)(\mu - 1)}. \quad (20)$$

As a result,

$$V_t = \sum_{k=1}^{\infty} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 \left| \frac{1}{2\pi i} \oint_{|\mu|=r} \frac{\mu^{t-1} \Psi(\mu) d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)} \right|^2. \quad (21)$$

Recall from Eqs. (4),(5) that  $P$  can be any monic polynomial (i.e., with leading coefficient 1) of degree  $M + 1$  such that  $P(1) = 0$ , while  $Q$  can be any polynomials of degree not greater than  $M$ . Since by Eq. (7) the loss trajectory  $L_t$  is completely determined by the propagators  $U_t, V_t$ , we see that designing a stationary SGD with memory is essentially equivalent to designing a rational function  $\Psi$  subject to these simple conditions. By (4), the function  $\Psi = \frac{P}{Q}$  can be interpreted as describing the (frequency) response of the gradient sequence  $(\nabla L(\mathbf{w}_t))$  to the sequence  $(\mathbf{w}_t)$ .

Let us consider the map  $\Psi$  from the stability perspective. Recall that we expect  $S_{\lambda_k}$  to be strictly stable for all the eigenvalues  $\lambda_k \in \text{spec}(\mathbf{H})$ . In terms of  $\Psi = \frac{P}{Q}$  this means that  $\Psi(\mu) \neq \lambda_k$  for all  $\mu \in \mathbb{C}$  such that  $|\mu| \geq 1$ . This shows, in particular, that we can set the radius  $r = 1$  in Eqs. (19), (21). Additionally, if  $D$  is strictly stable, then  $S_0$  has only one simple eigenvalue of unit absolute value,  $\mu = 1$ , and so  $\Psi(\mu) \neq 0$  for  $|\mu| = 1, \mu \neq 1$ . Let us introduce the curve  $\gamma$  as the image of the unit circle under the map  $\Psi$ . Then the last condition means that the curve  $\gamma$  goes through the point 0 only once, at  $\mu = 1$ .

In general, the curve  $\gamma$  can have a complicated shape with self-intersections, and the map  $\Psi$  may not be injective on the domain  $|\mu| \geq 1$ . In particular, the singularity of  $\Psi$  at  $\mu = \infty$  is  $\propto \mu^{M+1-\deg(Q)}$ , so in a vicinity of  $\mu = \infty$  the function  $\Psi$  is injective if and only if  $\deg(Q) = M$  (and in general  $\Psi$  may also have other singularities at  $|\mu| > 1$ ). However, we may expect natural, non-degenerate algorithms to correspond to simple non-intersecting curves  $\gamma$  and injective maps  $\Psi$  on  $|\mu| \geq 1$ . For example, this is the case for plain (S)GD and Heavy Ball, where  $\gamma$  is a circle and an ellipse, respectively (Fig. 2 left). See Section B for a general discussion of memory-1 algorithms.

Given a non-intersecting (Jordan) contour  $\gamma$ , denote by  $\mathcal{D}_\gamma$  the respective exterior open domain. Then, by Riemann mapping theorem, there exists a bijective holomorphic map  $\Psi_\gamma : \{\mu \in \mathbb{C} : |\mu| > 1\} \rightarrow \mathcal{D}_\gamma$ . Additionally, by Carathéodory's theorem<sup>1</sup> (see e.g. Garnett & Marshall (2005), p. 13) this map extends continuously to the boundary,  $\Psi_\gamma : \{\mu \in \mathbb{C} : |\mu| = 1\} \rightarrow \gamma$ . Such maps  $\Psi_\gamma$  are non-unique, forming a three-parameter family  $\Psi_\gamma \circ f$ , where  $f$  is a conformal automorphism of  $\{\mu \in \mathbb{C} : |\mu| > 1\}$ . However, recall that our maps  $\Psi = \frac{P}{Q}$  had the properties  $\Psi(\infty) = \infty$  and  $\Psi(1) = 0$ . These two requirements for  $\Psi_\gamma$  uniquely fix the conformal isomorphism and hence  $\Psi_\gamma$ .

<sup>1</sup>Carathéodory's theorem considers bounded domains, but our domains  $\{\mu \in \mathbb{C} : |\mu| > 1\}$  and  $\mathcal{D}_\gamma$  are conformally isomorphic to bounded ones by simple transformations  $z = 1/(\mu - \mu_0)$ .

This suggests the following reformulation of the design problem for stationary SGD with memory. Rather than starting with the algorithm in the matrix or sequential forms (1), (4), we start with a contour  $\gamma$  or the associated Riemann map  $\Psi_\gamma$ , and ensure a fast decay of the respective propagators  $U_t, V_t$  given by (19), (21) (and hence, by Theorem 1, of the loss  $L_t$ ). Of course, the resulting map  $\Psi_\gamma$  will not be rational in general, but we can subsequently approximate it with a rational function  $\frac{P}{Q}$  and in this way approximately reconstruct the algorithm.

## 4 CORNER ALGORITHMS

To motivate the algorithms introduced in this section, observe from Eqs. (9), (14) that in the signal-dominated regime of stationary memory- $M$  SGD, we can decrease the coefficient  $C_L$  in the asymptotic formula  $L_t = (1 + o(1))C_L t^{-\zeta}$  by increasing  $\alpha_{\text{eff}}$  while keeping the total noise coefficient  $U_\Sigma < 1$ . Since  $\Psi(1) = 0$ ,  $\alpha_{\text{eff}}$  can be reformulated in terms of  $\Psi$  as

$$\alpha_{\text{eff}} = -\frac{Q(1)}{\frac{dP}{d\mu}(1)} = -\left(\frac{d\Psi}{d\mu}(1)\right)^{-1}. \quad (22)$$

Thus, increasing  $\alpha_{\text{eff}}$  means making  $-\frac{d\Psi}{d\mu}(1)$  a possibly smaller positive number. Regarding  $U_\Sigma = \sum_{t=1}^{\infty} U_t$ , note first that, by (19), it can be written as

$$U_\Sigma = \frac{\tau_1}{(2\pi)^2 |B|} \sum_{k=1}^{\infty} \lambda_k^2 \sum_{t=1}^{\infty} \left| \oint_{|\mu|=1} \frac{\mu^{t-1} d\mu}{\Psi(\mu) - \lambda} \right|^2 = \frac{\tau_1}{(2\pi)^2 |B|} \sum_{k=1}^{\infty} \lambda_k^2 \int_{-\pi}^{\pi} \frac{d\phi}{|\Psi(e^{i\phi}) - \lambda_k|^2}. \quad (23)$$

Indeed, since the function  $(\Psi(\mu) - \lambda)^{-1}$  is holomorphic in  $\{|\mu| > 1\}$  and vanishes as  $\mu \rightarrow \infty$ , the integrals  $\oint$  here vanish for all nonpositive integers  $t = 0, -1, -2, \dots$  so that  $\sum_t$  collapses to the squared  $L^2$  norm by Parseval's identity. If the resulting series (23) converges, we can always ensure  $U_\Sigma < 1$  by making the batch size  $|B|$  large enough.

It is then natural to try  $\Psi = \Psi_\gamma$  with a contour  $\gamma$  having a corner at 0 with a particular angle. Denote the angle by  $\theta\pi$  when measured in the external domain  $\mathcal{D}_\gamma$  (Figure 2 right). Such contours correspond to maps  $\Psi : \{|\mu| > 1\} \rightarrow \mathcal{D}_\gamma$  such that

$$\Psi(\mu) = -c_\Psi(\mu - 1)^\theta(1 + o(1)), \quad \mu \rightarrow 1, \quad (24)$$

with the standard branch of  $(\mu - 1)^\theta$  and some constant  $c_\Psi > 0$ . We will refer to such  $\Psi$  as *corner maps* and to the respective generalized SGD as *corner algorithms*. Formally,

$$-\frac{d\Psi}{d\mu}(\mu = 1) \sim c\theta(\mu - 1)^{\theta-1}|_{\mu=1+} = \begin{cases} +\infty, & \theta < 1 \\ +0, & \theta > 1 \end{cases} \quad (25)$$

so we are interested in  $\theta > 1$ . At the same time, we cannot take  $\theta > 2$ , since this would violate the stability condition  $\Psi\{|\mu| > 1\} \cap \text{spec}(\mathbf{H}) = \emptyset$ . Thus, the relevant range of values for  $\theta$  is  $[1, 2]$ . Within this range, increasing  $\theta$  should have a positive  $\alpha_{\text{eff}}$ -related effect but a negative  $U_\Sigma$ -related effect, since the contour  $\gamma = \Psi\{|\mu| = 1\}$  is getting closer to the spectral segment  $[0, \lambda_{\max}]$ , thus amplifying the singularity  $|\Psi(e^{i\phi}) - \lambda_k|^{-2}$  in Eq. (23). Our main technical result is

**Theorem 3 (C).** *Let  $\Psi$  be a holomorphic function in  $\{\mu \in \mathbb{C} : |\mu| > 1\}$  commuting with complex conjugation and obeying power law condition (24) with some  $1 < \theta < 2$ . Assume that  $\Psi$  extends continuously to a  $C^1$  function on the closed domain  $|\mu| \geq 1$ ,  $\Psi(\mu) \rightarrow \infty$  as  $\mu \rightarrow \infty$ , and  $\frac{d}{d\mu}\Psi(\mu) = O(|\mu - 1|^{\theta-1})$  as  $\mu \rightarrow 1$ . Assume also that  $\Psi(\{\mu \in \mathbb{C} : |\mu| \geq 1, \mu \neq 1\}) \cap [0, \lambda_{\max}] = \emptyset$ , where  $\lambda_{\max} = \lambda_1$  is the largest eigenvalue of  $\mathbf{H}$ . Let power-law spectral assumptions (11), (12) hold with some  $\nu > 1, 0 < \zeta < 2$ . Then propagators (19), (21) obey the following  $t \rightarrow \infty$  asymptotics.*

1. **(Noise propagators)**  $U_t = C_U t^{\theta/\nu - 2}(1 + o(1))$ , with the coefficient

$$C_U = \frac{\tau_1}{|B|} \Lambda^{1/\nu} \int_{\infty}^0 r^2 F_U^2(r) dr^{-\theta/\nu} < \infty, \quad F_U(r) = \frac{1}{2\pi i} \int_{i\mathbb{R}} \frac{e^{rz} dz}{c_\Psi z^\theta + 1}.$$

2. **(Signal propagators)**  $V_t = C_V t^{-\theta\zeta}(1 + o(1))$ , with the coefficient

$$C_V = Q \int_0^{\infty} F_V^2(r) dr^{\theta\zeta} < \infty, \quad F_V(r) = \frac{1}{2\pi i} \int_{i\mathbb{R}} \frac{c_\Psi z^{\theta-1} e^{rz} dz}{c_\Psi z^\theta + 1}.$$

We see that the leading  $t \rightarrow \infty$  asymptotics of the propagators are completely determined by the  $\lambda \searrow 0$  spectral asymptotics of the problem and the  $\mu \rightarrow 1$  singularity of the map  $\Psi$ . The functions  $F_U, F_V$  can be written in terms of the Mittag-Leffler functions  $E_{\theta, \theta}, E_\theta$  (see Section C).

Availability of the coefficients  $C_U, C_V$  ensures that the leading asymptotics of  $U_t, V_t$  are strict power laws with specific exponents  $2 - \theta/\nu$  and  $\theta\zeta$ , respectively. Increasing  $\theta$  indeed improves convergence of the signal propagators, but degrades convergence of the noise propagators.

The largest acceleration of the loss exponent  $\zeta$  possibly achievable with corner algorithms is by a factor  $\theta$  arbitrarily close to 2, but in general it will be lower since, by Theorem 1, the exponent of  $L_t$  is the lower of the exponents of  $U_t$  and  $V_t$ ; accordingly, the optimal  $\theta$  is obtained by balancing the two exponents, i.e. setting  $\theta\zeta = 2 - \theta/\nu$ . Also, we need the noise exponent  $2 - \theta/\nu$  to be  $> 1$ , since otherwise the total noise coefficient  $U_\Sigma = \infty$  and  $L_t$  diverges for any batch size  $|B| < \infty$ .

Combining these considerations, we get the phase diagram of feasible accelerations (Figure 1 right).

**Theorem 4.** *Consider a problem with power-law spectral conditions (11), (12) in the signal-dominated phase, i.e.  $\nu > 1, 0 < \zeta < 2 - 1/\nu$ . Let  $\theta_{\max}$  denote the supremum of those  $\theta$  for which there exists a corner algorithm and batch size  $B$  such that  $L_t = O(t^{-\theta\zeta})$ . Then*

$$\theta_{\max} = \min \left( 2, \nu, \frac{2}{\zeta + 1/\nu} \right). \quad (26)$$

The phase diagram thus has three regions:

- I. **Fully accelerated:**  $\theta_{\max} = 2$ , achieved for  $\nu > 2, 0 < \zeta < 1 - 1/\nu$ .
- II. **Signal/noise balanced:**  $\theta_{\max} = \frac{2}{\zeta + 1/\nu} < 2$ ,  $\max(1/\nu, 1 - 1/\nu) < \zeta < 2 - 1/\nu$ . The condition  $1/\nu < \zeta$  ensures that  $U_\Sigma$  is finite and less than 1 for  $|B|$  large enough.
- III. **Limited by  $U_\Sigma$ -finiteness:**  $\theta_{\max} = \nu < 2$ ,  $1 < \nu < 2, 0 < \zeta < 1/\nu$ . The signal exponent  $\theta_{\max}\zeta$  is less than the noise exponent  $2 - \theta_{\max}/\nu$ , but increasing  $\theta$  makes  $U_\Sigma$  diverge.

## 5 FINITE-MEMORY APPROXIMATIONS OF CORNER ALGORITHMS

Though corner maps  $\Psi$  are irrational, they can be efficiently approximated by rational functions. It was originally famously discovered by Newman (1964) that the function  $|x|$  can be approximated by order- $M$  rational functions with error  $O(e^{-c\sqrt{M}})$ . This result was later refined in various ways. In particular, Gopal & Trefethen (2019) establish a rational approximation with a similar error bound for general power functions  $z \mapsto z^\theta$  on complex domains. For  $\theta \in (0, 1)$ , this is done by writing

$$z^\theta = \frac{\sin(\theta\pi)}{\theta\pi} \int_0^\infty \frac{zdt}{t^{1/\theta} + z} = \frac{\sin(\theta\pi)}{\theta\pi} \int_{-\infty}^\infty \frac{ze^{\theta\pi i/2+s} ds}{e^{\pi i/2+s/\theta} + z} \quad (27)$$

and then approximating the last integral by the trapezoidal rule with uniform spacing  $h = \pi\sqrt{2\theta/M}$ .

In our setting, we start by explicitly defining a  $\theta$ -corner map. This can be done in many ways; we find it convenient to set

$$\Psi(\mu) = -A \left( \int_0^1 \frac{d\delta^{2-\theta}}{\mu - 1 + \delta} \right)^{-1} \frac{\mu - 1}{\mu} = A \left( (\theta - 2) \int_0^\infty \frac{e^{-(2-\theta)s} ds}{\mu - 1 + e^{-s}} \right)^{-1} \frac{\mu - 1}{\mu} \quad (28)$$

with a scaling parameter  $A > 0$ .

**Proposition 1 (D).** *For any  $1 < \theta < 2$ , Eq. (28) defines a holomorphic map  $\Psi : \mathbb{C} \setminus [0, 1] \rightarrow \mathbb{C}$  such that*

$$\Psi(\mu) = \begin{cases} -A\mu(1 + o(1)), & \mu \rightarrow \infty, \\ -\frac{A(2-\theta)\pi}{\sin((2-\theta)\pi)}(\mu - 1)^\theta(1 + o(1)), & \mu \rightarrow 1, \end{cases} \quad (29)$$

where  $z^\theta$  denotes the standard branch in  $\mathbb{C} \setminus (-\infty, 0]$ . Also,  $\Psi(\{|\mu| \geq 1\}) \cap (0, 2A] = \emptyset$ .

Following Gopal & Trefethen (2019), we approximate the last integral in Eq. (28) as

$$\int_0^\infty \phi(s) ds \approx h \sum_{m=1}^M \phi((m - \frac{1}{2})h), \quad h = \frac{l}{\sqrt{M}}, \quad (30)$$

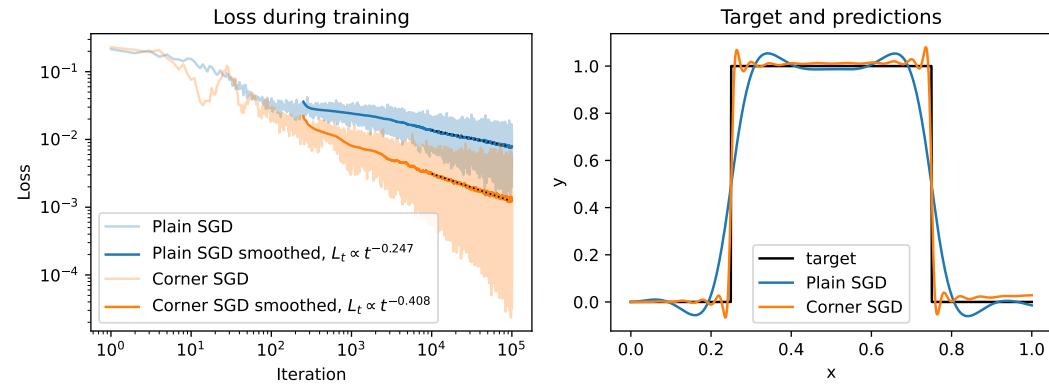


Figure 3: Training loss and final predictions of the kernel model (220) trained to fit the target  $y(x) = 1_{[1/4, 3/4]}(x)$  using either plain or corner SGD with batch size  $|B| = 100$ . The loss trajectories oscillate strongly, so their smoothed versions are also shown and used to estimate the exponents  $\zeta$  in power laws  $L_t \propto t^{-\zeta}$ . Corner SGD has  $\theta = 1.8$  and is approximated using finite memory  $M = 5$  as in Proposition 2. We see that Corner SGD indeed accelerates the power-law convergence exponent of plain SGD. See Section F for details.

with some fixed constant  $l$ . Note that in contrast to (27), our integral and discretization are “one-sided” ( $s > 0$ ), reflecting the fact that the corner map  $\Psi(\mu)$  is power law only at  $\mu \rightarrow 1$ , which is related to the  $s \rightarrow +\infty$  behavior of the integrand.

Let  $\Psi^{(M)}$  denote the map  $\Psi$  discretized with  $M$  nodes by scheme (30). Observe that  $\Psi^{(M)}$  is a rational function,  $\Psi^{(M)} = \frac{P}{Q}$ , where  $\deg P = M + 1$  and  $\deg Q \leq M$  (in particular,  $P(\mu) = (\mu - 1) \prod_{m=1}^M (\mu - 1 + e^{-(m-1/2)h})$ ). We can then associate to  $\Psi^{(M)}$  a memory- $M$  algorithm (1) with particular  $\alpha, \mathbf{b}, \mathbf{c}, D$ , for example as follows.

**Proposition 2 (E).** *Let  $h = l/\sqrt{M}$  and*

$$D = \text{diag}(1 - e^{-\frac{1}{2}h}, \dots, 1 - e^{-(M-\frac{1}{2})h}), \quad (31)$$

$$\mathbf{b} = (1, \dots, 1)^T, \quad (32)$$

$$\mathbf{c} = (c_1, \dots, c_M)^T, \quad c_m = A^{-1}(2 - \theta)h e^{-(2-\theta)(m-1/2)h} (e^{-(m-1/2)h} - 1), \quad (33)$$

$$\alpha = A^{-1}(2 - \theta)h \frac{1 - e^{-(2-\theta)Mh}}{1 - e^{-(2-\theta)h}} e^{-(2-\theta)h/2}. \quad (34)$$

Then the respective characteristic polynomial  $\chi(\mu) = P(\mu) - \lambda Q(\mu)$  with  $\frac{P}{Q} = \Psi^{(M)}$ .

Of course, as any stationary finite-memory algorithm, for very large  $t$  the  $M$ -discretized corner algorithm can only provide a  $O(t^{-\zeta})$  convergence of the loss. But, thanks to the  $O(e^{-c\sqrt{M}})$  rational approximation bound, we expect that even with moderate  $M$ , for practically relevant finite ranges of  $t$  the convergence should be close to  $O(t^{-\theta\zeta})$  of the ideal corner algorithm.

Experiments with a synthetic problem and MNIST confirm that corner algorithms accelerate the exponents of plain SGD (see Appendix F and Figure 3). We also provide additional discussion of corner algorithms in Appendix G. In particular, we note that, while corner algorithms require significantly more memory than plain SGD, the amount of computation they perform is typically not much larger than for SGD. Our theoretical results significantly depended on the SE assumption (6) with  $\tau_2 = 0$ , but it appears that the theory can be extended to a more general setting (at the cost of more complicated expansions).

## REPRODUCIBILITY STATEMENT

A Jupyter notebook with all experiments is attached in Supplementary Materials. Experiments are described in Section F.

486 REFERENCES  
487

- 488 Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners:  
489 The silent alignment effect. *arXiv preprint arXiv:2111.00034*, 2021.
- 490 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural  
491 scaling laws. *arXiv preprint arXiv:2102.06701*, 2021.
- 492 Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritchman.  
493 Frequency bias in neural networks for input of non-uniform density. In *International Conference  
494 on Machine Learning*, pp. 685–694. PMLR, 2020.
- 495 Raphaël Berthier, Francis Bach, and Pierre Gaillard. Tight nonparametric convergence rates for  
496 stochastic gradient descent under the noiseless linear model. *arXiv preprint arXiv:2006.08212*,  
497 2020.
- 498 M Š Birman and M Z Solomjak. Asymptotic behavior of the spectrum of weakly  
499 polar integral operators. *Mathematics of the USSR-Izvestiya*, 4(5):1151–1168, oct  
500 1970. doi: 10.1070/im1970v004n05abeh000948. URL <https://doi.org/10.1070/im1970v004n05abeh000948>.
- 501 Blake Bordelon and Cengiz Pehlevan. Learning curves for sgd on structured features. *arXiv preprint  
502 arXiv:2106.02713*, 2021.
- 503 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. How feature learning can improve  
504 neural scaling laws. *arXiv preprint arXiv:2409.17858*, 2024.
- 505 Helmut Brakhage. On ill-posed problems and the method of conjugate gradients. In *Inverse and  
506 ill-posed Problems*, pp. 165–175. Elsevier, 1987.
- 507 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.  
508 *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- 509 Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates  
510 in kernel regression: The crossover from the noiseless to noisy regime. *Advances in Neural  
511 Information Processing Systems*, 34, 2021.
- 512 J.B. Garnett and D.E. Marshall. *Harmonic Measure*. New Mathematical Monographs. Cambridge  
513 University Press, 2005. ISBN 9780521470186.
- 514 Abinand Gopal and Lloyd N Trefethen. Representation of conformal maps by rational functions.  
515 *Numerische Mathematik*, 142:359–382, 2019.
- 516 Hans J Haubold, Arak M Mathai, and Ram K Saxena. Mittag-leffler functions and their applications.  
517 *Journal of applied mathematics*, 2011(1):298628, 2011.
- 518 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-  
519 eralization in neural networks. *arXiv preprint arXiv:1806.07572*, 2018.
- 520 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.  
521 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
- 522 Arkadi S Nemirovskiy and Boris T Polyak. Iterative methods for solving linear ill-posed problems  
523 under precise information. *Eng. Cyber.*, (4):50–56, 1984.
- 524 Donald J Newman. Rational approximation to  $|x|$ . *Michigan Mathematical Journal*, 11(1):11, 1964.
- 525 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of compute-  
526 optimal neural scaling laws. *arXiv preprint arXiv:2405.15074*, 2024.
- 527 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr compu-  
528 tational mathematics and mathematical physics*, 4(5):1–17, 1964.
- 529 Sumit Roy and John J Shynk. Analysis of the momentum lms algorithm. *IEEE transactions on  
530 acoustics, speech, and signal processing*, 38(12):2088–2098, 1990.

- 540 P Stiller. An introduction to the theory of resultants. *Mathematics and Computer Science, T&M*  
541 *University, Texas, College Station, TX*, 1996.  
542
- 543 Mehmet Ali Tugay and Yalcin Tanik. Properties of the momentum lms algorithm. *Signal Processing*,  
544 18(2):117–127, 1989.
- 545 Aditya Varre and Nicolas Flammarion. Accelerated sgd for non-strongly-convex least squares. *arXiv*  
546 *preprint arXiv:2203.01744*, 2022.
- 547
- 548 Aditya Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion. Last iterate convergence of sgd for  
549 least-squares in the interpolation regime. *arXiv preprint arXiv:2102.03183*, 2021.
- 550 Maksim Velikanov and Dmitry Yarotsky. Explicit loss asymptotics in the gradient descent training  
551 of neural networks. *Advances in Neural Information Processing Systems*, 34, 2021.
- 552
- 553 Maksim Velikanov, Denis Kuznedelev, and Dmitry Yarotsky. A view of mini-batch sgd via gener-  
554 ating functions: conditions of convergence, phase transitions, benefit from negative momenta. In  
555 *The Eleventh International Conference on Learning Representations (ICLR 2023)*, 2023. URL  
556 <https://openreview.net/forum?id=bzaPGEllsjE>.
- 557
- 558 Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks, 2020.
- 559
- 560 Dmitry Yarotsky. Collective evolution of weights in wide neural networks. *arXiv preprint*  
*arXiv:1810.03974*, 2018.
- 561
- 562 Dmitry Yarotsky and Maksim Velikanov. Sgd with memory: fundamental properties and stochastic  
563 acceleration. *arXiv preprint arXiv:2410.04228*, 2024.
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593

|     |                                                                         |           |
|-----|-------------------------------------------------------------------------|-----------|
| 594 | CONTENTS                                                                |           |
| 595 |                                                                         |           |
| 596 |                                                                         |           |
| 597 | <b>1 Introduction</b>                                                   | <b>1</b>  |
| 598 |                                                                         |           |
| 599 | <b>2 Background</b>                                                     | <b>2</b>  |
| 600 |                                                                         |           |
| 601 | <b>3 The contour view of generalized (S)GD</b>                          | <b>5</b>  |
| 602 |                                                                         |           |
| 603 | <b>4 Corner algorithms</b>                                              | <b>7</b>  |
| 604 |                                                                         |           |
| 605 | <b>5 Finite-memory approximations of corner algorithms</b>              | <b>8</b>  |
| 606 |                                                                         |           |
| 607 |                                                                         |           |
| 608 | <b>References</b>                                                       | <b>10</b> |
| 609 |                                                                         |           |
| 610 | <b>A Derivations of Section 3</b>                                       | <b>13</b> |
| 611 |                                                                         |           |
| 612 | <b>B Memory-1 contours</b>                                              | <b>13</b> |
| 613 |                                                                         |           |
| 614 | <b>C Proof of Theorem 3</b>                                             | <b>17</b> |
| 615 |                                                                         |           |
| 616 | C.1 The noise propagators . . . . .                                     | 17        |
| 617 | C.2 The signal propagators . . . . .                                    | 22        |
| 618 |                                                                         |           |
| 619 | <b>D Proof of Proposition 1</b>                                         | <b>28</b> |
| 620 |                                                                         |           |
| 621 | <b>E Proof of Proposition 2</b>                                         | <b>28</b> |
| 622 |                                                                         |           |
| 623 | <b>F Experiments</b>                                                    | <b>29</b> |
| 624 |                                                                         |           |
| 625 | <b>G Additional notes and discussion</b>                                | <b>30</b> |
| 626 |                                                                         |           |
| 627 | <b>H The synthetic 1D example</b>                                       | <b>32</b> |
| 628 |                                                                         |           |
| 629 | <b>I Extending the proof of Theorem 3 to <math>\tau_2 \neq 0</math></b> | <b>33</b> |
| 630 |                                                                         |           |
| 631 |                                                                         |           |
| 632 |                                                                         |           |
| 633 |                                                                         |           |
| 634 |                                                                         |           |
| 635 |                                                                         |           |
| 636 |                                                                         |           |
| 637 |                                                                         |           |
| 638 |                                                                         |           |
| 639 |                                                                         |           |
| 640 |                                                                         |           |
| 641 |                                                                         |           |
| 642 |                                                                         |           |
| 643 |                                                                         |           |
| 644 |                                                                         |           |
| 645 |                                                                         |           |
| 646 |                                                                         |           |
| 647 |                                                                         |           |

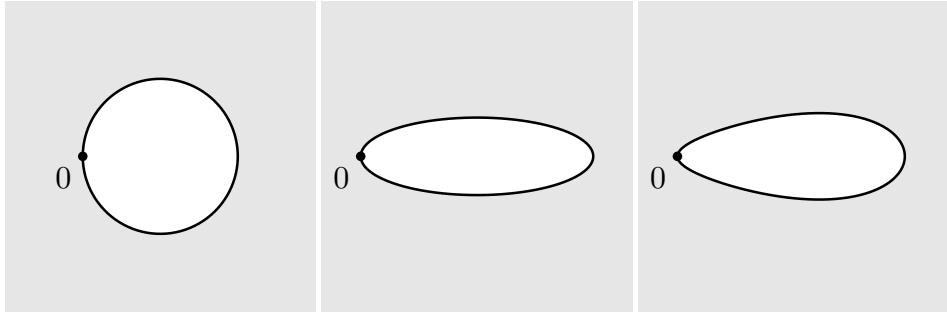


Figure 4: Contours  $\gamma = \Psi(\{|\mu| = 1\})$  corresponding to different memory-1 maps  $\Psi$  (see Section B). **Left:** plain Gradient Descent (a circle). **Center:** Heavy Ball (an ellipse;  $\beta = 0.5$ ). **Right:** general memory-1 algorithms (a Zhukovsky airfoil;  $\beta = 0.65, q_0 = 0.125, q_1 = -1$ ).

## A DERIVATIONS OF SECTION 3

We have

$$P(\mu) = \det(\mu - S_0) \quad (35)$$

$$= \det(\mu - S_\lambda + \lambda(\mathbf{c}^\alpha)(\mathbf{1} \mathbf{0}^T)) \quad (36)$$

$$= \det(\mu - S_\lambda) \det(1 + \lambda(\mathbf{c}^\alpha)(\mathbf{1} \mathbf{0}^T)(\mu - S_\lambda)^{-1}) \quad (37)$$

$$= (P(\mu) - \lambda Q(\mu))(1 + \lambda(\mathbf{1} \mathbf{0}^T)(\mu - S_\lambda)^{-1}(\mathbf{c}^\alpha)). \quad (38)$$

It follows that

$$(\mathbf{1} \mathbf{0}^T)(\mu - S_\lambda)^{-1}(\mathbf{c}^\alpha) = \frac{1}{\lambda} \left( \frac{P(\mu)}{P(\mu) - \lambda Q(\mu)} - 1 \right) \quad (39)$$

$$= \frac{Q(\mu)}{P(\mu) - \lambda Q(\mu)}. \quad (40)$$

Next, by Sherman-Morrison formula and the above identity,

$$(\mu - S_\lambda)^{-1} = (\mu - S_0 - \lambda(\mathbf{c}^\alpha)(\mathbf{1} \mathbf{0}^T))^{-1} \quad (41)$$

$$= (\mu - S_0)^{-1} + \lambda \frac{(\mu - S_0)^{-1}(\mathbf{c}^\alpha)(\mathbf{1} \mathbf{0}^T)(\mu - S_0)^{-1}}{1 - \lambda(\mathbf{1} \mathbf{0}^T)(\mu - S_0)^{-1}(\mathbf{c}^\alpha)} \quad (42)$$

$$= (\mu - S_0)^{-1} + \lambda \frac{(\mu - S_0)^{-1}(\mathbf{c}^\alpha)(\mathbf{1} \mathbf{0}^T)(\mu - S_0)^{-1}}{1 - \lambda \frac{Q(\mu)}{P(\mu)}} \quad (43)$$

Using  $(\mathbf{1} \mathbf{0}^T)(\mu - S_0)^{-1}(\frac{1}{0}) = \frac{1}{\mu-1}$ , it follows that

$$(\mathbf{1} \mathbf{0}^T)(\mu - S_\lambda)^{-1}(\frac{1}{0}) = \frac{1}{\mu-1} + \lambda \frac{\frac{Q(\mu)}{P(\mu)} \frac{1}{\mu-1}}{1 - \lambda \frac{Q(\mu)}{P(\mu)}} \quad (44)$$

$$= \frac{\frac{P(\mu)}{Q(\mu)}}{(\mu-1)(\frac{P(\mu)}{Q(\mu)} - \lambda)}. \quad (45)$$

## B MEMORY-1 CONTOURS

In figure 4 we show different contours  $\gamma = \Psi(\{|\mu| = 1\})$  corresponding to memory-1 algorithms (see Section 3 for the introduction of contours). Below we discuss memory-1 algorithms and their contours in the order of increasing generality.

702 **Plain (S)GD.** In (S)GD with learning rate  $\alpha > 0$  we have  $P(\mu) = \mu - 1$  and  $Q(\mu) = -\alpha$ , so  
 703

$$704 \quad \Psi(\mu) = -\frac{\mu - 1}{\alpha}. \quad (46)$$

705 Thus,  $\gamma$  is the circle  $|z - \frac{1}{\alpha}| = \frac{1}{\alpha}$ .  
 706

707 **Heavy Ball.** Heavy Ball with learning rate  $\alpha$  and momentum parameter  $\beta$  has standard stability  
 708 conditions  $\alpha > 0$ ,  $\beta \in (-1, 1)$  and  $\lambda_{\max} < \frac{2+2\beta}{\alpha}$  (Roy & Shynk, 1990; Tugay & Tanik, 1989). We  
 709 have  $P(\mu) = (\mu - 1)(\mu - \beta)$  and  $Q(\mu) = -\alpha\mu$ , so  
 710

$$711 \quad \Psi(\mu) = -\frac{(\mu - 1)(\mu - \beta)}{\alpha\mu}. \quad (47)$$

712 If  $|\mu| = 1$ , then  $\mu\bar{\mu} = 1$  and hence  
 713

$$714 \quad \Psi(\mu) = -\frac{1}{\alpha}(\mu + \beta\bar{\mu} - 1 - \beta). \quad (48)$$

715 Writing  $\mu = x + iy$ , we get  
 716

$$717 \quad \Psi(\mu) = -\frac{1}{\alpha}((1 + \beta)x + i(1 - \beta)y - 1 - \beta). \quad (49)$$

718 It follows that  $\gamma$  is an ellipse with the semi-axis  $\frac{1+\beta}{\alpha}$  along  $x$  and the semi-axis  $\frac{1-\beta}{\alpha}$  along  $y$ . The  
 719 learning rate  $\alpha$  determines the size of the ellipse while the momentum parameter  $\beta$  determines its  
 720 shape. If  $\beta > 0$ , then the ellipse is elongated in the  $x$  direction, and otherwise in the  $y$  direction.  
 721 Assuming  $\beta > 0$ , the eccentricity of the ellipse equals  $e = \sqrt{1 - (1 - \beta)^2/(1 + \beta)^2} = \frac{2\sqrt{\beta}}{1 + \beta}$ . Plain  
 722 GD is the special case of Heavy Ball with  $\beta = 0$ .  
 723

724 **General memory-1 (S)GD.** In a general memory-1 algorithm we have  $P(\mu) = (\mu - 1)(\mu - \beta)$   
 725 and  $Q(\mu) = q_0 + q_1\mu$ , so  
 726

$$727 \quad \Psi(\mu) = \frac{(\mu - 1)(\mu - \beta)}{q_0 + q_1\mu}. \quad (50)$$

728 Heavy Ball is the special case of general memory-1 algorithms with  $q_0 = 0$ .  
 729

730 In Yarotsky & Velikanov (2024) it was shown that on the spectral interval  $(0, \lambda_{\max}]$  the strict stability  
 731 of the generalized memory-1 SGD is equivalent to the conditions  
 732

$$733 \quad -1 < \beta < 1, \quad q_0 > -\frac{1 - \beta}{\lambda_{\max}}, \quad q_0 - \frac{2 + 2\beta}{\lambda_{\max}} < q_1 < -q_0 \quad (51)$$

734 (note that the Heavy Ball stability conditions result by setting  $q_0 = 0, q_1 = -\alpha$ ).  
 735

736 **ZHUKOVSKY AIRFOIL REPRESENTATION.** The map  $\Psi$  can be written as a composition of linear  
 737 transformations and the Zhukovsky function  
 738

$$739 \quad J(\mu) = \mu + \frac{1}{\mu}. \quad (52)$$

740 Indeed, let  
 741

$$742 \quad \mu_1 \equiv f_1(\mu) \equiv q_0 + q_1\mu, \quad (53)$$

743 then  
 744

$$745 \quad \Psi(\mu) = \frac{\left(\frac{\mu_1 - q_0}{q_1} - 1\right)\left(\frac{\mu_1 - q_0}{q_1} - \beta\right)}{\mu_1} \quad (54)$$

$$746 \quad = \frac{\mu_1}{q_1^2} + \frac{r}{\mu_1} - \frac{2\frac{q_0}{q_1} + 1 + \beta}{q_1} \quad (55)$$

$$747 \quad = \frac{\sqrt{r}}{q_1} J\left(\frac{\mu_1}{q_1\sqrt{r}}\right) - \frac{2\frac{q_0}{q_1} + 1 + \beta}{q_1}, \quad (56)$$

750 where  
 751

$$752 \quad r = \left(\frac{q_0}{q_1} + 1\right)\left(\frac{q_0}{q_1} + \beta\right) \quad (57)$$

753 and  $\sqrt{r}$  is imaginary if  $r < 0$ .  
 754

755 Thus, the contour  $\gamma = \Psi(\{|\mu| = 1\})$  is a rescaled image of a circle under the Zhukovsky transform,  
 i.e. a “Zhukovsky airfoil”.

756 CONDITIONS OF INJECTIVITY. As discussed in Section 3, the case of maps  $\Psi$  injective on the  
 757 domain  $|\mu| > 1$  seems especially natural and attractive. Let us examine when the map  $\Psi$  given by  
 758 Eq. (50) is injective. We can assume without loss that  $q_1 \neq 0$  since otherwise the map  $\Psi$  is not  
 759 locally injective at  $\infty$ .

760 The Zhukovsky transform can be written as a composition of two linear fractional transformations  
 761 and the function  $w = z^2$ :

$$763 \quad J(\mu) = 2 \frac{1+w}{1-w}, \quad w = z^2, \quad z = \frac{\mu-1}{\mu+1}. \quad (58)$$

765 The image of a generalized disc on the extended complex plane under a linear fractional map is  
 766 again a generalized disc, and the map  $w = z^2$  is injective on a generalized open disc if and only if  
 767 the disc does not contain 0 and  $\infty$ . Hence, a necessary and sufficient condition for  $J$  to be injective  
 768 on a generalized open disc is that this disc not contain the points  $\pm 1$ . It follows that  $\Psi$  is injective  
 769 on the generalized disc  $|\mu| > 1$  iff

$$770 \quad \left| -\frac{q_0}{q_1} \pm \sqrt{r} \right| \leq 1. \quad (59)$$

772 Let us henceforth assume the stability condition  $-1 < \beta < 1$  as given in Eq. (51). Consider  
 773 separately the cases of negative and positive  $r$ .

- 774 1.  $r \leq 0$  corresponds to  $-1 \leq \frac{q_0}{q_1} \leq -\beta$ . In this case condition (59) is equivalent to  $-1 \leq \frac{q_0}{q_1}$ ,  
 775 i.e. it holds.

777 However, the special case  $\frac{q_0}{q_1} = -1$  is the degenerate scenario in which the denominator of  
 778  $\Psi$  vanishes at  $\mu = 1$  and the stability condition  $q_1 < -q_0$  in Eq. (51) is violated, so we  
 779 will discard this special case.

- 780 2.  $r > 0$  corresponds to  $\frac{q_0}{q_1} < -1$  or  $\frac{q_0}{q_1} > -\beta$ . The option  $\frac{q_0}{q_1} < -1$  is inconsistent with  
 781 condition (59), leaving only the option  $\frac{q_0}{q_1} > -\beta$ .

- 782 (a) If  $\frac{q_0}{q_1} \leq 0$ , then condition (59) is equivalent to

$$784 \quad \sqrt{r} \leq 1 + \frac{q_0}{q_1}, \quad (60)$$

786 which holds true thanks to the assumption  $\beta < 1$ .

- 787 (b) If  $\frac{q_0}{q_1} \geq 0$ , then condition (59) is equivalent to

$$789 \quad \sqrt{r} \leq 1 - \frac{q_0}{q_1}, \quad (61)$$

792 which holds iff

$$793 \quad \frac{q_0}{q_1} \leq \frac{1-\beta}{3+\beta}. \quad (62)$$

795 Summarizing, assuming the stability condition  $-1 < \beta < 1$  and excluding the degenerate case  
 796  $q_0 = -q_1$ , the condition of injectivity of the map  $\Psi$  on the domain  $|\mu| > 1$  reads

$$798 \quad -1 < \frac{q_0}{q_1} \leq \frac{1-\beta}{3+\beta}. \quad (63)$$

800 We remark that this condition can also be reached in a different way. There are two obvious nec-  
 801 essary conditions of injectivity of  $\Psi$  on the set  $|\mu| > 1$ : the absence of poles of  $\Psi$  and zeros of the  
 802 derivative  $\Psi'$  from this domain (the latter ensures the local injectivity). The absence of poles means  
 803 that  $-1 \leq \frac{q_0}{q_1} \leq 1$ . The zeros of the derivative are given by the equation

$$805 \quad \mu^2 + 2 \frac{q_0}{q_1} \mu - (\beta + 1) \frac{q_0}{q_1} - \beta = 0. \quad (64)$$

807 Both roots of a quadratic equation  $\mu^2 + a\mu + b = 0$  lie inside the closed unit circle iff  $|a| \leq 1 + b \leq 2$ .  
 808 Applying this condition (and discarding the case  $q_0/q_1 = -1$ ), we reach the same inequalities (63).  
 809 In particular, the conditions of absence of poles and the roots of the derivative turn out to be not only  
 necessary, but also sufficient.

ALGEBRAIC EQUATION OF THE CONTOUR. The circle  $|\mu| = 1$  is a real algebraic curve defined by the polynomial equation  $x^2 + y^2 = 1$ , where  $\mu = x + iy$ . Images of real algebraic curves under rational complex maps are again algebraic curves, and the corresponding equations can be found using, e.g., Macaulay resultants (Stiller, 1996). In the particular case of unit circle the computation can be performed in terms of standard resultants as follows.

Recall that  $\Psi(\mu) = \frac{P(\mu)}{Q(\mu)}$ , where  $P$  is a polynomial of degree  $M + 1$ , and  $Q$  is a polynomial of degree  $\leq M$ ; we assume  $P$  and  $Q$  to have real coefficients. Denote  $w = \Psi(\mu)$ , then

$$wQ(\mu) = P(\mu). \quad (65)$$

Since  $\mu$  belongs to the unit circle,  $\mu\bar{\mu} = 1$ . Applying complex conjugation and the identity  $\bar{\mu} = 1/\mu$  to the above equation, we get the second equation

$$\bar{w}Q(1/\mu) = P(1/\mu). \quad (66)$$

Note that  $\tilde{Q}(\mu) = \mu^{M+1}Q(1/\mu)$  and  $\tilde{P}(\mu) = \mu^{M+1}P(1/\mu)$  are polynomials in  $\mu$  of degree  $M + 1$  or less. It follows that  $\mu$  satisfies two polynomial conditions:

$$T_1(\mu) = 0, \quad T_2(\mu) = 0, \quad (67)$$

where

$$T_1(\mu) = P(\mu) - wQ(\mu), \quad T_2(\mu) = \tilde{P}(\mu) - \bar{w}\tilde{Q}(\mu), \quad (68)$$

i.e.  $\mu$  is a common root of two polynomials,  $T_1(\mu)$  and  $T_2(\mu)$ . Two polynomials have a common root iff their resultant vanishes. The polynomials  $T_1(\mu), T_2(\mu)$  have degree  $M + 1$  or less and include  $w$  and  $\bar{w}$  linearly in their coefficients. It follows that the set  $\Psi(\{|\mu| = 1\})$  can be described by the equation

$$\text{res}(T_1(\mu), T_2(\mu)) = 0, \quad (69)$$

which is a polynomial equation in  $w$  and  $\bar{w}$  of degree at most  $2(M + 1)$ .

We implement now this general program for  $M = 1$ . Given quadratic polynomials

$$T_1(\mu) = A\mu^2 + B\mu + C, \quad (70)$$

$$T_2(\mu) = D\mu^2 + E\mu + F, \quad (71)$$

their resultant can be written as

$$\text{res}(T_1, T_2) = (AF - CD)^2 - (AE - BD)(BF - CE). \quad (72)$$

In our case

$$A = 1, \quad B = -(\beta + 1 + wq_1), \quad C = \beta - wq_0, \quad (73)$$

$$D = \beta - \bar{w}q_0, \quad E = -(\beta + 1 + \bar{w}q_1), \quad F = 1. \quad (74)$$

Considering real  $\beta, q_0, q_1$  and  $w = x + iy$ , we get

$$\text{res}(T_1, T_2) = (1 - (\beta - q_0x)^2 - q_0^2y^2)^2 \quad (75)$$

$$- (\beta^2 - 1 + [(q_1 - q_0)\beta - q_1 - q_0]x - q_0q_1(x^2 + y^2))^2 \quad (76)$$

$$- (\beta + 1)^2(q_0 + q_1)^2y^2. \quad (77)$$

It follows that the contour  $\Psi(\{|\mu| = 1\})$  can be described by the quartic (in general) equation

$$(1 - (\beta - q_0x)^2 - q_0^2y^2)^2 = (\beta^2 - 1 + [(q_1 - q_0)\beta - q_1 - q_0]x - q_0q_1(x^2 + y^2))^2 \quad (78)$$

$$+ (\beta + 1)^2(q_0 + q_1)^2y^2. \quad (79)$$

As expected, in the Heavy Ball case  $q_0 = 0$  this equation degenerates into the quadratic equation

$$(1 - \beta^2)^2 = (\beta^2 - 1 + (\beta - 1)q_1x)^2 + (\beta + 1)^2q_1^2y^2. \quad (80)$$

864 C PROOF OF THEOREM 3  
865866 C.1 THE NOISE PROPAGATORS  
867868 **The function  $F_U$ .** Let us introduce the values  
869

870 
$$U(t, \lambda) = \frac{1}{2\pi i} \oint_{|\mu|=1} \frac{\mu^{t-1} d\mu}{\Psi(\mu) - \lambda} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it\phi} d\phi}{\Psi(e^{i\phi}) - \lambda} \quad (81)$$
  
871

872 so that, by Eq. (19), the propagator  $U_t$  can be written as  
873

874 
$$U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 |U(t, \lambda)|^2. \quad (82)$$
  
875  
876

877 With the change of variables  $\phi = s\lambda^{1/\theta}$ ,  
878

879 
$$U(t, \lambda) = \frac{-\lambda^{1/\theta-1}}{2\pi} \int_{-\pi/\lambda^{1/\theta}}^{\pi/\lambda^{1/\theta}} \frac{e^{it\lambda^{1/\theta}s} ds}{-\Psi(e^{is\lambda^{1/\theta}})/\lambda + 1} = -\lambda^{1/\theta-1} F_U(t\lambda^{1/\theta}, \lambda), \quad (83)$$
  
880  
881

882 where we have denoted  
883

884 
$$F_U(r, \lambda) = \frac{1}{2\pi} \int_{-\pi/\lambda^{1/\theta}}^{\pi/\lambda^{1/\theta}} \frac{e^{irs} ds}{-\Psi(e^{is\lambda^{1/\theta}})/\lambda + 1}. \quad (84)$$
  
885

886 Recall that we assume  $\Psi(\mu) = -c_\Psi(\mu - 1)^\theta(1 + o(1))$  as  $\mu \rightarrow 1$ . By formally taking the limit  
887  $\lambda \searrow 0$  in the integral, we then expect  $F_U(r, \lambda)$  to converge to  
888

889 
$$F_U(r, 0) \stackrel{\text{def}}{=} F_U(r) \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{irs} ds}{c_\Psi e^{i(\text{sign } s)\theta\pi/2} |s|^\theta + 1} \quad (85)$$
  
890

891 for any fixed  $r$ . This integral can be equivalently written as  
892

893 
$$F_U(r) = \frac{1}{2\pi i} \int_{i\mathbb{R}} \frac{e^{rz} dz}{c_\Psi z^\theta + 1}, \quad (86)$$
  
894

895 assuming the standard branch of  $z^\theta$  holomorphic in  $\mathbb{C} \setminus (-\infty, 0]$ .  
896897 The function  $F_U$  can be viewed (up to a coefficient) as the inverse Fourier transform of the function  
898  $s \mapsto (c_\Psi e^{i(\text{sign } s)\theta\pi/2} |s|^\theta + 1)^{-1}$ . Note that, thanks to the condition  $\theta > 1$ , the latter function is  
899 Lebesgue-integrable, so  $F_U(r)$  is well-defined and continuous for all  $r \in \mathbb{R}$ . The function  $F_U$  can  
900 also be written in terms of the special Mittag-Leffler function  $E_{\theta, \theta}$  (see its integral representation  
901 (6.8) in (Haubold et al., 2011)):  
902

903 
$$F_U(r) = \frac{r^{\theta-1}}{c_\Psi} E_{\theta, \theta} \left( -\frac{r^\theta}{c_\Psi} \right), \quad E_{a, b}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{t^{a-b} e^t dt}{t^a - z}, \quad (87)$$
  
904

905 where the integration path  $\gamma$  encircles the cut  $(-\infty, 0]$  and the singularities of the denominator.  
906907 The following asymptotic properties of  $F_U(r)$  can be derived from the general asymptotic expansions  
908 of Mittag-Leffler functions (sections 1 and 6 in (Haubold et al., 2011)), but we provide proofs  
909 for completeness.  
910911 **Lemma 1.**

- 912 1.
- $F_U(r) = 0$
- for
- $r \leq 0$
- .
- 
- 913 2.
- $F_U(r) = (1 + o(1)) \frac{1}{c_\Psi \Gamma(\theta)} r^{\theta-1}$
- as
- $r \searrow 0$
- .
- 
- 914 3.
- $F_U(r) = (1 + o(1)) \frac{-c_\Psi}{\Gamma(-\theta)} r^{-\theta-1}$
- as
- $r \rightarrow +\infty$
- .
- 
- 915

916 *Proof.* 1. Consider the function  $f(z)$  integrated in Eq. (86). For any  $r \in \mathbb{R}$  and  $\theta \in (1, 2)$ ,  
917 the function  $f$  is holomorphic in any strip  $\mathcal{T}_a = \{0 < \Re z < a\}, a > 0$ , and is bounded in  $\mathcal{T}_a$

918 as  $|f(z)| = O(|z|^{-\theta})$ . It follows that the integration line  $i\mathbb{R}$  can be deformed to  $i\mathbb{R} + a$  without  
 919 changing the integral. If  $r < 0$ , then by letting  $a \rightarrow +\infty$  we can make the integral arbitrarily small.  
 920

921 2. By the change of variables  $rz = z'$ ,

$$922 \quad 923 \quad F_U(r) = u(r)r^{\theta-1}, \quad (88)$$

924 where

$$925 \quad 926 \quad u(r) = \frac{1}{2\pi i c_\Psi} \int_{i\mathbb{R}} \frac{e^{z'} dz'}{z'^\theta + c_\Psi^{-1} r^\theta}. \quad (89)$$

927 We can find  $\lim_{r \searrow 0} u(r)$  as follows. Observe that the integration line  $i\mathbb{R}$  can be deformed to the  
 928 line  $\gamma_a, a > 0$ , encircling the negative semi-axis:  
 929

$$930 \quad \gamma_a = \gamma_{a,1} \cup \gamma_{a,2} \cup \gamma_{a,3}, \quad (90)$$

$$931 \quad \gamma_{a,1} = \{z \in \mathbb{C} : \Im z = -a, \Re z \leq 0\}, \quad (91)$$

$$932 \quad \gamma_{a,2} = \{z \in \mathbb{C} : |z| = a, -\frac{\pi}{2} < \arg z < \frac{\pi}{2}\}, \quad (92)$$

$$933 \quad \gamma_{a,3} = \{z \in \mathbb{C} : \Im z = a, \Re z \leq 0\}. \quad (93)$$

935 Indeed, if  $r$  is sufficiently small, then this deformation occurs within the holomorphy domain of the  
 936 integrated function. The integral is preserved since  $\theta > 0$  and since we deform in the half-plane  
 937 where the argument of  $e^{z'}$  has  $\Re z' < 0$ .

938 Thus, for any fixed  $a > 0$  we have

$$940 \quad 941 \quad \lim_{r \searrow 0} u(r) = \lim_{r \searrow 0} \frac{1}{2\pi i c_\Psi} \int_{\gamma_a} \frac{e^{z'} dz'}{z'^\theta + c_\Psi^{-1} r^\theta} = \frac{1}{2\pi i c_\Psi} \int_{\gamma_a} \frac{e^{z'} dz'}{z'^\theta} = \frac{1}{2\pi i c_\Psi (\theta - 1)} \int_{\gamma_a} \frac{e^{z'} dz'}{z'^{\theta-1}}, \quad (94)$$

942 where in the last step we integrated by parts. In the last integral, thanks to the weakness of the  
 943 singularity  $z'^{1-\theta}$  at  $z' = 0$  (note that  $1 - \theta > -1$ ), we can let  $a \rightarrow 0$ :

$$945 \quad 946 \quad \int_{\gamma_a} \frac{e^{z'} dz'}{z'^{\theta-1}} = \int_0^{+\infty} e^{-s} s^{1-\theta} (e^{-\pi i(1-\theta)} - e^{\pi i(1-\theta)}) ds \quad (95)$$

$$948 \quad = 2i \sin(\pi(\theta - 1)) \Gamma(2 - \theta) \quad (96)$$

$$949 \quad = \frac{2\pi i}{\Gamma(\theta - 1)}, \quad (97)$$

951 where in the last step we used the identity  $\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin(\pi z)}$ . This is essentially Hankel's  
 952 representation of the Gamma function, valid for all  $\theta \in \mathbb{C}$  by analytic continuation. Summarizing,  
 953

$$954 \quad 955 \quad \lim_{r \searrow 0} u(r) = \frac{1}{c_\Psi(\theta - 1)\Gamma(\theta - 1)} = \frac{1}{c_\Psi\Gamma(\theta)}. \quad (98)$$

957 3. We start by performing integration by parts in  $F_U$  :

$$959 \quad 960 \quad F_U(r) = \frac{-1}{2\pi i r} \int_{i\mathbb{R}} e^{rz} d\frac{1}{c_\Psi z^\theta + 1} = \frac{c_\Psi\theta}{2\pi i r} \int_{i\mathbb{R}} \frac{e^{rz} z^{\theta-1} dz}{(c_\Psi z^\theta + 1)^2}. \quad (99)$$

961 Performing again the change of variables  $rz = z'$ , we have

$$963 \quad F_U(r) = v(r)r^{-\theta-1}, \quad (100)$$

964 where

$$965 \quad 966 \quad v(r) = \frac{c_\Psi\theta}{2\pi i} \int_{i\mathbb{R}} \frac{e^{z'} z'^{\theta-1} dz'}{(c_\Psi(z'/r)^\theta + 1)^2}. \quad (101)$$

968 To compute  $\lim_{r \rightarrow \infty} v(r)$ , we again transform the integration line. Let  $\gamma'$  be a line that lies in the  
 969 domain  $\mathbb{C} \setminus (-\infty, 0)$  and can be represented as the graph of a function  $\Re z = f(\Im z)$  such that

$$970 \quad f(y) \geq c_1|y| - c_0 \quad (102)$$

971 with some constant  $c_1 > 0$  and  $c_0$ .

Note that the integrated function has two singular points  $z' \in \mathbb{C} \setminus (-\infty, 0]$  where the denominator  $c_\Psi(z'/r)^\theta + 1 = 0$ . These two points depend linearly on  $r$ . Require additionally that  $\gamma'$  lie to the right of these points for all  $r > 0$ , so that  $i\mathbb{R}$  can be deformed to  $\gamma'$  without meeting the singularities. This requirement is feasible with a small enough  $c_1 > 0$  since, by the condition  $\theta < 2$ , the imaginary parts of the singular points are negative.

With these assumptions, integration in Eq. (101) can be changed to integration over  $\gamma'$ . Thanks to condition (102), the integrand converges exponentially fast at  $z' \rightarrow \infty$ , and we can take the limit  $r \rightarrow +\infty$ :

$$\lim_{r \rightarrow +\infty} v(r) = \frac{c_\Psi \theta}{2\pi i} \int_{\gamma'} e^{z'} z'^{\theta-1} dz'. \quad (103)$$

The contour  $\gamma'$  can now be transformed to a contour encircling the negative semi-axis, and applying Eq. (97) we get

$$\lim_{r \rightarrow +\infty} v(r) = \frac{c_\Psi \theta}{\Gamma(1-\theta)} = \frac{-c_\Psi}{\Gamma(-\theta)}. \quad (104)$$

□

**The formal leading term in  $U_t$ .** We have

$$U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 |U(t, \lambda_k)|^2 = \frac{\tau_1}{|B|} \sum_k \lambda_k^{2/\theta} F_U^2(t\lambda_k^{1/\theta}, \lambda_k). \quad (105)$$

To extract the leading term in this expression, we set the second argument in  $F_U(t\lambda_k^{1/\theta}, \lambda_k)$  to 0:

$$U_t^{(1)} \stackrel{\text{def}}{=} \frac{\tau_1}{|B|} \sum_k \lambda_k^{2/\theta} F_U^2(t\lambda_k^{1/\theta}) = \frac{\tau_1}{|B|} a_t t^{\theta/\nu-2}, \quad (106)$$

where

$$a_t = t^{2-\theta/\nu} \sum_k \lambda_k^{2/\theta} F_U^2(t\lambda_k^{1/\theta}) = t^{-\theta/\nu} \sum_k (t\lambda_k^{1/\theta})^2 F_U^2(t\lambda_k^{1/\theta}). \quad (107)$$

**Lemma 2.**

$$\lim_{t \rightarrow \infty} a_t = \Lambda^{1/\nu} \int_{\infty}^0 r^2 F_U^2(r) dr^{-\theta/\nu} = \Lambda^{1/\nu} \frac{\theta}{\nu} \int_0^{\infty} r^{1-\theta/\nu} F_U^2(r) dr < \infty. \quad (108)$$

*Proof.* Note first that the integral on the right is convergent. Indeed, by statement 2 of Lemma 1,  $r^{1-\theta/\nu} F^2(r) \propto r^{1-\theta/\nu+2(\theta-1)} = r^{\theta(2-1/\nu)-1}$  near  $r = 0$ . Since we assume  $\nu > 1$  and  $\theta > 1$ , the function  $r^{1-\theta/\nu} F^2(r)$  is bounded near  $r = 0$ . Also, by statement 3 of Lemma 1,  $r^{1-\theta/\nu} F^2(r) \propto r^{1-\theta/\nu-2(\theta+1)} = O(r^{-3})$  as  $r \rightarrow +\infty$ .

For any interval  $I$  in  $\mathbb{R}_+$ , denote by  $S_{I,t}$  the part of the expansion (107) of  $a_t$  corresponding to the terms with  $t\lambda_k^{1/\theta} \in I$ :

$$S_{I,t} = t^{-\theta/\nu} \sum_{k: t\lambda_k^{1/\theta} \in I} (t\lambda_k^{1/\theta})^2 F_U^2(t\lambda_k^{1/\theta}). \quad (109)$$

Recall that the eigenvalues  $\lambda$  are ordered and  $\lambda_k = \Lambda k^{-\nu}(1 + o(1))$  by capacity condition (11). It follows that for a given fixed number  $r > 0$ , the condition  $t\lambda_k^{1/\theta} > r$  holds whenever  $k < k_r$ , where

$$k_r = (1 + o(1)) \Lambda^{1/\nu} (t/r)^{\theta/\nu}, \quad t \rightarrow \infty. \quad (110)$$

Then, for  $I = [u, v]$  with  $0 < u < v < \infty$  we have

$$\liminf_{t \rightarrow \infty} S_{I,t} \geq \Lambda^{1/\nu} \inf_{r \in I} [r^2 F_U^2(r)] (u^{-\theta/\nu} - v^{-\theta/\nu}), \quad (111)$$

$$\limsup_{t \rightarrow \infty} S_{I,t} \leq \Lambda^{1/\nu} \sup_{r \in I} [r^2 F_U^2(r)] (u^{-\theta/\nu} - v^{-\theta/\nu}). \quad (112)$$

1026 Moreover, for any interval  $I = [u, v]$  with  $0 < u < v < \infty$  we can approximate  $\int_I r^2 F_U^2(r) dr^{-\theta/\nu}$   
 1027 by integral sums corresponding to sub-divisions  $I = I_1 \cup I_2 \cup \dots \cup I_n$ , apply the above inequalities  
 1028 to each  $I_s$ , and conclude that

$$1029 \lim_{t \rightarrow \infty} S_{I,t} = \Lambda^{1/\nu} \int_I r^2 F_U^2(r) dr^{-\theta/\nu}. \quad (113)$$

1032 It remains to handle the two parts of  $a_t$  corresponding to the remaining intervals  $I = [0, u]$  and  
 1033  $I = [v, \infty)$ . It suffices to show that the associated contributions  $S_{I,t}$  can be made arbitrarily small  
 1034 uniformly in  $t$  by making  $u$  small and  $v$  large enough.

1035 Consider first the interval  $I = [v, \infty)$ . Note that by Lemma 1 for all  $r > 1$  we can write

$$1037 r^2 F_U^2(r) \leq C r^{-2\theta} \quad (114)$$

1039 with some constant  $C$ , and we also have for all  $k$

$$1040 \Lambda_- k^{-\nu} \leq \lambda_k \leq \Lambda_+ k^{-\nu} \quad (115)$$

1042 for suitable constants  $\Lambda_-, \Lambda_+$ . It follows that

$$1043 S_{I,t} \leq t^{-\theta/\nu} \sum_{k: t(\Lambda_+ k^{-\nu})^{1/\theta} > v} C(t(\Lambda_- k^{-\nu})^{1/\theta})^{-2\theta} \quad (116)$$

$$1046 = t^{-\theta/\nu - 2\theta} C \Lambda_-^{-2} \sum_{k=1}^{\Lambda_+^{1/\nu} (t/v)^{\theta/\nu}} k^{2\nu} \quad (117)$$

$$1049 = O(1) t^{-\theta/\nu - 2\theta} (t/v)^{(\theta/\nu)(2\nu+1)} \quad (118)$$

$$1051 = O(1) v^{-(\theta/\nu)(2\nu+1)}, \quad (119)$$

1052 with  $O(1)$  denoting an expression bounded by a  $t, v$ -independent constant. This is the desired con-  
 1053 vergence property of  $S_{I,t}$ .

1054 Similarly, for the other interval  $I = [0, u]$  we use the inequality

$$1056 r^2 F_U^2(r) \leq C r^{2\theta}, \quad r < 1, \quad (120)$$

1058 also following by Lemma 1. Then

$$1059 S_{I,t} \leq t^{-\theta/\nu} \sum_{k: t(\Lambda_- k^{-\nu})^{1/\theta} < u} C(t(\Lambda_+ k^{-\nu})^{1/\theta})^{2\theta} \quad (121)$$

$$1062 = t^{-\theta/\nu + 2\theta} C \Lambda_+^2 \sum_{k=\Lambda_-^{1/\nu} (t/u)^{\theta/\nu}}^{\infty} k^{-2\nu} \quad (122)$$

$$1065 = O(1) t^{-\theta/\nu + 2\theta} (t/u)^{(\theta/\nu)(1-2\nu)} \quad (123)$$

$$1066 = O(1) u^{(\theta/\nu)(2\nu-1)}, \quad (124)$$

1068 which is the desired convergence property of  $S_{I,t}$  since  $\nu > 1$ .  $\square$

1070 **Completion of proof.** We have shown that if we replace  $F_U(t\lambda_k^{1/\theta}, \lambda_k)$  by  $F_U(t\lambda_k^{1/\theta})$  in Eq. (105),  
 1071 we get desired asymptotics of  $U_t$  in the limit  $t \rightarrow +\infty$ . We will show now that this replacement  
 1072 introduces a lower-order correction  $o(t^{\theta/\nu-2})$ ; this will complete the proof.

1074 We start with a technical lemma (to be applied with  $f = \Psi$ ) giving a lower bound for deviations of  
 1075 asymptotic power law functions with  $\theta < 2$  from real values.

1076 **Lemma 3.** Suppose that  $f : \{\mu \in \mathbb{C} : |\mu| = 1\} \rightarrow \mathbb{C}$  is continuous,  $f(\mu) = -c(\mu-1)^\theta (1+o(1))$  as  
 1077  $\mu \rightarrow 1$  with some  $\theta \in [0, 2)$  and  $c > 0$ . Suppose also that  $f(\{\mu \in \mathbb{C} : |\mu| = 1, \mu \neq 1\}) \cap [0, \lambda_{\max}] =$   
 1078  $\emptyset$  for some  $\lambda_{\max} > 0$ . Then there exist a constant  $C > 0$  such that

$$1079 |f(e^{is}) - \lambda| \geq C(|s|^\theta + \lambda), \quad s \in [-\pi, \pi], \lambda \in [0, \lambda_{\max}]. \quad (125)$$

1080 *Proof.* If we fix any small  $\epsilon > 0$ , then, by the condition  $f(\{\mu \in \mathbb{C} : |\mu| = 1, \mu \neq 1\}) \cap [0, \lambda_{\max}] = \emptyset$  and a compactness argument, there exist  $C', C > 0$  such that

$$1083 \quad |f(e^{is}) - \lambda| > C' > C(|s|^\theta + \lambda), \quad s \in [-\pi, -\epsilon] \cap [\epsilon, \pi], \lambda \in [0, \lambda_{\max}]. \quad (126)$$

1084 It remains to establish inequality (125) for  $|s| < \epsilon$ . Since  $f(\mu) = c(\mu - 1)^\theta(1 + o(1))$  and  $\theta \in [0, 2)$ ,

$$1086 \quad |f(e^{is}) - \lambda| = |e^{i \operatorname{sign}(s) \theta \pi / 2} c |s|^\theta (1 + o(1)) + \lambda| \quad (127)$$

$$1087 \quad = |e^{i \operatorname{sign}(s) \theta \pi / 4} c |s|^\theta (1 + o(1)) + \lambda e^{-i \operatorname{sign}(s) \theta \pi / 4}| \quad (128)$$

$$1089 \quad \geq \Re[e^{i \operatorname{sign}(s) \theta \pi / 4} c |s|^\theta (1 + o(1)) + \lambda e^{-i \operatorname{sign}(s) \theta \pi / 4}] \quad (129)$$

$$1090 \quad = \cos(\theta \pi / 4) (c |s|^\theta (1 + o(1)) + \lambda) \quad (130)$$

$$1092 \quad \geq \frac{1}{2} \min(c, 1) \cos(\theta \pi / 4) (|s|^\theta + \lambda) \quad (131)$$

1093 for  $|s|$  small enough.  $\square$

1094 **Lemma 4.**

1096 1.  $|F_U(r, \lambda) - F_U(r)| = o(1)$  as  $\lambda \rightarrow 0$ , uniformly in all  $r \in \mathbb{R}$ .

1098 2.  $F_U(r, \lambda) = O(\frac{1}{r})$  for all  $r$  of the form  $r = t\lambda^{1/\theta}, t = 1, 2, \dots$ , uniformly in all  $\lambda \in (0, \lambda_{\max}]$ .

1100 *Proof.* 1. It suffices to show that, as  $\lambda \searrow 0$ , the functions

$$1102 \quad f_\lambda(s) = -(2\pi)^{-1}(-\Psi(e^{is\lambda^{1/\theta}})/\lambda + 1)^{-1} \mathbf{1}_{[-\pi/\lambda^{1/\theta}, \pi/\lambda^{1/\theta}]}(s) \quad (132)$$

1104 converge in  $L^1(\mathbb{R})$  to

$$1106 \quad f_0(s) = -(2\pi)^{-1}(c_\Psi e^{i(\operatorname{sign} s) \theta \pi / 2} |s|^\theta + 1)^{-1}. \quad (133)$$

1108 Let us divide the interval  $[-\pi/\lambda^{1/\theta}, \pi/\lambda^{1/\theta}]$  into two subsets:

$$1109 \quad I_1(\lambda) = [-\lambda^{-h}, \lambda^{-h}], \quad (134)$$

$$1111 \quad I_2(\lambda) = [-\pi/\lambda^{1/\theta}, \pi/\lambda^{1/\theta}] \setminus I_1(\lambda), \quad (135)$$

1112 where  $h$  is some fixed number such that  $\frac{1}{\theta^2} < h < \frac{1}{\theta}$ .

1114 By Lemma 3,  $|\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1| \geq c |s|^\theta$  uniformly for all  $s \in [-\pi/\lambda^{1/\theta}, \pi/\lambda^{1/\theta}]$  and  $\lambda \in (0, \lambda_{\max}]$ . It follows that

$$1116 \quad \inf_{s \in I_2(\lambda)} |\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1| \geq c \lambda^{-h\theta}, \quad \lambda \in (0, \lambda_{\max}], \quad (136)$$

1119 for some constant  $c > 0$ . Using the condition  $\frac{1}{\theta^2} < h$ , it follows that

$$1121 \quad \int_{I_2(\lambda)} |f_\lambda(s)| ds = O(\lambda^{-1/\theta} \lambda^{h\theta}) = o(1), \quad \lambda \searrow 0. \quad (137)$$

1123 Thus, we can assume without loss that the functions  $f_\lambda$  vanish outside the intervals  $I_1(\lambda)$ . On these 1124 intervals, thanks to the condition  $h < \frac{1}{\theta}$ , we have

$$1126 \quad f_\lambda(s) = -(2\pi)^{-1}(c_\Psi e^{i(\operatorname{sign} s) \theta \pi / 2} |s|^\theta (1 + o(1)) + 1)^{-1} \quad (138)$$

1127 uniformly in  $s \in I_1(\lambda)$ . We can then apply the dominated convergence theorem to the functions 1128  $|f_\lambda - f_0|$ , with a dominating function  $C(1 + |s|^\theta)^{-1}$ , and conclude that  $f_\lambda \rightarrow f_0$  in  $L^1(\mathbb{R})$ , as 1129 desired.

1131 2. We start by performing integration by parts in  $U(t, \lambda)$ :

$$1133 \quad U(t, \lambda) = \frac{1}{2\pi it} \oint_{|\mu|=1} \frac{d\mu^t}{\Psi(\mu) - \lambda} = \frac{1}{2\pi it} \oint_{|\mu|=1} \frac{\Psi'(\mu) \mu^t d\mu}{(\Psi(\mu) - \lambda)^2} \quad (139)$$

1134 implying

$$1135 |U(t, \lambda)| \leq \frac{1}{2\pi t} \int_{-\pi}^{\pi} \frac{|\Psi'(e^{is})| ds}{|\Psi(e^{is}) - \lambda|^2}. \quad (140)$$

1138 We will show that this integral is  $O(\frac{1}{\lambda})$ .

1139 Note first that we can replace the integration on  $[-\pi, \pi]$  by integration on  $[-a, a]$  for any  $0 < a < \pi$ . Indeed, by our assumptions  $\Psi$  is  $C^1$  on the unit circle, and  $\Psi(\mu) = 1$  there only if  $\mu = 1$ .  
1140 Accordingly, the remaining part of the integral is non-singular as  $\lambda \searrow 0$  and so is uniformly bounded  
1141 for all  $\lambda \in (0, \lambda_{\max}]$ .

1142 Recall that by our assumption  $\Psi'(\mu) = O(|\mu - 1|^{\theta-1})$  as  $\mu \rightarrow 1$ . Applying again Lemma 3,  
1143

$$1144 |U(t, \lambda)| \leq \frac{C}{t} \int_0^\infty \frac{s^{\theta-1} ds}{(s^\theta + \lambda)^2} = \frac{C'}{t\lambda} \quad (141)$$

1145 with some constant  $C'$  independent of  $t, \lambda$ . It follows that

$$1146 |F_U(t\lambda^{1/\theta}, \lambda)| = |\lambda^{1-1/\theta} U(t, \lambda)| \leq \frac{C'}{t\lambda^{1/\theta}}, \quad (142)$$

1147 as claimed.  $\square$

1148 We return now to proving that replacing  $F_U(t\lambda_k^{1/\theta}, \lambda_k)$  by  $F_U(t\lambda_k^{1/\theta})$  in Eq. (105) amounts to a  
1149 lower-order correction  $o(t^{\theta/\nu-2})$ . It suffices to prove that  $\Delta a_t \rightarrow 0$ , where  
1150

$$1151 \Delta a_t = t^{2-\theta/\nu} \sum_k \lambda_k^{2/\theta} (F_U^2(t\lambda_k^{1/\theta}, \lambda_k) - F_U^2(t\lambda_k^{1/\theta})) \quad (143)$$

$$1152 = t^{-\theta/\nu} \sum_k (t\lambda_k^{1/\theta})^2 (F_U^2(t\lambda_k^{1/\theta}, \lambda_k) - F_U^2(t\lambda_k^{1/\theta})). \quad (144)$$

1153 For any interval  $I \subset \mathbb{R}$ , denote by  $\Delta S_{I,t}$  the part of  $\Delta a_t$  corresponding to the terms in (144) such  
1154 that  $t\lambda_k^{1/\theta} \in I$ . By statement 1 of Lemma 4, for any  $u > 0$  we have, as  $t \rightarrow \infty$ ,  
1155

$$1156 |\Delta S_{(0,u),t}| = o(1) t^{2-\theta/\nu} \sum_{k: t\lambda_k^{1/\theta} < u} \lambda_k^{2/\theta} \quad (145)$$

$$1157 = o(1) t^{2-\theta/\nu} O((t/u)^{(\theta/\nu)(1-2\nu/\theta)}) \quad (146)$$

$$1158 = o(1), \quad (147)$$

1159 where we have used the fact that  $2\nu/\theta > \nu > 1$ .

1160 Now consider the remaining interval  $I = [u, +\infty)$ . It suffices to prove that  $|\Delta S_{[u,+\infty),t}|$  can be  
1161 made arbitrarily small uniformly in  $t$  by choosing  $u$  large enough. By statement 2 of Lemma 4, we  
1162 can write  
1163

$$1164 |\Delta S_{[u,+\infty),t}| \leq C t^{2-\theta/\nu} \sum_{k: t\lambda_k^{1/\theta} > u} \lambda_k^{2/\theta} (t\lambda_k^{1/\theta})^{-2} \quad (148)$$

$$1165 \leq C t^{-\theta/\nu} \sum_{k=1}^{\Lambda_+^{1/\nu} (t/u)^{\theta/\nu}} 1 \quad (149)$$

$$1166 \leq C' u^{-\theta/\nu} \quad (150)$$

1167 with some  $t, u$ -independent constant  $C'$ . This completes the proof of statement 1 of Theorem 3.

## 1168 C.2 THE SIGNAL PROPAGATORS

1169 The proof for the signal propagators follows the same ideas as for the noise propagators, with appropriate  
1170 adjustments.

1188 The function  $F_V$ . We introduce the values  
 1189

$$1190 V(t, \lambda) = \frac{1}{2\pi i} \oint_{|\mu|=1} \frac{\Psi(\mu) \mu^{t-1} d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\Psi(e^{i\phi}) e^{it\phi} d\phi}{(\Psi(e^{i\phi}) - \lambda)(e^{i\phi} - 1)} \quad (151)$$

1192 so that, by Eq. (21), the propagators  $V_t$  can be written as  
 1193

$$1194 V_t = \sum_{k=1}^{\infty} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 |V(t, \lambda_k)|^2. \quad (152)$$

1196 With the change of variables  $\phi = s\lambda^{1/\theta}$ ,  
 1197

$$1198 V(t, \lambda) = \frac{\lambda^{1/\theta}}{2\pi} \int_{-\pi/\lambda^{1/\theta}}^{\pi/\lambda^{1/\theta}} \frac{(-\Psi(e^{is\lambda^{1/\theta}})/\lambda) e^{it\lambda^{1/\theta}s} ds}{(-\Psi(e^{is\lambda^{1/\theta}})/\lambda + 1)(e^{is\lambda^{1/\theta}} - 1)} = F_V(t\lambda^{1/\theta}, \lambda), \quad (153)$$

1200 where

$$1202 F_V(r, \lambda) = \frac{\lambda^{1/\theta}}{2\pi} \int_{-\pi/\lambda^{1/\theta}}^{\pi/\lambda^{1/\theta}} \frac{(-\Psi(e^{is\lambda^{1/\theta}})/\lambda) e^{irs} ds}{(-\Psi(e^{is\lambda^{1/\theta}})/\lambda + 1)(e^{is\lambda^{1/\theta}} - 1)}. \quad (154)$$

1204 We again recall that  $\Psi(\mu) = -c_\Psi(\mu - 1)^\theta(1 + o(1))$  as  $\mu \rightarrow 1$  and formally take the pointwise limit  
 1205  $\lambda \searrow 0$  in the integrand to obtain the expression  
 1206

$$1207 F_V(r, 0) \stackrel{\text{def}}{=} F_V(r) \stackrel{\text{def}}{=} \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{c_\Psi e^{i(\text{sign } s)\theta\pi/2} |s|^\theta e^{irs} ds}{(c_\Psi e^{i(\text{sign } s)\theta\pi/2} |s|^\theta + 1)s} \quad (155)$$

$$1209 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{c_\Psi e^{i(\text{sign } s)(\theta-1)\pi/2} |s|^{\theta-1} e^{irs} ds}{(c_\Psi e^{i(\text{sign } s)\theta\pi/2} |s|^\theta + 1)} \quad (156)$$

1211 for any fixed  $r$ . This integral can be equivalently written as  
 1212

$$1213 F_V(r) = \frac{1}{2\pi i} \int_{i\mathbb{R}} \frac{c_\Psi z^{\theta-1} e^{rz} dz}{c_\Psi z^\theta + 1}, \quad (157)$$

1215 assuming again the standard branch of  $z^\theta$  holomorphic in  $\mathbb{C} \setminus (-\infty, 0]$ . The function  $F_V$  can be  
 1216 written in terms of the Mittag-Leffler function  $E_\theta \equiv E_{\theta,1}$  (the special case of  $E_{a,b}$  given by Eq.  
 1217 (87)):

$$1219 F_V(r) = E_\theta \left( -\frac{r^\theta}{c_\Psi} \right). \quad (158)$$

1220 Note that, in contrast to  $F_U$ , the integrals (156), (157) are not absolutely summable, due to the  
 1221  $z^{-1}$  fall off of the integrand at  $z \rightarrow \infty$ . However, the integrand is square-summable and so  $F_V$ ,  
 1222 as a Fourier transform of such function, is well-defined almost everywhere as a square-integrable  
 1223 function.

1224 In fact,  $F_V$  can be defined for each particular  $r \neq 0$  by restricting the integration in (156) to segments  
 1225  $[u, v]$  and letting  $u \rightarrow -\infty$  and  $v \rightarrow \infty$ . Indeed, the resulting Fourier transforms  $F_V^{(u,v)}$  converge  
 1226 to  $F_V$  in  $L^2(\mathbb{R})$ . However, these transforms are continuous functions of  $r$ , and as  $u \rightarrow \infty, v \rightarrow \infty$   
 1227 they converge pointwise, and even uniformly on the sets  $\{r : |r| > \epsilon\}$ , for any fixed  $\epsilon > 0$ .

1229 To see this last property of uniform pointwise convergence, note that the integrand in (156) has the  
 1230 form  $(s^{-1} + O(s^{-1-\theta})) e^{irs}$  as  $s \rightarrow \infty$ . The component  $O(s^{-1-\theta})$  is in  $L^1$ , so the respective part  
 1231 of  $F_V^{(u,v)}$  converges as  $u \rightarrow -\infty, v \rightarrow \infty$  uniformly for all  $r \in \mathbb{R}$ . Regarding the  $s^{-1}$  component,  
 1232 integrating by parts gives

$$1234 \int_1^v \frac{e^{irs} ds}{s} = \frac{e^{irs}}{irs} \Big|_{s=1}^v + \frac{1}{ir} \int_1^v \frac{e^{irs} ds}{s^2}. \quad (159)$$

1236 This expression converges as  $v \rightarrow \infty$  uniformly for  $\{r : |r| > \epsilon\}$  with any fixed  $\epsilon > 0$ , as claimed.  
 1237 The same argument applies to  $\int_u^{-1}$ .

1238 The above argument shows, in particular, that  $F_V$  is naturally defined as a function continuous on  
 1239 the intervals  $(0, +\infty)$  and  $(-\infty, 0)$ .

1241 We collect further properties of  $F_V(r)$  in the following lemma that parallels Lemma 1 for  $F_U$ . The  
 1242 proofs are also similar to the proofs in Lemma 1.

1242

**Lemma 5.**

1243

1244

1.  $F_V(r) = 0$  for  $r < 0$ .

1245

1246

2.  $F_V(r) \rightarrow 1$  as  $r \searrow 0$ .

1247

1248

3.  $F_V(r) = (1 + o(1)) \frac{c_\Psi}{\Gamma(1-\theta)} r^{-\theta}$  as  $r \rightarrow +\infty$ .

1249

*Proof.* 1. Like in Lemma 1, this follows by deforming the integration line in Eq. (157) towards  $+\infty$ .

1250

1251

1252

2. By the change of variables  $rz = z'$ ,

1253

1254

$$F_V(r) = \frac{1}{2\pi i} \int_{i\mathbb{R}} \frac{z'^{\theta-1} e^{z'}}{z'^\theta + c_\Psi^{-1} r^\theta}. \quad (160)$$

1255

As in Lemma 1, the integration line  $i\mathbb{R}$  can be deformed to the line  $\gamma_a$ ,  $a > 0$ , encircling the negative semi-axis:

1256

1257

1258

$$\gamma_a = \gamma_{a,1} \cup \gamma_{a,2} \cup \gamma_{a,3}, \quad (161)$$

1259

1260

$$\gamma_{a,1} = \{z \in \mathbb{C} : \Im z = -a, \Re z \leq 0\}, \quad (162)$$

1261

1262

$$\gamma_{2,2} = \{z \in \mathbb{C} : |z| = a, -\frac{\pi}{2} < \arg z < \frac{\pi}{2}\}, \quad (163)$$

1263

$$\gamma_{a,1} = \{z \in \mathbb{C} : \Im z = a, \Re z \leq 0\}. \quad (164)$$

1264

Taking the limit  $r \searrow 0$ , we get

1265

1266

1267

$$\lim_{r \searrow 0} F_V(r) = \lim_{r \searrow 0} \frac{1}{2\pi i} \int_{\gamma_a} \frac{z'^{\theta-1} e^{z'}}{z'^\theta + c_\Psi^{-1} r^\theta} = \frac{1}{2\pi i} \int_{\gamma_a} \frac{e^{z'}}{z'} = 1, \quad (165)$$

1268

since the last integral simply amounts to the residue of  $e^{z'}/z'$  at  $z' = 0$ .

1269

3. Using the same contour  $\gamma'$  as in Lemma 1,

1270

1271

$$F_V(r) = v(r) r^{-\theta}, \quad v(r) = \frac{1}{2\pi i} \int_{\gamma'} \frac{c_\Psi z'^{\theta-1} e^{z'}}{c_\Psi (z'/r)^\theta + 1}. \quad (166)$$

1272

Taking the limit  $r \rightarrow +\infty$  and deforming the contour to the negative semi-axis as in Lemma 1,

1273

1274

1275

$$\lim_{r \rightarrow +\infty} v(r) = \frac{c_\Psi}{2\pi i} \int_{\gamma'} z'^{\theta-1} e^{z'} dz' = \frac{c_\Psi}{\Gamma(1-\theta)}. \quad (167)$$

1276

1277

1278

1279

1280

**The formal leading term in  $V_t$ .** We have

1281

1282

1283

$$V_t = \sum_{k=1}^{\infty} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 |V(t, \lambda_k)|^2 = \sum_k \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 F_V^2(t \lambda_k^{1/\theta}, \lambda_k). \quad (168)$$

1284

1285

To extract the leading term in this expression, we set the second argument in  $F_V(t \lambda_k^{1/\theta}, \lambda_k)$  to 0:

1286

1287

1288

1289

$$V_t^{(1)} \stackrel{\text{def}}{=} \sum_k \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 F_V^2(t \lambda_k^{1/\theta}) = b_t t^{-\theta \zeta}, \quad (169)$$

1290

1291

1292

where

$$b_t = t^{\theta \zeta} \sum_k \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 F_V^2(t \lambda_k^{1/\theta}). \quad (170)$$

1293

The analog of Lemma 2 is

1294

**Lemma 6.**

1295

$$\lim_{t \rightarrow \infty} b_t = Q \int_0^\infty F_V^2(r) dr^{\theta \zeta} = Q \theta \zeta \int_0^\infty r^{\theta \zeta - 1} F_V^2(r) dr < \infty. \quad (171)$$

1296 *Proof.* First, observe that, by the source condition (12) and Lemma 5, the integral converges near  
 1297  $r = 0$  since  $\theta\zeta > 0$ , and near  $r = \infty$  since  $\zeta < 2$ .  
 1298

1299 We can establish convergence of the sequence  $b_t$  using the same steps as in Lemma 2. We first  
 1300 introduce the sums  $S_{I,t}$  comprising the terms of expansion (170) such that  $t\lambda_k^{1/\theta} \in I$ . For intervals  
 1301  $I = [u, v]$  with  $0 < u < v < \infty$  we show, using the source condition (12) and approximation by  
 1302 integral sums, that

$$1303 \lim_{t \rightarrow \infty} S_{I,t} = t^{\theta\zeta} \int_I F_V^2(r) dQ((r/t)^\theta)^\zeta = Q \int_I F_V^2(r) dr^{\theta\zeta}. \quad (172)$$

1305 After that we show that the contribution of the remaining intervals  $(v, +\infty)$  and  $(0, u)$  can be made  
 1306 arbitrarily small uniformly in  $t$  by adjusting  $u, v$ .  
 1307

1308 In particular, consider the interval  $I = (v, +\infty)$ . Let  $R(\lambda) = \sum_{k: \lambda_k \leq \lambda} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2$  denote the  
 1309 cumulative distribution function of the spectral measure. Since the spectral measure is compactly  
 1310 supported, assumption (12) implies that  $R(\lambda) \leq Q' \lambda^\zeta$  for all  $\lambda > 0$  with some  $Q' > 0$ . Using  
 1311 statement 3 of Lemma 5 and integration by parts, we can bound

$$1312 S_{(v, +\infty), t} \leq t^{\theta\zeta} \sum_{k: t\lambda_k^{1/\theta} > v} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 C(t\lambda_k^{1/\theta})^{-2\theta} \quad (173)$$

$$1315 = C t^{\theta(\zeta-2)} \int_{(v/t)^\theta}^\infty \frac{dR(\lambda)}{\lambda^2} \quad (174)$$

$$1317 = C t^{\theta(\zeta-2)} \left( \frac{R(\lambda)}{\lambda^2} \Big|_{(v/t)^\theta}^\infty + 2 \int_{(v/t)^\theta}^\infty \frac{R(\lambda) d\lambda}{\lambda^3} \right) \quad (175)$$

$$1320 \leq 2CQ' t^{\theta(\zeta-2)} \int_{(v/t)^\theta}^\infty \lambda^{\zeta-3} d\lambda \quad (176)$$

$$1322 \leq C' v^{(\zeta-2)\theta} \quad (177)$$

1323 with some constant  $C'$  independent of  $v, t$ .  
 1324

1325 For the intervals  $I = (0, u)$  we have

$$1326 S_{(0, u), t} \leq t^{\theta\zeta} \sum_{k: t\lambda_k^{1/\theta} < u} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 C \quad (178)$$

$$1329 \leq C t^{\theta\zeta} Q((u/t)^\theta)^\zeta \quad (179)$$

$$1331 = C' u^{\theta\zeta}. \quad (180)$$

1332  $\square$   
 1333

1334 **Completion of proof.** It remains to show that the correction in  $V_t$  due to the replacement of  
 1335  $F_V(t\lambda_k^{1/\theta}, \lambda_k)$  by  $F_V(t\lambda_k^{1/\theta})$  in Eq. (168) is  $o(t^{-\theta\zeta})$ . We first establish an analog of Lemma 4:  
 1336

1337 **Lemma 7.** *Assuming that  $r = t\lambda^{1/\theta}$  with  $t = 1, 2, \dots$ :*

- 1339 1.  $|F_V(r, \lambda) - F_V(r)| = o(1)$  as  $\lambda \rightarrow 0$ , uniformly for  $r > \epsilon$ , for any  $\epsilon > 0$ .
- 1340 2.  $|F_V(r, \lambda)| \leq C \min(\frac{1}{r}, 1)$  for all  $t = 1, 2, \dots$  and  $\lambda \in (0, \lambda_{\max}]$ , with some  $r, \lambda$ -  
 1341 independent constant  $C$ .

1343 *Proof.* 1. The proof of this property is more complicated than the earlier proof for  $F_U$  because  
 1344 the integrals defining  $F_V$  are not absolutely convergent. Recall the integration by parts argument  
 1345 (159) used to define  $F_V(r)$  as the pointwise limit of the functions  $F_V^{(u, v)}(r)$ . We extend this ap-  
 1346 proach to the functions  $F_V(r, \lambda)$  with  $\lambda > 0$ . Specifically, let  $F_V^{(u)}(r, \lambda)$  be defined as  $F_V(r, \lambda)$  in  
 1347 Eq. (154), but with integration restricted to the segment  $[-u, u]$ . By analogy with our convention  
 1348  $F_V(r) \equiv F_V(r, \lambda = 0)$ , denote also  $F_V^{(u)}(r) \equiv F_V^{(u)}(r, \lambda = 0)$ . We will establish the following two  
 1349 properties:

1350 (a)  $|F_V^{(u)}(r, \lambda) - F_V(r, \lambda)| \leq \frac{C}{ru}$  for all  $0 < \lambda < \lambda_{\max}$  with a  $r, u, \lambda$ -independent constant  $C$ .  
1351

1352 (b) For any  $u$ ,  $|F_V^{(u)}(r, \lambda) - F_V^{(u)}(r)| \rightarrow 0$  as  $\lambda \searrow 0$  uniformly for  $r \in \mathbb{R}$ .  
1353

1354 Observe first that these two properties imply the claimed uniform convergence  $|F_V(r, \lambda) - F_V(r)| =$   
1355  $o(1)$  as  $\lambda \rightarrow 0$ . Indeed, given any  $\delta > 0$ , first set  $u = \frac{3C}{\epsilon}$  so that by (a) we have  
1356

$$1357 |F_V^{(u)}(r, \lambda) - F_V(r, \lambda)| \leq \delta/3 \quad (181)$$

1358 for all  $r > \epsilon$  and  $0 < \lambda < \lambda_{\max}$ . This inequality also holds in the limit  $\lambda \searrow 0$ , i.e.  
1359

$$1360 |F_V^{(u)}(r) - F_V(r)| \leq \delta/3. \quad (182)$$

1362 Now (b) implies that for sufficiently small  $\lambda$  we have

$$1363 |F_V^{(u)}(r, \lambda) - F_V^{(u)}(r)| \leq \delta/3 \quad (183)$$

1365 uniformly in  $r \in \mathbb{R}$ . Combining all three above inequalities, we see that for sufficiently small  $\lambda$   
1366

$$1367 |F_V(r, \lambda) - F_V(r)| \leq \delta \quad (184)$$

1368 uniformly for  $r > \epsilon$ , as desired.

1369 It remains to prove the statements (a) and (b). Statement (b) immediately follows from the uniform  
1370  $\lambda \searrow 0$  convergence of the integrand in expression (154) on the interval  $s \in [-u, u]$ .  
1371

1372 To prove statement (a), we perform integration by parts, using the  $\frac{2\pi}{\lambda^{1/\theta}}$ -periodicity of the integrand:  
1373

$$1374 |F_V^{(u)}(r, \lambda) - F_V(r, \lambda)| \quad (185)$$

$$1375 = \frac{\lambda^{1/\theta}}{2\pi} \left| \int_{[-\frac{\pi}{\lambda^{1/\theta}}, \frac{\pi}{\lambda^{1/\theta}}] \setminus [-u, u]} \frac{(\Psi(e^{is\lambda^{1/\theta}})/\lambda)e^{irs} ds}{(\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1)(e^{is\lambda^{1/\theta}} - 1)} \right| \quad (186)$$

$$1376 = \frac{\lambda^{1/\theta}}{2\pi r} \left| \frac{(\Psi(e^{is\lambda^{1/\theta}})/\lambda)e^{irs}}{(\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1)(e^{is\lambda^{1/\theta}} - 1)} \right|_{s=u}^{-u} - \int_{[-\frac{\pi}{\lambda^{1/\theta}}, \frac{\pi}{\lambda^{1/\theta}}] \setminus [-u, u]} \quad (187)$$

$$1377 \frac{i\lambda^{1/\theta} [(-\Psi'(e^{is\lambda^{1/\theta}})/\lambda)(e^{is\lambda^{1/\theta}} - 1) - (\Psi(e^{is\lambda^{1/\theta}})/\lambda)(\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1)e^{is\lambda^{1/\theta}}] e^{irs} ds}{(\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1)^2 (e^{is\lambda^{1/\theta}} - 1)^2} \Big|.$$

1383 By our assumptions on  $\Psi$ , Lemma 3 and standard inequalities, there exist  $\lambda, s$ -independent constants  
1384  $C, c > 0$  such that for all  $\lambda \in (0, \lambda_{\max}]$  and  $s \in [-\frac{\pi}{\lambda^{1/\theta}}, \frac{\pi}{\lambda^{1/\theta}}]$   
1385

$$1386 |\Psi(e^{is\lambda^{1/\theta}})| \leq C|s|^\theta \lambda, \quad (188)$$

$$1387 |\Psi'(e^{is\lambda^{1/\theta}})| \leq C\theta|s|^{\theta-1} \lambda^{(\theta-1)/\theta}, \quad (189)$$

$$1388 |\Psi(e^{is\lambda^{1/\theta}})/\lambda - 1| \geq c(1 + |s|^\theta), \quad (190)$$

$$1389 |e^{is\lambda^{1/\theta}} - 1| \geq c|s|\lambda^{1/\theta}. \quad (191)$$

1392 Applying these inequalities to Eq. (187), we find that  
1393

$$1394 |F_V^{(u)}(r, \lambda) - F_V(r, \lambda)| \leq \frac{C'}{r} \left( \frac{u^\theta}{(1+u^\theta)u} + \int_{[-\frac{\pi}{\lambda^{1/\theta}}, \frac{\pi}{\lambda^{1/\theta}}] \setminus [-u, u]} \frac{|s|^\theta ds}{(1+|s|^\theta)s^2} \right) \quad (192)$$

$$1395 \leq \frac{C''}{ru}, \quad (193)$$

1398 as desired.

1400 2. Note that  
1401

$$1402 |F_V(r, \lambda)| \leq \frac{C}{r}, \quad C < \infty, \quad (194)$$

1403 simply by setting  $u = 0$  in the bound (192), since the first term on the r.h.s. of (192) vanishes and  
1404 the second converges thanks to  $\theta > 1$ .

1404 It remains to prove that  $F_V(r, \lambda)$  is bounded uniformly in  $r, \lambda$ . It suffices to prove this for  $r < \epsilon$  with  
 1405 some fixed  $\epsilon > 0$ , since for larger  $r$  this follows from bound (194). Since  $r = t\lambda^{1/\theta}$ , this means it is  
 1406 sufficient to consider

$$1407 \quad \lambda \leq (\epsilon/t)^\theta. \quad (195)$$

1408 To this end consider the original definition (151) of  $V(t, \lambda)$  in terms of integration over the contour  
 1409  $\{|\mu| = 1\}$ . We will deform this contour within the analyticity domain  $\{\mu \in \mathbb{C} : |\mu| \geq 1\}$  to another  
 1410 contour  $\gamma$ , to be specified below, that fully encircles the point  $\mu = 1$ :

$$1412 \quad V(t, \lambda) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Psi(\mu)\mu^{t-1}d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)}. \quad (196)$$

1415 It is convenient to subtract the residue of  $\mu^{t-1}/(\mu - 1)$  equal to 1:

$$1416 \quad V(t, \lambda) - 1 = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Psi(\mu)\mu^{t-1}d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)} - \frac{1}{2\pi i} \oint_{\gamma} \frac{\mu^{t-1}d\mu}{\mu - 1} = \frac{\lambda}{2\pi i} \oint_{\gamma} \frac{\mu^{t-1}d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)}. \quad (197)$$

1419 We define now  $\gamma$  as the original contour perturbed to include an arc of radius  $1/t$  centered at 1:

$$1421 \quad \gamma = \gamma_1 \cup \gamma_2, \quad (198)$$

$$1422 \quad \gamma_1 = \{e^{i\phi}\}_{\phi_1 \leq \phi \leq 2\pi - \phi_1}, \quad (199)$$

$$1423 \quad \gamma_2 = \{1 + \frac{e^{i\phi}}{t}\}_{-\phi_2 \leq \phi \leq \phi_2}, \quad (200)$$

1425 where  $\phi_1 \in (0, \frac{\pi}{2})$ ,  $\phi_2 \in (\frac{\pi}{2}, \pi)$  are such that  $\gamma$  is connected. Note that  $\phi_1 \propto \frac{1}{t}$  as  $t \rightarrow \infty$ .

1426 Now we bound separately the contribution to the integral from  $\gamma_1$  and  $\gamma_2$ . For  $\gamma_1$  and  $-\pi \leq \phi \leq \pi$   
 1427 we use the inequalities

$$1429 \quad |\Psi(e^{i\phi}) - \lambda| \geq c|\phi|^\theta, \quad (201)$$

$$1430 \quad |e^{i\phi} - 1| \geq c|\phi| \quad (202)$$

1432 with a  $\phi, \lambda$ -independent constant  $c > 0$ . This gives, using Eq. (195),

$$1433 \quad \lambda \left| \int_{\gamma_1} \frac{\mu^{t-1}d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)} \right| \leq \lambda C \left| \int_{-\pi}^{-\phi_1} + \int_{\phi_1}^{\pi} \frac{d\phi}{|\phi|^{\theta+1}} \right| \leq C' \frac{\lambda}{\phi_1^\theta} \leq C'' \lambda t^\theta \leq C'' \epsilon^\theta. \quad (203)$$

1436 For the  $\gamma_2$  component we use the inequalities

$$1437 \quad |1 + \frac{e^{i\phi}}{t}|^{t-1} \leq e, \quad (204)$$

$$1439 \quad |\Psi(1 + \frac{e^{i\phi}}{t}) - \lambda| \geq ct^{-\theta}, \quad -\phi_2 \leq \phi \leq \phi_2. \quad (205)$$

1440 (Inequality (205) relies on the assumption  $\theta < 2$  and can be proved similarly to Lemma 3.) This  
 1441 gives

$$1442 \quad \lambda \left| \int_{\gamma_2} \frac{\mu^{t-1}d\mu}{(\Psi(\mu) - \lambda)(\mu - 1)} \right| \leq \lambda C \left| \int_{-\pi}^{\pi} \frac{t^{-1}d\phi}{t^{-\theta} \cdot t^{-1}} \right| \leq C' \lambda t^\theta \leq C'' \epsilon^\theta. \quad (206)$$

1444 Fixing some  $\epsilon > 0$ , we see from Eqs. (203), (206) that under assumption (195) the expressions  
 1445  $|V(t, \lambda) - 1|$ , and hence  $|V(t, \lambda)|$ , are uniformly bounded, as desired.  $\square$

1447 This completes the proof of the lemma.  $\square$

1449 This lemma can now be used to show that replacing  $F_V(t\lambda_k^{1/\theta}, \lambda_k)$  by  $F_V(t\lambda_k^{1/\theta})$  in Eq. (168)  
 1450 amounts to a lower-order correction  $o(t^{-\theta\zeta})$  in the propagator  $V_t$ . The argument is similar to the  
 1451 respective argument for  $F_U$  in the end of Section C.1. Statement 1 of Lemma 7 is used to show  
 1452 this for the contribution of the terms  $k$  with  $u < t\lambda_k^{1/\theta} < v$ , for any  $0 < u < v < +\infty$ . Then,  
 1453 for terms with  $t\lambda_k^{1/\theta} < u$  we use the uniform boundedness of  $F_V(r, \lambda)$ , i.e. the part  $F_V(r, \lambda) \leq C$   
 1454 of statement 2, and show that their contribution can be made arbitrarily small by decreasing  $u$ .  
 1455 Finally, for terms with  $t\lambda_k^{1/\theta} > v$  we use the part  $F_V(r, \lambda) \leq \frac{C}{r}$  of statement 2, and show that their  
 1456 contribution can be made arbitrarily small by increasing  $v$ .

1457 This completes the proof of Theorem 3.

1458 **D PROOF OF PROPOSITION 1**

1460 To simplify notation, set  $A = 1$ ; results for general  $A$ 's are easily obtained by rescaling.

1461  
1462 Note first that for any  $\mu \in \mathbb{C} \setminus [0, 1]$  the integral in Eq. (28) converges and is nonzero. To see that  
1463 it is nonzero, note that if  $\mu$  has a nonzero imaginary part, then the integral has a nonzero imaginary  
1464 part of the opposite sign, hence is nonzero. On the other hand, if  $\mu > 1$  or  $\mu < 0$ , then the integral  
1465 is strictly positive or negative, so also nonzero. It follows that the expression in parentheses is  
1466 invertible and so  $\Psi(\mu)$  is well-defined for all  $\mu \in \mathbb{C} \setminus [0, 1]$ .

1467 The asymptotics  $\Psi(\mu) = -\mu(1 + o(1))$  at  $\mu \rightarrow \infty$  is obvious.

1468 To find the asymptotics at  $\mu \rightarrow 1$ , make the substitution  $z = \delta/(\mu - 1)$  in the integral:

$$1469 \int_0^1 \frac{d\delta^{2-\theta}}{\mu - 1 + \delta} = (\mu - 1)^{\theta-1} \int_0^{1/(\mu-1)} \frac{dz^{2-\theta}}{1+z}. \quad (207)$$

1472 As  $\mu \rightarrow 1$  the last integral converges to a standard integral:

$$1474 \int_0^{1/(\mu-1)} \frac{dz^{2-\theta}}{1+z} \rightarrow \int_0^\infty \frac{dz^{2-\theta}}{1+z} = \frac{(2-\theta)\pi}{\sin((2-\theta)\pi)}. \quad (208)$$

1476 The integration line in the last integral is any line connecting 0 to  $\infty$  in  $\mathbb{C} \setminus (-\infty, 0)$ ; the integral  
1477 does not depend on the line thanks to the condition  $\theta > 1$ .

1478 We prove now that  $\Psi(\{|\mu| \geq 1\}) \cap (0, 2] = \emptyset$ . Let us first show that if  $|\mu| \geq 1$  and  $\Im \mu \neq 0$ , then  
1479  $\Psi(\mu) \notin (0, +\infty)$ . To this end write

$$1481 \Psi(\mu) = ab, \quad (209)$$

$$1482 a = -\left(\int_0^1 \frac{(\mu-1)d\delta^{2-\theta}}{\mu-1+\delta}\right)^{-1} = -\left(\int_0^1 \frac{d\delta^{2-\theta}}{1+\frac{\delta}{\mu-1}}\right)^{-1}, \quad (210)$$

$$1485 b = \frac{(\mu-1)^2}{\mu} = J(\mu) - 2, \quad (211)$$

1487 where  $J(\mu) = \mu + \frac{1}{\mu}$  is Zhukovsky's function.

1489 Suppose, for definiteness, that  $\Im \mu > 0$ . Regarding  $a$ , note that if  $\Im \mu > 0$ , then the imaginary part  
1490 of the integrand in Eq. (210) is also positive, and so  $\Im a > 0$ .

1491 Regarding  $b$ , recall that if  $\Im \mu > 0$  and  $|\mu| > 1$ , then  $\Im J(\mu) > 0$ . On the other hand, if  $|\mu| = 1$ ,  
1492 then  $J(\mu) \in [-2, 2]$ . Combining these observations, we see that if  $\Im \mu > 0$  and  $|\mu| \geq 1$ , then either  
1493  $\Im b > 0$ , or  $b \leq 0$ . Since  $\Im a > 0$ , it follows that  $ab \notin (0, +\infty)$ .

1494 We see that  $\Psi(\mu)$  can be real and positive only if  $\mu \in \mathbb{R}$ . Clearly,  $\Psi(\mu) > 0$  if  $\mu \leq -1$ , and  
1495  $\Psi(\mu) \leq 0$  if  $\mu \geq 1$ . It is easily checked by differentiation that  $\Psi(\mu)$  is monotone decreasing for  
1496  $\mu \in (-\infty, -1]$ , so the smallest positive value attained by  $\Psi$  is

$$1498 \Psi(-1) = 2\left(\int_0^1 \frac{d\delta^{2-\theta}}{2-\delta}\right)^{-1} > 2. \quad (212)$$

1501 **E PROOF OF PROPOSITION 2**

1503 In terms of  $\alpha, \mathbf{b}, \mathbf{c}, D$ , the components  $P, Q$  of the characteristic polynomial  $\det(\mu - S_\lambda) = P(\mu) -$   
1504  $\lambda Q(\mu)$  can be written as

$$1506 P(\mu) = (\mu - 1) \det(\mu - D), \quad (213)$$

$$1507 Q(\mu) = -\det \begin{pmatrix} \alpha & \mathbf{b}^T \\ \mathbf{c} & \mu - D \end{pmatrix} = \det(\mu - D)(\mathbf{b}^T(\mu - D)^{-1}\mathbf{c} - \alpha). \quad (214)$$

1509 (see Theorem 1 in Yarotsky & Velikanov (2024)). Accordingly,

$$1511 \frac{(\mu - 1)Q(\mu)}{P(\mu)} = \mathbf{b}^T(\mu - D)^{-1}\mathbf{c} - \alpha. \quad (215)$$

1512 If  $D = \text{diag}(d_1, \dots, d_M)$ , then  
 1513

$$\frac{(\mu - 1)Q(\mu)}{P(\mu)} = \sum_{m=1}^M \frac{b_m c_m}{\mu - d_m} - \alpha. \quad (216)$$

1517 On the other hand, our definition of  $\Psi^{(M)}$  implies that  
 1518

$$\frac{(\mu - 1)A}{\Psi^{(M)}(\mu)} = (\theta - 2)h\mu \sum_{m=1}^M \frac{e^{-(2-\theta)(m-1/2)h}}{\mu - 1 + e^{-(m-1/2)h}} \quad (217)$$

$$= (\theta - 2)h \left[ \sum_{m=1}^M \frac{e^{-(2-\theta)(m-1/2)h}(1 - e^{-(m-1/2)h})}{\mu - 1 + e^{-(m-1/2)h}} + \sum_{m=1}^M e^{-(2-\theta)(m-1/2)h} \right] \quad (218)$$

$$= (2 - \theta)h \left[ \sum_{m=1}^M \frac{e^{-(2-\theta)(m-1/2)h}(e^{-(m-1/2)h} - 1)}{\mu - 1 + e^{-(m-1/2)h}} - \frac{1 - e^{-(2-\theta)Mh}}{1 - e^{-(2-\theta)h}} e^{-(2-\theta)h/2} \right]. \quad (219)$$

1528 By comparing this expansion with Eq. (216), we see that the values of  $\alpha, \mathbf{b}, \mathbf{c}, D$  given in Eqs.  
 1529 (31)-(34) ensure that  $P/Q = \Psi^{(M)}$ .  
 1530

## F EXPERIMENTS

1533 The experiments in this section<sup>2</sup> are performed with Corner SGD approximated as in Proposition 2  
 1534 with memory size  $M = 5$  and spacing parameter  $l = 5$ . Experiments have been performed with  
 1535 GPU NVIDIA GeForce RTX 4070, CPU Intel Core i5-12400F, and 32 GB RAM; the training of all  
 1536 the models on GPU has taken less than half an hour.  
 1537

1538 **A synthetic indicator problem.** Suppose that we are fitting the indicator function  $y(x) =  
 1_{[1/4, 3/4]}(x)$  on the segment  $[0, 1]$  using the shallow ReLU neural network in which only the out-  
 1540 put layer weights  $w_n$  are trained:  
 1541

$$\hat{y}(x, \mathbf{w}) = \frac{1}{N} \sum_{n=1}^N w_n (x - \frac{n}{N})_+, \quad (x)_+ \equiv \max(x, 0). \quad (220)$$

1544 This is an exactly linear model that in the limit  $N \rightarrow \infty$  acquires the form  
 1545

$$\hat{y}(x) = \int_0^1 w(y)(x - y)_+ dy = \mathbf{x}^T \mathbf{w}, \quad (221)$$

1548 where  $\mathbf{x}, \mathbf{w}$  are understood as vectors in  $L^2([0, 1])$ , and  $\mathbf{x} \equiv (x - \cdot)_+$ . We consider the loss  $L(\mathbf{w}) =  
 1549 \mathbb{E}_{x \sim U(0,1)} \frac{1}{2} (\mathbf{x}^T \mathbf{w} - y(x))^2$ , where  $U(0, 1)$  is the uniform distribution on  $[0, 1]$ .  
 1550

1551 This limiting integral problem obeys asymptotic spectral power laws (11), (12) with precisely com-  
 1552 putable  $\nu, \zeta$  (see Appendix H):  
 1553

$$\zeta = \frac{1}{4}, \quad \nu = 4. \quad (222)$$

1554 The problem thus falls into the sub-phase I “full acceleration” of the signal dominated phase, and  
 1555 we expect that it can be accelerated with corner algorithms up to  $\theta_{\max} = 2$ .  
 1556

1557 In the experiment we set  $N = 10^5$  and apply corner SGD with  $\theta = 1.8$ , see Figure 3. The experi-  
 1558 mental exponent of plain SGD is close to the theoretical value  $\zeta = 0.25$ . The accelerated exponent of  
 1559 approximate Corner SGD is slightly lower, but close to the theoretical value  $\theta\zeta = 1.8 \cdot 0.25 = 0.45$ .  
 1560

1561 **MNIST.** We consider MNIST LeCun et al. (2010) digit classification performed by a single-  
 1562 hidden-layer ReLU neural network:  
 1563

$$\hat{y}_r(\mathbf{x}, \mathbf{w}) = \frac{1}{\sqrt{H}} \sum_{n=1}^H w_{rn}^{(2)} \left( \sum_{m=1}^{28 \times 28} w_{nm}^{(1)} x_m \right)_+, \quad r = 0, \dots, 9. \quad (223)$$

1564  
 1565 <sup>2</sup>A jupyter notebook with all experiments is provided in SM

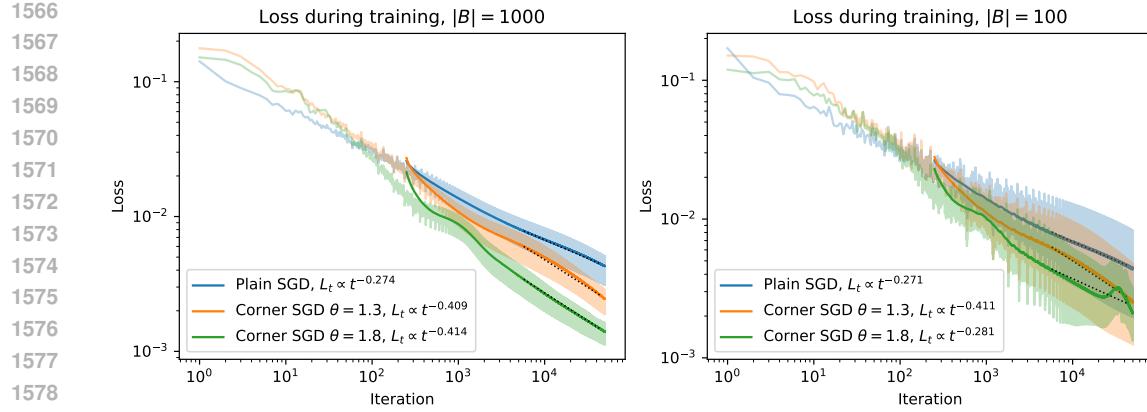


Figure 5: Training loss of neural network (223) on MNIST classification with  $H = 1000$ , with batch size  $|B| = 1000$  (left) or  $100$  (right). The full color curves show the smoothed losses.

Here, the input vector  $\mathbf{x} = (x_m)_{m=1}^{28 \times 28}$  represents a MNIST image, and the outputs  $y_r$  represent the 10 classes. We use the one-hot encoding for the targets  $\mathbf{y}(\mathbf{x})$  and the quadratic pointwise loss  $\ell(\mathbf{x}, \mathbf{w}) = \frac{1}{2}|\hat{\mathbf{y}}(\mathbf{x}, \mathbf{w}) - \mathbf{y}(\mathbf{x})|^2$  for training. The trainable weights include both first- and second-layer weights  $w_{nm}^{(1)}, w_{rn}^{(2)}$ .

Note that the model (223) is nonlinear, but for large width  $H$  and standard independent weight initialization it belongs to the approximately linear NTK regime (Jacot et al., 2018). In Velikanov & Yarotsky (2021) MNIST was found to have an approximate power-law spectrum with

$$\zeta \approx 0.25, \quad \nu \approx 1.3, \quad (224)$$

putting this problem in the sub-phase III ‘‘limited by  $U_\Sigma$ -finiteness’’ of the signal-dominated phase (see Figure 1). Theoretically, by Theorem 4, the largest feasible acceleration in this case is  $\theta_{\max} = \nu$ . Note, however, that this theoretical prediction relied on the infinite-dimensionality of the problem and the divergence of the series  $\sum_{t=1}^{\infty} t^{\theta/\nu-2}$ . The actual MNIST problem is finite-dimensional, so its  $U_\Sigma$  is always finite (though possibly large) and can be made  $< 1$  if  $|B|$  is large enough. This suggests that corner SGD might practically be used with  $\theta > \nu$  and possibly display acceleration beyond the theoretical bound  $\theta_{\max} = \nu$ . Note also that with exponents (224) the signal/noise balance bound  $\frac{2}{\zeta+1/\nu} \approx 2$ , i.e. it is not an obstacle for increasing the parameter  $\theta$  towards 2.

In Figure 5 we test corner SGD with  $\theta = 1.3$  or  $1.8$  on batch sizes  $|B| = 1000$  and  $100$ . The  $\theta = 1.3$  version shows a stable performance accelerating the plain SGD exponent  $\zeta$  by a factor  $\sim 1.5$ . The  $\theta = 1.8$  version shows lower losses, but does not significantly improve acceleration factor 1.5 at  $|B| = 1000$  and is unstable at  $|B| = 100$ .

In Figure 6 we show both train and test trajectories of the loss and error rate (fraction of incorrectly classified images). The test performance is computed on the standard set of 10000 images, while the training performance is computed by averaging the training loss trajectory. We observe that, similarly to the training set performance, the test performance also improves faster with Corner SGD than with plain SGD. The instability of Corner SGD with  $\theta = 1.8$  and batch size 100 observed previously on the training set is also visible on the test set.

## G ADDITIONAL NOTES AND DISCUSSION

**Extension to SE approximation with  $\tau_2 \neq 0$ .** The key assumption in our derivation and analysis of the contour representation and corner algorithms was the Spectrally Expressible approximation with  $\tau_2 = 0$  for the SGD moment evolution (see Eq. (6)). While the SE approximation in general was justified from several points of view in Velikanov et al. (2023); Yarotsky & Velikanov (2024), a natural question is how important is the condition  $\tau_2 = 0$ . This condition substantially simplifies the representation of propagators  $U_t, V_t$  in Eqs. (8), but does not seem to correspond to any specific

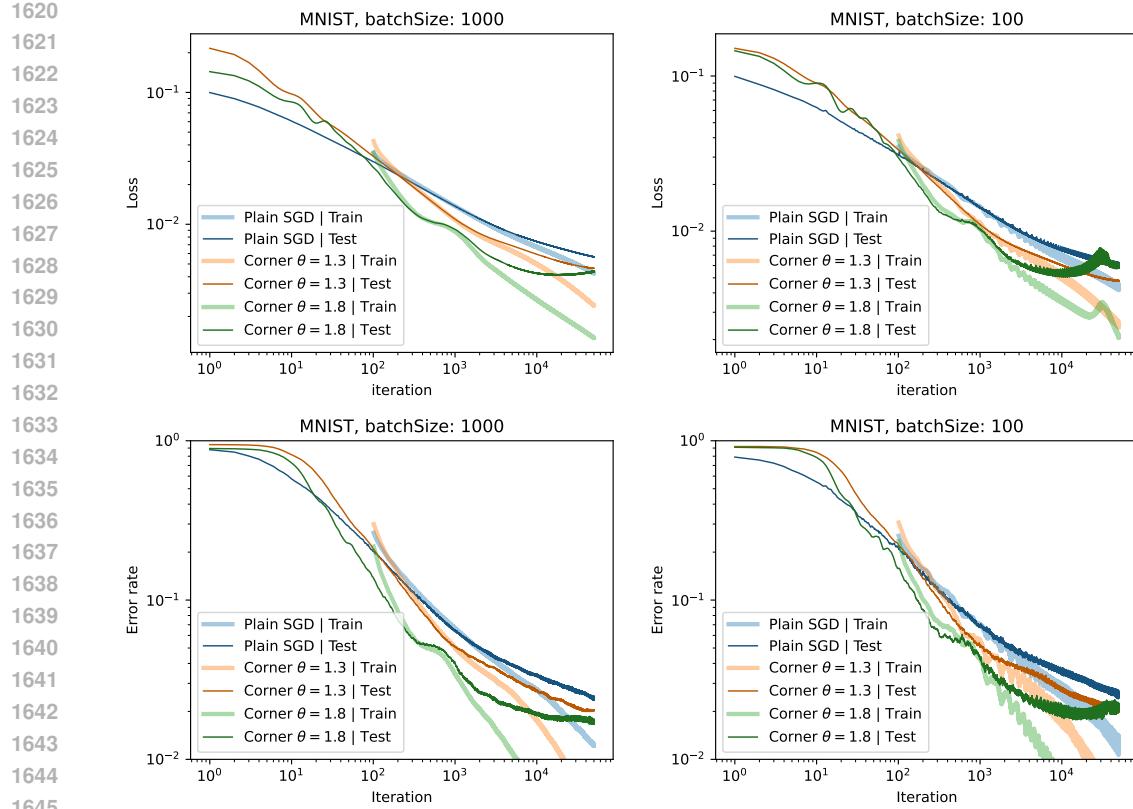


Figure 6: MNIST trajectories of loss (**top row**) and error rate (**bottom row**) on train set (**lighter colors**) and test set (**darker colors**). **Left column:** batch size 1000. **Right column:** batch size 100.

natural data distribution  $\rho$ . (In contrast, the cases  $\tau_1 = \tau_2 = 1$  and  $\tau_1 = 1, \tau_2 = -1$  exactly describe translation-invariant and Gaussian distributions; see Velikanov et al. (2023).)

In fact, our analysis of the corner propagators  $U_t, V_t$  can be extended from  $\tau_2 = 0$  to general  $\tau_2$  by a perturbation theory around  $\tau_2 = 0$ . In Appendix I we sketch an argument suggesting that, at least for sufficiently large batch sizes  $|B|$ , Theorem 3 remains valid for general  $\tau_2$ , even with the same coefficients  $C_U, C_V$  (i.e., the contribution from  $\tau_2 \neq 0$  produces only subleading terms in  $U_t, V_t$ ). This implies, in particular, that the acceleration phase diagram in Theorem 4 and Figure 1 (right) is not only  $\tau_1$ --, but also  $\tau_2$ -independent.

**Computational complexity.** The main overhead of finitely-approximated corner algorithms compared to plain SGD lies in the memory requirements: if the model has  $W$  weights (i.e.,  $\dim \mathbf{w}_t = W$  in Eq. (1)), then a memory- $M$  algorithm needs to additionally store  $MW$  scalars in the auxiliary vectors  $\mathbf{u}_t$ . On the other hand, the number of elementary operations (arithmetic operations and evaluations of standard elementary functions) in a single iteration of a finitely-approximated corner algorithm need not be much larger than for plain SGD.

Indeed, an iteration (1) of a memory- $M$  algorithm consists in computing the gradient  $\nabla L(\mathbf{w}_t)$  and performing a linear transformation. In SGD with batch size  $|B|$ , the estimated gradient  $\nabla L_{B_t}(\mathbf{w}_t)$  is computed by backpropagation using  $\propto |B|W$  operations. If Corner SGD is finitely-approximated using a diagonal matrix  $D$  as in Proposition 2, then the number of operations in the linear transformation is  $O(MW)$ . Accordingly, if  $|B| \gg M$  (which should typically be the case in practice), then the computational cost of the linear transformation is negligible compared to the batch gradient estimation, and so the computational overhead of Corner SGD is negligible compared to plain SGD.

**Practical and theoretical acceleration.** Our MNIST experiment in Section F shows that finitely-approximated Corner SGD developed in Section 5 can practically accelerate learning even on real-

1674  
 1675  
 1676  
 1677  
 1678  
 1679  
 1680  
 1681  
 1682  
 1683  
 1684  
 1685  
 1686  
 1687  
 1688  
 1689  
 1690  
 1691  
 1692  
 1693  
 1694  
 1695  
 1696  
 1697  
 1698  
 1699  
 1700  
 1701  
 1702  
 1703  
 1704  
 1705  
 1706  
 1707  
 1708  
 1709  
 1710  
 1711  
 1712  
 1713  
 1714  
 1715  
 1716  
 1717  
 1718  
 1719  
 1720  
 1721  
 1722  
 1723  
 1724  
 1725  
 1726  
 1727  
 istic problems that are not exactly linear. We note, however, that, in contrast to the ideal infinite-memory Corner SGD of Section 4, this finitely-approximated Corner SGD does not theoretically accelerate the convergence exponent  $\zeta$  as  $t \rightarrow \infty$ . (As shown in Yarotsky & Velikanov (2024), this is generally impossible for stationary algorithms with finite linear memory.) Nevertheless, we expect that such an acceleration can be achieved with a suitable *non-stationary* approximation. In Yarotsky & Velikanov (2024), an acceleration with a factor  $\theta$  up to  $2 - 1/\nu$  was heuristically derived for a suitable non-stationary memory-1 SGD algorithm.

We remark also that if the model includes nonlinearities, then even the plain SGD in the signal-dominated regime may show a complex picture of convergence rates depending on the strength of the feature learning effects. In particular, Bordelon et al. (2024) consider a particular model where the “rich training” regime is argued to accelerate the “lazy training” exponent  $\zeta$  by the factor  $\frac{2}{1+\zeta}$ . This is different from our factor  $\theta_{\max} = \min(2, \nu, \frac{2}{\zeta+1/\nu})$  due to a different acceleration mechanism.

## H THE SYNTHETIC 1D EXAMPLE

Recall that in Section F we consider the synthetic 1D example in which we fit the target function  $y(x) = \mathbf{1}_{[1/4, 3/4]}(x)$  on the segment  $[0, 1]$  with a model that in the infinite-size limit has the integral form

$$\hat{y}(x) = \int_0^1 w(y)(x - y)_+ dy = \mathbf{x}^T \mathbf{w}, \quad (225)$$

where  $\mathbf{x}, \mathbf{w}$  are understood as vectors in  $L^2([0, 1])$ , and  $\mathbf{x} \equiv (x - \cdot)_+$ . We consider the loss  $L(\mathbf{w}) = \mathbb{E}_{\frac{1}{2}}(\mathbf{x}^T \mathbf{w} - y(x))^2$ , where  $\rho$  is the uniform distribution on  $[0, 1]$ .

The asymptotic power-law structure of this problem can be derived either from general theory of singular operators and target functions, or from the specific eigendecomposition available in this simple 1D setting.

**The eigenvalues.** First observe that the operator  $\mathbf{H} = \mathbb{E}_{\mathbf{x} \sim \rho}[\mathbf{x}\mathbf{x}^T]$  in our case is the integral operator

$$\mathbf{H}f(x) = \int_0^1 K(x, y)f(y)dy, \quad K(x, y) = \int_0^1 (x - z)_+(y - z)_+ dz. \quad (226)$$

The operator has eigenvalues (see, e.g., Section A.6 of Yarotsky (2018))  $\lambda_k = \xi_k^{-4}$ , where

$$\xi_k = \frac{\pi}{2} + \pi k + O(e^{-\pi k}), \quad k = 0, 1, \dots \quad (227)$$

Numerically,  $\xi_0 \approx 1.875$  so the leading eigenvalue  $\lambda_0 \approx 0.0809$ .

In particular, the capacity condition (11) holds with  $\nu = 4$ .

In fact, such a power-law asymptotics is a general property of integral operators with diagonal singularities of a particular order (Birman & Solomjak, 1970). It is easily checked that the diagonal singularity of operator (226) is of order  $\alpha = 3$ . In dimension  $d$  the exponent  $\nu$  has the general form  $\nu = 1 + \frac{\alpha}{d}$ , which evaluates to 4 in our case  $d = 1$ .

**The eigencoefficients.** To establish the source condition (12), we can invoke the general theory that says that for targets that are indicator function of smooth domains we have  $\zeta = \frac{1}{d+\alpha} = \frac{1}{4}$  (Velikanov & Yarotsky, 2021). Alternatively, we can directly find  $\zeta$  thanks to the simple structure of the problem.

A short (though not quite rigorous) argument is to observe that the exact minimizer  $\mathbf{w}_*$  making the loss  $L(\mathbf{w}) = 0$  formally has the distributional form

$$\mathbf{w}_*(x) = \delta'(x - 1/4) - \delta'(x - 3/4) \quad (228)$$

with Dirac delta  $\delta(x)$ . This vector  $\mathbf{w}_*$  has an infinite  $L^2([0, 1])$  norm, in agreement with our expectation that  $\zeta = \frac{1}{4} < 1$ . The eigenfunctions of the problem can be explicitly found (Section A.6 of Yarotsky (2018)):

$$\mathbf{e}_k(x) = \cosh(\xi_k x) + \cos(\xi_k x) - \frac{\cosh(\xi_k) + \cos(\xi_k)}{\sinh(\xi_k) + \sin(\xi_k)} (\sinh(\xi_k x) + \sin(\xi_k x)). \quad (229)$$

1728 Then, formally,

$$1729 \quad \mathbf{e}_k^T \mathbf{w}_* = \frac{d\mathbf{e}_k(x)}{dx} \Big|_{x=3/4} - \frac{d\mathbf{e}_k(x)}{dx} \Big|_{x=1/4} \propto \xi_k. \quad (230)$$

1730 It follows that at small  $\lambda$ , denoting  $k_*(\lambda) = \min\{k : \lambda_k < \lambda\}$ ,

$$1731 \quad \sum_{k:\lambda_k < \lambda} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 \propto \sum_{k \leq k_*(\lambda)} \xi_k^{-2} \propto \sum_{k \leq k_*(\lambda)} (1/2 + k)^{-2} \propto k_*^{-1}(\lambda) \propto \lambda^{-1/4}, \quad (231)$$

1732 implying again  $\zeta = \frac{1}{4}$ .

1733 A rigorous proof, avoiding Dirac deltas, can be given along the following lines. First note that in the  
1734 setting of loss function  $L(\mathbf{w}) = \frac{1}{2} \mathbb{E}_{\mathbf{x} \sim \rho} (\mathbf{x}^T \mathbf{w} - y(\mathbf{x}))^2$  the vector  $\mathbf{q}$  appearing in quadratic form (2)  
1735 acquires the form  $\mathbf{q} = \mathbb{E}_{\mathbf{x} \sim \rho} [y(\mathbf{x}) \mathbf{x}]$ , which in our example gives

$$1736 \quad \mathbf{q}(x) = \int_{1/4}^{3/4} (y - x)_+ dy. \quad (232)$$

1737 We get from the condition  $\mathbf{H} \mathbf{w}_* = \mathbf{q}$  that

$$1738 \quad \mathbf{e}_k^T \mathbf{w}_* = -\frac{\mathbf{e}_k^T \mathbf{q}}{\lambda_k}. \quad (233)$$

1739 The eigenfunctions can be written as

$$1740 \quad \mathbf{e}_k(x) = \cos(\xi_k x) - \sin(\xi_k x) + e^{-\xi_k x} + (-1)^k e^{-\xi_k(1-x)} + O(e^{-\xi_k}), \quad (234)$$

1741 where the last  $O(e^{-\xi_k})$  is uniform in  $x \in [0, 1]$ . Performing integration by parts twice with vanishing  
1742 boundary terms, we find that

$$1743 \quad \begin{aligned} \mathbf{e}_k^T \mathbf{q} &= \int_0^1 \left( \cos(\xi_k x) - \sin(\xi_k x) + e^{-\xi_k x} + (-1)^k e^{-\xi_k(1-x)} \right) \int_{1/4}^{3/4} (y - x)_+ dy dx + O(e^{-\xi_k}) \\ 1744 &= -\xi_k^{-1} \int_0^1 \left( \sin(\xi_k x) + \cos(\xi_k x) - e^{-\xi_k x} + (-1)^k e^{-\xi_k(1-x)} \right) \int_{1/4}^{3/4} \mathbf{1}_{y>x} dy dx + O(e^{-\xi_k}) \\ 1745 &= \xi_k^{-2} \int_{1/4}^{3/4} (-\cos(\xi_k x) + \sin(\xi_k x)) dx + O(e^{-\xi_k/4}) \end{aligned} \quad (235)$$

$$1746 \quad = \xi_k^{-3} (-\sin(\pi(\frac{1}{2} + k)x) - \cos(\pi(\frac{1}{2} + k)x)) \Big|_{1/4}^{3/4} + O(e^{-\xi_k/4}) \quad (236)$$

$$1747 \quad \propto \xi_k^{-3}, \quad (237)$$

1748 leading to  $\mathbf{e}_k^T \mathbf{w}_* \propto \xi_k^{-3} / \lambda_k = \xi_k$ , in agreement with Eq. (230).

## I EXTENDING THE PROOF OF THEOREM 3 TO $\tau_2 \neq 0$

1749 In this section we sketch (without much rigor) an argument suggesting that Theorem 3 remains valid  
1750 under assumption of SE approximation with  $\tau_2 \neq 0$  at least if the batch size  $|B|$  is large enough.

1751 Recall that the assumption  $\tau_2 = 0$  was used to write the propagators  $U_t, V_t$  in the simple form  
1752 (8). These representations led to the representations (19), (21) of  $U_t, V_t$  in terms of the contour  
1753 map  $\Psi$  that were instrumental in proving Theorem 3. While we are not aware of a similar contour  
1754 representation at  $\tau_2 \neq 0$ , we can expand the general  $\tau_2 \neq 0$  propagators in terms of the spectral  
1755 components of the  $\tau_2 = 0$  propagators, and in this way reduce the study of the general case to the  
1756 already analyzed special case.

1757 Specifically, let us introduce the notation

$$1758 \quad G_0(t, \lambda) \equiv U^2(t, \lambda) = |(\mathbf{1} \mathbf{o}^T) S_\lambda^{t-1}(\mathbf{-c})|^2. \quad (238)$$

1759 Then formula (8) for the propagator  $U_t$  can be written as

$$1760 \quad U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 G_0(t, \lambda_k). \quad (239)$$

1782 In the proof of Theorem 3 it was shown that (see Eqs. (83), (85))  
 1783

$$1784 G_0(t, \lambda) = U^2(t, \lambda) \approx \lambda^{2/\theta-2} F_U^2(t\lambda^{1/\theta}). \quad (240)$$

1785 Upon substituting  $t\lambda^{1/\theta} = r$  and applying the capacity condition (11), this gave the leading term in  
 1786  $U_t$ :

$$1787 U_t \approx \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^{2/\theta} F_U^2(t\lambda_k^{1/\theta}) \quad (241)$$

$$1788 = \left[ \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} (t\lambda_k^{1/\theta})^2 F_U^2(t\lambda_k^{1/\theta}) \right] t^{-2} \quad (242)$$

$$1789 \approx \left[ \frac{\tau_1}{|B|} \int_{\infty}^0 r^2 F_U^2(r) d\Lambda^{1/\nu}(t/r)^{\theta/\nu} \right] t^{-2} \quad (243)$$

$$1790 = \left[ \frac{\tau_1}{|B|} \Lambda^{1/\nu} \int_{\infty}^0 r^2 F_U^2(r) dr^{-\theta/\nu} \right] t^{\theta/\nu-2}. \quad (244)$$

1791 Now, if the SE approximation holds with  $\tau_2 \neq 0$ , then the propagator formulas (8) are no longer  
 1792 valid. Instead (see Yarotsky & Velikanov (2024)), the propagators can be written with the help of  
 1793 the linear transition operators  $A_{\lambda}$  acting on  $(M+1) \times (M+1)$  matrices  $Z$ :

$$1794 A_{\lambda} Z = S_{\lambda} Z S_{\lambda}^T - \frac{\tau_2}{|B|} \lambda^2 \left( \begin{smallmatrix} -\alpha \\ c \end{smallmatrix} \right) \left( \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)^T Z \left( \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) \left( \begin{smallmatrix} -\alpha \\ c \end{smallmatrix} \right)^T. \quad (245)$$

1801 In particular, Eqs. (238), (239) get replaced by

$$1802 U_t = \frac{\tau_1}{|B|} \sum_{k=1}^{\infty} \lambda_k^2 G(t, \lambda_k), \quad (246)$$

$$1803 G(t, \lambda) = \text{Tr} \left[ \left( \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) \left( \begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right)^T A_{\lambda}^{t-1} \left[ \left( \begin{smallmatrix} -\alpha \\ c \end{smallmatrix} \right) \left( \begin{smallmatrix} -\alpha \\ c \end{smallmatrix} \right)^T \right] \right]. \quad (247)$$

1804 Note that Eq. (238) is a special case of Eq. (247) resulting at  $\tau_2 = 0$  thanks to the simple factorized  
 1805 structure of the transformation  $A_{\lambda}$  with vanishing second term.

1806 Let us now write the binomial expansion of  $G(t, \lambda)$  by choosing one of the two terms on the r.h.s.  
 1807 of Eq. (245) in each of the  $t-1$  iterates of  $A_{\lambda}$  in Eq. (247). The key observation here is that each  
 1808 term in this binomial expansion can be written as a product of the  $\tau_2 = 0$  factors  $G_0$  with a suitable  
 1809 coefficient:

$$1810 G(t, \lambda) = G_0(t, \lambda) + \sum_{m=1}^{t-1} \left( \frac{-\tau_2 \lambda^2}{|B|} \right)^m \times \quad (248)$$

$$1811 \times \sum_{0 < t_1 < \dots < t_m < t} G_0(t - t_m, \lambda) G_0(t_m - t_{m-1}, \lambda) \cdots G_0(t_2 - t_1, \lambda) G_0(t_1, \lambda). \quad (249)$$

1812 Here,  $0 < t_1 < \dots < t_m < t$  are the iterations at which the second term in Eq. (245) was chosen.

1813 We can now apply again approximation (240) for  $G_0$  in terms of  $F_U$ , and approximate summation  
 1814 by integration:

$$1815 G(t, \lambda) \approx \lambda^{2/\theta-2} \left[ F_U^2(t\lambda^{1/\theta}) + \sum_{m=1}^{\infty} \left( \frac{-\tau_2 \lambda^{1/\theta}}{|B|} \right)^m (F_U^2)^{*m+1}(t\lambda^{1/\theta}) \right], \quad (250)$$

1816 where  $(F_U^2)^{*m+1}$  is the  $(m+1)$ -fold self-convolution of  $F_U^2$ :

$$1817 (F_U^2)^{*m+1}(r) = \int \cdots \int_{0 < r_1 < \dots < r_m < r} F_U^2(r - r_m) F_U^2(r_m - r_{m-1}) \cdots F_U^2(r_1) dr_1 \cdots dr_m. \quad (251)$$

1818 The factor  $\lambda^{1/\theta}$  in (250) results from the respective factor  $\lambda^2$  in Eq. (248), the factor  $\lambda^{2/\theta-2}$  in Eq.  
 1819 (240), and the integration element scaling factor  $\lambda^{-1/\theta}$  due to the substitution  $r_n = t_n \lambda^{1/\theta}$ .

The leading term in expansion (250) corresponds to the case  $\tau_2 = 0$ . Consider the next term,  $m = 1$ . The respective contribution to  $U_t$  is

$$U_t^{(1)} \equiv -\frac{\tau_1 \tau_2}{|B|^2} \sum_{k=1}^{\infty} \lambda_k^{3/\theta} (F_U^2)^{*2}(t \lambda_k^{1/\theta}). \quad (252)$$

This expression can be analyzed similarly to the leading term in Eq. (241), giving

$$U_t^{(1)} \approx -\left[ \frac{\tau_1 \tau_2}{|B|^2} \Lambda^{1/\nu} \int_{\infty}^0 r^3 (F_U^2)^{*2}(r) dr^{-\theta/\nu} \right] t^{\theta/\nu-3}. \quad (253)$$

Note the faster decay  $t^{\theta/\nu-3}$  compared to  $t^{\theta/\nu-2}$  in the leading term. This difference results from the different exponent  $3/\theta$  on  $\lambda_k$ . It also leads to the factor  $r^3$  rather than  $r^2$  in the integral.

The coefficient in brackets in Eq. (253) is finite unless the integral diverges. To see the convergence, write

$$\int_{\infty}^0 r^3 (F_U^2)^{*2}(r) dr^{-\theta/\nu} = \frac{\theta}{\nu} \int_0^{\infty} r^{2-\theta/\nu} (F_U^2)^{*2}(r) dr \quad (254)$$

and use the inequality  $r^{2-\theta/\nu} \leq (2(r - r_1))^{2-\theta/\nu} + (2r_1)^{2-\theta/\nu}$  valid since  $2 - \theta/\nu > 0$ :

$$\int_0^{\infty} r^{2-\theta/\nu} (F_U^2)^{*2}(r) dr \quad (255)$$

$$\leq \int \int_{0 < r_1 < r < \infty} [(2(r - r_1))^{2-\theta/\nu} + (2r_1)^{2-\theta/\nu}] F_U^2(r - r_1) F_U^2(r_1) dr_1 dr \quad (256)$$

$$= 2^{3-\theta/\nu} \left( \int_0^{\infty} r^{2-\theta/\nu} F_U^2(r) dr \right) \left( \int_0^{\infty} F_U^2(r) dr \right) < \infty, \quad (257)$$

since  $F_U(r) \propto r^{-\theta-1}$  as  $r \rightarrow \infty$  by Lemma 1.

Next terms in expansion (250) can be analyzed similarly, but we encounter the difficulty that, due to the associated factor  $\lambda^{m/\theta}$  in Eq. (250), they will contain the integrals  $\int_{\infty}^0 r^{2+m} (F_U^2)^{*2}(r) dr^{-\theta/\nu}$  that diverge for sufficiently large  $m$ . For this reason, it is convenient to upper bound

$$\lambda^{m/\theta} \leq \lambda_{\max}^{(m-1)/\theta} \lambda^{1/\theta}. \quad (258)$$

Then the contribution  $U_t^{(m)}$  to  $U_t$  from the term  $m$  can be upper bounded by

$$|U_t^{(m)}| \lesssim \left[ \frac{\tau_1 |\tau_2|^m \lambda_{\max}^{(m-1)/\theta}}{|B|^{m+1}} \Lambda^{1/\nu} \int_{\infty}^0 r^3 (F_U^2)^{*2}(r) dr^{-\theta/\nu} \right] t^{\theta/\nu-3}. \quad (259)$$

Using the inequality  $r^{2-\theta/\nu} \leq ((m+1)(r - r_m))^{2-\theta/\nu} + \dots + ((m+1)r_1)^{2-\theta/\nu}$ , the integral can be bounded as

$$\int_{\infty}^0 r^3 (F_U^2)^{*2}(r) dr^{-\theta/\nu} \leq \frac{\theta}{\nu} (m+1)^{3-\theta/\nu} \left( \int_0^{\infty} r^{2-\theta/\nu} F_U^2(r) dr \right) \left( \int_0^{\infty} F_U^2(r) dr \right)^m < \infty. \quad (260)$$

Summarizing, the contribution of all the terms in  $U_t$  other than the leading term  $U_t^{(0)}$  can be upper bounded by

$$|U_t - U_t^{(0)}| \lesssim C t^{\theta/\nu-3}, \quad (261)$$

with the constant

$$C = \frac{\tau_1 \theta \Lambda^{1/\nu}}{\nu} \left( \int_0^{\infty} r^{2-\theta/\nu} F_U^2(r) dr \right) \sum_{m=1}^{\infty} \frac{|\tau_2|^m \lambda_{\max}^{(m-1)/\theta}}{|B|^{m+1}} (m+1)^{3-\theta/\nu} \left( \int_0^{\infty} F_U^2(r) dr \right)^m. \quad (262)$$

If

$$|B| > |\tau_2| \lambda_{\max}^{1/\theta} \int_0^{\infty} F_U^2(r) dr, \quad (263)$$

then series (262) converges, and so  $|U_t - U_t^{(0)}| = o(U_t^{(0)})$ , as claimed.

1890 The case of the propagators  $V_t$  can be treated similarly. Starting from  $\tau_2 = 0$ , denote  
 1891

$$1892 \quad H_0(t, \lambda) = V^2(t, \lambda) = |(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix}) S_\lambda^{t-1}(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix})|^2, \quad (264)$$

1893 then by Eqs. (153), (155)  $H_0(t, \lambda) \approx F_V^2(t\lambda^{1/\theta})$  and  
 1894

$$1895 \quad V_t = \sum_{k=1}^{\infty} \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 H_0(t, \lambda) \approx \sum_k \lambda_k (\mathbf{e}_k^T \mathbf{w}_*)^2 F_V^2(t\lambda_k^{1/\theta}). \quad (265)$$

1898 The counterpart of  $H_0$  for general  $\tau_2$  is  
 1899

$$1900 \quad H(t, \lambda) = \text{Tr}[(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix})(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix})^T A_\lambda^{t-1}[(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix})(\begin{smallmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & 1 \end{smallmatrix})^T]]. \quad (266)$$

1901 Expansion (248) gets replaced by  
 1902

$$1903 \quad H(t, \lambda) = H_0(t, \lambda) + \sum_{m=1}^{t-1} \left( \frac{-\tau_2 \lambda^2}{|B|} \right)^m \times \quad (267)$$

$$1906 \quad \times \sum_{0 < t_1 < \dots < t_m < t} G_0(t - t_m, \lambda) G_0(t_m - t_{m-1}, \lambda) \dots G_0(t_2 - t_1, \lambda) H_0(t_1, \lambda) \quad (268)$$

1908 and expansion (250) gets replaced by  
 1909

$$1910 \quad H(t, \lambda) \approx F_V^2(t\lambda^{1/\theta}) + \sum_{m=1}^{\infty} \left( \frac{-\tau_2 \lambda^{1/\theta}}{|B|} \right)^m ((F_U^2)^{*m} * F_V^2)(t\lambda^{1/\theta}). \quad (269)$$

1913 The factor  $\lambda^{m/\theta}$  can again be used to extract an extra negative power of  $t$  in the asymptotic bounds.  
 1914 To avoid divergence of the integrals, we can use a bound

$$1915 \quad \lambda^{m/\theta} \leq \lambda_{\max}^{(m-\epsilon)/\theta} \lambda^{\epsilon/\theta} \quad (270)$$

1917 with some sufficiently small  $\epsilon > 0$ . Arguing as before, we then find that for  $|B|$  large enough the  
 1918 contribution of all the terms  $m \geq 1$  is  $O(t^{-\theta\zeta-\epsilon})$ , i.e. asymptotically negligible compared to the  
 1919 leading term  $\propto t^{-\theta\zeta}$ .

1920  
 1921  
 1922  
 1923  
 1924  
 1925  
 1926  
 1927  
 1928  
 1929  
 1930  
 1931  
 1932  
 1933  
 1934  
 1935  
 1936  
 1937  
 1938  
 1939  
 1940  
 1941  
 1942  
 1943