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Abstract

Lagrangian and Hamiltonian neural networks (LNNs and HNNs, respectively)
encode strong inductive biases that allow them to outperform other models of
physical systems signicantly. However, these models have, thus far, mostly been
limited to simple systems such as pendulums and springs or a single rigid body such
as a gyroscope or a rigid rotor. Here, we present a Lagrangian graph neural network
(LGNN) that can learn the dynamics of articulated rigid bodies by exploiting their
topology. We demonstrate the performance of LGNN by learning the dynamics
of ropes, chains, and trusses with the bars modeled as rigid bodies. LGNN also
exhibits generalizability—LGNN trained on chains with a few segments exhibits
generalizability to simulate a chain with large number of links and arbitrary link
length. We also show that the LGNN can simulate unseen hybrid systems including
bars and chains, on which they have not been trained on. Specically, we show that
the LGNN can be used to model the dynamics of complex real-world structures
such as the stability of tensegrity structures. Finally, we discuss the non-diagonal
nature of the mass matrix and its ability to generalize in complex systems.

1 Introduction and Related Works

Movements of a robotic arm, rolling ball, or falling chain can be characterized by rigid body
motion [1, 2]. Understanding the dynamics of the motion is crucial in several applications including
robotics, human-robot interaction, planning, and computer graphics [3, 1]. Traditionally, the rigid
body mechanics is studied in the framework of classical mechanics, which relies on either force-
based or energy-based approaches [4]. Force-based approaches involve the computation of all the
unknown forces based on the equations of equilibrium and hence is cumbersome for large structures.
Energy-based approaches present an elegant formalism which involve the computation of a scalar
quantity representing the state of a system, namely, Lagrangian (L = T − V), which is the difference
between the kinetic (T (q, q̇)) and potential (V(q)) energies, or Hamiltonian (H = T + V), which
represents the total energy of the system. This scalar quantity can, in turn, be used to predict the
dynamics of the system. However, the functional form governing this scalar quantity may not be
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known a priori in many cases [5]. Thus, learning the dynamics of rigid bodies directly from the
trajectory can simplify and accelerate the modeling of these systems [5, 6, 7, 8].

Learning the dynamics of particles has received much attention recently using physics-informed
approaches [9]. Among these, Lagrangian neural networks (LNNs) and Hamiltonian neural networks
(HNNs) are two physics-informed neural networks with strong inductive biases that outperform other
learning paradigms of dynamical systems [10, 11, 12, 8, 6, 13, 7, 14]. In this approach, a neural
network is trained to learn the L (orH) of a system based on its conguration (q, q̇). The L is then
used along with the Euler-Lagrange (EL) equation to obtain the time evolution of the system. Note
that the training of LNNs is performed by minimizing the error on the predicted trajectory with respect
to the actual trajectory. Thus, LNNs can effectively learn the Lagrangian directly from the trajectory
of a multi-particle system [6, 13].

Most of the works on LNN has focused on relatively simpler particle-based systems such as springs
and pendulums [15, 16, 6, 13, 7, 10, 17]. This approach models a rigid body, for instance a ball, as
a particle and predicts the dynamics. This approach thus ignores the additional rotational degrees of
freedom of the body due to its nite volume. Specically, while a particle in 3D has three degrees of
freedom (translational), a rigid body in 3D has six degrees of freedom (translational and rotational).
Thus, the dynamics and energetics associated with these degrees of motions are lost by modeling
a rigid body as a particle. To the best of authors’ knowledge, thus far, only one work has attempted
to learn rigid body dynamics using LNNs and HNNs, where it was demonstrated the dynamics of
simple rigid bodies such as a gyroscope or rotating rotor can be learned [13]. However, the LNNs
used in this work, owing to their fully connected MLP architecture, are transductive in nature. An
LNN trained on a double-pendulum system or 3-spring system can be used only for the same system
and does not generalize to a different system size such as 3-pendulum or 5-spring, respectively. In
realistic situations the number of particles in a system can vary arbitrarily, and accordingly, a large
number of trained models might be required to model these systems.

An alternate approach to model these systems would be to use a graph neural network (GNN) [18,
19, 5, 15, 16], which, once trained, can generalize to arbitrary system sizes. GNNs have been widely
used to model physical and atomic systems extensively due to their inductive bias [20, 21, 22, 15, 16].
GNNs have also been used to model rigid bodies mainly following two approaches, namely, particle-
based [19] and lumped mass [22, 23] methods. In the rst approach, a rigid body is discretized into
nite number of particles and the motion of the individual particles are learned to predict the dynamics
of rigid body [19]. Note that this approach is philosophically similar to mess-less methods such as
smoothed-particle hydrodynamics (SPH) [24] or peridynamics (PD) [25], where the time-evolution
of a continuum body is simulated by discretizing the domain using particles. This approach [19],
although useful, have several limitations, namely, it does not (i) conserve physical quantities such as
energy when simulated over a long duration, and (ii) generalize to a different timestep of forward
simulation than the one on which it is trained. In the second approach, a rigid body is modeled as a
lumped mass [22, 26], the dynamics of which is learned by assuming this lumped mass as a particle.
For instance, the dynamics of a chain is modeled by discretizing the chain to smaller segments and
modeling each segment as a lumped mass. As mentioned earlier, this approach leads to the loss of
additional degrees of freedom that are associated with a rigid body.

Here, we present a Lagrangian graph neural network (LGNN) framework that can learn the dynamics
of rigid bodies. Specically, exploiting the topology of a physical system, we show that a rigid body
can be modeled as a graph. Further, the Lagrangian of the graph structure can be learned directly
by minimizing the loss on the predicted trajectory with respect to the actual trajectory of the system.
The major contributions of the work are as follows.

• Topology aware modeling of rigid body. We present a graph-based model for articulated rigid
bodies such as in-extensible ropes, chains, or trusses. Further, we demonstrate using LGNN that
the dynamics of these systems can be learned in the Lagrangian framework.

• Generalizability to arbitrary system sizes. We show that LGNN can generalize to arbitrary
system sizes once trained.

• Generalizability to complex unseen topology. We demonstrate that the LGNN can generalize to
unseen topology, that is, links with varying lengths, a combination of truss and chain structures,
and different boundary conditions.

Altogether, we demonstrate that LGNN can be a strong framework for simulating the dynamics of
articulated rigid bodies.
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2 Dynamics of Rigid Bodies

The dynamics of a physical system can be represented as q̈ = F (q, q̇, t), where q, q̇  RD is a
function of time (t) for a system with D degrees of freedom. The future states or trajectory of the
system can be predicted by integrating these equations to obtain q(t + 1) and so on. While there
are several physics-based methods for generating the dynamics of the system such as d’Alembert’s
principle, Newtonian, Lagrangian, or Hamiltonian approaches, all these approaches result in the
equivalent sets of equations [3].

The two broad paradigms for modeling the dynamics involve force- and energy-based approaches.
Energy-based approaches is an elegant framework, which relies on the computation of a single scalar
quantity, for instance energy, that represents the state of system. The dynamics of the system is,
in turn, computed based on this scalar quantity. Among the energy-based approaches, Lagrangian
formulation has been widely used to predict the dynamics of particles and rigid bodies by computing
the Lagrangian L of the system. The standard form of Lagrange’s equation for a system with
holonomic constraints is given by d

dt


∂L
∂q̇


−


∂L
∂q


= 0, and the Lagrangian is L(q, q̇, t) =

T (q, q̇, t)−V(q, t) with T (q, q̇, t) and V(q, t) representing the total kinetic energy of the system and
the potential function from which generalized forces can be derived. Accordingly, the dynamics of

the system can be represented using EL equations as q̈i =


∂2L
∂q̇2i

−1 
∂L
∂qi

−


∂L
∂q̇i∂qi


q̇i


.

Modied Euler-Lagrange Equation. A modied version of the EL can be used in cases where some
of the terms involved in the equation can be decoupled. This formulation allows explicit incorporation
of constraints (holonomic and Pfafan) and additional dissipative terms for friction or drag [3, 1]. In
rigid body motion, Pfafan constraints can be crucial in applications such as multi-ngered grasping
where, the velocity of two or more ngers are constrained so that the combined geometry formed is
able to catch or hold an object. A generic expression of constraints for these systems that accounts
for both holonomic and Pfafan can be A(q)q̇ = 0, where, A(q)  Rk×D represents k velocity
constraints. In addition, drag, friction or other dissipative terms of a system can be expressed as an
additional forcing term in the EL equation. It is worth noting that EL equation, by nature, is energy
conserving. Hence, the additional dissipative terms are crucial for modeling realistic systems with
friction and drag. If these terms are not included, the system will essentially try to simulate an energy
preserving trajectory, thereby resulting in huge errors in the dynamics [17].

Considering the additional forces mentioned above, the modied EL equation can be written as:

d

dt
q̇L−qL+AT (q)λ−Υ− F = 0 (1)

where AT forms a non-normalized basis for the constraint forces, λ  Rk, known as the Lagrange
multipliers, gives the relative magnitudes of these force constraints,Υ represents the non-conservative
forces, such as friction or drag, which are not directly derivable from a potential, and F represents
any external forces acting on the system. This equation can be modied to obtain q̈ as:

q̈ = M−1

−Cq̇ +Π+Υ−AT (q)λ+ F


(2)

where M = ∂
∂q̇

∂L
∂q̇ represents the mass matrix, C = ∂

∂q
∂L
∂q̇ represents Coriolis-like forces, and

Π = ∂L
∂q represents the conservative forces derivable from a potential. Differentiating the constraint

equation gives A(q)q̈ + Ȧ(q)q̇ = 0. Solving λ (see A.2) and substituting in Eq. 2, we obtain q̈ as

q̈ = M−1

Π− Cq̇ +Υ−AT (AM−1AT )−1


AM−1(Π− Cq̇ +Υ+ F ) + Ȧq̇


+ F


(3)

For a system subjected to these forces, the dynamics can be learned using LNN by minimizing the
loss on the predicted and observed trajectory, where the predicted acceleration ˆ̈q is obtained using the
Equation 3. It is worth noting that in this equation, M,C, and Π can be directly derived from the
L. Constraints on the systems are generally known as they generally form part of the topology. It is
worth noting that there are some recent works that focus on learning constraints as well [8].
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3 Lagrangian Mechanics for Articulated Rigid Bodies

In the case of particle systems such as spring or pendulum systems, the approach mentioned in
Sec.2 can be directly used in conjunction with an LNN to learn the dynamics. In this case, the mass
matrix M(q) remains constant with only diagonal entries mii in Cartesian coordinates. Inducing
this as a prior knowledge, wherein the masses are parameterized as a diagonal matrix is shown
to simplify the learning process [13]. However, in the case of an articulated rigid body, the mass
matrix is non-diagonal in the Cartesian coordinates. Further, the kinetic energy term T becomes a
function of both position and velocity. In other words, the kinetic energy also becomes a function
of the topology. This makes learning the dynamics a complex problem especially in real-world
complex structures such as trusses or tensegrities, which are a combination of bars, ropes, and chains.

Figure 1: Chain considering rigid
body dynamics. Spheres repre-
sent the connections and bars rep-
resent the links of the chain.

To this extent, we briey review the mechanics of a falling rope
or chain as an example. Note that simple rigid bodies such as
a gyroscope or rotating rotor has already been studied using
LNNs [13]. Of our special interest are articulated rigid bodies that
can be arbitrarily large such as chains, ropes or trusses, that can
be divided into smaller constituent members. This is because, it
is generally assumed that extending LNNs to large structures is a
challenging problem [17]. Traditionally, the mechanics of chains
or ropes are modeled using discrete models [2]. Figure 1 shows
a discrete model of a rope of mass M and length L. The rope
is discretized into n cylindrical rods or segments each having
a mass mi = Mn and length li = Ln. These segments are
considered to be rigid, and with a nite uniform cross-sectional
area and volume. In order to replicate realistic dynamics of a
rope, the li should be signicantly smaller than L. Note that
in the case of a chain or truss, such articial discretization is
not required and the bars associated with each segment can be
directly considered as a rigid body.

To formulate the L, the generalized coordinates with orientation of each link represented by ϕi =

tan−1


yi−yi−1

xi−xi−1


can be considered. Placing the origin at the beginning of rst segment (see Figure

1), the center of mass of ith segment (xcm
i , ycmi ) can be written in terms of generalized coordinates

as

xcm
i =

i−1

j=1

lj cosϕj +
1

2
li cosϕi, ycmi =

i−1

j=1

lj sinϕj +
1

2
li sinϕi (4)

Accordingly, the kinetic energy of the system is given by [2]

T =
1

2

n

i=1


mi(ẋ

2
i,cm + ẏ2i,cm) + Iiϕ̇

2
i


(5)

where Ii = 1
12mil

2
i represents the moment of inertia of the rigid segment i. Similarly, the potential

energy of the system can be expressed as:

V =

n

i=1

migy
cm
i (6)

where g represents the acceleration due to gravity. Finally, the Lagrangian of the system can be
obtained as L = T − V , which can be substituted in the EL equation to obtain the dynamics of the
rigid body.

To learn the dynamics of an articulated rigid body, we employ the approach shown in Figure 2.
Specically, we model a physical system as a graph. Further, the Lagrangian of system is learned by
decoupling the potential and kinetic energy, each of which are learned by two GNNs, namely, GV and
GT . Finally, the Lagrangian is computed as L = T − V . This framework is trained end-to-end based
by minimizing the loss on the acceleration predicted by the LGNN using EL equation with respect to
the ground truth. In this section, we describe the LGNN architecture for rigid bodies in detail (See

4



Figure 2: (a) Learning articulated rigid body dynamics with LGNN (b) Architecture of LGNN for
rigid bodies.

Figure 2 for an overview). We empirically show that the dynamics of a rigid body can be learned
by LGNN. In addition, due to the inductive nature of the graph architecture, once trained on a small
system, LGNN can generalize to arbitrary system sizes and topology.

Graph structure. Figure 1 shows a chain. The (undirected) graph of the physical system is
constructed by considering the bars/segments of the chain as the edges and the connections as nodes.
Here, edges represent the rigid bodies and nodes represent the connection between these rigid bodies.
This is in contrast to earlier approaches used for particle-based systems, where node represented the
particle position and edge represented the connections between them. Hereon, we use the notation
G(U , E) to to represent the graph representation of a rigid body with U and E as its node and edge sets.

Overview of the architecture. As shown in Figure 2, we use two GNNs; one to predict the potential
energies and the other to predict kinetic energies. From these predictions the Lagrangian is computed.
The error on the Lagrangian is minimized through an RMSE loss function to jointly train both
the GNNs. The architecture of both the GNNs, shown in Figure 2, are identical. Note that the
specic graph architecture used in the present work is inspired from previous works on LGNNs for
particle-based systems [15, 16].

Input features. Each node ui  U is characterized by its position qi = (xi, yi, zi), and velocity
(q̇i). Each edge eij is characterized by its type tij , and the relative differences in the positions
(∆qij = qi − qj) of its connecting nodes, and ωij = ∆qij ×∆q̇ij . The type tij is a discrete variable
and is useful in distinguishing edges of different characteristics within a system (Ex. moment inertia
or area of cross section of the edge). Note that the velocity of a rigid body represented by an edge is a
function of the velocities of its end points in two and three dimensional spaces. Hence, we do not
explicitly track edge velocities.

Pre-Processing. In the pre-processing layer, we construct a dense vector representation for each node
vi  U and edge eij  E using MLPs (multi-layer perceptrons). The exact operation for potential
energy is provided below in Eqs.7-8. For kinetic energy, we input q̇i in Eq 7 instead of qi and ωij in
Eq. 8 instead of ∆qij .

h0
i = squareplus(MLP(qi)) (7)

h0
ij = squareplus(MLP(one-hot(ti),∆qij)) (8)

squareplus is an activation function.

Message passing. To infuse structural information in the edge and node embeddings, we perform L
layers of message passing, wherein the embedding in each layer l  [1, ·, L] is computed as follows:

hl+1
ij = squareplus


MLP


hl
ij +Wl

E ·

hl
ihl

j


(9)

Here,Wl
E is a layer-specic learnable weight vector and || represents concatenation operation. The

node embeddings in a given layer l are learned as follows:

hl+1
i = squareplus


MLP


hl

i +


j∈Ni

Wl
U · hl

ij




 (10)
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Figure 3: (Topologies of the n-segment chain/rope structures with n = (a) 4, (b) 8, and (c) 16.
Topologies of complex tensegrity structures (d) T1, (e) T2, and (f) T3 made of chains and rods. Note
that the 4-link system in (a) is used train the LGNN and the trained model is used for inferring the
dynamics on all other systems.

Here, Ni = uj  (ui, uj)  E denotes the edges incident on node ui. Similar to Wl
E , W

l
U is a

layer-specic learnable weight vector, which performs a linear transformation on the embedding of
each incident edge. Following L layers of message passing, the nal node and edge representations
in the Lth layer are denoted by zi = hL

i and zij = hL
ij respectively.

Potential and kinetic energy prediction. The predicted potential energy of each edge (rigid body) is
computed by passing its nal layer embedding through an MLP, i.e., vij = MLP(zi,j). The global
predicted potential energy of the rigid body system is therefore the sum of the individual energies,
i.e., V =


∀eij∈E vij . For kinetic energy, the computation is identical except that it occurs in the

other GNN with parameters optimized for kinetic energy.

Loss function. The predicted Lagrangian is simply the difference between the predicted kinetic
energy and the potential energy. Using Euler-Lagrange equations, we obtain the predicted acceleration
̈qi(t) for each node ui. The ground truth acceleration is computed directly from the ground truth
trajectory using the Verlet algorithm as:

q̈i(t) =
1

(∆t)2
[qi(t+∆t) + qi(t−∆t)− 2qi(t)] (11)

The parameters of the GNNs are trained to minimize the RMSE loss over the entire trajectory T:

L =
1

U 


 

∀ui∈U

|T|

t=2


q̈i(t)−


̈qi(t)

2


 (12)

Since the integration of the equations of motion for the predicted trajectory is also performed using
the same algorithm as: q(t+∆t) = 2q(t)− q(t−∆t)+ q̈(∆t)2, this method is equivalent to training
from trajectory/positions.

4 Empirical Evaluation

In this section, we evaluate the ability of LGNN to learn rigid body dynamics. In addition, we evaluate
the ability of LGNN to generalize to larger unseen system sizes, complex topology, and realistic
structures such as tensegrity.

4.1 Experimental setup

• Simulation environment. All the training and forward simulations are carried out in the JAX
environment [21]. The graph architecture is implemented using the jraph package [27]. All
the codes related to dataset generation and training are available in https://github.com/M3RG-
IITD/rigid_body_dynamics_graph.
Software packages: numpy-1.20.3, jax-0.2.24, jax-md-0.1.20, jaxlib-0.1.73, jraph-0.0.1.dev0
Hardware: Memory: 16GiB System memory, Processor: Intel(R) Core(TM) i7-10750H CPU @
2.60GHz

•Baselines. As outlined earlier, there are very few works on rigid body simulations using graph-based
approaches, where the graph is used to model the topology of the rigid body. To compare the
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performance of LGNN, we employ three baselines, namely, (i) a graph network simulator GNS, (ii) a
Lagrangian graph network (LGN), and (iii) constrained Lagrangian neural network (CLNN). GNS
employs a full graph network architecture [5, 12, 19] to predict the update in the position and velocity
of node based on the present position and velocity. GNS has been shown to be a versatile model
with the capability to simulate a wide range of physical systems [19]. LGN and CLNN employs
the exact same equations as LGNN for computing the acceleration and trajectory and hence has
the same inductive biases as LGNN in terms of the training and inference. However, while LGN
employs a full graph network, CLNN employs a feed-forward multilayer perceptron. Details of
the architectures and the hyperparameters of the baselines are provided in the Appendix A.5 and
Appendix A.6, respectively.

• Datasets and systems. To evaluate the performance LGNN, we selected n-chain/rope systems,
where n = (4, 8, 16). All the graph based models are trained only on 4-segment chain system, which
are then evaluated on other system sizes. Further, to evaluate the zero-shot generalizability of LGNN
to large-scale unseen systems, we simulate 8-, and 16-segment chain systems. Further, to push the
limits of LGNN, we evaluate the model trained on 4-segment chain on a 100-link system, and to
complex shaped topologies involving truss members (long rigid members) and chains (short rigid
members), which have more than 40 segments (see Figure 3). The massmi and moment of inertia
Ii of all the members are maintained to be the same for all the segments irrespective of their length.
To evaluate the generalizability to realistic systems, we also evaluate the performance on a 4-link
system with different link properties and also with an external drag. The details of the experimental
systems are given in Appendix A.1. Further, the detailed data-generation procedure is given in the
Appendix A.4.

• Evaluation Metric. Following the work of [13], we evaluate performance by computing the relative
error in (1) the trajectory, known as the rollout error, given by RE(t) = q̂(t)− q(t)2(q̂(t)2 +
q(t)2) and (2) energy violation error given by Ĥ−H2(Ĥ2 + H2). In addition, we also
compute the geometric mean of rollout and energy error to compare the performance of different
models [13]. Note that all the variables with a hat, for example x̂, represent the predicted values
based on the trained model and the variables without hat, that is x, represent the ground truth.

• Model architecture and training setup. For the graph architectures, namely, LGNN and GNS,
all the neural networks are modeled as one hidden layer MLPs with varying number of hidden units.
For all the MLPs, a square-plus activation function is used due to its double differentiability. In
contrast to the earlier approaches, here, the training is not performed on trajectories. Rather, it is
performed on 10000 data points generated from 100 trajectories for all the models. This dataset
is divided randomly in 75:25 ratio as training and validation set. The model performance is evaluated
on a forward trajectory, a task it was not explicitly trained for, of 1s. Note that this trajectory is
∼2-3 orders of magnitude larger than the training trajectories from which the training data has
been sampled. The dynamics of n-body system is known to be chaotic for n ≥ 2. Hence, all the
results are averaged over trajectories generated from 100 different initial conditions. Detailed model
architecture associated with each of the models and the hyperparameters used in the training are
provided in the Appendices A.5 and A.6, respectively.

4.2 Comparison with baselines

Model performance. To compare the performance of LGNN with baselines, GNS, LGN [12, 6] and
CLNN [13], we evaluate the evolution of energy violation and rollout error. It worth noting that GNS
and LGN have been demonstrated only particle-based systems and not on rigid bodies. Hence, to
make a fair comparison, we give the same node and edge input features as provided for the LGNN
for both GNS and LGN, while training. All the models are trained on a 4-link system and evaluated
on all other systems. In the case of CLNN, due to the fully connected architecture, the model is no
inductive in nature. Hence, the model is trained and tested on the same system only, that is, the 4-link
system. Detailed architecture of each of these systems are provided in Appendix A.5. Figure 4 shows
the error in energy and rollout for LGNN, GNS, LGN, and CLNN. We observe that GNS, LGN and
CLNN have a larger error in comparison to LGNN as shown in Figure 4 for both energy and rollout
error, establishing the superiority of LGNN. To test the ability of LGNN to learn more complex
systems, we consider two additional experiments. Specically, two similar 4-link systems, one with
varying masses and moment of inertia, and the other subjected to a linear drag are evaluated in the
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Figure 4: Energy and rollout error of n−link chains predicted using LGNN, GNS, LGN and CLNN
in comparison with ground truth for n = 4, 8, 16. Note that LGNN, GNS and LGN is trained only
on the 4-link chain and predicted on all the systems while CLNN was trained and predicted only on
4-link system. Shaded region shows the 95% condence interval based on 100 forward simulations
with random initial conditions.

Appendix A.7. Figures 8 and 14 show that LGNN is able to infer the dynamics in both these systems,
respectively.

Generalizability to different system sizes. Now, we analyze the performance of LGNN, trained on 4-
link segment, on 8- and 16-link segments. We observe that LGNN exhibits comparable performances
with respect to the 4-segment model, in terms of both energy violation error and rollout error,
on systems with 8-, and 16-segments that are unseen by the model. In contrast, GNS exhibits
relatively increased error in energy violation error and rollout error, although the error in LGN
remains comparable for all systems. This suggests that the inductive bias in terms of the EL equations
prevent the accumulation of error and allow improved generalization. However, the error in LGN is
still orders magnitude higher than LGNN. This suggests that the architecture employed in LGNN is
leading improved learning of the dynamics of the system. This conrms that LGNN can generalize to
larger unseen system sizes when trained on a signicantly smaller system size. Note that the plots for
CLNN are not shown for 8 and 16-links as the architecture cannot exhibit generalizability to larger
system sizes. Finally, to push the limits, we infer the dynamics of a 100-link chain (see Fig. 15).
We observe that the LGNN trained on 4-link can scale to a 100-link chain with comparable errors,
conrming its ability to model large-scale structures. The trajectories of actual and trained models
for some of these systems are provided as videos in the supplementary material (see Appendix A.3
for details).

Generalizability to systems with different edge properties and external drag. Although the
framework presented here is generic, the results were limited to systems with similar edge properties.
Further, dissipative forces such as drag were not considered in these systems. In order to evaluate the
model to incorporate these effect, we consider a 4-link system with different edge properties (see
Appendix A.7)and also a system with drag. We observe that the LGNN presented can model systems
with varying link properties and drag with comparable errors (see Figures 8 and 14). These results
conrm that the LGNN framework can be used for realistic systems with arbitrary link properties and
external dissipative forces.

4.3 Zero-shot generalizability

In the conventional LNNs employing feed forward MLPs, the training and test system have the
same number of particles and degrees of freedom. In other words, an LNN trained for an n-particle
system cannot be used to perform inference on anm-particle system. In contrast, we show here that
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Figure 5: Energy and rollout error of systems predicted using LGNN in comparison with ground
truth for T1, T2, and T3. Note that LGNN is trained only on the 4-segment chain and predicted on all
the systems. Since the starting conguration of the simulation is xed (perfect structure as shown in
Figure 3), there are no error bars generated for this system.

LGNN trained on a small 4-link system can be used to perform forward simulations on other unseen
complex systems such as 100-link system, and tensegrity structures. This ability to infer on different
unseen system sizes and topology is referred to as zero-shot generalizability. In order to analyze
the zero-shot generalizability of the trained LGNN to simulate complex real-world geometries and
structures, we evaluate the ability of LGNN to model the dynamics of tensegrity and lattice-like
structures (see Fig. 3). Note that tensegrity structures are truss-like structures comprising of both
tension and compression-members. The topology of a tensegrity structure is designed so that the
compression members are always bars and the tension members are always ropes. Here, we analyse
the ability LGNN to model the equilibrium dynamics of two complex tensegrity structures and the
lattice-like structure shown in Figure 3.

To this extent, we use the LGNN trained on the 4-segment structure. We convert the rigid body
structure to an equivalent graph and use the trained LGNN to predict the dynamics of the structure
when released from the original conguration under gravity. Figure 5 shows the energy error and
rollout for both the complex structures and the lattice-like structure shown in Figure 3. We note that
the LGNN is able to generalize to a complex structure with varying bar lengths and topology with
high accuracy. Specically, the energy violation and rollout error exhibits very low values for LGNN
(∼ 10−4). Further, it saturates after a few initial timestep suggesting an equilibrium dynamics. In
contrast, we observe that the error in GNS is very high and continues to increase until it reaches
1, which is the maximum it can take. This conrms the superior nature of LGNN to generalize to
arbitrary topology, boundary conditions, and bar lengths, after training on a simple 4-segment chain
with constant length segments. Visualization of the dynamics of the system T1, predicted by LGNN
and the ground truth, is shown in Fig. 6. We observe that the deformed shapes predicted by LGNN
are in excellent agreement with the ground truth. Note that since the initial conguration for the
forward simulation is xed, it is not possible to generate error bars for the trajectory.

4.4 Nature of the learned mass matrix

Finally, we investigate the nature of the mass matrix of LGNN for different systems. Note that in
earlier approaches either the mass matrix was learned directly for a given system based on the EL
equations [6], or it was assumed to be diagonal in the Cartesian coordinates [13], or the functional
form of kinetic energy was assumed [7]. In the present approach, we do not make any assumptions
on the nature of the mass matrix. In fact, for a rigid body, the mass matrix need not be diagonal in
nature and depends on the actual topology of the structure. This raises an interesting question about
the nature of the mass matrix learned by the LGNN and how it generalizes to arbitrary topologies.
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Figure 6: Snapshots of system D during simulation.

Figure 7: (a) Mass matrix and (b) binary mass matrix showing non-zero values for a chain of 16
nodes. (c) Mass matrix and (d) binary mass matrix showing non-zero values for the complex structure
T1 made of chains and rods.

In order to investigate the nature of the mass matrix, we plot the mass matrix of the LGNN in Figure 7.
Note that the mass matrix is computed directly from the Lagrangian asM = ∂2L∂q̇2, where L is
obtained from the LGNN. First, we analyze the mass matrix of the 16-segment structure. We observe
that the mass matrix is banded with a penta-diagonal band as expected for a chain structure. Now, we
analyze the mass matrix for a complex structure T1. Interestingly, we observe that the mass matrix
learned is non-diagonal in nature and is congruent with the complex topology of the structure (see
Figure 7). This conrms that the mass matrix of LGNN is learned on-the-y during the forward
simulation that provides the versatility for LGNN to simulation complex structures.

5 Conclusions

In this work, we present a LGNN-based framework that can be used to simulate the dynamics of
articulated rigid bodies. Specically, we present the graph architecture, which allows the decoupling
of kinetic and potential energies, that can be used to compute the Lagrangian of the system, which
when applied with EL equations can infer the dynamics. We show that LGNN can learn the dynamics
from a small 4-segment chain and then generalize to larger system sizes. We also demonstrate the zero-
shot generalizability of LGNN to arbitrary topology including a tensegrity structures. Interestingly,
we show that LGNN can provide insights into the learned mass matrix, which can exhibit non-trivial
structures in complex systems. This suggests the ability of LGNN to learn and infer the dynamics of
complex real-life structures directly from the observables such as their trajectory.

Limitations and future works. From the mechanics perspective, the LGNN assumes the knowledge
of constraints. Learning constraints directly from the trajectory is useful. Similarly, extending
LGNN to model contacts, collisions, and deformations allows more comprehesive learning of realistic
systems. From the modeling perspective, in our message passing LGNN, all messages are provided
equal important. Attention heads in message-passing neural networks have been shown to improve
performance remarkably in several domains [28]. We plan to study the impact of attention in LGNN
in our future works.
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