
Under review as submission to TMLR

HyPE-GT: where Graph Transformers meet Hyperbolic Po-
sitional Encodings

Anonymous authors
Paper under double-blind review

Abstract

Graph Transformers (GTs) facilitate the comprehension of complex relationships on graph-
structured data by leveraging self-attention of the possible pairs of nodes. The structural
information or inductive bias of the input graph is provided as positional encodings into
the GT. The positional encodings are mostly Euclidean and are not able to capture the
complex hierarchical relationships of the corresponding nodes. To address the limitation,
we introduce a novel and efficient framework, HyPE, that generates learnable positional
encodings in the non-Euclidean hyperbolic space that captures the intricate hierarchical re-
lationships of the underlying graphs. Unlike existing methods, HyPE can generate a set of
hyperbolic positional encodings, empowering us to explore diverse options for the optimal
selection of PEs for specific downstream tasks. Additionally, we repurpose the generated hy-
perbolic positional encodings to mitigate the impact of oversmoothing in deep Graph Neural
Networks (GNNs). Furthermore, we provide extensive theoretical underpinnings to offer in-
sights into the working mechanism of the HyPE framework. Comprehensive experiments on
four molecular benchmarks, including the four large-scale Open Graph Benchmark (OGB)
datasets, substantiate the effectiveness of hyperbolic positional encodings in enhancing the
performance of Graph Transformers. We also consider Coauthor and Copurchase networks
to establish the efficacy of HyPE in controlling oversmoothing in deep GNNs.

1 Introduction

Graph Transformers (GTs) are earmarked as one of the milestones for modeling the interactions between the
node pairs in the graph. As the existing graph neural network suffers from a few glaring shortcomings like
oversmoothing (Li et al., 2018), which occurs due to the recursive neighborhood aggregation, oversquashing
(Alon & Yahav, 2020), an information bottleneck caused by the exponential growth of information while
increasing the size of the receptive field, and bounded expressive power (Xu et al., 2018a; Morris et al., 2019).
Graph Transformers confront the limitations by assuming the entire graph is complete and estimating self-
attention for all possible node pairs. Yet, such an approach alleviates the limitations; GTs still lose the
structural inductive bias, which causes the loss of positional information of the nodes. As an effective
solution, the positional encodings as vectors are integrated with the node features to make the respective
nodes topologically aware in the graph. Recently, many efforts were made to generate effective positional
encodings for the GTs, like spectral decomposition-based learnable encoding (Kreuzer et al., 2021), structure-
aware PEs generated from the rooted subgraph or subtree of the nodes (Chen et al., 2022), encoding the
structural dependency (Ying et al., 2021), random walk-based learnable positional encodings (Dwivedi et al.,
2021), topological positional encodings (Verma et al., 2025), and many more.

The positional encodings derived from the existing works suffer from several critical limitations. For example,
the Spectral Attention Network (SAN) (Kreuzer et al., 2021) generates learnable positional encodings by
spectral decomposition of the Laplacian matrix. SAN requires high computational time as well as memory,
especially for the generation of edge-feature-based Laplacian positional encodings. Structure-aware Trans-
former (SAT) estimates pairwise attention scores depending on the respective rooted sub-graphs or sub-trees.
SAT requires the extraction of multi-hop subgraphs, increasing the pre-processing time and consuming high

1

Under review as submission to TMLR

(a) (d)(c)(b) (e) (f)

Figure 1: The visualization of node embeddings of Amazon Photo and CoauthorCS generated by 128-layered
GCN for the PE category of 4 and 3, respectively. (a) Node embeddings for Amazon Photo without using any
positional encodings. (b) Node embeddings of Amazon Photo integrated with the HyPE. (c) Embeddings
of hyperbolic PEs from HyPE generated for Amazon Photo. (d) Node embeddings of Coauthor CS without
using PEs. (e) Node embeddings of Coauthor CS integrated with the HyPE. (f) Embeddings of hyperbolic
PEs from HyPE generated for Coauthor CS.

memory. Even though the depth of the rooted subtree increases, the model may suffer from oversmooth-
ing. Additionally, the proposed methods operate in Euclidean space, which restricts us from exploring the
hierarchical relationships of the node pairs in designing positional encodings. This work aims to fill the
void by proposing a novel framework named Hyperbolic Positional Encodings-based Graph Transformer or
HyPE-GT, which is capable of generating a set of learnable positional encodings in the hyperbolic space.
Positional encodings in hyperbolic space can be the appropriate candidates for representing complex and
tree-like structures present in the graph. To the best of our knowledge, we are the first to foster hyperbolic
geometry in designing positional encodings for the Graph Transformers.

HyPE-GT generates trainable hyperbolic positional encodings, consisting of three pivotal modules (1) the
initialization of positional encodings (PEinit), (2) the type of hyperbolic manifold (M), where the entire
operation will take place, and (3) the employed hyperbolic neural architectures (HNA) which transforming
the encodings into the chosen hyperbolic space. Each module can take values from a relevant set of entities
and each positional encoding is the result of the unique combination of the entities chosen from the pre-
defined sets. The maximum number of positional encodings is given by |PEinit| × |M | × |HNA|, with the
framework offering diverse design choices based on entity selection, generating a wide spectrum of PEs. These
hyperbolic positional encodings provide practitioners with versatile options for solving downstream tasks.
The learnable hyperbolic PEs can be seamlessly integrated with standard graph transformers, supplying
essential positional information. Additionally, we observe that when positional encodings are combined with
node features from hidden layers, the effects of oversmoothing can be mitigated in deep GNNs. For each
node, the rooted subtree in hyperbolic space generates distinctive embeddings. As the depth increases, the
subtree will be well-fitted in that space. Thus incorporation of hyperbolic PEs is instrumental in tackling
the oversmoothing issues. Refer to Figure 1 for a vivid illustration of the embeddings of node features and
hyperbolic positional encodings.

Contribution Our contributions throughout the paper can be summarized in the following way,

• We propose a novel and efficient framework named HyPE-GT that generates a set of learnable posi-
tional encodings in the hyperbolic space, a non-Euclidean domain. HyPE-GT is tailored to encode
the hierarchical structural patterns into the generated positional encodings and offers better infor-
mation than Euclidean counterparts. To the best of our knowledge, we are the first to incorporate
hyperbolic PEs with the Graph Transformer. The PEs are learned by passing through either hyper-
bolic neural networks or hyperbolic graph convolutional networks, which produce useful positional
and structural encodings.

• The hyperbolic positional encodings are re-purposed to diminish the effect of oversmoothing in deep
GNN models. The PEs are incorporated with the transformed features obtained from the hidden
layers of GNNs. In this case, the PEs act as distinctive coordinates to avoid potential feature
collapse.

2

Under review as submission to TMLR

Input Graph

LapPE

RWPE

Hyperboloid HGCN

PoincareBall HNN

PE Initializer Manifold Type Learnable Hyperbolic
Networks

RWPE

LapPE

LapPE

LapPE

LapPE

RWPE

RWPE

RWPE

Hyperboloid

Hyperboloid

Hyperboloid

Hyperboloid

HGCN

HGCN

HGCN

HGCN

1

2

3

4

5

6

7

8

PoincareBall

PoincareBall

PoincareBall

PoincareBall

HNN

HNN

HNN

HNN

Learnable Hyperbolic Positional Encodings

Figure 2: Schematic representation of the process for generating a family of learnable hyperbolic positional
encodings (8 different categories) in the HyPE-GT framework. Each category can be generated by following
a particular path (shown with arrow-marked dotted lines), which begins from the PE initialization block
and ends at the learnable hyperbolic networks block. Each positional encoding is assigned a unique number,
shown on the right side of the diagram.

• We present detailed theoretical analyses that offer clarity on the effectiveness of HyPE-GT on graph
datasets and the mitigation of oversmoothing in deeper GNNs. The detailed proofs and derivations
are discussed in the Appendix.

2 Related Works

Graph Transformers The attention mechanism on the graph data is primarily introduced with Graph
Attention Network (GAT) (Veličković et al., 2017). However, GAT can only learn from the connected neigh-
borhoods via sparse message passing. The limitation was overcome when Dwivedi and Bresson generalized
the Transformer architecture for the graphs (Dwivedi & Bresson, 2020) and showed its utility on various
categories of tasks. Later, many other significant approaches were taken, like Spectral Attention Network
(SAN) (Kreuzer et al., 2021), which relies on learning the eigenvectors of the Laplacian matrix. The learnable
eigenvectors act as PE, which is concatenated with the original node features for the Transformer. Structure-
aware Transformer (SAT) (Chen et al., 2022) computes the self-attention among node pairs by incorporating
structural information of the extracted subgraphs rooted at each node. Another line of work, GraphiT (Mi-
alon et al., 2021), learns relative positional encoding via diffusion kernels, which computes attention between
the node pairs. On the other hand, Graphormer (Ying et al., 2021) designs spatial representations like degree
encoding, edge encoding, etc., which capture the structural dependency of the graph. The encodings are
added as the bias terms in the self-attention matrix. GraphTrans (Wu et al., 2021) proposes a model that first
learns from multiple GNN layers stacked together, and then the updated node representations are provided
as input to the standard Graph Transformer layer. Recently, another framework, GraphGPS (Rampášek
et al., 2022) allows the integration of message-passing models with the module that computes global atten-
tion, resulting in an effective and scalable architecture. TokenGT (Kim et al., 2022) considers every node
and edge of the graph as independent tokens. The tokens are associated with token embeddings that are the
input to the standard Transformer. Edge-augmented Graph Transformer(EGT) (Hussain et al., 2022) intro-
duces edge embeddings for every pair of nodes, which act as the edge gates to control information flow in the
Transformer. Graph Transformer Networks (GTN) (Yun et al., 2019) and Heterogeneous Graph Transformer
(HGT) (Hu et al., 2020b) are dedicated to heterogeneous graphs, which extract effective meta-paths based
on attention. Another work GRIT (Ma et al., 2023) reformulate random walk positional encodings for every
pairs of nodes and concatenates them with node features and edge features. Recently, (Verma et al., 2025)
designed positional encodings that rely on the topological properties like persistent homology. (Tieu et al.,
2025) proposed learnable spatio-temporal positional encodings to improve the performance of link prediction
tasks.

Hyperbolic Graph Neural Networks Recently, efforts were made to make deep neural networks suitable
in the non-Euclidean space like hyperbolic space equipped with negative curvature (Ganea et al., 2018;
Khrulkov et al., 2020). Subsequently, the hyperbolic neural networks were extended for the graph-structured

3

Under review as submission to TMLR

data as Hyperbolic Graph Neural Networks (Liu et al., 2019). On advancement, the hyperbolic graph
convolutional networks (Chami et al., 2019) and hyperbolic graph attention networks (Zhang et al., 2021)
strengthen the family of the hyperbolic graph neural networks.

3 Proposed Method

3.1 Preliminaries and Notations

Assume an attributed graph G = (V, E , X), where V denotes a set of vertices, E ⊆ V × V denotes set of
edges. X ∈ Rn×d presents the node attributes where n denotes the number of nodes, and each node is
associated with a d-dimensional feature. The adjacency matrix A is the symmetric matrix with binary
elements denoting the edges or node connections in the graph. D is a diagonal matrix where each element
in the diagonal is the degree of the corresponding nodes. Consider ||X||F as the matrix Frobenius norm of
X.

3.2 Transformers on Graphs

Inspired from Vashwani et al. (Vaswani et al., 2017), Dwivedi, and Bresson (Dwivedi & Bresson, 2020)
extended the philosophy of Transformer for the graph-structured data. Message-passing Graph Neural
Networks (MP-GNNs) implement sparse message passing where GTs assume the fully connected graph
structure. Unlike MP-GNNs, Graph Transformers are designed to compute the attention coefficient between
the pairs of nodes without considering the graph structure. A single Transformer layer consists of a self-
attention module followed by a feed-forward network. The feature matrix X is transformed into query Q,
key K, and values V by multiplying with the projection matrices as Q = XWQ, K = XWK , and V = XWV .
The self-attention matrix is computed as follows,

XA = softmax(QKT

√
dout

)V, (1)

where XA ∈ Rn×dout is the self-attention matrix with dout is the output dimension. WQ, WK , and WV

are trainable parameters. To boost the impact of the self-attention module often we employ a multi-head
attention (MHA) strategy. The multi-head attention is the result of the concatenation of multiple instances
of the Eqn. 1. The multi-head attention can be expressed as:

XA = M

∥∥∥∥H

k=1

 ∑
j∈N(i)

α
(k)
ij V (k)Xj

 , (2)

where α
(k)
ij is the attention coefficient between node i and j from kth head. M and V (k) are the trainable

parameters and Xj is the jth node features. The estimated self-attention matrix is followed by a residual
connection and then passes through a feed-forward network (FFN) with the normalization layers as follows,

X ′ = Norm(X + XA),
X ′′ = W2(ReLU(W1X ′)),
Xo = Norm(X ′ + X ′′),

(3)

where Xo is the final output of the transformer layer and W1 ∈ Rdout×d, W2 ∈ Rd×d are trainable parameters.
We can either use Batchnorm (Ioffe & Szegedy, 2015) or Layernorm (Ba et al., 2016) for the feature normal-
ization. Each Transformer layer generates node-level representations, which are permutation equivariant.
The absence of positional information on the nodes generates similar outputs. Therefore, it is necessary to
incorporate appropriate positional encodings to leverage the learning process in the Transformer.

3.3 Preliminaries on Hyperbolic Spaces

Hyperbolic geometry deals with the smooth manifold with constant negative curvature. Let us consider the
manifold M ∈ Rd embedded in Rd+1 with constant curvature c. Let us have the following definitions.

4

Under review as submission to TMLR

Input Graph

TextInit PE Manifold Hyperbolic
Network

Hyperbolic positional encodings (HyPE)

Q

K

V

Transformer Layer (GT)

Multi-head self-attention

Feed-forward network

X
Category of PE

X'

Figure 3: The workflow of HyPE-GT is presented. The framework combines two independent blocks: hy-
perbolic positional encodings or HyPE and standard Graph Transformer or GT. Depending on one’s choice,
HyPE will generate a fixed type of PE. The PE is added with the feature matrix X before fetching it to the
Transformer layer.

Tangent space, Logarithmic map, and Exponential map For every point x ∈ M, the tangent space
TxM is defined as a d-dimensional hyperplane approximates the M around x. Define exponential map expc

x

as expc
x : TxM → M for any point x, which transforms any vector in TxM on the M. The logarithmic map

logc
x is the inverse of the exponential map that is logx : M → TxM, transforms any point on the manifold

to the tangent space. The Riemannian metric gM on the manifold is defined as the inner product on the
tangent space like gM(., .) : TxM × TxM → R. Along with these definitions, in what follows, we will discuss
two well-adopted models from hyperbolic geometry.

Hyperboloid Model One of the models in the hyperbolic geometry is also commonly known as the Lorentz
model. The model is defined as Riemannian manifold (Hn

c , gH
x) with negative curvature as follows:

Hn
c = {x ∈ Rn+1 : < x, x >L = −c, x0 > 0} (4)

gH
x = diag([−1, 1, · · · , 1])n, (5)

where ⟨., .⟩L denotes Minskowski inner product. The distance between two points x, y ∈ Hn
c is defined as

dc
L(x, y) =

√
c cosh−1(−⟨x, y⟩L

c
). (6)

For any v ∈ Hn
c , the exponential and logarithmic maps for the hyperboloid model are as follows:

expc
x(v) = cosh(||v||L√

c
)x +

√
c sinh(||v||L√

c

v

||v||L
,

logc
x(y) = dc

L(x, y)
y + 1

k ⟨x, y⟩Lx

||y + 1
k ⟨x, y⟩Lx||L

.

(7)

Poincarê Ball Model Another prominent model that is equipped with negative curvature c(c < 0). The
model is defined as the Riemannian manifold (Bn

c , gB
x) as follows:

Bn
c = {x ∈ Rn : ||x||2 < −1

c
},

gB
x = 2

(1 + c||x||22)gE ,
(8)

where gE is the Euclidean metric which is In. The model represents an open ball of radius of 1√
c
. If two

points x, y ∈ Bn
c , then the distance between them is

dB(x, y) = cosh−1
(

1 + 2 ||x − y||2

(1 − ||x||2)(1 − ||y||2)

)
. (9)

5

Under review as submission to TMLR

For any v ∈ Bn
c , the exponential and logarithmic maps are defined in the following way:

expc
x(v) = x ⊕c

(
tanh

(√
c
λc

x||v||
2

)
v√

c||v||

)
,

logc
x(y) = 2λc

x√
c

tanh−1(
√

c|| − x ⊕ y||) −x ⊕ y

|| − x ⊕ y||
,

(10)

where λc
x = 2

1−c||x||2 .

3.4 Learnable Hyperbolic Positional Encodings: An Overview

This section presents a brief overview of the HyPE-GT framework for easy apprehension regarding the rest of
the work. HyPE-GT consists of three key modules, namely, (1) the initialization of the positional encodings,
(2) the type of the manifolds where the transformed PEs will be projected, and the last one is (3) learning
the hyperbolic positional encodings by employing either Hyperbolic Neural Network (HNN) or Hyperbolic
Graph Convolutional Network (HGCN). As we previously mentioned, the characteristics of the generated
positional encodings are nothing but the manifestation of the choice of entities in those three modules. This
work considers two entities for each module: LapPE and RWPE for PE initialization, Hyperboloid, and
PoincarêBall for manifold type. For learnable networks, we select HNN and HGCN. Refer to Figure 2 for
more intricate details of the flow of the framework. Thus, there will be 8 different categories of PEs that
can be generated, and each of them is assigned a unique number from 1 − 8 for ease of reference. The rest
of the paper is organized to provide more insights regarding the proposed framework, followed by extensive
experimentation.

3.5 Initialization of Positional Encodings

The effectiveness of the learnable hyperbolic positional encodings is heavily reliant on the initialization of
positional encodings. Despite several existing PEs (Mialon et al., 2021), (Zhou et al., 2020). (Li et al., 2020b),
(Ying et al., 2021) etc, we adopt two well-known PE initialization techniques as proposed in (Dwivedi et al.,
2021), which are Laplacian Positional Encodings (LapPE) and Random Walk Positional Encoding (RWPE).
LapPE is generated by performing eigen-decomposition of the Laplacian matrix of the input graph. For the
ith node, the respective LapPE can be presented as:

pLapPE
i = [Ui1, Ui2, · · · , Uik] ∈ Rk, (11)

where Ui denotes the ith eigenvectors of the graph Laplacian and first k elements are chosen resulting in the
k-dimensional encoding. The pLapPE

i eigenvector is designated as the initialized position vector for the ith

node in the graph. The eigenvectors are assumed to have information on the spectral properties of the input
graph. The latter one is the k-dimensional RWPE, generated by k-steps of the diffusion process with the
degree-normalized random walk matrix. For the ith node, RWPE can be represented as follows:

pRWPE
i = [Âii, Â2

ii, · · · , Âk
ii] ∈ Rk, (12)

where Â = AD−1. RWPE captures the structural patterns of the k-hop neighborhoods. Finally, the
initialization of the PE module has two positional encodings.

3.6 Choice of Manifold

The whole mechanism of generating the positional encodings heavily relies on the nature of the manifolds
where the initialized positional encodings will be projected. Hence, the choice of a manifold will be one of
the critical decisive factors for generating effective PEs as well as the performance enhancement of the Graph
Transformers. In HyPE-GT, we will involve two dominant choices named Hyperboloid and PoincarêBall
manifolds to serve the purpose.

6

Under review as submission to TMLR

Table 1: Performance on three benchmark datasets (Dwivedi et al., 2020). For each category of PE, the
results are presented with mean and standard deviations from 10 runs with different random seeds. The
category of PE and the optimal number of layers are mentioned respectively inside the parenthesis. The top
three results first, second, and third are marked.

Method PATTERN CLUSTER MNIST CIFAR10

Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN (Kipf & Welling, 2016) 71.892 ± 0.334 68.498 ± 0.976 90.705 ± 0.218 55.710 ± 0.381
GIN (Xu et al., 2018a) 85.387 ± 0.136 64.716 ± 1.553 96.485 ± 0.252 55.255 ± 1.527
GAT (Veličković et al., 2017) 78.271 ± 0.186 70.587 ± 0.447 95.535 ± 0.205 64.223 ± 0.455
Gated-GCN (Bresson & Laurent, 2017) 85.568 ± 0.088 73.840 ± 0.326 97.340 ± 0.143 67.312 ± 0.311
PNA (Corso et al., 2020) − − 97.94 ± 0.12 70.350 ± 0.630
DGN (Zhou et al., 2020) 86.680 ± 0.034 − − 72.838 ± 0.417

GraphTransformer + LapPE (Dwivedi & Bresson, 2020) 84.718 ± 0.068 73.169 ± 0.622 − −
Graphormer (Ying et al., 2021) − − − −
k-subgraph SAT (Chen et al., 2022) 86.848 ± 0.037 77.856 ± 0.104 − −
SAN (Kreuzer et al., 2021) 86.581 ± 0.037 76.691 ± 0.65
EGT (Hussain et al., 2022) 86.821 ± 0.020 79.232 ± 0.348 98.173 ± 0.087 68.702 ± 0.409
GraphGPS (Rampášek et al., 2022) 86.685 ± 0.059 78.016 ± 0.180 98.051 ± 0.126 72.298 ± 0.356
Exphormer (Shirzad et al., 2023) 86.734 ± 0.008 − 98.414 ± 0.056 74.754 ± 0.194
GRED (Ding et al., 2024) 86.759 ± 0.020 78.495 ± 0.103 98.383 ± 0.012 76.853 ± 0.165
TIGT (Choi et al., 2024) 86.681 ± 0.062 78.025 ± 0.223 98.231 ± 0.132 73.963 ± 0.364
Graph-Mamba (Wang et al., 2024) 86.710 ± 0.050 76.800 ± 0.360 98.420 ± 0.080 73.700 ± 0.340

HyPE-GT (ours) 86.779 ± 0.038(1, 1) 78.228 ± 0.126(1, 1) 98.510 ± 0.007(8, 2) 74.680 ± 0.009(7, 2)

3.7 Learning through Hyperbolic Neural Architectures

The initialized positional encodings are learned by applying hyperbolic neural network architectures, such
as hyperbolic neural networks and hyperbolic graph convolutional networks. Let the initialized positional
encodings pinit is transformed to p̂ = W0pinit into some low dimensional space via the parameterized trans-
formation W0. Then p̂ is learnable in the following ways:

Hyperbolic Neural Network (HNN) The transformed initial positional encodings are fed into a hyper-
bolic multi-layered feed-forward neural network. The HNN produces encodings into the hyperbolic space by
layer-wise propagation. The transformation can be formulated as follows,

pHNN = HNN(L)
M (p̂ | Θ), (13)

where Θ is the trainable parameters of the HNN, L denotes the number of hidden layers, and M denotes
the pre-defined manifold type, which can be either Hyperboloid or PoincarêBall. the learnable positional
encodings pHNN are projected into this manifold. Notably, HNNs only consider the node features as input
without considering graph adjacency. Thus, HNNs cannot learn structure-aware embeddings from the input
graph. The limitation can be alleviated by using a graph convolutional-based architecture.

Hyperbolic Graph Convolutional Network (HGCN) We fed the positional encodings to the hyper-
bolic graph convolutional networks to extract necessary information from the graph structure. Like the
previous one, firstly, the initial positional features are mapped into low-dimensional space, and then posi-
tional encodings are learned by the hyperbolic graph convolutional network. The transformation of HGCN
can be described as follows:

pHGCN = HGCN(L)
M (p̂ | Φ), (14)

where Φ denotes the trainable parameters of the HGCN, L is the number of stacked convolutional layers,
and M can be either Hyperboloid or PoincarêBall model. Note that HGCN takes input from both node
features and adjacency and successfully overcomes the shortcomings faced by HNN. The learned PEs will be
integrated with the Transformer architecture to provide positional information on the nodes.

3.8 Complete Pipeline of HyPE-GT Framework

HyPE-GT comprises two key modules: the first one is HyPE, which generates learnable hyperbolic positional
encodings, and the second one is the standard Graph Transformer (GT). HyPE is designed to produce
various categories of positional encodings for a single downstream task. The category of PE is decided by

7

Under review as submission to TMLR

choosing the three components: (1) initialization of positional encodings, (2) the type of the manifold, and
(3) the hyperbolic networks. Figure 3 illustrates the complete workflow of generating hyperbolic positional
encodings of a given input graph and the integration with the Transformer architecture. For an external
input for the category number, we have a pre-defined triplet that produces a fixed category of positional
encodings enumerated as {1, 2, · · · , 8}. For example, if someone wants to generate the category 4, then the
triplet should be like {LapPE, PoincarêBall, HGCN}. This way, HyPE-GT can produce 8 in diverse categories
of positional encodings. However, the generated positional encodings lie in the hyperbolic space, and node
features belong to the Euclidean domain. Therefore, the integration of the two should not be straightforward.
We devised two different strategies for the addition of hyperbolic PEs with the node features in the following
way:

Incorporating Hyperbolic PEs with GT The generated PEs from the HyPE pipeline are embedded
in the hyperbolic space. Therefore, performing the direct addition between Euclidean node features and
hyperbolic positional encodings is not supported. The issue is resolved by transforming the node features into
hyperbolic space and is incorporated by performing Möbi̇us addition (Ganea et al., 2018) with the hyperbolic
positional encodings. The final output is embedded in the hyperbolic space. If pHk is the generated positional
encodings in the hyperbolic space with manifold type H for the kth category and x̂E

v is the initial node feature
in Euclidean space for the vth node, then addition of PEs with node features will be as following:

x̂H
v = exp0(tanproj(x̂E

v)),
xH

v = x̂H
v ⊕c pHk ,

(15)

where x̂H
v and xH

v are the node features in hyperbolic space before and after addition of the hyperbolic
positional encodings respectively, ⊕c denotes the Möbi̇us addition with space curvature c. The function
tanproj maps the features from the Euclidean domain to the tangent space of the hyperbolic space at the
point 0 of the manifold. The updated node features are subsequently reverted into the Euclidean space by
applying the log map to provide input to the Transformer.

xE
v = log0(xH

v), (16)

where xE
v is the updated node features in the Euclidean space.

Utility in Deep GNNs Oversmoothing (Li et al., 2018) is posed as a dominant challenge of deep GNNs. The
node features become indistinguishable due to the recursive neighborhood aggregation during the message
propagation in deeper layers. Hence, we re-purpose HyPE-generated hyperbolic positional encodings to
couple with the intermediate node features to mitigate the issue. The following operations represent the
usage of positional encodings in the output of multi-layered GNNs:

x̂E
v = GNNL(x̂v | θ),

x̂H
v = exp(tanproj(x̂E

v)),
xH

v = x̂H
v ⊕c phyp

k ,

xE
v = log0(xH

v),

(17)

where GNNL(x̂ | θ) denotes the output of a L-layered GNN architecture with the trainable parameters θ, x

is the input node features, xo is the final output, and phyp
k is the hyperbolic PE of kth category. xE

v is the
transformed output after adding positional encodings with the node features.

3.9 Motivation behind choosing the Hyperbolic Space

Hyperbolic space is equipped with constant negative curvature where the volume of a ball grows in expo-
nential order with respect to the radius. Unlike in the Euclidean domain where the volume of the ball grows
in polynomial order because the space is free of curvature. Therefore, the input graphs can be embedded
in the hyperbolic space with lower distortion than in the Euclidean space. In addition, the embeddings
in hyperbolic space preserve the neighborhood of every node of the graph. In our framework, HyPE-GT

8

Under review as submission to TMLR

Table 2: Performance of HyPE-GT on four OGB datasets is presented. The results are the average of 10
different runs, and are reported with the standard deviation. The best category of PE and the number of
hyperbolic layers are mentioned in parentheses. The top three results first, second, and third are marked.

Method ogbg-molhiv ogbg-ppa ogbg-molpcba ogbg-code2
AUROC ↑ Accuracy ↑ Avg. precision ↑ F1 Score ↑

GCN+virtual node 0.7599 ± 0.0119 0.6857 ± 0.0061 0.2424 ± 0.0034 0.1595 ± 0.0018
GIN+virtual node 0.7707 ± 0.0149 0.7037 ± 0.0107 0.2703 ± 0.0023 0.1581 ± 0.0026
DeeperGCN (Li et al., 2020a) 0.7858 ± 0.0117 0.7712 ± 0.0071 0.2781 ± 0.0038 0.1570 ± 0.0032
GSN (GIN+VN base) (Bouritsas et al., 2022) 0.7799 ± 0.0100 - -
ExpC (Yang et al., 2022) 0.7799 ± 0.0082 0.7976 ± 0.0072 0.2342 ± 0.0029 -
GraphTransformer + LapPE (Dwivedi & Bresson, 2020) 0.7619 ± 0.0141 0.6864 ± 0.0047 0.1846 ± 0.0158 0.1738 ± 0.0381
GraphTrans (GCN-virtual) (Wu et al., 2021) - - 0.2761 ± 0.0029 0.1830 ± 0.0024
SAN (Kreuzer et al., 2021) 0.7785 ± 0.2470 - 0.2765 ± 0.0042 -
GraphGPS (Rampášek et al., 2022) 0.7880 ± 0.0101 0.8015 ± 0.0033 0.2907 ± 0.0028 0.1894 ± 0.0024
Specformer (Bo et al., 2023) 0.7889 ± 0.0124 − 0.2972 ± 0.0023 −
Exphormer (Shirzad et al., 2023) 0.7834 ± 0.0044 − 0.2849 ± 0.0025 −
GRIT (Ma et al., 2023) 0.7835 ± 0.0054 − 0.2362 ± 0.0020 −
GECO (Sancak et al., 2025) 0.7780 ± 0.0200 0.7982 ± 0.0042 0.2961 ± 0.0008 0.1915 ± 0.0020
HyPE-GT (ours) 0.7893 ± 0.0005(1, 2) 0.7981 ± 0.0043(6, 2) 0.2967 ± 0.0079(7, 2) 0.1855 ± 0.0054(5, 1)

learns positional encodings in the hyperbolic space, which captures the complex patterns of the neighbor-
hoods. Therefore, the positional encodings in the hyperbolic space might be able to represent the topological
characteristics corresponding to the nodes in the graph. Refer to Figure 1 for detailed visualizations of our
proposed framework’s node embeddings in the hyperbolic space. The learned PEs are thereby integrated with
the node features as stated in Eqn. 15 16, and 17. Hence, embeddings in the hyperbolic space underscore
the effectiveness of the positional encodings, which will be fed to the Graph Transformer.

3.10 Theoretical Analysis

In this section, we theoretically analyze the properties of distances in non-Euclidean spaces and their impli-
cations for positional encodings in graphs. We establish that distances between points in Poincaré Ball and
Hyperboloid spaces are greater than their Euclidean counterparts under specific conditions (Lemma 1 and
Lemma 2). Furthermore, for a connected graph, we demonstrate that the distance between the positional
encodings of nodes increases when these encodings are transformed via Hyperbolic Neural Networks (HNN)
or Hyperbolic Graph Convolutional Networks (HGCN), especially for nodes with higher degrees (Theorem
1 and Theorem 2). All proofs are deferred in the Section Proofs of the Appendix.

3.10.1 Distance Properties

Lemma 1. Consider an n-dimensional Poincarê Ball Bn of unit radius and unit curvature. Let us assume
that two points x, y ∈ Bn and their distance by using Poincarê metric is dB(x, y). If we apply the Euclidean
metric to them, the distance will be dE(x, y). Then ∀k ∈ (0, 1), we have dB(x, y) ≥ 2kdE(x, y) if dE(x, y) ∈
[0,

√
1−k2

k].
Lemma 2. Consider an n-dimensional Hyperboloid space Hn of unit radius and unit curvature. Let us
assume that two points x, y ∈ Hn and their distance by using Hyperboloid distance metric is dH(x, y). If we
apply the Euclidean metric to them, the distance will be dE(x, y). Then ∀k ∈ [1, ∞), we have dH(x, y) ≥
k
2 dE(x, y) ∀dE(x, y) ∈ [1, 4

√
1+k2

k2].

Remark 1. Lemmas 1 and 2 suggest that the distance between any two points lying in the non-Euclidean
space (here either Poincarê Ball or Hyperboloid space) will be greater than the scaled Euclidean distance
estimated between them under certain conditions.

3.10.2 Distinctive Properties of Hyperbolic Positional Encodings via Learning Models

Theorem 1. Consider a pair of nodes 1 and 2 of a connected graph G whose degrees are d1 and d2 respectively.
Their initialized positional encodings are p1, p2 ∈ Rd. The Euclidean distance between them is estimated as

9

Under review as submission to TMLR

dE(p1, p2). Suppose, p1, p2 are to be transformed by either HNN or HGCN with the underlying hyperbolic
space as a n-dimensional Poincarê Ball Bn of unit radius and unit curvature, then we have the following:

1. HNN: If the encodings are transformed by passing through an HNN of parameters Θ. The trans-
formed encodings are respectively phyp

1 and phyp
2 whose distance is dB(phyp

1 , phyp
2), then ∃ Θ′ such that

dB(phyp
1 , phyp

2) ≥ k′||Θ′||F dE(p1, p2) for some k′ ∈ (0, 2) and ||Θ′||F ≤ 1.

2. HGCN: If the encodings are transformed by passing through an HGCN of parameters Φ. then ∃ Φ′

with ||Φ′||F ≤ 1 such that dB(phyp
1 , phyp

2) ≥ k′

d ||Φ′||F dE(p1, p2) where d = max{d1, d2} for some
k′ ∈ (0, 2).

Theorem 2. Consider a pair of nodes 1 and 2 of a connected graph G whose degrees are d1 and d2 respectively.
Their initialized positional encodings are p1, p2 ∈ Rd. The Euclidean distance between them is estimated as
dE(p1, p2). Suppose p1, p2 are to be transformed y either HNN or HGCN with the underlying hyperbolic space
as an n-dimensional Hyperboloid model Hn of unit radius and unit curvature, then we have the following:

1. HNN: If the encodings are transformed by passing through an HNN of parameters Θ. The trans-
formed encodings are respectively phyp

1 and phyp
2 whose distance is dH(phyp

1 , phyp
2), then ∃ Θ′ such that

dH(phyp
1 , phyp

2) ≥ k′

2 ||Θ′||F dE(p1, p2) for some k′ ∈ [1, ∞) and ||Θ′||F ≤ 1.

2. HGCN: If the encodings are transformed by passing through an HGCN of parameters Φ. then there
exists a Φ′ with ||Φ′||F ≤ 1 such that dB(phyp

1 , phyp
2) ≥ k′

2d

′
||Φ′||F dE(p1, p2) where d = max{d1, d2}

for some k′ ∈ [1, ∞).

Remark 2. Theorems 1 and 2 validate that there exists a parameterized HNN or HGCN architecture that
transforms the positional encodings of any pair of nodes in a connected graph such that the distance between
them increases under certain conditions. Furthermore, if any node has a higher degree, then it is generally
assumed that the node is of higher importance within the graph. Our proposed framework, HyPE, also
guarantees the distinctiveness of the PEs when the nodes are of higher degrees.

3.11 An Intuitive Explanation of Theoretical Analyses

In this section, we will intuitively explain the advantages of learning positional encodings in hyperbolic
spaces. The theoretical analyses claim the distinctiveness properties of the hyperbolic positional encodings.
Consider two nodes i and j in a graph. For a k-hop neighborhood, we can construct a rooted subtree for each
node. In the hyperbolic space, the rooted subtrees will be better fitted than their Euclidean counterparts.
The embeddings of corresponding nodes will capture the essence of tree-like or hierarchical relationships
within their own subtrees. The increase in distances between the PE for nodes i, j ensures the distinctive
representations compared to their Euclidean counterparts. Thus, PEs are not only enriched with hierarchical
information but also leverage unique representations for the tokens (here, nodes) in GTs. Furthermore, the
distinctive characteristics of the PEs prevent the potential feature collapse in the multi-layered GNNs.

3.12 Complexity Analysis

HyPE-GT consists of three key modules: initialization of PEs, the choice of manifold, and learning through
hyperbolic neural networks. We know that n is the number of nodes in the input graph, with the dimension
of node features being d. The time complexity of the Laplacian positional encodings is O(N3). The time
complexity of random walk positional encodings will be O(dN3).

Time Complexity of HNN The HNN performs three consecutive operations: logarithmic map, Möbius
matrix-vector multiplication, and exponential map (as defined in Section 3.3). If the logarithmic or expo-
nential map is applied at x = 0, then Möbius addition ⊕c is omitted, thus the complexity is reduced to
O(d). Consider h, b are the d-dimensional features and bias vectors in the hyperbolic space, respectively.
Therefore, if W ∈ Rd×d′ , then HNN will perform expc

0(W logc
0(h)) ⊕c b. The cost of the operation will be

O(dd′ + d + d′).

10

Under review as submission to TMLR

MNIST
(Higher is better)

PATTERN
(Higher is better)

CLUSTER
(Higher is better)

ogbg-molhiv
(Higher is better)

CIFAR10
(Higher is better)

Figure 4: Effect of depth of hyperbolic neural architectures for all five datasets. The number of layers is
varied from 1 to 5. For each layer, we averaged the 4 runs on different random seeds.

Time Complexity of HGCN The HGCN will pursue a similar set of operations as described for HNN,
except for the neighborhood aggregation. The HGCN will perform expc

0(
∑

j∈N(i) W logc
0(h)) ⊕c b. The

updated operation will cost O(d|E∥)d′ + d + d′).

The computation of Laplacian PEs or random walk PEs is accomplished in the pre-processing stages which
is not expected to show impacts on the training time and inference time. During training time, we utilize
the estimated positional encodings. The time complexity of the Graph Transformer is O(n2). The final
complexity of using HNN is O(dd′) and for HGCN is O(d|E|d′). Incorporating the HyPE framework, the
overall time complexity of the graph transformer will cost O(n2 + dd′) or O(n2 + d|E|d′). If dd′ < n2, then
we have O(n2 + dd′) ≈ O(n2). Similarly, if d|E|d′) < n2, then we can write O(n2 + d|E|d′) ≈ O(n2). The
tactful selection of the dimension of hyperbolic space will not enhance the overall time complexity of the
HyPE-GT compared to the existing standard Graph Transformer.

4 Experiments & Results

4.1 Datasets

We evaluate HyPE-GT on several benchmark datasets like CLUSTER, PATTERN, MNIST, and CIFAR10
(Dwivedi et al., 2020) for solving node-level and graph-level classification tasks. We further run experiments
on large-scale graph datasets like ogbg-molhiv, ogbg-ppa, ogbg-molpcba, and ogbg-code2 from the open
graph benchmark (OGB) (Hu et al., 2020a). The performance of deep GNNs is estimated on the co-author
and co-purchase datasets (Shchur et al., 2018). The complete details of the datasets can be found in Section
2 of the Supplementary.

4.2 Experimental Setup

We consider MNIST and CIFAR10 to perform classification on the superpixel-based graphs. The classi-
fication tasks related to molecular properties are solved on three OGB datasets ogbg-molhiv, ogbg-ppa,
and ogbg-molpcba. On the other hand, the inductive node classification is performed on PATTERN and
CLUSTER. Whereas the subtoken prediction task is solved on the ogbg-code2 dataset. The transductive
semi-supervised node classification is performed on Amazon Photo, Amazon Computers, Coauthor CS, and
Coauthor Physics. The train/valid/test splits for every dataset are provided in Table 3.

We performed experiments on different random seeds and executed 10 different runs. The final results are
the average of all runs with standard deviations. The training is stabilized and becomes faster by employing
Batchnorm (Ioffe & Szegedy, 2015) added between the layers of the GT. In the case of a multi-layered GNN,
Layernorm (Ba et al., 2016) is applied for faster convergence of training. The parameters of the models
are optimized by Adam. Overfitting is averted by utilizing ReduceLROnPlateau during the training process.
The data-specific details of the hyperparameters are provided in Section 4 in the Supplementary document.
We also perform a comparative study on the number of parameters of HyPE-GT compared to other Graph
Transformer-based approaches in Section 6 of the Supplementary document. The Pytorch and DGL-based
implementation of the HyPE-GT framework is available at https://anonymous.4open.science/r/HyPE-GT-
C253/README.md.

11

https://anonymous.4open.science/r/HyPE-GT-C253/README.md
https://anonymous.4open.science/r/HyPE-GT-C253/README.md

Under review as submission to TMLR

Table 3: The number of instances for each split is provided for all datasets used in the experiments.

Dataset # train # valid # test

PATTERN 10000 2000 2000
CLUSTER 10000 1000 1000
MNIST 55000 5000 10000
CIFAR10 45000 5000 10000

ogbg-molhiv 3201 4113 4113
ogbg-ppa 78200 45100 34800
ogbg-molpcba 350343 43793 43793
ogbg-code2 407976 22817 21948

Amazon Computers 200 300 13252
Amazon Photo 160 240 7250
Coauthor CS 600 2250 15483
Coauthor Physics 100 150 34243

4.3 Results & Discussion

We will try to resolve the following research questions through empirical evidence.

RQ1. How do hyperbolic positional encodings improve the performance of the standard graph
transformer ?

HyPE-GT is applied on PATTERN, CLUSTER, MNIST, and CIFAR10 and corresponding results are re-
ported in Table 1. We also applied HyPE-GT on the four OGB datasets whose results are presented in
Table 2. Experiments are performed for 8 for different categories of hyperbolic PEs and we reported the
best one among them with mean and standard deviation. The corresponding metrics for all datasets are also
mentioned.

HyPE-GT attains 3rd position on PATTERN with the PE category of 1. PATTERN contains small graphs
with the target task of identifying whether a node belongs to a pre-defined pattern. Our framework with a
single-layered HGCN successfully captures the pattern in the neighborhoods. Our framework also secures
3rd position on CLUSTER with the same category of PE as PATTERN which also contains small-sized
graphs. The target task of the CLUSTER is to identify the cluster type to which each node belongs. The
task requires information about the local neighborhoods, underscoring that a single-layered HGCN performs
optimally. On the other hand, HyPE-GT exhibited superior performance on MNIST for the category 8
outperforming all the contenders. The results suggest the generation of PE by employing HNN entailing
the importance of node features rather than the graph structure. Again, HYPE-GT secures 3rd position on
CIFAR10 for a PE category of 7. CIFAR10 requires higher-order interaction as it is built on RGB images
and justifies interactions from the higher-order neighborhoods, underscoring the contribution of a 2-layered
HGCN model.

HyPE-GT is further applied on four OGB graphs and the results are presented in Table 2. Our framework
outperforms all contenders on ogbg-molhiv for the PE category of 1 with a 2-layered HGCN. ogbg-molhiv
contains smaller graphs with chemical hierarchies and sparse edge connectivity. HyPE-GT efficiently captures
hierarchies and demonstrates optimal performance. ogbg-molpcba has a structural resemblance to the ogbg-
molhiv with a comparatively larger graph size. HyPE-GT secures 2nd position with a PE category of 7 by
employing a HGCN architecture. HyPE-GT attains 3rd position on ogbg-code2 for the PE category of 5 with
a 1-layered HGCN. The dataset contains programming syntax trees where higher-order interactions may not
be beneficial. On the other hand, HyPE-GT attains 3rd rank on ogbg-ppa but still outperforms DeeperGCN
and Transformer+LapPE. The results are evidence of the utility of generating multiple hyperbolic positional
encodings which provides a diverse scope to search for the optimal positional encodings.

RQ2. Can hyperbolic positional encodings improve the performance of deep GNN models ?

Graph Transformer leverages long-range interaction by measuring the attention among the node pairs which
tackles the oversmoothing issue to some extent. Yet, we want to explore the effect of incorporating hyperbolic
positional encodings directly with the multi-layered graph convolution-based architectures. The generated
positional encodings are flexibly integrated with the learned node features from the hidden layers to boost the

12

Under review as submission to TMLR

Table 4: The performances of GCN, JKNet, and GCNII on co-author and co-purchase networks are presented
for different depths of the networks coupled with the HyPE framework. The best results are marked in green
with the category of PE also mentioned in parentheses, where optimal performance is obtained. (standard
deviations are omitted due to space constraints)

Amazon Photo

Method / Layers 2 4 8 16 32 64 128
GCN 85.57 84.44 51.53 49.78 52.74 52.92 50.54
GCN + HyPE 90.4(7) 80.54(8) 82.48(2) 81.24(3) 80.5(3) 80.91(3) 80.73(3)
JKNet 80.46 86.00 82.98 83.35 80.9 83.72 86.11
JKNet + HyPE 89.34(4) 90.87(4) 90.04(8) 89.67(8) 89.78(4) 89.56(4) 90.43(4)
GCNII 83.13 86.92 85.39 87.45 85.82 86.06 86.08
GCNII + HyPE 91.1(8) 92.14(7) 92.07(7) 91.32(7) 91.43(8) 91.1(7) 91.48(7)

Amazon Computers

GCN 69.94 67.55 49.0 49.38 48.6 49.55 48.66
GCN + HyPE 82.61(8) 75.78(4) 72.86(3) 72.6(3) 73.97(3) 72.91(3) 73.75(3)
JKNet 64.88 74.03 53.21 54.57 58.26 55.05 67.7
JKNet + HyPE 80.03(5) 81.13(4) 76.86(4) 76.49(3) 75.8(3) 76.12(3) 75.63(3)
GCNII 71.93 74.58 64.04 72.59 69.54 69.99 68.68
GCNII + HyPE 82.66(8) 82.86(7) 81.48(7) 81.75(4) 80.55(7) 81.07(4) 80.75(7)

Coauthor CS

GCN 89.89 83.83 16.42 15.37 12.01 21.36 11.66
GCN + HyPE 92.09(8) 88.96(3) 82.58(4) 82.04(4) 82.16(3) 82.17(4) 81.52(3)
JKNet 91.45 89.5 89.05 87.99 88.39 87.6 87.28
JKNet + HyPE 92.64(2) 92.58(7) 92.11(4) 92.22(8) 92.31(8) 92.24(8) 92.17(7)
GCNII 90.74 90.14 88.55 92.82 93.02 93.08 93.08
GCNII + HyPE 93.19(5) 93.01(8) 93.5(3) 93.65(3) 93.58(4) 93.68(4) 93.58(8)

Coauthor Physics

GCN 93.9 90.97 89.46 51.81 52.96 49.29 51.8
GCN + HyPE 94.26(4) 93.49(3) 90.26(4) 89.88(2) 90.16(4) 89.7(2) 90.01(2)
JKNet 93.56 93.31 92.77 91.99 92.29 93.4 92.09
JKNet + HyPE 94.23(7) 94.44(8) 94.23(7) 94.33(7) 93.93(5) 94.37(8) 94.23(8)
GCNII 94.0 93.54 93.97 94.1 94.24 94.03 94.02
GCNII + HyPE 94.37(3) 94.45(4) 94.6(6) 94.62(3) 94.53(4) 94.43(3) 94.76(6)

model performance. We carry out an extensive experiment on co-purchase and co-author datasets Amazon
Photo, Amazon Computers, Coauthor CS, and Coauthor Physics aiming to solve the task of semi-supervised
mode classification. Our experiment encompasses the three well-adopted base GNN models like GCN (Kipf
& Welling, 2016), JKNet (Xu et al., 2018b), and GCNII (Chen et al., 2020). For every dataset, we applied
three chosen base models. For each base GNN model, once we run experiments without using any positional
encodings and in the second phase HyPE is coupled with the corresponding base model. The process is
repeated for every network depth chosen from the set {2, 4, 8, 16, 32, 64, 128}. The numerical results are
reported in Table 4. The performance is measured with the test accuracy which is obtained by taking the
mean of the 10 different runs on multiple random seeds. We run experiments for all 8 categories and we only
report the optimal one among them. The category of PE is also mentioned along with the highlighted test
accuracy for HyPE-GT.

The reported results are evident for the better applicability of the hyperbolic positional encodings integrating
with deeper GNN architectures. The base models witnessed an uptick in performance when associated
with the HyPE framework compared with the performance of the same without involving the positional
encodings at every network depth. The optimal results are obtained for different categories of PEs which
also indicates the benefits of generating a diverse set of hyperbolic positional encodings. The node features in
the embedding space collapse with the increase of convolutional layers due to the decrease in the inter-cluster
distance. The incorporation of positional encodings with the features from the hidden layers prevents the
features from collapsing signifying the control of oversmoothing. Notably, the hyperbolic PEs are sufficiently
capable of separating similar nodes toward each other, increasing inter-cluster distance. The performance of
vanilla GCN is typically hindered by the effect of oversmoothing which is alleviated by employing the HyPE

13

Under review as submission to TMLR

framework. Again the performance improvement on GCNII and JKNet is lesser than GCN due to those
models are already designed for controlling oversmoothing but our framework is still able to outperform with
a good margin which underlines the efficiency of the proposed framework.

PATTERN
(Higher is better)

CLUSTER
(Higher is better)

MNIST
(Higher is better)

CIFAR10
(Higher is better)

ogbg-molhiv
(Higher is better)

ogbg-ppa
(Higher is better)

Figure 5: The performance of HyPE-GT on six benchmark datasets is presented. Each possible combination
of the key modules in the framework is considered. All eight types of positional encodings are generated for
each dataset.

4.4 Depth of the Hyperbolic Networks in HyPE-GT

We investigated the effect of the depth of hyperbolic networks (both HNN and HGCN) on the performance
of HyPE-GT. We include PATTERN, CLUSTER, MNIST, CIFAR10, and ogbg-molhiv to conduct the
experiments. HyPE-GT generates 8 different positional encodings for every dataset and we only run the
experiment for the category where the best performance is obtained. For example, MNIST attains the best
performance for the PE category of 8. The best category can be found in the results available in Table 1 and
2. We vary the number of layers of the respective hyperbolic networks from 1-5. For each network depth,
we run the experiments for 4 times and plot the mean along with standard deviations in Figure 4. The
performance metric is also mentioned against each plot.

The performance of HyPE-GT deteriorates on PATTERN and CLUSTER due to the oversmoothing issue
in the hyperbolic graph convolutional-based architectures. Yet, these datasets contain graphs with smaller
radii and performance depends on local substructures. Thus, increasing depth might not be beneficial for the
performance gain. HyPE-GT exhibited stable performance on MNIST as it hinges on the HNN and mostly
relies on the rich node features. On the other side, the performance of HyPE-GT on CIFAR10 is optimal
when the network depth is 2. The superpixel graphs of CIFAR10 are created from RGB images which
requires aggregating features from higher-order neighborhoods. Thus, the degradation of performance is
lower compared to PATTERN and CLUSTER. The performance on ogbg-molhiv is optimal when the network
depth is 2. The molecular graphs containing local substructures prefer the localized feature aggregation which
is further validated by the performance degradation with increased network depth.

14

Under review as submission to TMLR

5 Ablation Study

We conduct a comprehensive ablation study on our proposed framework HyPE-GT to analyze the impact
of individual modules within the framework. HyPE-GT comprises three modules as discussed earlier. We
explore various options for each of the modules which prompts the generation of 8 different positional
encodings. We run the experiments on PATTERN, CLUSTER, MNIST, CIFAR10, ogbg-molhiv, and ogbg-
ppa, and the results are presented in Figure 5. The ablation study on ogbg-molpcba and ogbg-code2 can
be found in Section 5 of the Supplementary document. The experiments are executed for each category of
positional encodings for every dataset. Each result is the average of 10 runs along with the standard deviation
with different random seeds. The variation in the corresponding performance metric can be observed across
8 different positional encodings. Notably, optimal performances are obtained for certain combinations of
individual modules in the framework, highlighting the interdependence of the modules. The capacity to
generate multiple PEs of HyPE broadens the scope of finding the best one for solving target tasks.

MNIST CIFAR10 ogbg-molhiv

ogbg-ppa ogbg-molpcba ogbg-code2

Figure 6: Various readout methods like Mean, Max, and Sum are applied on both 6 graph classification
datasets, and their effects are presented. The corresponding metrics are mentioned. The optimal performance
can be obtained by tactfully selecting the readout methods which entirely depends on the input graphs.

5.1 Selection Criteria of Positional Encodings

An obvious question will naturally arise regarding the determination of the optimal triplet from the set of
positional encodings for solving the downstream tasks. We attempt to resolve the issue by analyzing the
experimental results. We devised an intuitive strategy to minimize the search time and avoid the time-
consuming effort of searching randomly for the best positional encoding. Our framework achieves optimal
results on PATTERN, CLUSTER, CIFAR10, ogbg-molhiv when the PEs are learned via HGCN rather than
HNN. Therefore, HGCN may be an appropriate candidate to initiate the search as it captures the structural
patterns of the input graph. Only HyPE-GT on MNIST shows the best performance when HNN is employed
also the second best result occurred with HNN. Experiments suggest that Hyperboloid dominates over
PoincarêBall in most of the cases. Again LapPE and RWPE both work well in the experiments. We still
recommend an exhaustive search to find the most effective positional encodings for the downstream tasks.

15

Under review as submission to TMLR

6 Effect of the Readout Methods

The selection of the readout methods is pivotal for performing the graph classification tasks. The fact
prompts us to study the effects of three well-adopted readout methods Mean, Max, and Sum when HyPE-
GT is applied on the MNIST, CIFAR10, ogbg-molhiv, ogbg-moppa, ogbg-molpcba, and ogbg-code2. The
performance of HyPE-GT on different readout methods applied on 6 datasets is elucidated in Figure 6.
The Sum readout emerged as beneficial for MNIST but the Mean readout is more effective for CIFAR10.
Similarly, ogbg-molhiv, ogbg-ppa, ogbg-molpcba, and ogbg-code2 exhibited optimal performances when the
readout methods were Max, Sum, and Mean, respectively. The variations among the readout methods across
all datasets are relatively lower, which emphasizes the resilience of HyPE-GT toward the choice of readout
methods. The experiments also underscore the importance of choosing appropriate readout methods to
obtain the best performance on the graph classification tasks.

7 Limitations

HyPE-GT excels at capturing intricate hierarchical relationships within graphs by generating learnable posi-
tional encodings in hyperbolic space. This approach is particularly effective when dealing with input graphs
that possess inherent hierarchical structures, as hyperbolic space provides superior encoding capabilities
compared to Euclidean space. However, not all input graphs exhibit hierarchical characteristics. In such
cases, positional encodings learned in Euclidean space may be more appropriate. For instance, the perfor-
mance of HyPE-GT on PATTRN and CLUSTER datasets, which lack hierarchical components, shows slight
degradation. Conversely, HyPE-GT performs commendably on the ogbg-molhiv and ogbg-molpcba datasets,
which contain hierarchical structures. These results demonstrate that HyPE-GT is proficient in generating
effective positional encodings that align well with hierarchical structures. Moreover, they underscore the
framework’s versatility and robustness in handling graphs with varying degrees of hierarchical complexity.

8 Conclusion & Future Works

In this work, we proposed a novel framework called HyPE-GT to generate positional encodings in the
hyperbolic space for Graph Transformers. Unlike the other existing methods, our framework can generate
a set of positional encodings that offer diverse choices for solving downstream tasks. The generated PEs
are learned either by HNN or HGCN-based architectures. The efficiency of HyPE-GT is also validated by
performing several experiments on molecular graphs from benchmark datasets (Dwivedi et al., 2020) and
OGB (Hu et al., 2020a) graph datasets and achieving impressive performances on the datasets. We provided
the results of an exhaustive ablation study to substantiate the importance of each component of HyPE-GT.
We also re-purpose the positional encodings to integrate with node features to boost the performance of
deep graph neural networks applied on Co-author and Co-purchase datasets. Exploring hyperbolic spaces
to learn positional encodings may be a potential avenue for future directions. Also, further investigation is
required on the effectiveness of positional encodings in deeper GNNs to boost performance.

References
Emmanuel Abbe. Community detection and stochastic block models: Recent developments. Journal of

Machine Learning Research, 18(177):1–86, 2018. URL http://jmlr.org/papers/v18/16-480.html.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. arXiv
preprint arXiv:2006.05205, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks meet
transformers. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=0pdSt3oyJa1.

16

http://jmlr.org/papers/v18/16-480.html
https://openreview.net/forum?id=0pdSt3oyJa1
https://openreview.net/forum?id=0pdSt3oyJa1

Under review as submission to TMLR

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(1):657–668, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553,
2017.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural net-
works. Advances in neural information processing systems, 32, 2019.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation
learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR, 2022.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional
networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR, 2020.

Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph transformer.
arXiv preprint arXiv:2402.02005, 2024.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems, 33:13260–13271, 2020.

Yuhui Ding, Antonio Orvieto, Bobby He, and Thomas Hofmann. Recurrent distance-encoding neural net-
works for graph representation learning, 2024. URL https://openreview.net/forum?id=lNIj5FdXsC.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. arXiv
preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Bench-
marking graph neural networks. 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. Advances in neural
information processing systems, 31, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proceedings
of the web conference 2020, pp. 2704–2710, 2020b.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as a
replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 655–665, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. pmlr, 2015.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyper-
bolic image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6418–6428, 2020.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Seunghoon Hong.
Pure transformers are powerful graph learners. Advances in Neural Information Processing Systems, 35:
14582–14595, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

17

https://openreview.net/forum?id=lNIj5FdXsC

Under review as submission to TMLR

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34:
21618–21629, 2021.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper
gcns. arXiv preprint arXiv:2006.07739, 2020a.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably more
powerful neural networks for graph representation learning. Advances in Neural Information Processing
Systems, 33:4465–4478, 2020b.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. Advances in neural
information processing systems, 32, 2019.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip Torr,
and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In International
Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph structure in
transformers. arXiv preprint arXiv:2106.05667, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Kaan Sancak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, Muhammed Fatih Balin, and
Ümit V Çatalyürek. A scalable and effective alternative to graph transformers. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 20255–20263, 2025.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Ex-
phormer: Sparse transformers for graphs. In International Conference on Machine Learning, pp. 31613–
31632. PMLR, 2023.

Katherine Tieu, Dongqi Fu, Zihao Li, Ross Maciejewski, and Jingrui He. Learnable spatial-temporal posi-
tional encoding for link prediction. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=EoxpGWgeCH.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

18

https://openreview.net/forum?id=EoxpGWgeCH

Under review as submission to TMLR

Yogesh Verma, Amauri H Souza, and Vikas K Garg. Positional encoding meets persistent homology on
graphs. In Forty-second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=1wq7uK5de9.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence
modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Repre-
senting long-range context for graph neural networks with global attention. Advances in Neural Informa-
tion Processing Systems, 34:13266–13279, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International Conference on
Machine Learning, pp. 5453–5462. PMLR, 2018b.

Mingqi Yang, Renjian Wang, Yanming Shen, Heng Qi, and Baocai Yin. Breaking the expression bottleneck
of graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. Hyperbolic graph attention network.
IEEE Transactions on Big Data, 8(6):1690–1701, 2021.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper graph neural
networks with differentiable group normalization. arXiv preprint arXiv:2006.06972, 2020.

A Appendix

A.1 Proofs

Lemma 1 Consider an n-dimensional Poincarê Ball Bn of unit radius and unit curvature. Let us assume
that two points x, y ∈ Bn and their distance by using Poincarê metric is dB(x, y). If we apply the Euclidean
metric to them, the distance will be dE(x, y). Then ∀k ∈ (0, 1), we have dB(x, y) ≥ 2kdE(x, y) if dE(x, y) ∈
[0,

√
1−k2

k].

Proof. Assume Poincarê Ball Bn = {x ∈ Rn, ||x|| ≤ 1} is equipped with Poincarê metric and the distance
between two points x, y ∈ Bn as following

dB(x, y) = cosh−1
(

1 + 2||x − y||2

(1 − ||x||2)(1 − ||y||2)

)
(18)

The Euclidean norm between x, y is
dE(x, y) = ||x − y|| (19)

The following can be written

dB(x, y) = cosh−1
(

1 + 2||x − y||2

(1 − ||x||2)(1 − ||y||2)

)
= 2 sinh−1

(√
∆(x, y)

2

) (20)

19

https://openreview.net/forum?id=1wq7uK5de9
https://openreview.net/forum?id=1wq7uK5de9

Under review as submission to TMLR

where
∆(x, y) = 2||x − y||2

(1 − ||x||2)(1 − ||y||2)

We have considered the unit radius of the Poincarê Ball, ||x||, ||y|| ≤ 1. then (1 − ||x||2)(1 − ||y||2) ≤ 1.
Therefore, we have

∆(x, y) ≥ 2||x − y||2 (21)

We have d
dx (sinh−1(x)) = 1√

1+x2 > 0 which implies that sinh−1(x) is an increasing function. Therefore, we
have,

2 sinh−1

(√
∆(x, y)

2

)
≥ 2 sinh−1(||x − y||)

dB(x, y) ≥ 2 sinh−1(||x − y||)
(22)

We know that sinh−1(z) = ln(z +
√

z2 + 1). Let us consider the following function ∀k ∈ R

f(z) = ln(z +
√

z2 + 1) − kz (23)

Differentiating w.r.t. z, we get

f ′(z) = 1√
1 + x2

− k (24)

Also f(0) = 0 and the function is increasing when f ′(z) ≥ 0

f ′(z) = 1√
1 + x2

− k ≥ 0

1√
1 + x2

≥ k

z ≤
√

1 − k2

k

(25)

If the above condition holds then f(z) increases and non-negative ∀z ∈ [0,
√

1−k2

k]. Then we have

ln(z +
√

z2 + 1) − kz ≥ 0

ln(z +
√

z2 + 1) ≥ kz

sinh−1(z) ≥ kz ∀z ∈ [0,

√
1 − k2

k
]

(26)

Applying the inequality to the distance between points x, y and ∀||x − y|| ∈ [0,
√

1−k2

k] we have,

sinh−1(||x − y||) ≥ k||x − y||
2 sinh−1(||x − y||) ≥ 2k||x − y||
dB(x, y) ≥ 2k||x − y||

(27)

Therefore, the distance between any two points x, y increases when the Poincarê metric is applied compared
to the scaled Euclidean distance under certain conditions.

Lemma 2 Consider an n-dimensional Hyperboloid space Hn of unit radius and unit curvature. Let us
assume that two points x, y ∈ Hn and their distance by using Hyperboloid distance metric is dH(x, y).
If we apply the Euclidean metric to them, the distance will be dE(x, y). Then ∀k ∈ [1, ∞), we have
dH(x, y) ≥ k

2 dE(x, y) ∀dE(x, y) ∈ [1, 4
√

1+k2

k2].

20

Under review as submission to TMLR

Proof. Let us define the Hyperboloid space in the following way

Hn
1 = {x ∈ Rn+1 : ⟨x, x⟩L = −1, x0 > 0}, (28)

where ⟨x, y⟩L denotes Minkowski inner product is defined as follows

⟨x, y⟩L = −x0y0 + x1y1 + · · · + xnyn

The distance between x, y can be estimated as

dH(x, y) = cosh−1(−⟨x, y⟩L)

= cosh−1(−(−x0y0 +
n∑

i=1
xiyi))

= cosh−1(x0y0 −
n∑

i=1
xiyi)

(29)

For two points x, y, following the condition of ⟨x, x⟩L = 1, we have,

⟨x, x⟩L = −x2
0 + x2

1 + · · · x2
n = −1

⟨y, y⟩L = −y2
0 + y2

1 + · · · y2
n = −1

(30)

The Euclidean distance between x, y can be expressed as

dE(x, y) =

√√√√ n∑
i=0

(xi − yi)2

=

√√√√ n∑
i=0

x2
i +

n∑
i=0

y2
i − 2

d∑
i=0

xiyi

=

√√√√x2
0 +

n∑
i=1

x2
i + y2

0 +
n∑

i=1
x2

i − 2(x0y0 +
n∑

i=1
xiyi)

Using from Eq. 29 and Eq. 30, we have

dE(x, y) =
√

2x2
0 + 2y2

0 − 2 − 2(2x0y0 − cosh(dH(x, y)))

d2
E(x, y) = 2x2

0 + 2y2
0 − 2 − 4x0y0 + 2 cosh(dH(x, y))

d2
E(x, y) = 2((x0 − y0)2 − 1) + 2 cosh(dH(x, y))

(31)

Assuming that (x0 − y0)2 ≤ 1, then we can express

2 cosh(dH(x, y)) ≥ d2
E(x, y)

dH(x, y) ≥ cosh−1
(

d2
E(x, y)

2

) (32)

Consider the function f(z) = cosh−1(z) − kz where cosh−1(z) = ln(z +
√

z2 − 1). Differentiating f(z) w.r.t
z , we get

f ′(z) = 1√
z2 − 1

− k ≥ 0

1√
z2 − 1

≥ k

z ≤
√

1 + k2

k

(33)

21

Under review as submission to TMLR

Also, f(0) = 0, and the function is increasing for the above condition. Therefore, we have

f(z) = cosh−1(z) − kz ≥ 0

cosh−1(z) ≥ kz ∀z ∈ [1,

√
1 + k2

k
]

(34)

Applying the above inequality, finally, we have,

dH(x, y) ≥ cosh−1
(

d2
E(x, y)

2

)
≥ k

d2
E(x, y)

2

dH(x, y) ≥ k

2 d2
E(x, y) ≥ k

2 dE(x, y) ∀d2
E(x, y) ∈ [1,

√
1 + k2

k
]

dH(x, y) ≥ k

2 dE(x, y) ∀ dE(x, y) ∈ [1,
4

√
1 + k2

k2]

(35)

Therefore, the distance between two points in the hyperboloid space will be greater than their scaled Eu-
clidean distance under certain conditions.

Theorem 1 Consider a pair of nodes 1 and 2 of a connected graph G whose degrees are d1 and d2 respectively.
Their initialized positional encodings are p1, p2 ∈ Rd. The Euclidean distance between them is estimated as
dE(p1, p2). Suppose, p1, p2 are to be transformed by either HNN or HGCN with the underlying hyperbolic
space as a n-dimensional Poincarê Ball Bn of unit radius and unit curvature, then we have the following:

1. HNN If the encodings are transformed by passing through an HNN of parameters Θ. The trans-
formed encodings are respectively phyp

1 and phyp
2 whose distance is dB(phyp

1 , phyp
2), then ∃ Θ′ such that

dB(phyp
1 , phyp

2) ≥ k′||Θ′||F dE(p1, p2) for some k′ ∈ (0, 2) and ||Θ′||F ≤ 1.

2. HGCN If the encodings are transformed by passing through an HGCN of parameters Φ. then
∃ Φ′ with ||Φ′||F ≤ 1 such that dB(phyp

1 , phyp
2) ≥ k′

d ||Φ′||F dE(p1, p2) where d = max{d1, d2} for some
k′ ∈ (0, 2).

Proof. We will outline the complete proof for each of the parts.

HNN The Euclidean distance between two points x, y is estimated as dE(x, y) = ||p1 − p2||. We want to
compute the distance between p1, p2 in the Bn

c . Therefore, we will apply the exponential map to project the
points in the manifold space. The exponential map for Bn

c at 0 is defined as following,

exp0
c(v) = tanh(

√
c||v||) v

c||v||
, (36)

where v is any point lying on the tangent space which resembles the locally linear space. As we considered
the curvature to be 1, the exponential map can be reformulated as,

exp0
1(v) = tanh(||v||) v

||v||
, (37)

From now on we will write as exp(v). The Möbius matrix-vector multiplication is defined as,

M⊗c(x) = 1√
c

tanh
(

||Mx||
||x||

tanh−1(
√

c||x||)
)

Mx

||Mx||
, (38)

where M ∈ Mm,n(R) and x ∈ Bn
c . Substituting c = 1, we get

M⊗1(x) = tanh
(

||Mx||
||x||

tanh−1(||x||)
)

Mx

||Mx||
, (39)

22

Under review as submission to TMLR

If we pass the positional encodings through a hyperbolic neural network (HNN) with a trainable weight
Θ ∈ Rd×d′ . Firstly, we mapped the encodings into the manifold space using the exponential map.

p̂1 = exp(p1) = tanh(||p1||) p1

||p1||

p̂2 = exp(p2) = tanh(||p2||) p2

||p2||

Replacing the scalar terms ζ1 = tanh(||p1||)
||p1|| and ζ2 = tanh(||p2||)

||p2|| . Then, we have p̂1 = ζ1p1 and p̂2 = ζ2p2.

The encodings are now mapped on the manifold. The encodings are transformed by passing through HNN,
then applying Möbius matrix-vector formula, we have

phyp
1 = Θ⊗1(p̂1) = tanh

(
||p̂1Θ||
||p̂1||

tanh−1(||p̂1||)
)

p̂1Θ
||p̂1Θ||

Substituting p̂1 = ζ1p1

= tanh
(

||p1Θ||
||p1||

tanh−1(||ζ1p1||)
)

p1Θ
||p1Θ||

Similarly, we can write

phyp
2 = Θ⊗1(p̂2) = tanh

(
||p2Θ||
||p2||

tanh−1(||ζ2p2||)
)

p2Θ
||p2Θ||

Replacing the scalar terms as η1 = tanh−1(||ζ1p1||)
||p1|| and η2 = tanh−1(||ζ2p2||)

||p2|| , we have phyp
1 =

tanh(η1||p1Θ||) p1Θ
||p1Θ|| and phyp

2 = tanh(η2||p2Θ||) p2Θ
||p2Θ|| . Further substituting the scalar terms as ω1 =

tanh(η1||p1Θ||)
||p1Θ|| and ω2 = tanh(η2||p2Θ||)

||p2Θ|| . Therefore, we can write as,

phyp
1 = ω1p1Θ phyp

2 = ω2p2Θ (40)

Therefore, the length of the geodesic on the manifold will be,

dB(phyp
1 , phyp

2) = cosh−1

(
1 + 2||phyp

1 − phyp
2 ||2

(1 − ||phyp
1 ||2)(1 − ||phyp

2 ||2)

)

= cosh−1
(

1 + 2||ω1p1Θ − ω2p2Θ||2

(1 − ||ω1p1Θ||2)(1 − ||ω2p2Θ||2)

)

We know tanh(z)
z ≤ 1∀z ∈ R. The tanh−1(tz)

z ≤ 1 ∀|t| ≤ 1, |z| ≤ 1. Therefore, we can say that ζ1, ζ2 ≤ 1. We
use this notion to have η1, η2 ≤ 1. Finally, ω1, ω2 ≤ 1 ∀z ∈ R.

Applying the inequalities, ||ω1p1Θ|| ≤ ω1||p1||||Θ||F . As we considered unit radius ||p1|| ≤ 1 and assumed a
bounded Frobenius norm of the HNN parameters ||Θ||F ≤ 1. Thus we have ||ω1p1Θ|| ≤ 1 and in a similar
way ||ω2p2Θ|| ≤ 1 which implies (1 − ||ω1p1Θ||2)(1 − ||ω2p2Θ||2) ≤ 1.

dB(phyp
1 , phyp

2) = 2 sinh−1

√∆(phyp
1 , phyp

2)
2

 (41)

where

∆(phyp
1 , phyp

2) = 2||ω1p1Θ − ω2p2Θ||2

(1 − ||ω1p1Θ||2)(1 − ||ω2p2Θ||2)

23

Under review as submission to TMLR

We have d
dx (sinh−1(x)) = 1√

1+x2 > 0 which implies that sinh−1(x) is an increasing function. Therefore, we
have,

2 sinh−1

√∆(phyp
1 , phyp

2)
2

 ≥ 2 sinh−1(||phyp
1 − phyp

2 ||)

dB(phyp
1 , phyp

2) ≥ 2 sinh−1(||phyp
1 − phyp

2 ||)

(42)

WLOG, we can assume ω1 ≥ ω2 and apply properties of Euclidean norm. Then we have,

||phyp
1 − phyp

2 || = ||ω1p1Θ − ω2p2Θ||
≥ (||ω1p1Θ|| − ||ω2p2Θ||)
≥ ω2(||p1Θ|| − ||p2Θ||)

(43)

Again, we can write,

ω2(||p1Θ|| − ||p2Θ||) ≤ ω2(||p1Θ − p2Θ||) (44)

Using the properties of the vector norms, we have,

ω2||p1Θ − p2Θ|| ≤ ω2||Θ||F ||p1 − p2|| (45)

Combining Eqn. 44 and 45, we have,

ω2||Θ||F ||p1 − p2|| ≥ ω2(||p1Θ|| − ||p2Θ||) (46)

Therefore, ∃ Θ′ with ||Θ′||F ≤ 1 such that,

|phyp
1 − phyp

2 || ≥ ω2||Θ′||F ||p1 − p2|| ≥ ω2(||p1Θ|| − ||p2Θ||) (47)

Now combining with the Eq. 42 and using the notion from Theorem 1, we have,

2 sinh−1(||phyp
1 − phyp

2 ||) ≥ 2k||phyp
1 − phyp

2 ||

∀||phyp
1 − phyp

2 || ∈ [0,

√
1 − k2

k
]

dB(phyp
1 , phyp

2) ≥ 2kω2||Θ′||F ||p1 − p2||
= k′||Θ′||F ||p1 − p2||

where k′ = 2kω2 with k′ ∈ (0, 2)

(48)

HGCN If we employ an HGCN architecture with trainable parameters Φ, we need to incorporate normalized
adjacency matrix Ã into the positional encodings. The transformed encoding is mapped into the manifold’s
tangent space using the logarithmic map to enable multiplication with Ã. The logarithmic or simply log
map at 0 position is defined as

logc
0(v) = tanh−1(

√
c||v||) v√

c||v||
(49)

Applying the log map with c = 1, the encodings are transformed into the tangent space as following

pT
1 = tanh−1(||phyp

1 ||) phyp
1

||phyp
1 ||

pT
2 = tanh−1(||phyp

2 ||) phyp
2

||phyp
2 ||

(50)

Consider η′
1 = tanh−1(||phyp

1 ||)
||phyp

1 ||
and η′

2 = tanh−1(||phyp
2 ||)

||phyp
2 ||

with η′
1, η′

2 ≥ 1. Therefore, we can express pT
1 = η′

1phyp
1

and pT
2 = η′

2phyp
2 . The adjacency matrix is applied to the transformed encodings which result in pA

1 =

24

Under review as submission to TMLR

1
d1

∑
j∈N(1)∪pT

1

pT
j and pA

2 = 1
d2

∑
j∈N(2)∪pT

2

pT
j where d1, d2 are the degrees for node 1 and 2 respectively with pT

j

are the corresponding neighbors’ features. Suppose, ∃ C1, C2 ∈ R such that,

||pA
1 || ≥ 1

d1
C1||pT

1 || ||pA
2 || ≥ 1

d2
C2||pT

2 || (51)

From Eq 40, we have ||pA
1 || ≥ 1

d1
C1η′

1||phyp
1 || = 1

d1
C1η′

1ω1||p1Φ|| = 1
d1

ω′
1||p1Φ|| where ω′

1 = C1η′
1ω1. Similarly,

we have ||pA
2 || ≥ 1

d2
ω′

2||p2Φ|| where ω′
2 = C2η′

2ω2. As ω1, ω2 ≤ 1 with the assumption of

Again, we must apply the exponential map to revert the embeddings to the Poincarê Ball.

pAh
1 = tanh(||pA

1 ||) pA
1

||pA
1 ||

pAh
2 = tanh(||pA

2 ||) pA
2

||pA
2 ||

(52)

Let us assume that τ1 = tanh(||pA
1 ||)

||pA
1 || and τ2 = tanh(||pA

2 ||)
||pA

2 || with τ1, τ2 ≤ 1. Therefore, pAh
1 = τ1pA

1 and
pAh

2 = τ1pA
2 .

Similarly, we have pAh
2 = 1

d2
τ2pA

2 ≥ 1
d2

τ2ω′
2p2Φ = 1

d2
τ ′

2p2Φ where τ ′
2 = τ2ω′

2.

The distance between pAh
1 and pAh

2 is

dB(pAh
1 , pAh

2) = cosh−1
(

1 + 2||pAh
1 − pAh

2 ||2

(1 − ||pAh
1 ||2)(1 − ||pAh

2 ||2)

)
= cosh−1

(
1 +

2|| 1
d1

τ ′
1p1Φ − 1

d2
τ ′

2p2Φ||2

(1 − || 1
d1

τ ′
1p1Φ||2)(1 − || 1

d2
τ ′

2p2Φ||2)

) (53)

We have,

||pAh
1 || = τ1||pA

1 || = τ1

d1
||

∑
j∈N(1)∪pT

1

pT
j || ≤ τ1

d1

∑
j∈N(1)∪pT

1

||pT
j || ≤ τ1

d1

∑
j∈N(1)∪pT

1

||pT
j ||

where η′
j =

tanh−1(||phyp
j ||)

||phyp
j ||

= τ1

d1

∑
j∈N(1)∪pT

1

η′
j ||phyp

j || ≤ τ1

d1

∑
j∈N(1)∪pT

1

η′
max = τ1η′

max

(54)

Assuming τ1η′
max ≤ 1, then we have ||pAh

1 || ≤ 1. Similarly, ||pAh
2 || ≤ 1. Using these inequalities, we have

(1 − ||pAh
1 ||2)(1 − ||pAh

2 ||2) ≤ 1. We can express the following

dB(pAh
1 , pAh

2) ≥ 2 sinh−1(||pAh
1 − pAh

2 ||) (55)

Now we can write the following,

||pAh
1 − pAh

2 || = ||τ1pA
1 − τ2pA

2 || ≥ τ1||pA
1 || − τ2||pA

2 || ≥ 1
d1

τ1ω′
1||p1Φ|| − 1

d2
τ2ω′

2||p2Φ|| ≥ || τ ′
1

d1
p1Φ|| − || τ ′

2
d2

p2Φ||,

(56)

where τ ′
1 = τ1ω′

1, τ ′
2 = τ2ω′

2. Using the properties of Euclidean vector norms, we have,

|| τ ′
1

d1
p1Φ − τ ′

2
d2

p2Φ|| ≥ || τ ′
1

d1
p1Φ|| − || τ ′

2
d2

p2Φ||

|| τ ′
1

d1
p1Φ − τ ′

2
d2

p2Φ|| ≤ ||Φ||F || τ ′
1

d1
p1 − τ ′

2
d2

p2||
(57)

Combining Eqn. 56 and 57, we have,

||Φ||F || τ ′
1

d1
p1 − τ ′

2
d2

p2|| ≥ || τ ′
1

d1
p1Φ|| − || τ ′

2
d2

p2Φ|| (58)

25

Under review as submission to TMLR

Therefore, ∃ Φ′ with ||Φ′|| ≤ 1, such that,

||pAh
1 − pAh

2 || ≥ ||Φ||F || τ ′
1

d1
p1 − τ ′

2
d2

p2|| ≥ || τ ′
1

d1
p1Φ|| − || τ ′

2
d2

p2Φ|| (59)

WLOG, we can assume τ ′
1 ≥ τ ′

2, then we have,

||pAh
1 − pAh

2 || ≥ τ ′
2||Φ||F ||p1

d1
− p2

d2
|| (60)

If d = max{d1, d2}, then we have,

||pAh
1 − pAh

2 || ≥ τ ′
2||Φ||||p1

d1
− p2

d2
||

≥ τ ′
2||Φ||F

d
||p1 − p2||

(61)

Therefore, from Lemma 1, we can express

dB(pAh
1 , pAh

2) ≥ 2k||pAh
1 − pAh

2 || ∀k ∈ [0,

√
1 − k2

k
]

≥ 2k
τ ′

2||Φ||F
d

||p1 − p2||

= k′

d
||Φ||F ||p1 − p2||,

(62)

where k′ = 2kτ ′
2 with k′ ∈ (0, 2). The above inequality illustrates that the distance of the two points lying on

the Poincarê Ball is greater than the distance of the same when lying on the Euclidean space under certain
conditions. Furthermore, the inequality depends on the maximum degree of the pair of nodes in the graph.

If d increases, the distance on the Poincarê Ball also increases, which underscores the more distinctive
positional encodings for the nodes having higher importance in the graph.

Theorem 2 Consider a pair of nodes 1 and 2 of a connected graph G whose degrees are d1 and d2 respectively.
Their initialized positional encodings are p1, p2 ∈ Rd. The Euclidean distance between them is estimated as
dE(p1, p2). Suppose, p1, p2 are to be transformed y either HNN or HGCN with the underlying hyperbolic
space as a n-dimensional Hyperboloid model Hn of unit radius and unit curvature, then we have the following:

1. HNN If the encodings are transformed by passing through an HNN of parameters Θ. The trans-
formed encodings are respectively phyp

1 and phyp
2 whose distance is dH(phyp

1 , phyp
2), then ∃ Θ′ such

that dH(phyp
1 , phyp

2) ≥ k′

2 ||Θ′||F dE(p1, p2) for some k′ ∈ [1, ∞) and ||Θ′||F ≤ 1.

2. HGCN If the encodings are transformed by passing through an HGCN of parameters Φ. then there
exists a Φ′ with ||Φ′||F ≤ 1 such that dB(phyp

1 , phyp
2) ≥ k′

2d

′
||Φ′||F dE(p1, p2) where d = max{d1, d2}

for some k′ ∈ [1, ∞).

Proof. We will provide proof for each of the two parts.

HNN For any v ∈ T0Hn
1 and y ∈ Hn

1 , then the exponential and logarithmic map of Hn
1 at x = 0 with

curvature c = 1 can be expressed as follows,

exp1
0(v) = sinh(||v||L) v

||v||L
log1

0(y) = cosh−1(1 + ϵ) y

||y||L
,

(63)

where ϵ is a significantly non-negative real quantity. If y0 = 0 then ||y||L is equivalent to ||y||2. Consider two
initialized positional encodings p1, p2 ∈ ToHn

1 lying in the tangent space of x = 0 which resembles locally to

26

Under review as submission to TMLR

the Euclidean space. If an HNN transforms the encodings with trainable parameters Θ, then the transformed
encodings can be represented as,

p̂1 = p1Θ p̂2 = p2Θ (64)

After the transformation, the encodings are mapped to the Hyperboloid space by applying the exponential
map.

phyp
1 = exp(p̂1) = sinh(||p̂1||) p̂1

||p̂1||

phyp
2 = exp(p̂2) = sinh(||p̂2||) p̂2

||p̂2||

(65)

Assuming the scalar terms γ1 = sinh(||p̂1||)
||p̂1|| and γ2 = sinh(||p̂2||)

||p̂2|| , we have phyp
1 = γ1p1Θ and phyp

2 = γ2p2Θ.
The distance between phyp

1 and phyp
2 is

dH(phyp
1 , phyp

2) = cosh−1(−⟨phyp
1 , phyp

2 ⟩L) (66)

From Lemma 2, we have the following inequality

dH(phyp
1 , phyp

2) ≥ k

2 dE(phyp
1 , phyp

2)

∀ dE(phyp
1 , phyp

2) ∈ [1,
4

√
1 + k2

k2]

= k

2 dE(γ1p̂1, γ2p̂2)

= k

2 dE(γ1p1Θ, γ2p2Θ)

= k

2 ∥γ1p1Θ − γ2p2Θ∥

(67)

Using the properties of Euclidean norm, we have,

k

2 ∥γ1p1Θ − γ2p2Θ∥ ≤ k

2 ∥Θ∥F ∥γ1p1 − γ2p2∥

k

2 ∥γ1p1Θ − γ2p2Θ∥ ≥ k

2 (||γ1p1Θ|| − ||γ2p2Θ||)
(68)

Therefore, ∃ Θ′ such that ∥Θ′∥F ≤ 1 with satisfies the following

dH(phyp
1 , phyp

2) ≥ k

2 ∥Θ′∥F ∥γ1p1 − γ2p2∥ ≥ k

2 ∥γ1p1Θ − γ2p2Θ∥ (69)

WLOG, we can assume γ1 ≥ γ2, we have,

dH(phyp
1 , phyp

2) ≥ kγ2

2 ∥Θ′∥F ∥p1 − p2∥

= k′

2 ∥p1 − p2∥,

(70)

where k′ = kγ2

HGCN If we want to transform the positional encodings with HGCN with trainable parameters Φ, then
we need to first feed the encodings to the dense layer. Now applying Φ, the transformed encodings can be
expressed as,

p̂1 = p1Φ p̂2 = p2Φ (71)

27

Under review as submission to TMLR

The adjacency matrix is applied to the transformed encodings which result in pA
1 = 1

d1

∑
j∈N(1)∪p̂1

p̂j and

pA
2 = 1

d2

∑
j∈N(2)∪p̂2

p̂j where d1, d2 are the degrees for node 1 and 2 respectively with p̂j are the corresponding

neighbors’ features. Now ∃ C1, C2 such that,

||pA
1 || ≥ 1

d1
C1||p̂1|| ||pA

2 || ≥ 1
d2

C2||p̂2|| (72)

Now the updated positional encodings are reverted to the Hyperboloid space by applying the following
exponential map

phyp
1 = exp(pA

1) = sinh(||pA
1 ||) pA

1
||pA

1 ||

phyp
2 = exp(pA

2) = sinh(||pA
2 ||) pA

2
||pA

2 ||

(73)

Replacing the scalar terms as α1 = sinh(||pA
1 ||)

||pA
1 || and α2 = sinh(||pA

2 ||)
||pA

2 || , we have phyp
1 = α1pA

1 and phyp
2 = α2pA

2 .
Therefore, the distance between phyp

1 and phyp
2 is

dB(phyp
1 , phyp

2) = cosh−1(−⟨phyp
1 , phyp

2 ⟩L). (74)
From Theorem 2, we have the following inequality

dH(phyp
1 , phyp

2) ≥ k

2 dE(phyp
1 , phyp

2)

∀ dE(phyp
1 , phyp

2) ∈ [1,
4

√
1 + k2

k2]

= k

2 dE(α1pA
1 , α2pA

2)

= k

2 ∥α1pA
1 − α2pA

2 ∥

≥ k

2 (α1||pA
1 || − α2||pA

2 ||)

≥ k

2 (α1C1

d1
||p̂1|| − α2C2

d2
||p̂2||)

= k

2

(
α1C1

d1
||p1Φ|| − α2C2

d2
||p2Φ||

)

(75)

WLOG, we can assume α1C1 ≥ α2C2, then

dH(phyp
1 , phyp

2) ≥ kα2C2

2

(
||p1Φ

d1
|| − ||p2Φ

d2
||
)

(76)

Using the properties of the Euclidean vector norm we have,

∥p1Φ
d1

− p2Φ
d2

∥ ≤ ∥Φ∥F ∥p1

d1
− p2

d2
∥

∥p1Φ
d1

− p2Φ
d2

∥ ≥ ||p1Φ
d1

|| − ||p2Φ
d2

||
(77)

Therefore, ∃ Φ′ with ∥Φ′∥F ≤ 1 such that

dH(phyp
1 , phyp

2) ≥ kα2C2

2 ∥Φ′∥F ∥p1

d1
− p2

d2
∥

≥ kα2C2

2d
∥Φ′∥F ∥p1 − p2∥

where d = max{d1, d2}

= k′

2d
∥Φ′∥F ∥p1 − p2∥

(78)

28

Under review as submission to TMLR

Therefore, we have shown that an HGCN architecture exists such that the distance between two positional
encodings increases compared to the same in Euclidean space.

29

Under review as submission to TMLR

B Details of the Datasets

The details of the datasets involved in the experiments are provided as follows,

Table 5: Details of the datasets from (Dwivedi et al., 2020) and (Hu et al., 2020a)

Name #Graphs Avg # Nodes Avg # Edges Task Directed Metric

PATTERN 14000 118.9 3, 039.3 binary classif. No Accuracy
CLUSTER 12000 117.2 2, 150.9 6-class classif. No Accuracy
MNIST 70, 000 70.6 564.5 10-class classification Yes Accuracy
CIFAR10 60, 000 117.6 941.1 10-class classification Yes Accuracy

ogbg-molhiv 41127 25.5 27.5 binary classif. No AUROC
ogbg-ppa 158, 100 243.4 2, 266.1 37-task classic. No Accuracy
ogbg-molpcba 437, 929 26.0 28.1 128-task classif. No Avg. Precision
ogbg-code2 452, 741 125.2 124.2 5 token sequence No F1 score

Table 6: Details of the Co-author and Co-purchase datasets

Dataset Nodes Edges Features Classes

Amazon photo 13752 491722 10 767
Amazon Computers 7650 238162 8 745
Coauthor CS 18333 81894 15 6805
Coauthor Physics 34493 495924 5 8415

PATTERN and CLUSTER are molecular datasets generated from Stochastic Block Model (Abbe,
2018). The prediction task here is an inductive node-level classification. In PATTERN the task is to identify
which nodes in a graph belong to one of 100 different sub-graph patterns which were randomly generated
with different SBM parameters. In CLUSTER, every graph is composed of 6 SBM-generated clusters, each
drawn from the same distribution, with only a single node per cluster containing a unique cluster ID. Our
target is predict the cluster ID of the nodes.

MNIST and CIFAR10 are generated from image classification datasets of similar names. Superpixel
datasets are constructed by an 8 nearest-neighbor graph of SLIC superpixels for each image. The 10-class
classification tasks and standard dataset splits follow the original image classification datasets, i.e., for
MNIST 55K/5K/10K and CIFAR10 45K/5K/10K train/validation/test graphs.

ogbg-molhiv and ogbg-molpcba are molecular property prediction datasets designed by OGB from
MoleculeNet. The molecules are represented by the nodes (atoms) and edges (bonds). The node and edge
features are generated from a similar source, which represents chemo-physical properties. The prediction
task of ogbg-molhiv is the binary classification of the molecule’s suitability for combating the replication of
HIV. On the other hand, ogbg-molpcba, derived from PubChem BioAssay, is tasked to predict the results
of 128 bioassays in multi-task binary classification.
setting.

ogbg-ppa (CC-0 license) consists of protein-protein association (PPA) networks derived from 1581 species
categorized into 37 taxonomic groups. Nodes represent the proteins and edges are poised to encode the
normalized level of 7 different associations between that pair of proteins. The target task is to classify to
one of the 37 groups of the PPA network.

ogbg-code2 (MIT License) is comprised of abstract syntax trees (ASTs) constructed from the source
code of functions written in Python. The task is to predict the first 5 subtokens of the original function’s
name. A small number of these ASTs are much larger than the average size in the dataset. Therefore we
truncated ASTs with over 1000 nodes and kept the first 1000 nodes according to their depth in the AST.
The processing only impacted 2521 (0.5%) graphs in the entire dataset.

30

Under review as submission to TMLR

Co-authorship datasets Coauthor CS and Coauthor Physics are two co-authorship networks (Shchur
et al., 2018). Nodes represent authors and edges exist between them if they co-authored a paper. The
features of the nodes represent the keywords related to the paper of the author. Label of the each node
denotes the field of the study of the corresponding author.

Co-purchase datasets Amazon Computers and Amazon Photo are two co-purchase networks (Shchur et al.,
2018) where each node denotes products and an edge exists if two products are bought frequently. Node
features denote the bag-of-words representation of the product reviews. Node labels indicate the product
category.

C Computational Resources

We run the experiments on the datasets with the standard train/validation/test splits. The mean and
standard deviations are reported after 10 runs on multiple random seeds for each dataset. All experiments
are done on a single GPU GeForce RTX 3090 with 24GB memory capacity.

D Hyperparameter Details

In this section, we will describe the hyperparameters of every dataset employed for the experimentation.
Refer Tto ables 7, 8, 9, 10, and 14 for the hyperparameters of category-wise positional encodings for MNIST,
CIFAR10, PATTERN, CLUSTER, ogbg-molhiv, ogbg-ppa, ogbg-molpcba, and ogbg-code2 datasets, respec-
tively. The hyperparameters are adjusted from the initial setting, which is inspired by SAN (Kreuzer et al.,
2021), GraphGPS (Rampášek et al., 2022), SAT (Chen et al., 2022), and GraphGPS (Rampášek et al., 2022).
The model parameters are optimized by the Adam (Kingma & Ba, 2014) optimizer with the default settings.
The learning rate is adjusted after the number of "patience" epochs.

The hyperparameters of the Co-author and Co-purchase datasets are provided in Table 15. The dimension of
the positional vector is 128 when the eigenvectors of the Laplacian matrix for every network depth initialize
PEs. The dimension of PE is fixed at 8 when PEs are initialized with RWPE.

Table 7: Hyperparameters for the MNIST dataset
for every category of PE generated in the experi-
ments.

Hyperparameters / MNIST

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 4
Head 8
Hidden Dim 80
Curvature 1.0
Activation ReLU
PE Layers 2
Dropout 0.0
Layernorm False
Batchnorm True
PE Dim 6
Graph Pooling Sum
Batch size 128
Init LR 0.001
Epochs 1000
Patience 10
Weight Decay 0.0

Table 8: Hyperparameters for CIFAR10 dataset for
every category of PE generated in the experiments.

Hyperparameters / CIFAR10

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 4
Head 8
Hidden Dim 80
Curvature 1.0
Activation ReLU
PE Layers 2
Dropout 0.0
Layernorm False
Batchnorm True
PE Dim 16
Graph Pooling Mean
Batch size 128
Init LR 0.001
Epochs 1000
Patience 10
Weight Decay 0.0

E More Results on Ablation Study

We conduct ablation studies on the ogbg-molpcba and ogbg-code2 datasets from OGB. By varying different
modules of HyPE-GT, we generate a diverse set of learnable hyperbolic positional encodings. Refer to Figure
7 for detailed visualization. The variation in the performances is recorded across 8 categories of PEs. The
experiment underscores the utility of generating a diverse set of PEs for solving downstream tasks.

31

Under review as submission to TMLR

Table 9: Hyperparameters for PATTERN
dataset for every category of PE generated in the
experiments.

Hyperparameters / PATTERN

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 10 10
Head 8 8
Hidden Dim 80 80
Curvature 1.0 1.0
Activation ReLU ReLU
PE Layers 1 1
Dropout 0.0 0.0
Layernorm False False
Batchnorm True True
PE Dim 6 2
Graph Pooling Mean Mean
Batch size 26 26
Init LR 0.0005 0.0003
Epochs 1000 1000
Patience 10 10
Weight Decay 0.0 0.0

Table 10: Hyperparameters for CLUSTER
dataset for every category of PE generated in the
experiments.

Hyperparameters / CLUSTER

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 10 10
Head 8 8
Hidden Dim 80 80
Curvature 1.0 1.0
Activation ReLU ReLU
PE Layers 4 2
Dropout 0.0 0.0
Layernorm False False
Batchnorm True True
PE Dim 6 16
Graph Pooling Mean Mean
Batch size 32 32
Init LR 0.0005 0.0003
Epochs 1000 1000
Patience 10 10
Weight Decay 0.0 0.0

Table 11: Hyperparameters for ogbg-molhiv
dataset for every category of PE generated in the
experiments.

Hyperparameters / ogbg-molhiv

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 10
Head 4
Hidden Dim 64
Curvature 1.0
Activation ReLU
PE Layers 2
Dropout 0.01
Layernorm False
Batchnorm True
PE Dim 32
Graph Pooling Max
Batch size 64
Init LR 0.0001
Epochs 1000
Patience 20
Weight Decay 0.0

Table 12: Hyperparameters for the ogbg-ppa
dataset for every category of PE generated in the
experiments.

Hyperparameters / ogbg-ppa

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 2
Head 2
Hidden Dim 16
Curvature 1.0
Activation ReLU
PE Layers 2
Dropout 0.0
Layernorm False
Batchnorm True
PE Dim 8
Graph Pooling Sum
Batch size 16
Init LR 0.0003
Epochs 1000
Patience 15
Weight Decay 0.0

F Comparative Study on Number of Parameters

We perform a comparative study on the parameters of the existing Graph Transformers like GraphTrans-
former (Dwivedi & Bresson, 2020), SAN (Kreuzer et al., 2021), SAT (Chen et al., 2022), Graphormer (Ying
et al., 2021), EGT (Hussain et al., 2022), and GraphGPS (Rampášek et al., 2022) with our proposed method
HyPE-GT. Refer to Table ?? for detailed information regarding the number of model parameters. The num-
ber of parameters from both variants is equal because the variants are structurally identical, but they differ
only in the way PEs are incorporated. For PATTERN and CLUSTER, both our variants have several param-
eters comparable with GraphTransformer, SAN, and EGT. But as GraphGPS is a linearized Transformer
architecture. Therefore, it is desirable to have a lower number of parameters. However, the SAT has a much
higher number of parameters. On the other side, our framework produces a higher number of parameters
compared to EGT and GraphGPS (as the rest of the methods do not report the numbers). Still, HyPE-GT
outperforms all methods. Lastly, our framework produces the lowest number of parameters compared to all
SOTA approaches, and it also achieves the best performance on the dataset. As ogbg-molhiv is one of the
large-scale graphs, the performance of the framework is evidence of the efficacy of the hyperbolic positional
encodings.

32

Under review as submission to TMLR

Table 13: Hyperparameters for the ogbg-
molpcba dataset for every category of PE gen-
erated in the experiments.

Hyperparameters / ogbg-molpcba

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 5
Head 4
Hidden Dim 304
Curvature 1.0
Activation ReLU
PE Layers 2
Dropout 0.2
Layernorm False
Batchnorm True
PE Dim 32
Graph Pooling Mean
Batch size 512
Init LR 0.0005
Epochs 1000
Patience 20
Weight Decay 0.0

Table 14: Hyperparameters for the ogbg-code2
dataset for every category of PE generated in the
experiments.

Hyperparameters / ogbg-code2

PE Category 1 2 3 4 5 6 7 8

HyPE-GT Layers 4
Head 4
Hidden Dim 16
Curvature 1.0
Activation ReLU
PE Layers 1
Dropout 0.2
Layernorm False
Batchnorm True
PE Dim 8
Graph Pooling Mean
Batch size 32
Init LR 0.0001
Epochs 1000
Patience 20
Weight Decay 0.0

Table 15: Hyperparameters for Co-author and Co-purchase datasets

Hyperparameters Amazon photo Amazon computers Coauthor CS Coauthor Physics
Learning rate 0.01 0.01 0.01 0.01
PE Dim 128/8 128/8 128/8 128/8
Hidden Dim 64 64 64 64
#PE Layers 2 2 2 2
Activation ReLU ReLU ReLU ReLU
Dropout 0.50 0.50 0.20 0.20
Curvature 1.0 1.0 1.0 1.0
weight decay 0.0005 0.0005 0.0005 0.0005
Training Epochs 500 500 500 500

ogbg-molpcba
(Higher is better)

ogbg-code2
(Higher is better)

Figure 7: The performance of HyPE-GT on ogbg-molpcba and ogbg-code2 for 8 different categories of PEs
is presented.

33

Under review as submission to TMLR

Table 16: A comparative study on the number of parameters of HyPE-GT with the other existing Graph
Transformers.

Method / Data Init PE Hyperbolic Manifold Hyperbolic NN PATTERN CLUSTER MNIST CIFAR10 ogbg-molhiv
GraphTransformer (Dwivedi & Bresson, 2020) 523146 522742 - - -
SAN (Kreuzer et al., 2021) 507,202 519,186 - - 528265
Graphormer (Ying et al., 2021) - - - - 47.0M
SAT (Chen et al., 2022) 825,986 741,990 - - -
EGT (Hussain et al., 2022) 500000 500000 100000 100000 110.8M
GraphGPS (Rampášek et al., 2022) 337201 502054 115,394 112,726 558625

HyPE-GT (ours)

LapPE
Hyperboloid HGCN 524022 524426 369390 371150 389441

HNN 523382 524426 369390 369550 390465

Poincare Ball HGCN 523382 524426 369390 369550 388929
HNN 523382 524666 369390 369550 388929

RWPE
Hyperboloid HGCN 523142 524666 368830 368990 390465

HNN 523142 524666 368830 368990 390465

Poincare Ball HGCN 523142 524666 368830 369790 390465
HNN 524426 524666 368830 369790 390465

34

	Introduction
	Related Works
	Proposed Method
	Preliminaries and Notations
	Transformers on Graphs
	Preliminaries on Hyperbolic Spaces
	Learnable Hyperbolic Positional Encodings: An Overview
	Initialization of Positional Encodings
	Choice of Manifold
	Learning through Hyperbolic Neural Architectures
	Complete Pipeline of HyPE-GT Framework
	Motivation behind choosing the Hyperbolic Space
	Theoretical Analysis
	Distance Properties
	Distinctive Properties of Hyperbolic Positional Encodings via Learning Models

	An Intuitive Explanation of Theoretical Analyses
	Complexity Analysis

	Experiments & Results
	Datasets
	Experimental Setup
	Results & Discussion
	Depth of the Hyperbolic Networks in HyPE-GT

	Ablation Study
	Selection Criteria of Positional Encodings

	Effect of the Readout Methods
	Limitations
	Conclusion & Future Works
	Appendix
	Proofs

	Details of the Datasets
	Computational Resources
	Hyperparameter Details
	More Results on Ablation Study
	Comparative Study on Number of Parameters

