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Abstract

Influence Maximization (IM) seeks a seed set to maximize information dissemina-
tion in a network. Elegant IM algorithms could naturally extend to cases where
each node is equipped with a specific weight, reflecting individual gains to measure
its importance. In prevailing literature, these gains are typically assumed to remain
constant throughout diffusion and are solvable through explicit formulas based on
node characteristics and network topology. However, this assumption is not always
feasible due to two key challenges: 1) Unobservability: The individual gains of
each node are primarily evaluated by the difference between the outputs in the
activated and non-activated states. In practice, we can only observe one of these
states, with the other remaining unobservable post-propagation. 2) Environmental
sensitivity: Beyond nodes’ inherent properties, individual gains are also sensitive to
the activation status of surrounding nodes, which change dynamically during propa-
gation even when the network topology is fixed. To address these uncertainties, we
introduce a Causal Influence Maximization (CauIM) framework, leveraging causal
inference techniques to model dynamic individual gains. We propose two algo-
rithms, G-CauIM and A-CauIM, where the latter incorporates a novel acceleration
technique. Theoretically, we establish the generalized lower bound of influence
spread and provide robustness analysis. Empirically, experiments on synthetic and
real-world datasets validate the effectiveness and reliability of our approach.

1 Introduction

Information propagation over networks has been booming in recent years. Due to the power of the
"word-of-mouth" phenomenon, influence spread has proven to be essential in various applications,
such as viral marketing [7], HIV prevention [55], and recommendations [10]. The problem of
selecting the seed set to maximize information spread is known as the Influence Maximization
(IM) [28].

Beyond optimizing the total number of infected nodes, current research has focused on investigating
the individual gains of each node in real-world scenarios, referred to as weighted-IM [52, 53, 19].
Researchers endeavor to address the question: how can limited resources be utilized to maximize total
gains? This challenge manifests in various network scenarios, such as student networks and email
networks, involving activities like awareness dissemination and product promotion. For example,
when targeting users with varying purchasing power in product promotion, these users exhibit diverse
purchasing behaviors, resulting in varying profits for the seller. Here, by regarding purchasing power
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Figure 1: Illustration of individual gains during a certain propagation iteration in a product promotion
scenario, focusing on the starred (*) node. The leftmost part represents an iteration state of the
network represented as hyperedges (blue ovals). Each node is either activated (blue), indicating a
purchase behavior, or inactive (gray). The orange star indicates the target individual whose gain we
aim to evaluate, and “?” represents an unknown status. The middle panel illustrates the key question
at the current propagation step: “if we promote now, what gain would the starred node contribute?”
The individual gain is defined as the counterfactual difference Yi(buy)− Yi(not buy), representing
the difference between the profit of the node in its activated and its non-activated state. Two core
challenges are highlighted: unobservability, i.e., only one status of each node can be observed, with
the counterfactual scenario unknown, and environmental sensitivity, which indicates the individual
gains of a node are influenced by the activation status of surrounding nodes.

as individual gains, the goal is to identify specific users for product advertising and optimize the
overall difference in profit gains pre- and post-product promotion dissemination.

Researchers usually assume that the purchasing power of each node remains observable and stable [29]
throughout the entire process. Such a weighted IM setting appears to be a natural extension of
traditional IM and hence leads to relatively limited exploration [28]. However, in practice, this setting
would be violated, and we summarize it as two fundamental properties, as illustrated in Fig. 1 : (i)
Unobservability. Accurately quantifying the actual purchasing power of each user is hindered by the
limited observations of purchase occurrences (where only two outcomes are observable: activated
or not, corresponding to purchase or non-purchase for each node; one represents the “factual”, and
the other “counterfactual”), thereby complicating the determination of the actual increase in benefit
gains that each user can deliver to sellers; (ii) Environmental sensitivity. The expected purchasing
power of each person is not only associated with the individuals themselves but also influenced by
the attitudes of their social contacts. For example, as more people in a friend circle make purchases,
individuals become increasingly susceptible to influence and are likely to make additional purchases.
These properties indicate that individual gains in IM are environmentally dynamic and challenging to
ascertain, posing challenges in their computation.

To tackle these challenges, we employ causality techniques to model the advertising problem, inspired
by the concept of Individual Treatment Effect (ITE) [45]. It measures the disparity between the factual
world and the counterfactual one, which goes beyond traditional observational studies, such as those
based on network structure or direct assignment of other feature weights [28, 14]. By incorporating
the process of inference, we transition the problem from observational study to the direct utilization
of ground truth for measuring individual gains at the node level. Drawing from this, we propose the
Causal Influence Maximization (CauIM) framework. Specifically, in the hypergraph modeling2, we
redefine the objective function of traditional IM by incorporating ITE as weights assigned to each
node. This formulation integrates both internal covariate information and external environmental
information for each node (Fig. 1).

Noteworthy, it is not merely a simple causality-plug-in interdisciplinary attempt since we should
proactively challenge the Stable Unit Treatment Value Assumption (SUTVA) in causality [1], which

2The utilization of IM in hypergraphs [2, 56] introduces a higher-order structure that establishes connections
among clusters, effectively reflecting real-life relationships in general graphs, and treating the traditional normal
graph as a special case.
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permits the presence of interference between different nodes as illustrated above. Taking a step
forward, even if there is pioneering exploration upon interference-based causality [37, 36, 32],
distinguishing CauIM from such literature, we delve deeper into practical constraints: the original
treatment policy can solely influence a “limited seed set", and then the causality estimator should be
considered under a propagation process that involves temporal instability and computational burden.
This process is highly non-trivial due to the dynamic environmental information associated with each
node. In this context, we further provide an efficient and stable computational enhancement, which
replaces the conventional greedy selection with vectorized derivative-based operations to improve
scalability in practice.

In sum, our contributions are summarized as follows: i) We propose CauIM, a novel framework
for influence maximization in networks that incorporates community structures and environment-
sensitive individual node effects, providing a new perspective on modeling dynamic individual gains
in networks. We also justify its practical applicability in real-world scenarios.ii) We demonstrate the
effectiveness (approximate optimal guarantee), robustness, and acceleration feasibility of CauIM,
particularly when ITE values are not strictly positive or suffer from estimation bias. In correspondence,
we provide the greedy-based implementation (G-CauIM) and further design the Gradient-based
Accelerated CauIM (A-CauIM). iii) We conduct experiments on three real-world datasets and one
synthetic dataset. It not only supports our theoretical claim upon effectiveness and robustness but
also validates the efficiency improvement of A-CauIM in practice.

2 Related work

Influence Maximization (IM) IM is first identified as an algorithm problem by Kempe in [28] and
has given rise to several notable variants, including simulation-based (CELF [31], CELF++ [16]),
sketch-based (RIS [5], TIM [48], IMM [49]), and heuristic algorithms (HADP [56]), etc. Three
key elements of the problem are 1) graph structure, 2) diffusion process and 3) seed selection.
For instance, CELF, RIS, and TIM emphasize iterative algorithmic enhancements while ensuring
theoretical assurances within triggering models. In contrast, the latest heuristic algorithm, HADP,
prioritizes computational efficiency at the cost of sacrificing theoretical guarantees. Additionally,
recent learning-based IM methods [6, 30, 35]focus on understanding the inherent nature of individual
node representations concerning the marginal influence gain. Nevertheless, these methods exhibit
limitations in model generalization and the reliability of final results. The original optimization
objective requires reassessment in diverse scenarios. Dynamic IM studies, such as Peng [44], focus
on evolving edge probabilities while maintaining submodularity guarantees. Their objective differs
from ours: the edge set changes over time, whereas we consider static networks where node rewards
vary with unobserved environmental factors and treatment assignments. Hence, these methods are
orthogonal to our framework. Researchers have increasingly focused on exploring the heterogeneity
of importance between nodes based on these methods [52, 23, 15]. Nevertheless, most existing
studies rely on fixed topological or attribute-based priors and treat individual importance as constant,
lacking a unified framework that accounts for environmental sensitivity when estimating dynamic
individual effects. We refer readers to the Appendix I for more details.

Treatment effect estimation How to recover the ITE directly from the observational data instead of
randomization test [46] is currently receiving a lot of attention. There are two main strategies for
estimation: 1) weighting-based methods [33, 34, 12], and 2) representation-based methods [47, 26]. In
this paper, we follow the second strategy. Ma et al. [37] estimated the causal effect via representation
learning on the more general hypergraph. However, these methods do not consider the IM question.

3 Preliminary

Notations and Basic Concepts We develop our model on an undirected hypergraph G(V ,H ,H),
where V := {v1, v2, ...vn}, H := {h1, h2, ...hm}, representing the node set and the hyperedge
set respectively, and H ∈ {0, 1}m×n denotes the incidence matrix between hyperedges and nodes.
Each undirected hyperedge represents a social connection among the nodes it contains. For each
node vi, covariate Xvi denotes its node feature and Nvi indicates the set of its neighborhood3. To

3Here vi and vj are neighborhoods, indicating that they co-occur in at least one hyperedge.
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maintain clarity, we abuse the notation that Xvi = Xi and Nvi = Ni, applying the same convention
for symbols with the subscript vi.

Stepping forward, we would like to introduce several broad concepts in causal inference: the potential
outcome (individual profit under one status) of each node vi is denoted as Yi(Ti = t;Xi,T−i,X−i).
Here t = 0, 1 refers to the case where node vi is activated in the diffusion process or not4 Moreover,
T−i,X−i represent the environmental information, namely,

T−i := {T1, T2, ...Ti−1, Ti+1, ...Tn},
X−i := {X1, X2, ...Xi−1, Xi+1, ...Xn}.

(1)

The individual treatment effect (ITE) is defined as

τi := Yi(Ti = 1;Xi,T−i,X−i)

−Yi(Ti = 0;Xi,T−i,X−i).
(2)

Here “treatment” {Ti,T−i} indicate the activation status of vi and its surrounding nodes. ITE
represents the difference in node outcomes between the activated and inactivated cases. As illustrated
in the introduction, it cannot be directly extracted from observations (property (i)), and it also depends
on the activation state of surrounding nodes (property (ii)).

Problem Formulation We adopt the widely-used Susceptible-Infected Contact Process (SICP)
diffusion model [56]. Starting from an initial seed set S0, diffusion unfolds in discrete steps. In each
iteration, every activated node v randomly selects one of its affiliated hyperedges and attempts to
activate its inactive neighbors u ∈ Nv within that hyperedge, each with a certain probability. This
process continues until no new activations occur, as illustrated in Appendix Fig.4. Our framework
also supports alternative diffusion models, such as Linear Threshold (LT) model [18, 17], which can
be seamlessly integrated with the algorithms presented in Section 4.

We define ap(vi;S0) as the probability that node vi gets infected in the entire propagation process
initiated by seed set S0. According to Wang et al. [52], ap(vi;S0) =

∑
u∈S0

pr(u, vi), where
pr(u, vi) denotes the probability of reachability from node u to vi inclusive of all reachable paths.
Finally, we identify the objective function as the expected total causal influence during the diffusion:

σ(S) = E

[ ∑
vi∈V

ap(vi;S)τi

]
, S ⊆ V . (3)

Here τi is identified in Eq. 2 and the expectation takes upon activation status {Ti,T−i} in all possible
propagation process. The goal of CauIM is to find

S∗ = argmaxS{σ(S)}, s.t.|S| ≤ K. (4)

where K is a fixed budget. Compared with the traditional definition, this formulation provides a
concise yet general expression at the cost of introducing the relatively difficult-to-calculate term ap(·).
Due to its computational difficulty, we will elaborate on an efficient approximation and acceleration
process in the next section.

Assumption 3.1 (Bounded ITE and Consistency). 1) Bounded ITE: maxvi∈V |τi| ≤ M , where M
is a constant. 2) Consistency [9]: Potential outcomes Yi(Ti = t;Xi,T−i,X−i) are deterministic in
Eq. 2 and equal to the observational values of Y for t = 0, 1 given fixed {Xi,T−i,X−i}.

These are standard assumptions for ITE in causal inference [43]. Notably, Assumption 3.1 accounts
for interference effects that violate SUTVA [24], i.e., “the potential outcomes for any unit do not
vary with the treatment assigned to other units”. We incorporate such effects into an environment
function: Oi = ENV(H,T−i,X−i). This function follows [37], where environmental covariates
and treatment assignment are summarized as a low-dimensional representation. We formalize this
concept in Assumption 3.2.

4Here Y (·) is a function of {Ti;Xi,T−i,X−i}. The first two items refer to the inherent information of node
vi, and the last two items refer to the environmental information. We omit the information H in the mapping
process since it remains stable in this paper. We defer the extension to dynamic graphs to future research.
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Assumption 3.2 (Environment Assumption under Interference [37]). For each node vi, the two
potential outcomes in Eq. 2 are conditionally independent given {Ti, Oi}.

Assumption 3.2 extends the standard ignorability assumption [25] to the graphical case, where the
authors claimed that the pair of potential outcomes is independent of the treatment assignment, given
the covariates of each node. It guarantees there are no unmeasured covariates in the graph, which
is a fairly broad assumption and has been adopted by Ma et al. [37]. Assumption 3.2 essentially
ensures that the two effects ({Xi, Ti}, {X−i,T−i}) together constitute a sufficient statistic for ITE.
In other words, ITE could be legitimately estimated via observations under these assumptions and
hence provides the potential to design the estimator 5.

4 Methodology

In this section, we first identify three primary challenges when designing our algorithms. Subse-
quently, we provide a detailed introduction to two algorithms within our CauIM framework. The
first is an offline greedy-based implementation for causal influence maximization named G-CauIM
(Alg. 1). We then improve the efficiency of G-CauIM by speeding up the diffusion and greedy
selection process, and propose a Gradient-based Accelerated CauIM, referred to as A-CauIM (Fig. 2).
Finally, we theoretically demonstrate the algorithm’s effectiveness. Key notations for this section can
be found in Appendix 3. Notably, classic IM maximizes a monotone submodular count of activations
under an implicit assumption of fixed, context-independent, nonnegative marginal gains. In CauIM,
node-level gains are weighted and context dependent (they may vary with neighbors’ states and be
negative), so submodularity may break, and sketch-based pipelines [49, 48] offer no guarantees. We
thus begin by summarizing three main challenges as follows.

Algorithm 1: G-CauIM
Input: G(V ,H ,H); seed number K; Xi, initial treatment Ti and T−i of each node vi; observational data

D = {Yi(t; ·)}vi∈V , where t = Ti; the ITE bound M .
Output: Deterministic seed set S∗ with |S∗| = K.

1 Function ÎTE(Xi, Ti,T−i,G; θ):
2 Compute the representation Zi of Xi via representation learning;
3 Compute the high-order interference representation Oi := ENV(H,T−i,Z−i; θ) (Assumption 3.1 and

Assumption 3.2 );
4 Concatenate Zi, Oi and feed them into a Multi-Layer Perceptron (MLP):

{Ŷi(1; ·), Ŷi(0; ·)} ∼ MLP([Zi||Oi]);
5 Compute the ITE τ̂i = Ŷi(1; ·)− Ŷi(0; ·) for vi;
6 return τ̂i;

7 Function Main:
8 (Initialization) S∗ = ∅; Loss = 0;
9 (Training) Using the above ÎTE(·; θ) function, compute the cumulative loss by D:

Loss =
∑

vi∈V ,t=0,1

∣∣(Ŷi(t; ·)− Yi(t; ·)
)
I(Ti = t)

∣∣ (only the factual term is active via I(Ti = t)) ;
10 (Projection to bounded-ITE set) Define the feasible set ΘM := {θ : maxvi∈V |τ̂i(θ)| ≤ M}. Set

θ′ := ΠΘM (θopt) := argminθ∈ΘM ∥θ − θopt∥2.
11 for |S∗| < K do
12 Conduct propagation under current seed set S∗, generate τ̂i = ÎTE(Xi, Ti,T−i,G; θ

′
) for vi /∈ S∗,

where Ti is changed to its current activated state( 0 or 1), and T−i is changed based on other
nodes’ activated states, θ

′
:= θopt +△θ,△θ := min{∥θq∥ : ∃δ ≤ ∥θq∥, ÎTE(·; θ + δ) ≤ M},

repeat the process and get the mean;
13 v0 = argmaxv/∈S∗ {σ (S∗ ∪ {v})− σ(S∗)};
14 S∗ = S∗ ∪ {v0};

15 return S∗.

5Under these two assumptions, it has been demonstrated that the expected potential outcome of vi could
be computed by observational data [37], namely, E(Yi(Ti = t;Xi,T−i,X−i)) = E(Yi | Xi = xi, Ti =
t, oi), t ∈ {0, 1}.

5



4.1 Three Challenges

(i) Unmeasured individual effect(ITE) (Eq. 2): the inherent limitations in causal inference necessitate
the recovery of the counterfactual to address the “missing data problem” in our objective function
Eq. 4. Furthermore, it may vary across iterations due to its dependence on environmental information
X−i,T−i. (ii) Approximate optimal guarantee: The traditional greedy-based IM might not guarantee
sub-optimal properties due to the unknown individual effect as mentioned above and, therefore,
requires re-analysis. (iii) Estimation bias: CauIM exhibits robustness against biases stemming from
individual effect estimation and the sampling strategy.

Address challenge (i): ITE estimation. Motivated by Ma et al. [37], Ma and Tresp [38], we recover the
individual ITE from observational data using a neural network model represented by ÎTE(·) function
in both G-CauIM and A-CauIM. To handle dynamic characteristics of ITE, we incorporate a model
parameter adjustment strategy into Alg. 1 of G-CauIM. Additionally, we employ an approximation
strategy in A-CauIM, as depicted in the ITE Estimator section of Fig. 2. Further details of this
procedure are provided in the subsequent Algorithms section.

Address challenge (ii): To achieve approximate optimum, we inductively select the seed candidate via
greedy search. We show this greedy strategy will also hold a weaker but analogous order of (1− 1

e )
approximate optimum level of the traditional IM in further theoretical parts:

v0 = argmaxv/∈S∗ {σ (S∗ ∪ {v})− σ(S∗)} . (5)

It can be seen as a more general result since the traditional IM serves as the special case with τ = 1.
However, the analysis of the above settings is harder since the submodularity might not always exist
due to the potential negative ITE. Additionally, for practical issues, We refer readers to I for the
Monte Carlo-based greedy CauIM.

Address challenge (iii): Our CauIM model demonstrates robustness against bias in estimating
Individual Treatment Effects (ITE), which will be outlined in the theoretical discussion. This resilience
is ensured under broad assumptions regarding the controlled probability pr(v, u) of reaching all
nodes u ∈ V in the complete graph from the current propagation node v, which is readily feasible in
real-world scenarios, as evidenced in the experimental findings. In a word, this property provides us
with more flexibility and possibilities in adjusting the estimator parameters.

4.2 Proposed Algorithms

Environmental Function. We define the environment of node i as Oi = ENV(H,T−i,Z−i; ),
which summarizes the influence from its surroundings. Here, H denotes the network structure (e.g.,
hyperedges involving i), and (T−i,Z−i) represents the activation states and representation vector of
all other nodes. The function ENV(·) encodes this context into a low-dimensional vector. Since H is
static in our setting, ENV mainly reflects the dynamic states of i’s neighbors, e.g., the number or
embedding of active peers at a given time. Here ENV is a transmission function using Hypergraph
Convolution module [3]; more details are in Appendix I.

G-CauIM. Our primary procedures are executed in function Main (line 7). We initially train the
ITE estimation model offline (line 9), represented by function ÎTE(·) (line 1). In this model, for node
vi, we construct Zi via each covariate Xi using representation techniques (line 2). Additionally, we
construct Oi to denote the higher-order interference representation of node vi with its environments:
Oi = ENV(H,T−i,Z−i) (line 3), and Z−i := {Z1, ...Zi−1, Zi+1, ...Zn}. Finally, with the com-
bination of representation Zi and Oi, we obtain the estimation value Ŷi(1), Ŷi(0) via MLP model
(line 4). During training, we employ a balancing mechanism to ensure covariate balance between
the treatment group {vi : Ti = 1} and control group {vj : Tj = 0}, achieved by incorporating an
additional penalty term to the representation vector. Such technique is not unique, referring to Yao
et al. [57], Harshaw et al. [20]. In addition, line 10 is to ensure the estimated ITE is bounded by
M (identified in assumption 3.1) via controlling the estimator parameter θ. Diffusion process and
greedy selection take place in line 11-14, where we employ the traditional greedy algorithm strategy
and re-analyze the marginal benefit function as the incremental form of ITE. It is noteworthy that as
the seed set expands, the activated states of each node change in the propagation, leading to diverse
values of τ̂i. To bound the varying τ̂i, we adjust the parameters θopt of the trained ÎTE(·), as depicted
in line 12. The detailed procedure is also depicted in Fig. 5.
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Figure 2: A-CauIM. Compared with G-CauIM (Alg. 1), we add a storage table for activation
probabilities ap(·; ) and then simplify the complex greedy selection (Eq. 5) into more efficient
derivative operations (Eq. 7). In addition, we transform ap(·; ) into continuous values close to 0, 1 to
signify the activated states Ti of each node on average. And by this procedure, we obtain Êτi which
is the approximation of the expectation on unobserved τi.

A-CauIM. Four components are presented in Fig. 2. Initialization is to obtain a trained ÎTE(; θopt),
the same as that of G-CauIM. In the diffusion process, our objective is to calculate ap(·; ). To address
the inefficiency loops of G-CauIM, we enhance the computation by utilizing PYTORCH for fast
graph computation. In sum, during each round of seed selection, we initially utilize a bipartite
graph, where two sides are constructed from hyperedges and nodes, to approximately compute the
activated probability ap(vi;S) of each node vi under S iteratively. Specifically, during j-th iteration
of propagation (given the current seed set S), according to the SICP model mentioned in Section 3,
suppose that hyperedge hp is chosen, and its internal node vq is activated. The activation probability
of hp and vq in j-th iteration are computed as Prh(hp, j) and Prv(vq, j), respectively, as defined in
Eq. 6. Here Hq denotes the set of hyperedges containing vq , PSICP

6 represents the basic activation
probability of a node. In this sense, we derive ap(vq;S) = limn→+∞ Prv(vq, n). This process
provides a rapid approximation of the original multiple randomizations of propagation.

Prh(hp, j) =
∑

vk∈hp

Prv(vk, j − 1)/|Hk|,

P rv(vq, j) = 1−
∏

hp∈Hq

(1− PSICP )
Prh(hp,j)

(6)

The next step is ITE estimation. We convert ap(vi;S) into values 1−eC[ap(.;S)−Cd]+ to represent the
activated states Ti of each node on average according to the obtained probabilities. Here C,Cd are a
priori constants. It aims to be close to binary treatment 0, 1 to fit the ÎTE model and maintain the
differentiability. Using ITE(; θopt), we determine Êτi. For the Greedy selection process, we calcu-
late the marginal gain using σ(S) =

∑
vi∈V ap(vi, S)Êτi. to approximate E

[∑
vi∈V ap(vi, S)τi

]
.

aforementioned in Section 3. Ideally, we hope A-CauIM would utilize PYTORCH to differentiate the
objective function (Eq. 5) to identify the node that maximizes marginal gains. However, it is usually
unreliable since the indices of nodes are discrete and not amenable to differentiation. To address
this issue, we use the asymptotic approximate version of ap(vq;S) (which is "parameter-based
continuous") to replace the indicator of 0, 1 on each node. On this basis, Eq. 5 has been transformed
into an operation that is continuously differentiable by PYTORCH, despite the cost of losing certain
information from the unused diffusion process.

v := argmax
v/∈S

{ ∂ (σ(S))

∂ (ap(v;S))
∗ ap(v;S)

}
. (7)

Finally, in each round, we select the node with the highest derivative value multiplied by its activated
probability as the seed node in Eq. 7, which exerts the greatest impact on σ(S) under a small
perturbation to the connection probability between v and S in the whole propagation.

6Here PSICP could be seen as the same constant for each node [56, 49] and it is easily extended to the cases
where nodes are attributed to different activation probabilities.
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Time Complexity. We have reduced the complexity of this problem in our settings from O(KRnm)
to O(KmEh∈H |h|), where m,n are the numbers of hyperedges and nodes, K is seed set number
identified in our preliminaries, and R is simulation number of propagation process (The complexity
of the ITE estimation module, utilized in both algorithms, is excluded here). Such improvement
is especially significant on relatively sparse graphs. Since O(KmEh∈H |h|) ≤ O(Kmn) when
Eh∈H |h| ≪ n.

4.3 Theoretical analysis

In this section, we first prove that the traditional greedy algorithm can be naturally extended to
hypergraphs and maintains the (1 − 1/e) approximate guarantee. Then we demonstrate that this
approximate guarantee still holds for our CauIM algorithm (Theorem. 4.4, challenge 2). In addition,
we show that CauIM’s performance is robust to the estimation error of ITE (Theorem 4.5, challenge 1
and challenge 3). 7

Proposition 4.1. Our CauIM problem is NP-hard.

Lemma 4.2 (Approximately optimal guarantee of greedy IM on hypergraph). The greedy method on
the hypergraph can achieve the (1− 1

e ) approximate optimal guarantee.

Condition 4.3 (Bounded increase of reachable probability). We define the reachable probability from
a set (or node) v1 ∈ V to a set (or node) v2 ∈ V as pv1v2 . ∀v1 ⊆ v2 ⊆ V , |v2| = |v1|+ 1, we have
the bounded condition of the increase of the reachable probability: ∀v′ ∈ V , |pv′v1 − pv′v2 | ≤ ε1.
Moreover, maxv∈V

∑
vi∈R(v) |τvi |pvvi ≤ ε2, where R(v) denotes the successors that v can arrive

during the diffusion process. Here ε1, ε2 are both a priori constants.

Notice that this condition is fairly broad and model-free.

Theorem 4.4 (Approximate optimal guarantee of CauIM). 1) If τi > 0, i ∈ V , the CauIM algorithm
can achieve the (1− 1

e ) optimal approximate guarantee. 2) If we do not have τ > 0, then a more
generalized guarantee is σ(Sg

K) ≥ (1− 1
e ) (σ(S

∗)−Kε1ε2)− ε2e
1
K −1.

The estimation error of σ(·) can be traced back to both the Monte-Carlo strategy and the estimation
error of τi during representation learning. We summarize it as the result on robustness analysis as
follows. The proofs of the theorems are deferred in Appendix D, E, and F.

Theorem 4.5 (Robustness). We denote the MC estimation of σ(S) as ˆσ(S). If ∀S ⊆ V , | σ̂(S)
σ(S) ∈

[1− γ, 1 + γ] and γ ≤ ε/k
2+ε/k , γ > 0, then our CauIM problem can achieve the optimal guarantee,

which can be transferred to σ(Sg
K) ≥ (1− 1

e − ε) (σ(S∗)−Kε1ε2)− ε2e
1
K −1.

We refer readers to G for details. In addition, notice that the estimation error τ̂i − τi also causes the
error σ̂(S)− σ(S). Specifically, if we have |τ̂i − τi| ≤ δ, then σ̂(S)− σ(S) can also be bounded.

Corollary 4.6 (Robustness of noise). We consider the ideal CauIM case without MC strategy. The
traditional IM objective function (i.e., τi = 1,∀vi ∈ V ) is denoted as σnaive. If |τ̂i − τi| ≤ δ and
|σnaive(S)

σ(S) | ≤ γ
δ , then Theorem. 4.5 holds. Detailed proof can be found in Appendix H.

5 Experiments

We perform experiments on four datasets and validate the findings presented in Section 4.3. We aim
to answer the following three questions.

RQ1: Effectiveness (Theorem 4.4) When maximizing the sum of node ITE (overall individual gains),
can our G-CauIM and A-CauIM outperform the traditional IM methods and maintain efficiency?
RQ2: Robustness (Theorem 4.5, Corollary 4.6) If ITE estimation is not accurate enough, can

7 Antelmi et al. [2], Zheng et al. [65] claimed their hypergraph does not contain submodularity. However,
their hypergraph is a special case (directed hypergraph), defined as (H, t). H is the set of nodes, and t is the
single tail node. Further, Gangal et al. [13] demonstrated the submodularity of the general hypergraph. [52]
proposed the new weighted influence maximization problem. However, their attributes corresponding to each
node are a priori assumed to be nonnegative, which differs from general ITE (which may be positive or negative).
Moreover, Erkol et al. [11] stated that submodularity on the temporal network might not hold.
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Table 1: RQ1: Performance comparison of four
different methods on four datasets (seed number=
15). Our methods gain general improvements
compared with baselines: Traditional Greedy (de-
noted "Baseline") and Random Selection.

Methods GoodReads Contact Email-Eu SD-100
Baseline 297.56 68.12 735.28 138.91
Random 45.86 66.51 590.67 145.97
G-CauIM 330.25 69.53 804.28 151.59
A-CauIM 302.17 66.78 802.41 160.49

Table 2: A-CauIM presents a significant effi-
ciency improvement compared with other com-
petitive baselines (CPU, Torch 1.11.0). From
G-CauIM to A-CauIM, the complexity reduces
to O

(
KmEh∈H |h|

)
(Section 4).

Methods GoodReads Contact Email-Eu SD-100
Baseline 1day 6h40min 22h 3h
Random 2s 2s 2s 2s
G-CauIM 1day02h 7h 23h 3h
A-CauIM 28s 115s 550s 53s
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Figure 3: a,b)Performance of CauIM on the GoodReads and Contact dataset. “Iter” refers to the
time step in each seed selection round. c) Variance curve trend with different noise in individual ITE,
where ϵyi represents the standard deviation of the injected noise. d) Total sum of ITE under various
propagation probabilities p.

CauIM perform robustly? The robustness means that in perturbations, our approach will achieve an
approximate result close to the normal state. RQ3: Sensitivity Which components and parameters of
the model are essential for the performance of CauIM? Detailed Settings are outlined in Appendix C.

5.1 General CauIM Performance

RQ1 Results are summarized in Table 1, with a detailed analysis of two datasets shown in Fig. 3(a)
and Fig. 3(b). We can summarize the observations into four phenomena: 1) G-CauIM shows slight
improvement over traditional Greedy and improves significantly compared with random selection,
while the gap of their curves widens as the seed number increases. 2) A-CauIM achieves comparable
performance with G-CauIM while significantly enhancing efficiency. 3) The fluctuation amplitude of
the G-CauIM curve is relatively small, as demonstrated in Fig. 1, consistent with its alignment to the
dynamic changes in individual effects and support from Theorem 4.4 and Theorem 4.5 in Section 4.3.
4) Traditional Greedy loses its advantage in most situations and approaches Random.

5.2 Robustness and Sensitivity Analysis

We address RQ2 and RQ3 using A-CauIM. It is sufficient since A-CauIM is a learning-based method
with slightly more uncertainty but outstanding efficiency. We conduct experiments on GoodReads
dataset for ease of analysis.

RQ2 & RQ3 To examine robustness of our model, we add Gaussian noise ϵy to the simulated
individual ITE results, where ϵy ∼ N(0, ϵ2). The randomness of experiments thus comes from three
sources: 1) ϵy, 2) the propagation probability p, and 3) the dynamic ITE of each node. We modify
the scale of the noise and plot corresponding curves. Fig. 3(c) can provide the following illustrations:
1) when the noise increases (not exceeding 9), it is not enough to counter the random variance of
the propagation process and dynamic ITE itself. This “powerlessness” effect disappears until noise
reaches around 10. 2) During the early stage of seed growth, when the number of seeds is smaller
than 10, the effect of total noise of the infected nodes is not large. More discussions of the parameter
ϵ are in Appendix C.5.

We further detect how the components of the algorithm interact and how the diffusion process affects
A-CauIM with various parameter p; As shown in Fig. 3(d), curves of total ITE nearly merge to one
when p is between 0.01 and 0.05. This convergence indicates that complete traversal of nodes in
the hypergraph occurs with a sufficiently high propagation probability, leading to the stabilization
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of the total dynamic ITE. Additionally, it is noteworthy that the performance sharply declines when
p = 0.05, possibly due to the broader diffusion process intensifying the randomness in dynamic ITE
and consequently augmenting the uncertainty of influence spreading. In conclusion, with p changing
in a certain range, our algorithm remains stable, and p = 0.02 is an empirically good choice for
achieving the best performance.

6 Conclusion and Discussion

In this paper, we analyze traditional IM from a causality perspective. Our CauIM framework can
extract approximately optimal seed sets to achieve novel influence maximization. Discussion on
Sketch-based Models. While sketch-based models are efficient, they may struggle to adapt to dynamic
node weights during seed selection, unlike greedy-based approaches. This limitation can lead to
instability, especially in sparse or heterogeneous networks. Our acceleration technique is flexible
across different graph structures and offers a potential remedy. Future work will explore extending
sketch-based approximations to more complex heterogeneous networks.
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Figure 4: An illustration of the propagation process. With v6 infected, the hyperedges (h2, h3 and
h4 with solid line) containing v6 are chosen to be the candidates. Nodes (v3, v4, v5, v7) in these
hyperedges will potentially convert to the infected state. The spreading probability PIC is the internal
parameter in the hypergraph-based Independent Cascading (IC) model [56].

A Methodology Details

Further methodological details, extended analyses, additional experiments, and core codes are provided in
https://github.com/suxinyan/cauim3236/.

Table 3: Notations.

Symbol Descriptions
vi, hj node i ,hyperedge j in hypergraph G: vi ∈ V , hj ∈ H
H the hypergraph structure matrix
Xi the covariate of node vi
Ti the activating status (treatment) of node vi

X−i,T−i
environmental information of node vi, including covariates
and the activation status of surrounding nodes (see Eq. 1)

Ŷi(1; ·), Ŷi(0; ·) the estimated potential outcome of node vi
τ̂i the estimated ITE of node vi in certain diffusion process through Function ÎTE(·) (see Alg. 1)

ap(vi, S) diffusion probability from set S to the node vi
Êτi approximation of expectation on τi

The procedure of G-CauIM is provided in Fig. 5.

B Comparison

A detailed comparison of our CauIM within three types of IM frameworks is presented in Table 4, while a
comparison of CauIM with the general traditional IM framework is provided in Table 5. As shown in Table 4,
the Simulation-based CauIM is successfully implemented in this work.

C Experiments Details

C.1 Experimental Settings

Our real-world data comprises three real-world public datasets: GoodReads 8, Contact [39], and Email-Eu [4].
Furthermore, we incorporate a synthetic dataset named SD-100 comprising 100 nodes and 100 hyperedges,
whose initial treatments and feature settings are detailed in Section C.2. We compare the performance of G-
CauIM and A-CauIM with the traditional greedy selection method without parameter adjusting strategy (Noted
as "Baseline") on the aforementioned four datasets. Additionally, we choose the randomized seed selection
strategy as another baseline. We randomly conduct each experiment for 10 times and each time for 20 rounds in
influence estimation. For basic hyperparameters, we set seed number K = 15 and spread probability PSICP as
0.01 ( denoted as p for simplicity). The evaluation metric is the sum of ITE spread by selected seeds with the
same trained ITE estimation module illustrated in Section 4.

8https://www.goodreads.com/
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Simulation-based Proxy-based Sketch-based

Basic idea Use Monte-Carlo (MC) sim-
ulation to evaluate ITE influ-
ence spread

Design proxy models to ap-
proximate influence func-
tion with varying ITE

Construct reachabil-
ity/activation sketches to
accelerate greedy selection;
guarantees typically assume
fixed, context-independent,
nonnegative gains (can be
used as auxiliary approx-
imations within CauIM
when negative gains are
limited or controlled.)

property NP-hard complexity, total
theoretical guarantee

Polynomial/linear complex-
ity, no theoretical guarantee

Quasi-linear complexity,
approximation guarantees
under fixed nonnegative
gains and specific diffusion
models; no guarantee
for context-dependent or
negative ITE

Disadvantages Computational overheads Sensitive to the unstable sce-
narios

Not general to a wider range
of diffusion models

Datasets Small to medium-sized
datasets under all propaga-
tion models

Large-scale datasets with
distinctive graph structure
under specific propagation
models

Large graphs under Trigger-
ing/LT settings with fixed
gains; less suitable when
gains are dynamic

Examples Greedy, CELF (famous) HADP [56], HSD [56],
EIOA [41]

RIS [5], IMM [49], BKRIS

Table 4: Comparison of three types of traditional IM in the context of our CauIM framework.

CauIM Traditonal IM

Basic idea Leverages observational data to esti-
mate the ITE of each node and to max-
imize the sum of varying ITEs among
the infected individuals considering en-
vironmental information

Maximize the numbers of infected indi-
viduals

Objective function argmaxS⊆V ∧|S|=K E[|Φ(S)|], where
Φ(S) =

∑
vi∈S Eτi measures the sum

of ITE (informal, parameter of interfer-
ence is omitted)

argmaxS⊆V ∧|S|=K E[|Φ(S)|], where
Φ(S) measures the sum of infected
numbers

Application Scenarios Maximize total sum of individual gains Maximize infected numbers

Table 5: A comparison between CauIM and general traditional IM (Notice that CauIM is more
challenging than the sum-weighted IM, since the ITE would be negative and varying during different
propagation.)
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Figure 5: The procedure of G-CauIM. Ti indicates whether the node is activated or not (we can only
observe one situation for each node vi) and T−i represents activated status of its surroundings, as
illustrated in Eq. 2. For each round, we construct the ITE estimation τ̂i := ÎTE(; θopt) mentioned in
Section 4 and then treat it as the node weight. Furthermore, we conduct a weighted greedy algorithm
with SICP propagation mechanism (Fig. 4). As a result, we expand the seed set (v4 is added), targeting
the (estimated) largest sum of ITE. The main challenge is that τ̂i are not constants, since the omitted
parameter (Eq. 2) changes according to the different activation status of nodes in each iteration.

C.2 Details of Datasets and Problem Background

GoodReads [22, 50] collects information on different categories of books, with each item containing the book
title, content, and other details. Using the "Author-book" relationship, a node represents the specific book
category and hyperedge aggregates books written by the same author in our hypergraph. We consider a scenario
of recommending book sales, where the diffusion process is facilitated by reader groups associated with each
book category node in the “Author-book” network. Treatment denotes the recommendation for book sales,
with ti set to 1 when book node i is recommended. Each book category is associated with a potential sales
income, influenced by both its own recommendation status and the performance of other books within the same
hyperedge. Our goal is to identify a k-set(or k kinds) of books to sell at the beginning, aimed at maximizing the
total sales gap between the recommended and non-recommended. Our core optimization function is to maximize
the sum of ITE, where the ITE of each book means the difference in potential sold income with/without the
recommendation in our experiment. For Contact [4], it constructs simplicial complexes by grouping individuals
in close connectivity at the same timestamp, represented by hyperedges. Here we simulate a situation where
we deliver an AIDS Awareness Talks to particular students, and the core concepts can be disseminated through
hyperegde groups. Our objective is to select initial student representatives to be educated in order to maximize
the overall benefits of the talk (This can also be viewed as maximizing the total sum difference between having
the anti-drug talk and not having it). We simulate covariates(Xi) of each student in a Mixed Gaussian distribution,
considering differences among diverse groups:

Xi ∼
L∑

j=1

ωiN (µj , I). (8)

Here we set L = 4, ω1 = 0.4. Moreover, {ω1, ω2, ω3, ω4}= {0.4, 0.2, 0.1, 0.3}, {µ1, µ2, µ3, µ4} =
{0.2,−0.25,−0.3, 0.5}.

Email dataset shares the similar scenario with Contact. The ratio of nodes to hyperedges is different: For
example, Goodreads is 36 and Contact is 0.14. The simulation of ITE and basic treatment settings for both
datasets follow [37]. The ITE distribution of GoodReads and Contact is shown in Fig. 6. It is worth noting
that the ratio of nodes to hyperedges is contrasting between the two datasets, yielding sparse and relatively
dense graphs, respectively. This exemplifies the diversity of our data selection, allowing for a more robust
evaluation of algorithmic performance. Synthetic dataset SD generates initial treatments Ti ∼ Bernoulli(r0),
where r0 denotes an average affected ratio of nodes (which can be calculated easily through propagation
simulations). Its covariates(Xi) are simulated following Eq. (8), with distinct values of {ω1, ω2, ω3, ω4} =
{0.4, 0.25, 0.15, 0.2}, representing different group ratio.

C.3 Supplementary Descriptions of Basic Assumptions

The basic assumptions of the book-selling scenario should be satisfied: 1) Books and authors are many-to-many
relationships; 2) the number of each kind of books sold initially is the same (we will take it as our future research
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Figure 6: a) Distribution of individual ITE in GoodReads Dataset. b) Distribution of individual ITE
in Contact Dataset.

topic if not the same); 3) Readers can learn about other books simply from authors of owned books. 4) Temporal
change of each hyperedge is not considered. Assumptions for the other example are similar with the exception
that rule 3 is replaced by “Students can learn about core ideas simply from other students.” Our diffusion
framework is established by hypergraph-based IC as described in Section 4. Within this model, the spread
probability represents the willingness of readers to purchase the next book in the GoodReads dataset and the
likelihood of core concepts spreading among students in the Contact or Email dataset.

C.4 Supplementary Descriptions of Parameter Settings

Our experiments are conducted on Linux operating system with Python 3.10.14, torch 2.1.

C.5 Parameter Analysis

Still, after the number of seeds exceeds 10, the scale of affected nodes rises significantly, since the cumulative
effect of noise becomes significant. Thus, we conclude that our model remains relatively robust when the noise
standard deviation σ does not exceed 8. This result is consistent with our theoretical part. Aimed at indicating
the volatility, we modify the scale of the noise to approximate instability degree and take on 10 realizations of
each experiment, calculating the standard variance of ITE performance among those realizations as the final
result. We conduct 20 groups of experiments with σ varying between 0 to 20, and use step 2 when σ is lower
than 8 for its changes are not noticeable. While σ is larger than 10, the curves increase too drastically. Thus,
results beyond this range are omitted from Fig. 3(c) for clarity.

D The proof of Proposition 4.1

Due to the Influence Maximization (IM) problem itself being NP-hard, our CauIM can be naturally reduced to
the traditional IM problem (τ = 1) and is therefore also NP-hard, potentially involving additional complexity
due to heterogeneous node weights.

Proof sketch. Notice that when τi = 1, ∀vi ∈ V and each hyperedge contains only one pair of nodes, then
CauIM will degenerate to the traditional IM problem. Moreover, the IM problem with the IC diffusion model
has been demonstrated to be NP-hard in [28].

In another perspective, we can directly prove the optimal seed set of CauIM is one solution of the famous weighted
set cover problem, which is well-known as NP-hard [21]. The weighted set cover problem is equivalently defined
as detecting whether there exists k subsets within the total m subsets, such that it can cover the universe of
elements U . We aim to demonstrate the traditional weighted set cover problem can naturally generalize a
specific instance in CauIM. We construct a bipartite graph, in which the left side denotes the total subsets
S = {S1,S2, ...Sm}, while the right side denotes the elements u ∈ U , which can be seen as each node in the
hypergraph. The edge between two sides is attributed with the probability 1. Notice that in this instance, there
exists a k-set cover if and only if there exists k-seed set such that the activation can reach all |S|+ |U | = K+ |U |
nodes. Hence, our CauIM is more complex and is NP-hard.

24



E The proof of Lemma 4.2

Proof. It is equivalent to consider CauIM with τi = 1, vi ∈ V . This approximate optimal guarantee is due to
two elegant properties: 1) monotonicity and 2) submodularity. Firstly, according to σ(S0 ∪ v)− σ(S0) ≥ 0
when τi = 1, the monotonicity naturally holds. Secondly, we consider the submodularity in the hypergraph.
This part has been proved by [13], where they constructed an augmented graph Gaug = (V ∪ H , E ). Here the
edge E is composed by e := (v, h), v ∈ V , h ∈ H . Then conduct the same submodularity analysis as in the
traditional graph, and the proof is completed.

F The proof of Theorem 4.4

The first result based on τi > 0 naturally holds. It is because the monotonicity and submodularity still hold
when each node is attributed with non-negative weights (i.e., ITE). We focus on the second result, when τi > 0
is not guaranteed, these two important properties will not further hold. We extend the analysis to a generalized
form of weak monotonicity and weak submodularity.

Proof. To summarize, the core part is the following three claims:

(Claim 1) σ(S∗) ≤ σ(S∗ ∪ Sg
i ) + iε2.

(Claim 2) σ(S∗ ∪ Sg
i ) ≤ σ

(
Sg
i+1

)
− σ (Sg

i ) + σ (Sg
i ∪ S∗

K−1) + ε1ε2.

(Claim 3) σ (Sg
i ∪ S∗

K−1) ≤ (K − 1)[σ
(
Sg
i+1

)
− σ (Sg

i )] + σ(Si
g) + (K − 1)ε1ε2. The optimal K-seed

set is denoted as S∗ = {s∗1, s∗2, ...s∗K}, S∗
k = {s∗1, s∗2, ...s∗k}, and the set output from our greedy CauIM as

Sg = {sg1, s
g
2, ...s

g
K}, Sg

k = {sg1, s
g
2, ...s

g
k}, k ∈ [K]. Following [52], notice that

σ(S) =
∑
u∈S

(∑
v∈V

τv · pr(u, v) + τu

)
. (9)

We first construct the facilitating claim to analyze the variant of the monotonicity and the submodularity property.

Claim 1: σ(S∗) ≤ σ(S∗ ∪ Sg
i ) + iε2.

This claim can be achieved recursively. Considering two sets T1 ⊆ T2, and an additional vertex v ⊈ T1, we can
follow [52] and achieve:

(σ(T1 ∪ v)− σ(T1)) =
∑

vi∈R(v)

τi · pvvi (1− pT1,vi) ≤
∑

vi∈R(v)

|τi|pvvi = ε2. (10)

Then Claim 1 follows by recursively applying this bound i times.

Claim 2: σ(S∗ ∪ sgi ) ≤ σ
(
Sg
i+1

)
− σ (Sg

i ) + σ (Sg
i ∪ S∗

K−1) + ε1ε2.

We make an extension of submodularity. Considering S ⊆ T ⊆ V , we have
(σ(S ∪ v)− σ(S))− (σ(T ∪ v)− σ(T ))

=
∑

vi∈R(v)

τi · pvvi (pT,vi − pS,vi) ≤ ε1ε2. (11)

Hence σ(S∗ ∪ sgi ) can be bounded as follows:

σ(S∗ ∪ sgi ) = σ(S∗
K−1 ∪ s∗K ∪ Sg

i )

≤σ (Sg
i ∪ s∗K)− σ (Sg

i ) + σ (Sg
i ∪ S∗

K−1) + ε1ε2

≤σ
(
Sg
i+1

)
− σ (Sg

i ) + σ (Sg
i ∪ S∗

K−1) + ε1ε2.

(12)

The last line is due to the selection nature of the greedy algorithm.

Claim 3: σ (Sg
i ∪ S∗

K−1) ≤ (K − 1)[σ
(
Sg
i+1

)
− σ (Sg

i )] + σ(Si
g) + (K − 1)ε1ε2.

It is due to

σ (Sg
i ∪ S∗

k−1) =σ (Sg
i ∪ S∗

k−2 ∪ s∗k−1)

≤σ (Sg
i ∪ s∗k−1)− σ (Sg

i ) + σ
(
Si
g ∪ S∗

k−2

)
+ ε1ε2

≤σ
(
Sg
i+1

)
− σ (Sg

i ) + σ
(
Si
g ∪ S∗

k−2

)
+ ε1ε2

(13)
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The last line is due to the selection nature of the greedy algorithm. Therefore, recursively, we have

σ (Sg
i ∪ S∗

K−1) ≤ (K − 1)[σ
(
Sg
i+1

)
− σ (Sg

i )] + σ(Si
g) + (K − 1)ε1ε2. (14)

Combined with Eq. (12), Eq. (F) and Claim 3, we have

σ(S∗) ≤ K[σ
(
Sg
i+1

)
− σ (Sg

i )] + σ(Sg
i ) +Kε1ε2 + iε2. (15)

It equals to

σ(Sg
i+1) ≥ (1− 1

K
)σ(Sg

i ) +
σ(S∗)

K
− ε1ε2 −

iε2
K

(1− 1

K
)k−i−1σ(Sg

i+1)

≥(1− 1

K
)k−iσ(Sg

i ) + (1− 1

K
)k−i−1

(
σ(S∗)

K
− ε1ε2 −

iε2
K

)
.

(16)

Take the sum of i ∈ {0, 2, ...K − 1}, we have

σ(Sg
K) ≥

K−1∑
i=0

(1− 1

K
)k−i−1 σ(S

∗)−Kε1ε2
K

−
K−1∑
i=0

(1− 1

K
)k−i−1 i

K
ε2

≥

(
1−

(
1− 1

k

)k
)
(σ(S∗)−Kε1ε2)− ε2(

1

e
)1−

1
K

∫ 1

0

xexdx

≥ (1− 1

e
) (σ(S∗)−Kε1ε2)− ε2e

1
K

−1.

(17)

This lower bound is also applicable when τi ≤ 0 exists.

G The proof of Theorem 4.5

Proof. Following Chen et al. [8] , we have (k ∈ [K])

f (Sg
i ∪ {s∗k}) ≤

1

1− γ
f̂ (Sg

i ∪ {s̄∗k})

≤ 1

1− γ
f̂ (Sg

i ∪ {si+1})

≤ 1 + γ

1− γ
f (Sg

i ∪ {si+1}) .

(18)

Analogously, we have

f
(
Sg
i+1

)
≥ 1− γ

1 + γ

((
1− 1

K

)
f (Sg

i ) +
f (S∗)

K
− ε1ε2 −

iε2
K

)
. (19)
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Algorithm 2: Monte Carlo-based greedy CauIM
Require: Hypergraph G (V ,H ), size of the seed set K, a constant T .

1: Initialization: S0 = ∅, k = 0.
2: ITE recovery: Estimate node-level τi from observational data or model-based inference.
3: for |S0| < K do
4: v0 = argmaxv/∈S0

{MC (S0 ∪ {v}, T )− MC (S0, T )} .
5: S0 = S0 ∪ {v0}
6: end for

Ensure: The deterministic seed set S0 with |S0| = K.
Function MC:

Require: Iteration T , current node set S0, estimated ITE {τi}
7: count = 0
8: for i ∈ [T ] do
9: We conduct the diffusion process with T steps, and compute the sum of causal effects

σT (S0) =
∑

node j is activated τj ; count = count + σT (S0).
10: end for
Ensure: Return count/T .

Hence, recursively,

f (Sg
K) ≥

K−1∑
i=0

(
(1− 1/K)(1− γ)

1 + γ

)K−i−1

· 1− γ

(1 + γ)K
· [f (S∗)−Kε1ε2]

−
K−1∑
i=0

(
(1− 1/K)(1− γ)

1 + γ
)k−i−1 i

K
ε2

≥
1−

(
1−γ
1+γ

)K (
1− 1

K

)K
(1 + γ)K/(1− γ)−K + 1

[f (S∗)−Kε1ε2]− ε2e
1
K

−1

≥
1−

(
1−γ
1+γ

)K
· 1
e

(1 + γ)K/(1− γ)−K + 1
[f (S∗)−Kε1ε2]− ε2e

1
K

−1

≥
1− 1

e

(1 + γ)K/(1− γ)−K + 1
[f (S∗)−Kε1ε2]− ε2e

1
K

−1

≥
(
1− 1

e

)(
1− (1 + γ)K

1− γ
+K

)
[f (S∗)−Kε1ε2]− ε2e

1
K

−1

≥
(
1− 1

e
−
(
(1 + γ)K

1− γ
−K

))
[f (S∗)−Kε1ε2]− ε2e

1
K

−1

≥
(
1− 1

e
− ε

)
[f (S∗)−Kε1ε2]− ε2e

1
K

−1.

(20)

H The proof of Corollary 4.6

Proof.

|σ̂(S)− σ(S)| =
∑
u∈S

(∑
v∈V

(τ̂v − τv) pr(u, v) + τ̂v − τv

)

≤ γσ(S)

σnaive(S)

∑
u∈S

(∑
v∈V

pr(u, v) + 1

)
:= γσ(S).

(21)

Hence | σ̂(S)
σ(S)

− 1| ≤ δ σnaive(S)
σ(S)

≤ γ.
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I Auxiliary algorithms and Additional discussions

More discussions of HGCN module The higher-order interference representation Oi() is learned
according to to [37, 38], employing hypergraph convolution operator within HGCN module: O(l+1) =

LeakyReLU
(
LO(l)W(l+1)

)
where L denotes Laplacian matrix aggregating the graph feature information,

and O is initially calculated using Z .

More discussions upon IM For the first limitation of IM, the exploration of hypergraph-based IM is urgent
to be settled. Since the hypergraph structure is consistent with ample real-world scenarios, especially when
different nodes in the graph contain high-level, multivariate relationships, where the traditional graph is hard
to model efficiently. Take an example of the disease propagation problem regarded as IM on hypergraph in
Fig. 4(a). Students are connected through social circles, where each circle can be represented as a hyperedge.
Different from ordinary graphs, the influence of node v6 is spread not considering the edge consisting of a
pair of nodes, but on more its affiliated hyperedges shown in Fig. 4(b). Existing hypergraph-based studies are
mostly separated into two parts: 1) people are committed to developing heuristic methods but with not enough
theoretical support [2, 56]. 2) people developed fundamental theoretical guarantees only on a specific form
of hypergraph structure [66]. In general, a general hypergraph-based IM with theoretical guarantee and high
empirical efficiency still needs to be explored.

For the second limitation of IM, the original optimization objective needs to be reconsidered in many cases.
The previous objective is directly implied as the sum of node numbers, which stems from empirical or even
philosophical determinations and lacks rigorous mathematical arguments. This implication is attributed to the
over-simplification of real-life situations–current IM methods tend to overlook the dynamic nature of node
influence weights (ITE) within their environments. Traditional IM methods like simulation-based [28, 31] and
sketch-based [5, 48, 49, 51] ones focusing on maximizing total numbers (or generalized weighted IM) might
fail to pursue such maximum total potential benefit (pursue “larger varying weighted sum” instead of “larger
number of nodes”). Wang et al. [52] proposed the new weighted IM problem whereas they rely on non-negative
assumptions and and lacks generalizability to complex scenarios involving hypergraphs and varying node
weights. Recently, learning-based IM methods [6, 27, 30, 42, 35] mostly learn potential node representations as
a marginal gain of node influence, thus guiding the seed node finding process. Sharing different object functions
from ours, many of these existing methods might struggle with limited generalization capabilities and result
reliability concerns. Overall, there is a critical need to explore novel objective functions.

More discussions upon extended algorithms To simplify the discussion, in the additional algorithms
we provide, we have omitted the process of dynamically updating ITE based on the surrounding nodes’ state
changes during each propagation. CELF-CauIM (Alg. 2) and Monte Carlo-based greedy CauIM (Alg. 3) can be
derived naturally from G-CauIM.

Algorithm 3: CELF-CauIM
Require: Hypergraph G(V ,H ,H), size of the seed set K, causal influence function σ(·).

1: Initialization: S∗ = ∅, MargDic = ∅.
2: ITE recovery.
3: MargDic stores the marginal gain σ({v}) of each node.
4: Sort MargDic in decreasing order of value.
5: for |S∗| < K do
6: Move out the node cur with the largest marginal gain in MargDic.
7: Re-compute marginal gain of of node cur with the current seed set S∗:

MargDic[cur] = σ (S∗ ∪ {cur})− σ (S∗)
8: Check if previous top node stays on top after sort MargDic again. If true, S∗ = S∗ ∪ {cur},

and find the second seed; else remove the second largest marginal gain node in MargDic,
then repeat the last operation.

9: end for
Ensure: The deterministic seed set S∗ with |S∗| = K.

For HADP-CauIM (Alg. 4), we replace the selection criterion of searching for nodes with the highest degree
with the nodes with the highest sum of the average ITE among the neighboring nodes (line 5− 6). Note that
according to the common drawback of heuristic methods, this type of method has no theoretical support and
often falls into a common dilemma: nodes with the highest local degree (neighboring ITE) may not necessarily
represent seeds that can bring greater overall influence. This point has also been verified in the experiments.

28



Algorithm 4: HADP-CauIM
Require: G(V ,H ,H), size of the seed set K, causal influence function σ(·).

1: Initialization: S∗ = ∅, DegITE = {}.
/* Presented in Algorithm 1 */

2: ITE recovery.
3: DegITE[v] stores the sum of ITE of the neighbour nodes of each node v, where Nr(v)

represents the neighbour nodes of v: DegITE[v] =
∑

vr∈Nr(v)
Eτr.

4: while |S∗| < K do
5: Choose v0 with the max value in DegITE as the seed: v0 = argmaxv{DegITE[v]},

S∗ = S∗ ∪ {v0}.
6: Calculate sum of ITE for each node vr in neighbors of v0 as edge value Edge:

DegITE[vr] =
∑

vrq∈Nr(vr)
Eτrq .

7: Remove the edge influence of the chosen seed node v0:
DegITE[vr] = DegITE[vr]− Edge .

8: Remove v0 and its incident hyperedges from G .
9: end while

Ensure: The deterministic seed set S∗ with |S∗| = K.

More discussions upon submodularity of hypergraph Antelmi et al. [2], Zheng et al. [65] claimed
their hypergraph does not contain submodularity. However, their propagation mechanism is different from
traditional IC. Besides, they considered the form of directed hypergraph where a hyperedge (H, t) comprises a
set of head nodes H is and a single tail node t. Further, Gangal et al. [13] demonstrated the submodularity of a
general class of hypergraph. Moreover, Erkol et al. [11] stated that the submodularity on the temporal network
might not be held.

More discussions upon additional challenges compared to other sum-weighted IMs. Noteworthy,
according to the ITE estimation form, CauIM can be seen as the generalized case of the weighted IM. However,
our task is significantly more challenging. Firstly, beginning with the traditional graph, sum-weighted schemes
often ensure an approximate optimum guarantee effortlessly, for traditional IM can be extended to weighted
IM naturally (see definition 5 in Mossel and Roch [40]). However, it does not make sense in our setting since
the ITEs for each node would not guarantee to be always non-negative (for instance, some non-compliers, i.e.,
ITE < 0, exist). Furthermore, the argument on submodularity is more complex in hypergraph (defer to I).
Besides, the ITE estimation does not remain constant between iterations due to the experimental sensitivity
(the activation status of surrounding nodes change). In sum, to the best of our knowledge, in the setting of
hypergraph-based ITE, the weakened version of the approximate optimum guarantee is an effective supplement
to the IM community.

More future work This study introduces a causal influence maximization (CauIM) framework that captures
environmental sensitivity and unobservability in network diffusion, establishing a bridge between causal inference
and influence maximization. A promising direction for future work is to further unify this causal perspective
with sequential and online design paradigms developed in recent research on networked experimentation
[61, 54]. Specifically, integrating the CauIM framework with online experimental design could enable adaptive
intervention strategies that dynamically estimate and optimize individual influence gains while providing anytime-
valid inference guarantees. Moreover, the interplay between partial identification [60, 59] and network diffusion
can be explored to quantify uncertainty when the activation mechanisms or environmental variables are only
partially observed, leading to bounds on causal influence under incomplete network information. Robust and
proxy-based identification methods [63] may further improve reliability by mitigating hidden confounding in
heterogeneous or noisy propagation environments. Another direction is to extend CauIM to dynamic or temporal
networks, leveraging Granger-style causality models [62] to capture time-varying dependencies in diffusion
processes. Finally, combining CauIM with active treatment-effect estimation under limited sampling budgets
[64] and structural constraints such as topological regularity [58] can yield a comprehensive framework for
optimizing both causal inference accuracy and influence efficiency across evolving network settings.

J Broader Impact.

Our work studies algorithmic optimization on synthetic and publicly available network data. Potential positive
impacts include improved targeting for public-health messaging and resource allocation. Potential risks include
misuse for manipulative advertising. We discuss mitigation by enforcing transparency about the optimization
objective, prohibiting protected-attribute targeting, and auditing estimated ITEs for bias.
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