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Abstract

Graph neural networks (GNNs) have been demonstrated to achieve state-of-the-art
performance for a number of graph-based learning tasks, which leads to a rise in their
employment in various domains. However, it has been shown that GNNs may inherit
and even amplify bias within training data, which leads to unfair results towards certain
sensitive groups. Meanwhile, training of GNNs introduces additional challenges, such as
slow convergence and possible instability. Faced with these limitations, this work proposes
FairNorm, a unified normalization-based framework that reduces the bias in GNN-based
learning while also providing provably faster convergence. Specifically, FairNorm presents
individual normalization operators over different sensitive groups and introduces fairness
regularizers on the learnable parameters of normalization layers to reduce the bias in
GNNs. The design of the proposed regularizers is built upon analyses that illuminate the
sources of bias in graph-based learning. Experiments on node classification over real-world
networks demonstrate the efficiency of the proposed scheme in improving fairness in terms of
statistical parity and equal opportunity compared to fairness-aware baselines. In addition,
it is empirically shown that the proposed framework leads to faster convergence compared
to the naive baseline where no normalization is employed.

1 Introduction

Graphs are powerful tools for modeling complex systems and the relations within them. Hence, they are
widely employed to represent various real-world systems, such as gene networks, traffic networks, and social
networks to name a few. Such expressiveness has led to rising attention towards learning over graphs, and it
has been shown that graph neural networks (GNNs) achieve the state-of-the-art for several tasks over graphs
(Gori et al., 2005; Scarselli et al., 2008; Hamilton et al., 2017a; Kipf & Welling, 2017; Veličković et al.,
2018; Xu et al., 2018b). GNNs create node representations by repeatedly aggregating information from the
neighbors, which can be employed on ensuing tasks such as traffic forecasting (Opolka et al., 2019), crime
forecasting (Jin et al., 2020), and recommender systems (Ying et al., 2018).

Machine learning (ML) models have been widely used in various domains to make critical decisions.
Therefore, it is essential to prevent discriminatory behavior in these models towards under-represented
groups. However, it has been demonstrated that ML models propagate the potential bias within the training
data (Dwork et al., 2012; Beutel et al., 2017) and lead to discriminatory results in ensuing applications.
Particular to GNNs, it has been shown that in addition to propagating the already existing bias, GNN-based
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learning may even amplify it due to the utilization of biased graph topologies (Dai & Wang, 2021). This
well-motivates the studies in fairness-aware GNN-based learning.

Normalization operations shift and scale the hidden representations created in deep neural networks (DNNs)
in order to accelerate the optimization process in training (Ioffe & Szegedy, 2015; Ulyanov et al., 2016; Ba
et al., 2016; Salimans & Kingma, 2016; Xiong et al., 2020; Miyato et al., 2018; Wu & He, 2018; Santurkar et al.,
2018). While the other aspects of GNN-based learning are theoretically investigated, such as generalization
(Scarselli et al., 2018; Xu et al., 2019b) and expressiveness (Xu et al., 2018a; Loukas, 2020; Ying et al., 2021),
the optimization of GNNs is analytically an under-explored area. Practically, training GNNs generally has
a slow convergence rate and is accompanied by instability issues (Xu et al., 2018a). Inspired by this, Cai
et al. (2021) investigates the effect of a shift operation on a simple GNN-based learning environment and
proposes a normalization framework that is suitable for GNNs. The proposed framework in Cai et al. (2021),
GraphNorm, is demonstrated to be more effective in improving convergence speed over graphs compared to
previously presented normalization strategies in other domains.

It has been shown in Balunovic et al. (2021) that the distributional discrepancy between the representations
among different sensitive groups is one of the leading factors to bias in general ML algorithms. For GNNs,
fairness analyses have also shown that the distributions of the representations of different sensitive groups are
key factors that affect the resulting bias (Li et al., 2020; Kose & Shen, 2022). Note that normalization layers
learn the parameters that manage the sample mean and variance of these hidden representations. Hence,
the normalization can be readily applied to manipulate the related statistics to reduce the bias, while also
improving the convergence. Motivated by this, this study proposes a unified GNN-based learning framework,
FairNorm, that provides a faster convergence through the employment of a normalization layer, while also
mitigating the bias with novel fairness-aware regularizers on the learnable parameters in the introduced
normalization layer. Overall, the contributions of the present work can be summarized as follows:
c1) We propose a framework that can reduce bias while providing a higher convergence speed for a GNN-
based learning environment. To the best of our knowledge, FairNorm is the first attempt to improve fairness
and convergence speed in a unified framework.
c2) The effect of the proposed shift operations on convergence rate is investigated in a simple GNN-based
learning framework. It is analytically shown that the proposed shift operations can improve the convergence
rate for node classification compared to the case where no shift is employed.
c3) Fairness-aware regularizers are introduced on the trainable parameters of the normalization layers. The
design of the regularizers is based on theoretical understanding regarding the sources of bias in GNNs.
c4) Empirical results are obtained over real-world networks in terms of utility and fairness metrics for
node classification. It is demonstrated that compared to fairness-aware baselines, FairNorm leads to an
improvement in fairness metrics while providing comparable utility. Meanwhile, it is empirically shown that
FairNorm enhances the convergence speed with respect to the no-normalization baseline.

2 Related Work

Fairness-aware learning over graphs: Rahman et al. (2019) serves as a seminal work for random walk-
based fairness-aware learning over graphs. In addition, Dai & Wang (2021); Bose & Hamilton (2019); Fisher
et al. (2020) propose to use adversarial regularizors to reduce bias in GNNs. Another approach is to utilize
a Bayesian approach where the sensitive information is modeled in the prior distribution to enhance fairness
over graphs (Buyl & De Bie, 2020). Furthermore, Ma et al. (2021) performs a PAC-Bayesian analysis and
links the notion of subgroup generalization to accuracy disparity, and Zeng et al. (2021) proposes several
strategies including GNN-based ones to reduce bias for the representations of heterogeneous information
networks. Specifically for fairness-aware link prediction, while Buyl & De Bie (2021) introduces a regularizer,
Li et al. (2020); Laclau et al. (2021) propose strategies that alter the adjacency matrix. With a specific
consideration of individual fairness over graphs, Dong et al. (2021b) proposes a ranking-based framework.
Another research direction in fairness-aware graph-based learning is to modify the graph structure to combat
bias resulted from the graph connectivity (Agarwal et al., 2021; Spinelli et al., 2021; Kose & Shen, 2022;
Köse & Shen, 2021). Differing from all previous works, the proposed framework herein proposes a unified
framework that can mitigate bias in GNN-based learning together with an enhanced convergence speed.
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Normalization: Batch Normalization (BatchNorm) (Ioffe & Szegedy, 2015) is the pioneering study that
proposes to shift and scale the hidden representations in a batch to accelerate the convergence of training
for DNNs. Following that, several normalization strategies are presented so far for different domains (Huang
et al., 2020; Ioffe & Szegedy, 2015; Ulyanov et al., 2016; Ba et al., 2016; Salimans & Kingma, 2016; Xiong
et al., 2020; Miyato et al., 2018; Wu & He, 2018; Santurkar et al., 2018; Xu et al., 2019a; Dong et al.,
2021a; Huang et al., 2022). Specifically, LayerNorm is presented for natural language processing (Ba et al.,
2016), and InstanceNorm (Ulyanov et al., 2016) seeks to improve the optimization for style transfer tasks,
while Yi et al. (2018); Sun et al. (2020) target at permutation-equivalent data processing. Moreover, Chang
et al. (2019) presents a domain-specific normalization technique for unsupervised domain adaptation, and
Liu et al. (2020); Yu et al. (2020) provide normalization-based solutions for adversarial robustness and image
inpainting, respectively.

For GNNs, Xu et al. (2018a) adapts BatchNorm within the framework of graph isomorphism networks, while
a prior version of Dwivedi et al. (2020) normalizes node features based on the graph size. By taking the
graph structure into account, Chen et al. (2022) proposes two novel normalization techniques, as well as an
attention mechanism that learns a weighted combination of multiple graph-aware normalization strategies.
A size-agnostic normalization for graphs, GraphNorm is proposed in (Cai et al., 2021), which improves
InstanceNorm for graphs with a learnable shift to prevent degradation in expressiveness. Normalization
frameworks are also utilized to combat the over-smoothing issue over GNNs, where Zhou et al. (2020) applies
the normalization independently over clusters that are defined with respect to the class labels, and Zhao &
Akoglu (2020) normalizes the total pairwise feature distances. It is important to note that the cluster-wise
normalization introduced in Zhou et al. (2020) aims to improve the discrimination of the representations
from different classes. However, the cluster definition therein differ significantly from the present work.
Furthermore, none of the aforementioned normalization schemes consider fairness.

3 Preliminaries

This study develops a unified training scheme for GNNs that can improve fairness while at the same time
enhance the convergence speed, given an input graph G :“ pV, Eq, where V :“ tv1, v2, ¨ ¨ ¨ , vN u denotes the
node set, and E Ď V ˆ V is the edge set. Matrices X P RF ˆN and A P t0, 1uNˆN are the feature and
adjacency matrices, respectively, where Aij “ 1 if and only if pvi, vjq P E and F is the dimension of features.
Degree matrix D P RNˆN is defined to be a diagonal matrix with the nth diagonal entry denoting the
degree of node vn. In this study, the sensitive attributes of the nodes are denoted by s P t0, 1uN , where
the existence of a single, binary sensitive attribute is considered. Furthermore, S0 and S1 denote the set of
nodes whose sensitive attributes are 0 and 1, respectively. Node representations at kth layer are represented
by Hpkq P RF ˆN , where hj denotes the representation of node vj and hi,j is the ith feature of hj . Vectors
xj P RF and sj P t0, 1u will be used to denote the feature vector and the sensitive attribute of node vj .
Throughout the paper, maxp¨, . . . , ¨q outputs the element-wise maximum vector of its argument vectors, and
meanp¨, . . . , ¨q denotes the sample mean operator.

GNNs learn node embeddings by repeatedly aggregating information from neighboring nodes. GNNs with
different aggregation schemes have been developed, see in (Kipf & Welling, 2017; Veličković et al., 2018; Xu
et al., 2018a). A general formulation of GNNs in the matrix form can be written as:

Hpkq “ Act
´

WpkqHpk´1qQ
¯

where Wpkq represents the weight matrix of GNN at kth layer and Act denotes activation function. In
this formulation, Q matrix specifies the information aggregation process from neighbors, which changes in
different GNN frameworks. For example, Q “ D̂´ 1

2 ÂD̂´ 1
2 for Graph Convolutional Networks (GCN) (Kipf

& Welling, 2017), where Â “ A ` IN with IN P t0, 1uNˆN denoting the identity matrix, and D̂ is the degree
matrix corresponding to Â. Finally, the representations created after one aggregation process are denoted
by Zpkq “ Hpk´1qQ. Note that the superscript pkq for layer number is dropped in the remaining of the paper,
as the proposed framework is applicable to every layer in the same way.

3.1 Normalization for GNNs
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While different normalization schemes have been proposed for different domains, there is not a universal
normalization strategy that suits every domain (Cai et al., 2021). For GNNs, Cai et al. (2021) demonstrates
that mean normalization can degrade the expressiveness of the neural networks, as mean statistics incorporate
graph structural information. Motivated by this, Cai et al. (2021) proposes GraphNorm, which employs a
learnable shift to preserve the mean statistics to a certain extent. The study reports that GraphNorm
consistently achieves superior convergence speed and training stability on graph classification for GNNs
over other normalization strategies. For the input matrix A P RF ˆN , GraphNorm can be mathematically
described as:

GraphNorm pai,jq “ γi ¨
Ai,j ´ αi ¨ mi

σ̂i
` βi, @i “ 1, . . . F (1)

where mi “

řN
j“1 ai,j

N , σ̂2
i “

řN
j“1pai,j ´αi¨miq

2

N , and αi, γi, βi are the learnable parameters.

3.2 Bias in GNNs

ML models can lead to discriminatory results towards certain under-represented groups, as they propagate
the bias within the training data (Dwork et al., 2012; Beutel et al., 2017). It has been demonstrated that
the utilization of graph structure in GNNs amplifies the already existing bias (Dai & Wang, 2021). Thus,
understanding the sources of bias in graph structure is crucial to develop a remedy for it. Motivated by
this, Li et al. (2020) and Kose & Shen (2022) investigate the sources of bias in GNN-based learning. In Li
et al. (2020), the representation discrepancy between different sensitive groups is examined, whereas in Kose
& Shen (2022), the bias analysis is based on the correlation between the aggregated representations Z and
sensitive attributes s. Though through different approaches, both analyses in Li et al. (2020, Theorem 4.1)
and Kose & Shen (2022, Theorem 3.1) demonstrate the parallelism between the terms }µp0q ´µp1q}, }∆} and
bias in GNN-based learning. Here, µp0q and µp1q are the sample means of node representations respectively
across each sensitive group, where µpnq “ meanphj | vj P Snq, and ∆ stands for the maximal deviations
of hidden representations, that is ∆pnq

i “ maxj |h
pnq

i,j ´ µ
pnq

i |, @i “ 1, ¨ ¨ ¨ , F and ∆ “ maxp∆p0q, ∆p1qq. The
superscript pnq in hpnq

j is utilized to specify the sensitive group index. Specifically, the hidden representation
hpnq

j corresponds to a node vj P Sn.

As the analyses in Li et al. (2020); Kose & Shen (2022) suggest that the distributions of hidden representations
corresponding to different sensitive groups influence the resulted bias by GNNs, a tool that can shift these
group-wise distributions can effectively decrease bias-related terms, and hence the overall bias.

4 FairNorm: A Fair and Fast Training Framework for GNNs

This section presents the proposed unified framework that achieves fairness improvement together with faster
convergence speed for GNN-based learning. Herein, we first present a group-wise normalization framework
(M-Norm), upon which we develop FairNorm by incorporating two novel fairness regularizers on M-norm for
fairness-enhancement.

4.1 Group-wise Normalization

It has been demonstrated in Li et al. (2020); Kose & Shen (2022) that decreasing }µp0q ´ µp1q} and ∆ can
effectively reduce bias in GNN-based learning. Note that both terms are affected by the distributions of
representations from different sensitive groups. On the other hand, the mean and standard deviation of
the hidden representations, and in turn their distributions, are affected by the learnable parameters of a
normalization layer. Thus, employing such a layer can enable manipulating said distributions, which can be
used to improve fairness. Inspired by this, the proposed framework, FairNorm, first applies normalizations
to different sensitive groups individually, which results in individual learnable parameters affecting µp0q, and
µp1q, as well as their difference. For any input matrix A P RF ˆN , given that the columns of A can be divided
into two sensitive groups S0 and S1, the corresponding multiple group-wise normalization operations can
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be mathematically described as:

M-Norm
´

a
pnq

i,j

¯

“ γ
pnq

i ¨
A

pnq

i,j ´ α
pnq

i ¨ m
pnq

i

σ
pnq

i

` β
pnq

i , (2)

where m
pnq

i “

ř|Sn|

j“1 a
pnq

i,j

|Sn|
, pσ

pnq

i q2 “

ř|Sn|

j“1

´

a
pnq

i,j
´m

pnq

i

¯2

|Sn|
, and α

pnq

i , γ
pnq

i , β
pnq

i are learnable parameters, @i “

1, . . . , F and n “ 0, 1. The superscript pnq in Apnq

j specifies that the representation corresponds to a node
from the sensitive group Sn. Considering that mean normalization can degrade the expressiveness of GNNs
(Cai et al., 2021), the proposed framework employs the learnable parameter α that manages the amount of
mean normalization.

It is demonstrated in Cai et al. (2021) that applying a shift operation over the whole graph can speed up
the convergence for graph classification. However, as the proposed framework herein applies multiple shift
operations individually over subgraphs corresponding to different sensitive groups and considers the node
classification task, the effect of the proposed strategy on the convergence speed becomes unclear. Hence, the
analysis in Cai et al. (2021) cannot be directly applied to this case. Motivated by this, this study analytically
examines the influence of group-wise shifts on the convergence speed.

Shift operations over different sensitive groups can be applied in matrix forms via the matrices Np0q and Np1q,
where Npnq “ IN ´ 1

|Sn|
epnqpepnqqJ for n “ 0, 1. In this formulation, epnq P RN is created such that e

pnq

j “ 1 if
vj P Sn, and e

pnq

j “ 0 otherwise. Therefore, for any vector c P RN , cJNpnq “ cJ ´ p 1
|Sn|

ř

j:vj PSn cjqpepnqqJ.
Hence, the group-wise shift operations applied to hidden representations can be written as:

MShiftpWpkqHpk´1qQq “ WpkqHpk´1qQNp0qNp1q. (3)

The following lemma demonstrates that Np0qNp1q acts as a preconditioner of Q, whose proof is presented in
Appendix A.

Lemma 1 Let λi and σi denote the ith singular values of Q and QNp0qNp1q, respectively. It can be shown
that QNp0qNp1q has at least two singular values being equal to zero, i.e., γN “ γN´1 “ 0. Without loss of
generalization, assume 0 ď λ1 ď ¨ ¨ ¨ ď λN and 0 ď γ1 ď γ2 ď ¨ ¨ ¨ ď γN´2. Then, the following holds:

λ1 ď γ1

λ2 ď γ2

...
λN´2 ď γN´2 ď λN , (4)

where the equalities hold, i.e., λi “ γi or λN “ γN´2, only if Q has a right singular vector α for which
pep0qqJα “ 0 and pep1qqJα “ 0 are satisfied.

In other domains, such as DNNs or iterative algorithms, a similar preconditioning is considered to help
the training (Kingma & Ba, 2014; Axelsson, 1985). Such a preconditioning of the aggregation matrix Q
is also demonstrated to accelerate the optimization of GNNs (Cai et al., 2021). In order to theoretically
investigate such an effect in our setting, we considered a basic linear GNN model for node classification that
is optimized via gradient descent, and presented its convergence analysis in Theorem 1. Appendix B presents
all assumptions and considered learning settings employed in Theorem 1 in detail, as well as its proof.

Theorem 1 Let wV anilla
t and wMShift

t denote the parameters of a linear GNN model at time t for the cases
where no shift is applied and shift operations Np0qNp1q are applied, respectively. It holds with high probability
that

›

›

›
wMShift

t ´ wMShift
˚

›

›

›

2
“ O

`

ρt
1
˘

and
›

›wVanilla
t ´ wVanilla

˚

›

›

2 “ O
`

ρt
2
˘

, where ρ1 ă ρ2. (5)

Here, wVanilla
˚ and wMShift

˚ denote the optimal values for wV anilla
t and wMShift

t , respectively. Thus, it
concludes that the shift operations applied through Np0qNp1q lead to faster convergence with high probability
compared to the scheme where no shift is applied.
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Theorem 1 demonstrates that the individual shift operations applied over different sensitive groups indeed
improve the convergence rate compared to the naive baseline. While the result of Theorem 1 seems to be
similar to the result of Cai et al. (2021, Proposition 3.1), the analysis in Cai et al. (2021) cannot be easily
extended to our proof due to the employment of group-wise shifts in this work and the fact that we consider
node classification instead of graph classification.

4.2 Fairness-aware Regularizers

As a complementary step to M-Norm, FairNorm introduces two novel fairness-aware regularizers to mitigate
bias in GNN-based learning. Consider the conventional case where the normalization is applied after linear
transformations (Ioffe & Szegedy, 2015; Xiong et al., 2020; Cai et al., 2021). For this case, the hidden
representations can be expressed in matrix form as:

Hpnq “ Act
´

M-Normpnq
´

pWHQq
pnq

¯¯

, for n “ 0, 1. (6)

In equation 6, pWHQq
pnq denotes the submatrix consisting the columns of pWHQq whose corresponding

nodes are in Sn. Furthermore, as the proposed strategy applies normalizations individually over different
sensitive groups, these group-wise normalization layers are differentiated by the superscript n “ 0, 1. Let
µ̄pnq P RF denote the sample mean of representations after normalization for the sensitive group Sn, n “ 0, 1.
In the proposed framework, recalling from Subsection 4.1, individual normalization layers are employed
to create individual learnable parameters for the distributions of different sensitive groups, so that the
bias-related terms derived in Li et al. (2020); Kose & Shen (2022) can be reduced. However, in order to
manipulate µ̄p0q and µ̄p1q for possible bias reduction, the relationship between }µp0q ´µp1q} and µ̄pnq’s should
be investigated. To this end, we present the following theorem, the proof of which can be found in Appendix
C.

Theorem 2 Let Actp.q be Lipschitz continuous with Lipschitz constant L, and let H̄pnq denote the normalized
representations in group Sn. Then, }µp0q ´ µp1q} is bounded above by

}µp0q ´ µp1q}p ď L
´

}µ̄p0q ´ µ̄p1q}p ` }∆̄p0q}p ` }∆̄p1q}p

¯

, @p ě 1. (7)

Here, ∆̄pnq is the maximal deviation of H̄pnq from µ̄pnq ( i.e., we have ∆̄pnq

i “ maxj |h̄
pnq

i,j ´ µ̄
pnq

i |, @i “

1, ¨ ¨ ¨ , F ).

Theorem 2 demonstrates that decreasing }µ̄p0q ´ µ̄p1q} results in a decreased upper bound for }µp0q ´ µp1q},
which can possibly reduce the actual value of }µp0q ´ µp1q}. Based on this result, as a second step after
applying group-wise normalization operators, FairNorm proposes the use of a regularizer term Lµ “ }µ̄p0q ´

µ̄p1q}2
2 to decrease bias for GNN-based learning. We note that many commonly used activation functions

such as ReLU, sigmoid, tanh, etc. have a Lipschitz constant equal to L “ 1.

Furthermore, Theorem 2 shows that the upper bound for }µp0q ´ µp1q} can also be decreased by reducing
the norms of maximal deviations ∆̄p0q and ∆̄p1q. Inspired by this finding, L∆ “ }∆̄p0q}2

2 ` }∆̄p1q}2
2 is also

introduced as a regularizer to reduce the norms of maximal deviations of the normalized representations.
Hence, the overall learning objective for the considered node classification task can be written as:

min
θGNN

Lc ` κLµ ` τL∆ (8)

where Lc is the classification loss, Lµ “ }µ̄p0q ´ µ̄p1q}2
2 “ }

´

γp0q mp0q
p1´αp0q

q

σp0q ` βp0q

¯

´
´

γp1q mp1q
p1´αp1q

q

σp1q ` βp1q

¯

}2
2 for M-Norm in equation 2. L∆ “ }∆̄p0q}2

2 ` }∆̄p1q}2
2, and ∆̄pnq

i “

γ
pnq

i

σ
pnq

i

maxj |r
pnq

i,j ´ m
pnq

i | for M-Norm defined in equation 2 @i “ 1, ¨ ¨ ¨ , F , where Rpnq “ pWHQq
pnq

denotes the representations input to the normalization layer and r
pnq

i,j is the element in ith row and jth
column of Rpnq matrix. GNN parameters are denoted by θGNN , and κ and τ are hyperparameters specifying
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the focus on the fairness regularizers.

Remark 1 (Order of normalization and activation). Although the proposed fairness regularizers
Lµ, L∆ are designed for the conventional case where the normalization is used before nonlinear activation,
it can be demonstrated that they can also reduce bias when the normalization is applied after activation,
where

Hpnq “ M-Normpnq
´

Act
´

pWHQq
pnq

¯¯

, for n “ 0, 1. (9)

In this case, it holds that µ̄pnq “ µpnq and }∆̄pnq} “ }∆pnq} for n “ 0, 1. Therefore, the employment of the
proposed fairness regularizers can naturally be extended to the case where the normalization is utilized after
activation, as the analyses in Li et al. (2020); Kose & Shen (2022) demonstrate that reducing }µp0q ´ µp1q}

and }∆} can help mitigate bias in GNN-based learning.

Remark 2 (Applicability to other normalization methods). Note that the proposed FairNorm
framework can be readily utilized together with other normalization techniques where the distribution of the
normalized representations depends on learnable parameters, e.g., BatchNorm (Ioffe & Szegedy, 2015), as
long as group-wise normalization is applied over each sensitive group.

Table 1: Dataset statistics

Dataset |S0| |S1| Inter-edges Intra-edges F

Pokec-z 4851 2808 1140 28336 59
Pokec-n 4040 2145 943 20901 59

Recidivism 9317 9559 298098 325642 17

5 Experiments

In this section, experimental results obtained on real-world datasets for a supervised node classification task
are presented. The performance of the proposed framework, FairNorm, is compared with baseline schemes
in terms of node classification accuracy and fairness metrics. Furthermore, the influence of the proposed
fairness-aware normalization strategy on convergence speed is examined.

5.1 Datasets and Settings

Datasets. In the experiments, three real-world networks are used: Pokec-z, Pokec-n (Dai & Wang, 2021),
and the Recidivism graph (Jordan & Freiburger, 2015). Pokec-z and Pokec-n are created by sampling the
anonymized, 2012 version of Pokec (Takac & Zabovsky, 2012), which is a social network used in Slovakia
(Dai & Wang, 2021). In Pokec networks, the region information is utilized as the sensitive attribute, where
the nodes are the users living in two major regions. Labels to be used in node classification are assigned
to be the binarized working field of the users. The information of defendants (corresponding to nodes) who
got released on bail at the U.S. state courts during 1990-2009 (Jordan & Freiburger, 2015) is utilized to
build the Recidivism graph, where the edges are formed based on the similarity of past criminal records
and demographics. Race is used as the sensitive attribute for this graph, and the node classification task
classifies defendants into bail (i.e., the defendant is not likely to commit a violent crime if released) or no bail
(i.e., the defendant is likely to commit a violent crime if released) (Agarwal et al., 2021). Table 1 presents
further statistical information on the utilized datasets. In the table, |S0| and |S1| are the cardinalities of the
sets of nodes with sensitive attributes 0 and 1, respectively. ’Inter-edges’ and ’Intra-edges’ correspond to the
number of edges linking nodes from different sensitive groups and the same sensitive group, respectively. F
in Table 1 denotes the dimension of nodal features.

Evaluation Metrics. Accuracy is used as the utility measure for node classification. Two quantitative
measures of group fairness metrics are reported in terms of statistical parity: ∆SP “ |P pŷ “ 1 | s “

0q ´ P pŷ “ 1 | s “ 1q| and equal opportunity: ∆EO “ |P pŷ “ 1 | y “ 1, s “ 0q ´ P pŷ “ 1 | y “ 1, s “ 1q|,
where y is the ground truth label, and ŷ denotes the predicted label. Lower values for ∆SP and ∆EO signify
better fairness performance (Dai & Wang, 2021).
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Implementation details. To comparatively evaluate our proposed framework, node classification is
utilized in a supervised setting. A two-layer GCN (Kipf & Welling, 2017) followed by a linear layer is
employed for the classification task, which is identical to the experimental setting used in Dai & Wang
(2021). A normalization layer follows after every GNN layer, where the normalization is applied after linear
transformations and before the non-linear activation, as suggested in Ioffe & Szegedy (2015); Cai et al. (2021).
For the hyperparameter selection of the GCN model, see Appendix D. This experimental framework is kept
the same for all baselines. Furthermore, training of the model is executed over 50% of the nodes, while the
remaining nodes are equally divided to be used as the validation and test sets. For each experiment, results
for five random data splits are obtained, and the average of them together with standard deviations are
presented. The hyperparameters of the proposed fairness-aware framework and all other baselines are tuned
via a grid search on cross-validation sets, see again Appendix D for the utilized hyperparameter values.

Baselines. This work aims to mitigate bias via employing fairness-aware regularizers, as well as to provide
a faster convergence through its utilized normalization layers. We note that similar to the proposed
regularizers, any other fairness-aware regularizer can be employed together with a normalization layer, for
these same purposes. In order to demonstrate the performance improvement of the proposed regularizers
over said alternatives, we compare the proposed framework with other fairness-aware regularizers. To
this end, the performance of 4 different baselines is presented. For improving fairness in a supervised
setting, FairGNN (Dai & Wang, 2021) employs adversarial debiasing and a covariance-based regularizer
(the absolute covariance between the sensitive attribute and estimated label ŷ). The results for these
regularizers are obtained both individually and together, where the framework that utilizes both regularizers
is called FairGNN (Dai & Wang, 2021). Furthermore, hyperbolic tangent relaxation of the difference of
demographic parity (HTRDDP ) that is proposed in Padh et al. (2021) is utilized as another baseline. Note
that, as DDP is not differentiable, its relaxations are used as fairness-aware regularizers for a gradient-based
optimization. It is worth emphasizing that the fairness regularizers proposed in this study are also applicable
to an unsupervised setting, while the covariance-based (also FairGNN) and HTRDDP regularizers can only
be used in a supervised framework.

5.2 Experimental Results
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(a) Pokec-n (ReLU)
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(b) Pokec-z (ReLU)
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(c) Recidivism (ReLU)
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(d) Pokec-n (Sigmoid)
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(e) Pokec-z (Sigmoid)
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Figure 1: Convergence for different graph data sets when the normalization is not applied (Nonorm) and
applied with/without fairness consideration (FairNorm/GraphNorm).

The results of node classification are presented in Table 2 in terms of fairness and utility metrics for both the
proposed framework and baselines. The results are obtained for two commonly utilized activation functions:
ReLU and sigmoid, in order to demonstrate the efficacy of the proposed framework over different activations.
In Table 2, “NoNorm” denotes the scheme where no normalization layer is employed. “M-Norm” stands for
the proposed framework where only individual normalizations are applied to the nodes belonging to different
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Table 2: Comparative Results with Baselines for Different Activation Function Selections

ReLU Sigmoid

Pokec-z Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

NoNorm 70.24 ˘ 1.0 6.77 ˘ 1.8 6.18 ˘ 2.5 70.25 ˘ 0.8 7.40 ˘ 1.8 6.04 ˘ 3.1
M-Norm 70.71 ˘ 0.8 5.57 ˘ 1.3 5.00 ˘ 2.0 69.84 ˘ 0.7 6.21 ˘ 1.4 4.44 ˘ 2.1

Covariance 70.66 ˘ 0.8 5.31 ˘ 1.4 4.56 ˘ 1.9 69.77 ˘ 0.6 5.63 ˘ 1.9 4.04 ˘ 2.1
Adversarial 70.35 ˘ 0.9 2.41 ˘ 1.0 2.16 ˘ 0.6 70.01 ˘ 0.9 3.08 ˘ 2.8 3.00 ˘ 2.4
FairGNN 70.34 ˘ 1.1 2.78 ˘ 1.5 2.73 ˘ 1.0 69.93 ˘ 0.7 4.55 ˘ 2.2 4.71 ˘ 2.7
HT RDDP 70.38 ˘ 0.9 2.12 ˘ 2.0 3.38 ˘ 1.5 69.74 ˘ 0.7 1.85 ˘ 1.1 2.27 ˘ 1.8

FairNorm 70.67 ˘ 1.0 1.35 ˘ 1.2 1.90 ˘ 1.8 69.73 ˘ 0.9 1.71 ˘ 0.3 1.48 ˘ 1.1

Pokec-n Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

NoNorm 69.29 ˘ 0.8 1.66 ˘ 1.6 2.19 ˘ 1.8 68.73 ˘ 0.6 2.68 ˘ 2.2 2.27 ˘ 2.4
M-Norm 69.25 ˘ 0.5 2.48 ˘ 1.2 2.91 ˘ 1.7 68.59 ˘ 0.9 1.78 ˘ 2.1 2.88 ˘ 1.8

Covariance 69.47 ˘ 0.6 2.06 ˘ 1.3 2.42 ˘ 1.5 68.40 ˘ 1.1 1.70 ˘ 2.2 2.26 ˘ 1.8
Adversarial 69.30 ˘ 0.4 2.09 ˘ 1.9 2.21 ˘ 1.9 68.47 ˘ 0.7 1.56 ˘ 1.8 2.25 ˘ 1.5
FairGNN 69.21 ˘ 0.4 2.03 ˘ 1.9 2.29 ˘ 2.1 68.42 ˘ 0.7 1.61 ˘ 1.7 1.71 ˘ 2.0
HT RDDP 69.51 ˘ 0.5 1.85 ˘ 1.4 2.03 ˘ 1.5 68.37 ˘ 0.9 1.64 ˘ 1.6 2.53 ˘ 1.7

FairNorm 69.38 ˘ 0.7 1.26 ˘ 1.2 1.22 ˘ 1.3 68.88 ˘ 1.1 1.44 ˘ 1.2 1.74 ˘ 1.7

Recidivism Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

NoNorm 94.32 ˘ 0.2 8.89 ˘ 0.7 1.17 ˘ 0.9 92.69 ˘ 0.2 8.29 ˘ 0.7 1.31 ˘ 0.6
M-Norm 95.00 ˘ 0.3 8.87 ˘ 1.2 1.71 ˘ 0.7 94.45 ˘ 0.3 8.94 ˘ 1.2 2.06 ˘ 1.0

Covariance 95.07 ˘ 0.2 8.82 ˘ 1.1 1.43 ˘ 0.6 92.87 ˘ 1.0 8.44 ˘ 0.6 1.64 ˘ 1.0
Adversarial 94.14 ˘ 0.1 8.58 ˘ 1.0 1.26 ˘ 0.7 93.82 ˘ 0.2 8.72 ˘ 0.9 1.59 ˘ 1.1
FairGNN 95.14 ˘ 0.2 8.73 ˘ 1.0 1.33 ˘ 0.8 94.11 ˘ 0.2 8.68 ˘ 1.2 1.51 ˘ 0.5
HT RDDP 95.16 ˘ 0.2 8.74 ˘ 0.8 1.05 ˘ 0.4 93.34 ˘ 0.4 8.20 ˘ 0.9 1.04 ˘ 1.0

FairNorm 95.11 ˘ 0.2 8.45 ˘ 1.0 0.90 ˘ 0.5 94.32 ˘ 0.2 7.28 ˘ 1.1 0.80 ˘ 0.9

sensitive groups, without using the proposed fairness regularizers. Furthermore, “Covariance” is for the
covariance-based regularizer (Dai & Wang, 2021), “Adversarial” stands for the adversarial regularizer (Dai &
Wang, 2021), and “HTRDDP ” denotes hyperbolic tangent relaxation of the difference of demographic parity
(Padh et al., 2021). It should be noted that the results for baselines are obtained with the best performing
normalization layer framework (individual normalizations over different sensitive groups vs. normalization
over all nodes in the graph) in terms of fairness measures.

The results in Table 2 demonstrate that FairNorm achieves superior fairness performance, together with
similar utility, compared to all baselines on all datasets for both of the utilized activations. As M-Norm is
the first step of FairNorm without fairness regularizers, the significant improvements in all fairness measures
compared to M-Norm signify the efficiency of the designed regularizers. Furthermore, on the Recidivism
graph with sigmoid activation, while the improvement in fairness metrics is accompanied by a decrease
in accuracy for the baselines, FairNorm achieves better fairness performance without a deterioration in
utility. Overall, the results in Table 2 show the efficacy of the proposed fairness regularizers in reducing
bias while providing similar utility on different real-world networks. Note that, in addition to their superior
fairness performance, the proposed regularizers of FairNorm can be flexibly applied to both supervised
and unsupervised settings, whereas some of the baselines (“Covariance”, “FairGNN”, “HTRDDP ”) require
predicted labels for their regularizer designs.

The proposed framework herein aims to mitigate bias by also providing a faster convergence speed. The
results in Table 2 confirm that the proposed fairness regularizers within FairNorm do provide said bias
reduction. In order to evaluate the convergence speed of FairNorm’s group-wise normalizations, Figure 1
is presented. The baselines in Figure 1 consist of GraphNorm (Cai et al., 2021), and the framework where
no normalization is applied. We note that in Figure 1, Fairnorm is employed with both its individual
normalizations as well as its fairness regularizers.

The results on both Pokec datasets and the Recidivism network confirm that the employed normalization
can indeed lead to a faster convergence in training compared to NoNorm. Figure 1 also demonstrates that
compared to GraphNorm, the convergence improvement of FairNorm is slightly less on Pokec-z, whereas it
provides approximately the same improvement on Pokec-n and Recidivism.
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5.3 Sensitivity Analysis

Table 3: Sensitivity Analysis for Pokec Networks

Pokec-z Pokec-n

ReLU Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

M-Norm 70.71 ˘ 0.8 5.57 ˘ 1.3 5.00 ˘ 2.0 69.25 ˘ 0.5 2.48 ˘ 1.2 2.91 ˘ 1.7

τ “ 10´8, κ “ 10 70.26 ˘ 0.9 1.52 ˘ 1.0 2.19 ˘ 1.2 69.45 ˘ 0.6 2.23 ˘ 1.3 2.65 ˘ 1.6
τ “ 10´8, κ “ 100 70.48 ˘ 0.9 1.40 ˘ 1.0 2.20 ˘ 1.2 69.53 ˘ 0.8 2.07 ˘ 1.0 1.98 ˘ 0.8
τ “ 10´8, κ “ 1000 70.37 ˘ 1.1 3.20 ˘ 0.9 3.18 ˘ 2.0 69.38 ˘ 0.8 1.55 ˘ 1.4 1.48 ˘ 1.7

κ “ 100, τ “ 10´7 70.67 ˘ 1.0 1.35 ˘ 1.2 1.90 ˘ 1.8 69.56 ˘ 0.8 2.10 ˘ 0.9 2.09 ˘ 0.5
κ “ 100, τ “ 10´8 70.48 ˘ 0.9 1.40 ˘ 1.0 2.20 ˘ 1.7 69.53 ˘ 0.8 2.07 ˘ 1.0 1.98 ˘ 0.8
κ “ 100, τ “ 10´9 70.55 ˘ 0.9 1.48 ˘ 1.2 1.99 ˘ 1.8 69.54 ˘ 0.7 2.15 ˘ 1.1 1.84 ˘ 0.9

Pokec-z Pokec-n

Sigmoid Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

M-Norm 69.84 ˘ 0.7 6.21 ˘ 1.4 4.44 ˘ 2.1 68.59 ˘ 0.9 1.78 ˘ 2.1 2.88 ˘ 1.8

τ “ 10´8, κ “ 10 69.71 ˘ 0.9 1.36 ˘ 0.4 1.72 ˘ 1.1 68.97 ˘ 0.8 2.23 ˘ 1.3 2.49 ˘ 1.8
τ “ 10´8, κ “ 100 70.05 ˘ 1.2 1.19 ˘ 0.8 2.53 ˘ 1.0 68.88 ˘ 1.1 1.44 ˘ 1.2 1.74 ˘ 1.7
τ “ 10´8, κ “ 1000 70.06 ˘ 1.1 1.17 ˘ 0.7 2.47 ˘ 1.3 68.37 ˘ 0.7 2.21 ˘ 1.1 3.47 ˘ 1.8

κ “ 100, τ “ 10´7 70.06 ˘ 1.2 1.28 ˘ 0.8 2.39 ˘ 1.2 68.87 ˘ 1.1 1.45 ˘ 1.2 1.85 ˘ 1.6
κ “ 100, τ “ 10´8 70.05 ˘ 1.2 1.19 ˘ 0.8 2.53 ˘ 1.0 68.88 ˘ 1.1 1.44 ˘ 1.2 1.74 ˘ 1.7
κ “ 100, τ “ 10´9 70.06 ˘ 1.2 1.20 ˘ 0.8 2.53 ˘ 1.0 68.81 ˘ 1.1 1.70 ˘ 1.2 1.90 ˘ 1.7

Table 4: Sensitivity Analysis for Recidivism Network

ReLU Sigmoid

Recidivism Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q

M-Norm 95.00 ˘ 0.3 8.87 ˘ 1.2 1.71 ˘ 0.7 94.45 ˘ 0.3 8.94 ˘ 1.2 2.06 ˘ 1.0

τ “ 10´10, κ “ 1 95.01 ˘ 0.2 8.76 ˘ 1.2 1.66 ˘ 0.6 94.38 ˘ 0.2 7.27 ˘ 1.0 0.95 ˘ 1.0
τ “ 10´10, κ “ 0.1 95.02 ˘ 0.3 8.62 ˘ 1.1 1.43 ˘ 0.5 94.27 ˘ 0.3 7.29 ˘ 1.1 0.89 ˘ 1.0
τ “ 10´10, κ “ 0.01 95.11 ˘ 0.2 8.45 ˘ 1.0 0.90 ˘ 0.5 94.32 ˘ 0.2 7.28 ˘ 1.1 0.80 ˘ 0.9

κ “ 0.1, τ “ 10´9 94.99 ˘ 0.2 8.59 ˘ 1.1 1.17 ˘ 0.6 94.33 ˘ 0.3 7.39 ˘ 1.1 1.12 ˘ 1.0
κ “ 0.1, τ “ 10´10 95.02 ˘ 0.3 8.62 ˘ 1.1 1.43 ˘ 0.5 94.27 ˘ 0.3 7.29 ˘ 1.1 0.89 ˘ 1.0
κ “ 0.1, τ “ 10´11 94.98 ˘ 0.1 8.48 ˘ 1.1 1.32 ˘ 1.0 94.38 ˘ 0.2 7.27 ˘ 1.0 1.14 ˘ 1.1

In order to examine the effects of hyperparameter selection, the sensitivity analysis for the proposed
framework is executed. The results for changing κ and τ values are presented in Tables 3 and 4 for Pokec
networks and Recidivism network, respectively. Overall, the results demonstrate that the proposed strategy,
FairNorm, typically leads to better fairness measures compared to the natural baseline (M-Norm) within a
wide range of hyperparameter selection.

5.4 Ablation Study

In order to investigate the influences of different fairness regularizers introduced in this study, we carry over
an ablation study. The results of this study are presented in Table 5. Table 5 demonstrates that while the
employment of Lµ seems to have a greater effect in fairness performance improvement, utilization of both Lµ

and L∆ (FairNorm) leads to better fairness results compared to the cases where only one of the regularizers
is used with ReLU activation. For the case where sigmoid is used as the nonlinear activation, use of both
regularizers again results in better ∆EO values compared to the cases where only one of the regularizers
is employed. However, the same cannot be always claimed for ∆SP , which can be explained by the fact
that sigmoid already limits the maximal deviation to some extend after the first layer reducing the effect
of L∆. Overall, Table 5 shows that the utilization of both Lµ and L∆ generally achieves the best fairness
performance, while Lµ appears to be a more influential component compared to L∆ for the bias reduction.
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Table 5: Ablation study for the proposed regularizers

ReLU Sigmoid

Pokec-z Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EOp%q

M-Norm 70.71 ˘ 0.8 5.57 ˘ 1.3 5.00 ˘ 2.0 69.84 ˘ 0.7 6.21 ˘ 1.4 4.44 ˘ 2.1

Lµ 70.65 ˘ 0.8 1.50 ˘ 1.0 2.19 ˘ 1.3 69.71 ˘ 0.9 1.36 ˘ 0.4 1.72 ˘ 1.1
L∆ 70.62 ˘ 0.9 5.15 ˘ 1.4 4.55 ˘ 2.2 69.73 ˘ 0.5 5.67 ˘ 2.0 4.29 ˘ 2.3
FairNorm 70.67 ˘ 1.0 1.35 ˘ 1.2 1.90 ˘ 1.8 69.73 ˘ 0.9 1.71 ˘ 0.3 1.48 ˘ 1.1

ReLU Sigmoid

Pokec-n Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EOp%q

M-Norm 69.25 ˘ 0.5 2.48 ˘ 1.2 2.91 ˘ 1.7 68.59 ˘ 0.9 1.78 ˘ 2.1 2.88 ˘ 1.8

Lµ 69.30 ˘ 0.7 1.47 ˘ 1.2 1.51 ˘ 1.4 68.82 ˘ 1.1 1.65 ˘ 1.2 1.80 ˘ 1.8
L∆ 69.40 ˘ 0.5 2.55 ˘ 1.1 2.54 ˘ 1.6 68.59 ˘ 0.9 1.78 ˘ 2.1 2.88 ˘ 1.8
FairNorm 69.38 ˘ 0.7 1.26 ˘ 1.2 1.22 ˘ 1.3 68.88 ˘ 1.1 1.44 ˘ 1.2 1.74 ˘ 1.7

ReLU Sigmoid

Recidivism Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EOp%q

M-Norm 95.00 ˘ 0.3 8.87 ˘ 1.2 1.71 ˘ 0.7 94.45 ˘ 0.3 8.94 ˘ 1.2 2.06 ˘ 1.0

Lµ 95.08 ˘ 0.2 8.67 ˘ 1.0 1.35 ˘ 0.5 94.33 ˘ 0.2 7.18 ˘ 1.2 1.05 ˘ 1.1
L∆ 95.12 ˘ 0.2 8.97 ˘ 1.1 1.42 ˘ 0.6 94.39 ˘ 0.3 8.81 ˘ 1.1 1.92 ˘ 0.9
FairNorm 95.11 ˘ 0.2 8.45 ˘ 1.0 0.90 ˘ 0.5 94.32 ˘ 0.2 7.28 ˘ 1.1 0.80 ˘ 0.9

6 Conclusions and Limitations

This study proposes a unified framework, FairNorm, that mitigates bias in GNN-based learning and provides
faster convergence in training. FairNorm applies group-wise normalizations, and employs two novel fairness
regularizers that manipulate the parameters of these normalizations. The designs of these regularizers are
based on theoretical fairness analyses on GNNs. Experimental results on real-world networks show the
fairness improvement of FairNorm over fairness-aware baselines in terms of statistical parity and equal
opportunity, as well as its similar utility performance in node classification. Furthermore, it is demonstrated
that FairNorm improves the convergence speed of the naive baseline where no normalization is used.

The present framework considers only a single sensitive attribute in its design of normalization layers and
fairness regularizers. One possible future direction of this study is the extension of the design to a case with
multiple sensitive attributes, which may be essential in certain applications.
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A Proof of Lemma 1

First, we present the following Lemma, as it will be utilized in the proof of Lemma 1.

Lemma 2 (Cauchy Interlace Theorem, (Horn & Johnson, 2012)). Let A be a Hermitian matrix of order

N , and let B be a principal submatrix of A of order N ´ 1, such that A “

ˆ

B y
yJ a

˙

P RNˆN . If

λN ď λN´1 ď ¨ ¨ ¨ ď λ2 ď λ1 lists the eigenvalues of A and γN ď γN´1 ď ¨ ¨ ¨ ď γ3 ď γ2 the eigenvalues of
B, then:

λN ď γN ď λN´1 ď γN´1 ď ¨ ¨ ¨ ď λ2 ď γ2 ď λ1 (10)

where λi “ γi only when there is a nonzero z P RN´1 such that Bz “ γiz and yJz “ 0; if λi “ γi´1 then
there is a nonzero z P RN´1 such that Bz “ γi´1z, yJz “ 0.

The shift operations over different sensitive groups are defined to be:

MShiftpWpkqHpk´1qQq “ WpkqHpk´1qQNp0qNp1q, (11)

where Npnq “ IN ´ 1
|Sn|

epnqpepnqqJ for n “ 0, 1. Let 0 ď λ1 ď ¨ ¨ ¨ ď λN be the singular values
of Q. Then, eigenvalues of pQqJQ are 0 ď λ2

1 ď ¨ ¨ ¨ ď λ2
N . Let γ2

i denote the eigenvalues of
pNp1qqJpNp0qqJpQqJQNp0qNp1q “ Np1qNp0qpQqJQNp0qNp1q @i “ 1, . . . , N .

pNp0qNp1qq is a projection matrix, for which the following holds:

pNp0qNp1qq2 “ Np0qNp1qNp0qNp1q “ Np0qNp0qNp1qNp1q “ Np0qNp1q, (12)

as both Np0q and Np1q are symmetric projection matrices onto the orthogonal complement spaces
of the subspaces spanned by ep0q and ep1q, respectively, and pNp0qNp1qq commutes. Then, the
following decomposition can be written: pNp0qNp1qq “ U diagp1, 1, . . . , 1, 0, 0qUJ, where U “
„

Usub, 1?
|S0|

ep0q, 1?
|S1|

ep1q

ȷ

. Note that diagpaq creates a diagonal matrix D P RNˆN with ith diagonal

entry being equal to ai, @a P RN . This decomposition implies that the eigenvalues corresponding to the
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eigenvectors 1?
|S0|

ep0q, 1?
|S1|

ep1q are zero, which can be shown as:

Np0qNp1qep0q “ pIN ´
1

|S0|
ep0qpep0qqJ ´

1
|S1|

ep1qpep1qqJ `
1

|S0|

1
|S1|

ep0qpep0qqJep1qpep1qqJqep0q

“ pIN ´
1

|S0|
ep0qpep0qqJ ´

1
|S1|

ep1qpep1qqJqep0q , as ep0q and ep1q are orthogonal,

“ ep0q ´
1

|S0|
ep0qpep0qqJep0q ´

1
|S1|

ep1qpep1qqJep0q

“ ep0q ´
1

|S0|
|S0|ep0q , as pep0qqJep0q “ |S0| by definition,

“ 0ep0q.

(13)

The same analysis also holds for ep1q. Let γ2
N and γ2

N´1 denote zero eigenvalues, and 0 ď γ2
1 ď ¨ ¨ ¨ ď γ2

N´2
hold. Based on the decomposition of pNp0qNp1qq, the following can be written:

pNp1qqJpNp0qqJpQqJQNp0qNp1q “ Np1qNp0qpQqJQNp0qNp1q

“ U diagp1, 1, . . . , 1, 0, 0qUJpQqJQU diagp1, 1, . . . , 1, 0, 0qUJ

„ diagp1, 1, . . . , 1, 0, 0qUJpQqJQU diagp1, 1, . . . , 1, 0, 0q,

(14)

where A „ B, if the eigenvalues of A and B are the same. Furthermore, denote diagp1, 1, . . . , 1, 0, 0q by
D P RNˆN :

D “

„

IN´2 r0sN´2ˆ2
r0s2ˆN´2 r0s2ˆ2

ȷ

, (15)

where r0siˆj denotes an all-zeros matrix with dimensions i ˆ j. Let C denote QJQ.

pNp1qqJpNp0qqJCNp0qNp1q

„ DUJCUD

“ D

»

—

—

–

UJ
sub

1?
|S0|

pep0qqJ

1?
|S1|

pep1qqJ

fi

ffi

ffi

fl

C
”

Usub
1?
|S0|

pep0qq 1?
|S1|

pep1qq
ı

D

“ D

»

—

—

–

UJ
subCUsub

1?
|S0|

UJ
subCpep0qq 1?

|S1|
UJ

subCpep1qq

1?
|S0|

pep0qqJCUsub
1

|S0|
pep0qqJCep0q 1?

|S0||S1|
pep0qqJCep1q

1?
|S1|

pep1qqJCUsub
1?

|S0||S1|
pep1qqJCep0q 1

|S1|
pep1qqJCep1q

fi

ffi

ffi

fl

D

“

„

UJ
subCUsub r0sN´2ˆ2

r0s2ˆN´2 r0s2ˆ2

ȷ

.

(16)

As, pNp1qqJpNp0qqJCNp0qNp1q has the eigenvalues 0 ď γ2
1 ď ¨ ¨ ¨ ď γ2

N´2, and γ2
N´1 “ γ2

N “ 0, equation 16
shows that UJ

subCUsub P RN´2ˆN´2 has the eigenvalues 0 ď γ2
1 ď ¨ ¨ ¨ ď γ2

N´2.

Let R denote UJCU, then R has the eigenvalues 0 ď λ2
1 ď ¨ ¨ ¨ ď λ2

N , as R „ C.

R “

»

—

—

–

UJ
subCUsub

1?
|S0|

UJ
subCpep0qq 1?

|S1|
UJ

subCpep1qq

1?
|S0|

pep0qqJCUsub
1

|S0|
pep0qqJCep0q 1?

|S0||S1|
pep0qqJCep1q

1?
|S1|

pep1qqJCUsub
1?

|S0||S1|
pep1qqJCep0q 1

|S1|
pep1qqJCep1q

fi

ffi

ffi

fl

(17)

Further, define matrix A P RN´1ˆN´1 such that:

A “

»

–

UJ
subCUsub

1?
|S0|

UJ
subCpep0qq

1?
|S0|

pep0qqJCUsub
1

|S0|
pep0qqJCep0q

fi

fl , (18)
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together with eigenvalues η1 ď ¨ ¨ ¨ ď ηN´1. Then, utilizing Lemma 2, equation 17 and equation 18, we can
conclude that

λ2
1 ď η1 ď λ2

2 ď η2 ¨ ¨ ¨ ď ηN´1 ď λ2
N , (19)

where λ2
i “ ηi or λ2

i “ ηi´1, if and only if there is a right singular vector α of Q such that pep1qqJα “ 0.
The proof of the condition for λ2

i “ ηi or λ2
i “ ηi´1 is presented below in italic.

Proof: Cauchy interlace theorem states that inequalities in equation 10 become equalities if there is a
nonzero z P RN´1 such that Bz “ γiz and yJz “ 0 or if there is a nonzero z P RN´1 such that Bz “ γi´1z
and yJz “ 0. Therefore, for the result in equation 19, inequalities become equalities, if there is a nonzero
z P RN´1 such that:

Az “ ηz and
”

1?
|S1|

pep1qqJCUsub
1?

|S0||S1|
pep1qqJCep0q

ı

z “ 0. (20)

Note that we dropped the subscript of η in equation 20, as it is enough to hold these conditions for any of
the ηis to turn one of the inequalities into equality in equation 19.

A “

«

UJ
sub

1?
|S0|

pep0qqJ

ff

C
”

Usub
1?
|S0|

ep0q
ı

(21)

Let U1 :“
”

Usub
1?
|S0|

ep0q
ı

, where U1 forms an orthogonal basis for ep1q. Therefore, A “ UJ
1 CU1.

The conditions presented in equation 20 can be rewritten based on this definition:

UJ
1 CU1z “ ηz and 1

a

|S1|
pep1qqJCU1z “ 0. (22)

The second condition in equation 22 demonstrates that for inequalities in equation 19 become equalities,
CU1z should lie in the orthogonal complement space of ep1q, which is spanned by U1. Therefore, if the
second condition in equation 22 is satisfied, there exists a vector b P RN´1 such that:

CU1z “ U1b. (23)

In this case, the first condition in equation 22 becomes:

UJ
1 CU1z “ UJ

1 U1b “ IN´1b “ b “ ηz (24)

Therefore, the following equality should hold to meet both criterion in equation 20:

CU1z “ U1b “ ηU1z. (25)

equation 25 demonstrates that the conditions in equation 20 are met, if U1z is the eigenvector of C “ QJQ
associated with eigenvalue η. This eigenvector U1z lies in the orthogonal complement space of ep0q and the
eigenvector of C “ QJQ is the right singular vector of Q. Therefore, inequalities in equation 19 become
equalities, if there is a right singular vector α of Q such that pep1qqJα “ 0, which concludes the proof.

A is created in the following way:

A “

»

–

UJ
subCUsub

1?
|S0|

UJ
subCpep0qq

1?
|S0|

pep0qqJCUsub
1

|S0|
pep0qqJCep0q

fi

fl , (26)

together with eigenvalues η1 ď ¨ ¨ ¨ ď ηN´1. Furthermore, equation 16 shows that UJ
subCUsub P RN´2ˆN´2

has the eigenvalues 0 ď γ2
1 ď ¨ ¨ ¨ ď γ2

N´2. Again, we can apply Cauchy interlace theorem presented in
Lemma 2, which concludes that:

η1 ď γ2
1 ď η2 ď γ2

2 ¨ ¨ ¨ ď γ2
N´2 ď ηN´1, (27)

where ηi “ γ2
i or ηi “ γ2

i´1, if and only if there is a right singular vector α of Q such that pep0qqJα “ 0 and
pep1qqJα “ 0. For these conditions leading to equalities ηi “ γ2

i or ηi “ γ2
i´1, the proof follows in the same

manner as the previous one.
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Finally, by unifying the results of equation 19 and equation 27, the Theorem 1 can be proved, such that:

λ1 ď γ1 (28)
λ2 ď γ2 (29)

...
λN´2 ď γN´2 ď λN (30)

where λi “ γi or λN “ γN´2, only if Q have a right singular vector α such that pep0qqJα “ 0 and
pep1qqJα “ 0. Note that λis and γis are defined to be non-negative, thus we can omit the powers of 2 in the
final result.

B Learning Environment and Proof for Theorem 1

We first introduce the following Lemma that will be utilized in the proof.

Lemma 3 (Theorem 1, (Cui et al., 2019)) Let x1, . . . , xN „ N p0, Σq be independent Gaussian vectors,
where Σ is an F ˆ F real positive definite matrix. Let B be a fixed symmetric real N ˆ N matrix. Consider
the compound Wishart matrix W “ XBXT {N with X “ rx1, . . . , xN s. Then for any δ ě 0, the following
event

}W ´ EW }2 ě
32}B}F δ ` 64}B}2δ2

N
}Σ}2

holds with probability at most 2 exp
`

´2δ2 ` 2F log 3
˘

, where } ¨ }F denotes the Frobenius norm. Specifically,
for δ ě

a

2 lnp3q
?

F ,

}W ´ EW }2 ě
32}B}F δ ` 64}B}2δ2

N
}Σ}2

holds with probability at most 2 exp
`

´δ2˘

.

Model: For the node classification task over a graph G, a linear one-layer GNN-based model is
considered, where the models without and with individual shifts for different sensitive groups are denoted
by fvanillapX, Qq “ wJXQ and fMShiftpX, Qq “ wJXQNp0qNp1q, respectively for w P RF ˆ1, X P RF ˆN

and Q P RNˆN .

Training loss: Let Zvanilla P RF ˆN and ZMShift P RF ˆN denote XQ and XQNp0qNp1q, respectively. The
training loss for both the models without and with individual shifts for different sensitive groups follows as:

Lpwq “
1
2}ZJw ´ y}2

2 (31)

where y P RN denotes the labels of the nodes. Note that this loss is applicable to both Zvanilla and ZMShift,
and Z is used interchangeably with Zvanilla for the ease of notation.

Optimization: Gradient descent is utilized for the optimization by initializing w0 “ 0, where an
optimization step can be written as:

wt`1 “ wt ´ ηpZZJwt ´ Zyq

“ pIF ´ ηZZJqwt ` ηZy.
(32)

Note that η in Equation equation 32 denotes the learning rate.

In this setting, wt converges to optimal solution w˚ “ pZZJq:Zy according to the solution of least squares
problem (Horn & Johnson, 2012), where superscript : denotes Moore-Penrose inverse. The residual of wt`1
follows as:

wt`1 ´ w˚ “ pIF ´ ηZZJqwt ` ηZy ´ w˚

“ pIF ´ ηZZJqwt ` ηpZZJqpZZJq:Zy ´ w˚

“ pIF ´ ηZZJqwt ´ pIF ´ ηZZJqw˚ , as w˚ “ pZZJq:Zy
“ pIF ´ ηZZJqpwt ´ w˚q.

(33)
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Assumption 1: w0 “ 0.

Based on Assumption 1 and equation 33, following inequality can be written:

}wt ´ w˚} ď }pIF ´ ηZZJq}t}w˚}. (34)

For the learning rate η “ 1
σmaxpZZJq

, the following convergence rate can be guaranteed for this problem:

}wt ´ w˚} ď

ˆ

1 ´
σminpZZJq

σmaxpZZJq

˙t

}w˚}. (35)

Note that σmin and σmax output the minimum and maximum positive eigenvalues of the input matrix,
respectively. The same result can also be derived for ZMShift following the same steps, such as:

}wt ´ w˚} ď

ˆ

1 ´
σminpZMShiftpZMShiftqJq

σmaxpZMShiftpZMShiftqJq

˙t

}w˚}. (36)

Equations equation 35 and equation 36 demonstrate that the convergence rates of the defined node
classification problem for without and with shifts depend on the terms 1 ´

´

σminpZZJ
q

σmaxpZZJq

¯

and 1 ´
´

σminpZMShift
pZMShift

q
J

q

σmaxpZMShiftpZMShiftqJq

¯

, respectively. Therefore, the next step examines these factors together with the
following assumptions.

Assumption 2: x P RF is a centered Gaussian random variable with covariance matrix
Σ “ ExrxxJs. The features of nodes x1, . . . , xN are independent realizations of x, where
X “ rx1 ¨ ¨ ¨ xN s. Z “ XQ and ZMShift “ XQNp0qNp1q.

Assumption 3: ErXQs :“ Y.

Assumption 4: O ď Er
pXQ´Yq

?
N

pXQ´Yq
?

N

J

s ď δ1IF

Assumption 5: O ď Er
pXQ´Yq

?
N

Np0qNp1q pXQ´Yq
?

N

J

s ď δ1IF

Assumption 6: Defined Y matrix is full rank.

We will analyze the eigenvalues of 1
N ZZJ, as multiplying with a constant does not change the ratio between

the minimum and maximum eigenvalues.

1
N

ZZJ “
1
N

N
ÿ

i“1
zizJ

i . (37)

For the analysis of 1
N ZZJ, we will first focus on E

”

ZZ
N

J
ı

, which equals to:

E
„

ZZJ

N

ȷ

“ E
«

XQ
?

N

ˆ

XQ
?

N

˙J
ff

“
YYJ

N
` Er

pXQ ´ Yq
?

N

pXQ ´ Yq
?

N

J

s

(38)

based on the Assumption 3. By utilizing Weyl’s inequality and the provided assumptions, following
inequalities can be written:

σmaxp
YYJ

N
q ď σmaxpE

„

ZZJ

N

ȷ

q ď σmaxp
YYJ

N
q ` δ1

σminp
YYJ

N
q ď σminpE

„

ZZJ

N

ȷ

q ď σminp
YYJ

N
q ` δ1

(39)
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Similarly:

E
„

ZMShiftpZMShiftqJ

N

ȷ

“ E
«

XQNp0qNp1q

?
N

pXQNp0qNp1qq
?

N

J
ff

“ E
«

XQ
?

N
pNp0qNp1qq2 pXQq

?
N

J
ff

, as Np0qNp1q commutes,

“ E
«

XQ
?

N
Np0qNp1q pXQq

?
N

J
ff

, as Np0qNp1q is a projection matrix

“
YNp0qNp1qYJ

N
` E

«

pXQ ´ Yq
?

N
Np0qNp1q pXQ ´ Yq

?
N

J
ff

(40)

Again, by utilizing Weyl’s inequality and the provided assumptions, following inequalities can be written for
the shifted case:

σmaxp
YNp0qNp1qYJ

N
q ď σmaxpE

„

ZMShiftpZMShiftqJ

N

ȷ

q ď σmaxp
YNp0qNp1qYJ

N
q ` δ1

σminp
YNp0qNp1qYJ

N
q ď σminpE

„

ZMShiftpZMShiftqJ

N

ȷ

q ď σminp
YNp0qNp1qYJ

N
q ` δ1

(41)

Next step in the proof is bounding the errors } 1
N ZZJ ´ E

”

ZZ
N

J
ı

}2 and } 1
N ZMShiftpZMShiftqJ ´

E
”

ZMShift
pZMShift

q
J

N

ı

}2. Based on Lemma 3 and assumption 2, the following inequality holds with

probability 1 ´ ϵ, where ϵ ă 2
e , for errors } 1

N ZZJ ´ E
”

ZZ
N

J
ı

}2 and } 1
N ZMShiftpZMShiftqJ ´

E
”

ZMShift
pZMShift

q
J

N

ı

}2:

›

›

›

›

›

1
N

ZZJ ´ E
«

ZZ
N

J
ff

›

›

›

›

›

2

ď O
ˆ

logp2{ϵq

N

˙

, (42)

where the constants }QQJ}F , }QQJ}2, and }Σ}2 are hidden in Op.q notation for a focus on N , similar to
the approach taken in Cai et al. (2021). Similarly, the following bound holds for } 1

N ZMShiftpZMShiftqJ ´

E
”

ZMShift
pZMShift

q
J

N

ı

}2 with probability 1 ´ ϵ, where ϵ ă 2
e :

›

›

›

›

1
N

ZMShiftpZMShiftqJ ´ E
„

ZMShiftpZMShiftqJ

N

ȷ
›

›

›

›

2
ď O

ˆ

logp2{ϵq

N

˙

. (43)

Based on Lemma 3, Equations equation 42 and equation 43, the inequalities in equation 39 and equation 41
can be re-organized. Following inequalities hold with probability 1 ´ ϵ where ϵ ă 2

e :

σmaxp
YYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σmaxp
ZZJ

N
q ď σmaxp

YYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙

σminp
YYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σminp
ZZJ

N
q ď σminp

YYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙
(44)
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σmaxp
YNp0qNp1qYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σmaxp
1
N

ZMShiftpZMShiftqJq

ď σmaxp
YNp0qNp1qYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙

σminp
YNp0qNp1qYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σminp
1
N

ZMShiftpZMShiftqJq

ď σminp
YNp0qNp1qYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙

(45)

By the same method that proves Theorem 1 and is presented in Appendix A, it can be shown that positive
eigenvalues of YNp0qNp1qYJ are interlaced between the positive eigenvalues of YYJ:

σminpYYJq ď σminpYNp0qNp1qYJq ď σmaxpYNp0qNp1qYJq ď σmaxpYYJq (46)

where inequalities become equalities, only if there is a right singular vector α of YJ that is orthogonal to
both ep0q and ep1q.

Assumption 7: None of the right singular vector of YJ is orthogonal to both ep0q and ep1q

Based on Assumption 7 and result in equation 46, following holds:

σminp
YYJ

N
q ă σminp

YNp0qNp1qYJ

N
q ă σmaxp

YNp0qNp1qYJ

N
q ă σmaxp

YYJ

N
q (47)

Finally, for small enough δ1 and large enough N with probability 1 ´ ϵ with ϵ ă 2
e , the following inequalities

can be written:

σminp
1
N

ZZJq ď σminp
YYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙

ă σminp
YNp0qNp1qYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σminp
1
N

ZMShiftpZMShiftqJq

ď σmaxp
1
N

ZMShiftpZMShiftqJq

ď σmaxp
YNp0qNp1qYJ

N
q ` δ1 ` O

ˆ

logp2{ϵq

N

˙

ă σmaxp
YYJ

N
q ´ O

ˆ

logp2{ϵq

N

˙

ď σmaxp
1
N

ZZJq

(48)

Therefore, equation 48 proves that 1 ´

´

σminpZZJ
q

σmaxpZZJq

¯

ą 1 ´

´

σminpZMShift
pZMShift

q
J

q

σmaxpZMShiftpZMShiftqJq

¯

with probability 1 ´ ϵ.
Unifying this result with Equations equation 35 and equation 36 concludes that shifted model by matrices
Np0qNp1q converges faster compared to the vanilla model with high probability in the considered learning
environment for node classification.

C Proof of Theorem 2

Define the sample mean after normalization layer by µ̄pnq P RF , n “ 0, 1. Then,

21



Published in Transactions on Machine Learning Research (04/2023)

}µ̄p0q ´ µ̄p1q} “ }
1

|S0|

ÿ

jPS0

h̄p0q

j ´
1

|S1|

ÿ

jPS1

h̄p1q

j }

}µp0q ´ µp1q} “ }
1

|S0|

ÿ

jPS0

Actph̄p0q

j q ´
1

|S1|

ÿ

jPS1

Actph̄p1q

j q}1.

(49)

We can write h̄p0q

j “ µ̄p0q ` δ̄
p0q

j , @j “ 1 ¨ ¨ ¨ |S0| and h̄p1q

j “ µ̄p1q ` δ̄
p1q

j , @j “ 1 ¨ ¨ ¨ |S1|. If the activation
function Actp9q is Lipschitz continuous with Lipschitz constant L (applies to several nonlinear activations,
such as rectified linear unit (ReLU), sigmoid), the following holds:

Actpµ̄
p0q

i q ´ L|δ̄
p0q

i,j | ď Actph̄
p0q

i,j q “ Actpµ̄
p0q

i ` δ̄
p0q

i,j q

ď Actpµ̄
p0q

i q ` L|δ̄
p0q

i,j |, @i “ 1, ¨ ¨ ¨ F

Actpµ̄p0qq ´ L|δ̄
p0q

j | ď Actph̄p0q

j q “ Actpµ̄p0q ` δ̄
p0q

j q

ď Actpµ̄p0qq ` L|δ̄
p0q

j |, @j “ 1, ¨ ¨ ¨ |S0|

(50)

where |.| takes the element-wise absolute value of the input. The same inequalities can also be written for
S1:

Actpµ̄p1qq ´ L|δ̄
p1q

j | ď Actph̄p1q

j q “ Actpµ̄p1q ` δ̄
p1q

j q ď Actpµ̄p1qq ` L|δ̄
p1q

j |,

@j “ 1, ¨ ¨ ¨ |S1|
(51)

Based on Equations equation 49, equation 50, and equation 51, following holds:

1
|S0|

ÿ

jPS0

´

Actpµ̄p0qq ´ L|δ̄
p0q

j |

¯

´
1

|S1|

ÿ

jPS1

´

Actpµ̄p1qq ` L|δ̄
p1q

j |

¯

ď µp0q ´ µp1q

ď
1

|S0|

ÿ

jPS0

´

Actpµ̄p0qq ` L|δ̄
p0q

j |

¯

´
1

|S1|

ÿ

jPS1

´

Actpµ̄1q ´ L|δ̄
p1q

j |

¯

(52)

Actpµ̄p0qq ´ Actpµ̄p1qq ´
1

|S0|

ÿ

jPS0

L|δ̄
p0q

j | ´
1

|S1|

ÿ

jPS1

L|δ̄
p1q

j | ď µp0q ´ µp1q

ď Actpµ̄p0qq ´ Actpµ̄p1qq `
1

|S0|

ÿ

jPS0

L|δ̄
p0q

j | `
1

|S1|

ÿ

jPS1

L|δ̄
p1q

j |

(53)

Define a :“ Actpµ̄p0qq ´ Actpµ̄p1qq ´ 1
|S0|

ř

jPS0 L|δ̄
p0q

j | ´ 1
|S1|

ř

jPS1 L|δ̄
p1q

j | and b :“ Actpµ̄p0qq ´ Actpµ̄p1qq `

1
|S0|

ř

jPS0 L|δ̄
p0q

j | ` 1
|S1|

ř

jPS1 L|δ̄
p1q

j |. Equation equation 53 leads to:

|µ
p0q

i ´ µ
p1q

i | ď maxp|ai|, |bi|q, @i “ 1, ¨ ¨ ¨ , F. (54)

If we consider the case, |ai| ě |bi|. Then:

|µ
p0q

i ´ µ
p1q

i | ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Actpµ̄
p0q

i q ´ Actpµ̄
p1q

i q ´
1

|S0|

ÿ

jPS0

L|δ̄
p0q

j,i | ´
1

|S1|

ÿ

jPS1

L|δ
p1q

j,i |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
Actpµ̄

p0q

i q ´ Actpµ̄
p1q

i q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
|S0|

ÿ

jPS0

L|δ̄
p0q

j,i |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
|S1|

ÿ

jPS1

L|δ̄
p1q

j,i |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
Actpµ̄

p0q

i q ´ Actpµ̄
p1q

i q

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p0q

i

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p1q

i

ˇ

ˇ

ˇ
,

(55)
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where ∆̄p0q

i :“ maxj |δ̄
p0q

j,i | and ∆̄p1q

i :“ maxj |δ̄
p1q

j,i |.

Consider the term Actpµ̄
p0q

i q ´ Actpµ̄
p1q

i q:

Actpµ̄
p0q

i q ´ Actpµ̄
p1q

i q “ Actpµ̄
p0q

i ` µ̄
p1q

i ´ µ̄
p1q

i q ´ Actpµ̄
p1q

i q. (56)

Utilizing Equations equation 50 and equation 51, Actpµ̄
p0q

i ` µ̄
p1q

i ´ µ̄
p1q

i q´Actpµ̄
p1q

i q can be bounded by below
and above:

Actpµ̄
p1q

i q ´ L|µ̄
p0q

i ´ µ̄
p1q

i | ´ Actpµ̄
p1q

i q ď Actpµ̄
p0q

i ` µ̄
p1q

i ´ µ̄
p1q

i q ´ Actpµ̄
p1q

i q

ď Actpµ̄
p1q

i q ` L|µ̄
p0q

i ´ µ̄
p1q

i | ´ Actpµ̄
p1q

i q
(57)

´L|µ̄
p0q

i ´ µ̄
p1q

i | ď Actpµ̄
p0q

i ` µ̄
p1q

i ´ µ̄
p1q

i q ´ Actpµ̄
p1q

i q ď L|µ̄
p0q

i ´ µ̄
p1q

i | (58)
ˇ

ˇ

ˇ
Actpµ̄

p0q

i q ´ Actpµ̄
p1q

i q

ˇ

ˇ

ˇ
ď L|µ̄

p0q

i ´ µ̄
p1q

i | (59)

Therefore:
|µ

p0q

i ´ µ
p1q

i | ď L|µ̄
p0q

i ´ µ̄
p1q

i | ` L
ˇ

ˇ

ˇ
∆̄p0q

i

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p1q

i

ˇ

ˇ

ˇ
, @i such that |ai| ě |bi|. (60)

Next step is to consider the case, |ai| ă |bi|. For this case, following inequalities hold:

|µ
p0q

i ´ µ
p1q

i | ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Actpµ̄
p0q
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p1q

i q `
1

|S0|

ÿ

jPS0

L|δ̄
p0q
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1

|S1|

ÿ
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p1q

j,i |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
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p0q

i q ´ Actpµ̄
p1q

i q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
|S0|

ÿ

jPS0
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
|S1|

ÿ

jPS1

L|δ̄
p1q

j,i |

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
Actpµ̄

p0q

i q ´ Actpµ̄
p1q

i q

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p0q

i

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p1q

i

ˇ

ˇ

ˇ

ď L|µ̄
p0q

i ´ µ̄
p1q

i | ` L
ˇ

ˇ

ˇ
∆̄p0q

i

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p1q

i

ˇ

ˇ

ˇ
, @i such that |ai| ě |bi|.

(61)

Combining Equations equation 60 and equation 61, the following inequality can be written:

|µ
p0q

i ´ µ
p1q

i | ď L|µ̄
p0q

i ´ µ̄
p1q

i | ` L
ˇ

ˇ

ˇ
∆̄p0q

i

ˇ

ˇ

ˇ
` L

ˇ

ˇ

ˇ
∆̄p1q

i

ˇ

ˇ

ˇ
, @i “ 1, . . . , F. (62)

which concludes:
}µp0q ´ µp1q} ď L

´

}µ̄p0q ´ µ̄p1q} ` }∆̄p0q} ` }∆̄p1q}

¯

. (63)

D Hyperparameters

We provide the selected hyperparameter values for the GNN model and the proposed framework for the
reproducibility of the presented results. In the GNN-based classifier, weights are initialized utilizing Glorot
initialization (Glorot & Bengio, 2010). All models are trained for 1000 epochs by employing Adam optimizer
(Kingma & Ba, 2014) together with a learning rate of 10´3 and ℓ2 weight decay factor of 10´5. A 2-layer
GCN network followed by a linear layer is employed for node classification. Hidden dimension of the node
representations is selected as 64 on all datasets.

The results for baseline schemes, covariance, adversarial, HTRDDP regularizers, and FairGNN (Dai & Wang,
2021) are obtained by choosing corresponding hyperparameters (the multiplying factors for these regularizers
in the overall loss) via grid search on cross-validation sets with 5 different data splits. Specifically, a grid
search on the values 109, 1010, 1011 is executed for covariance-based regularizer. Furthermore, the values
0.01, 0.1, 1.10 are examined as the multiplier for adversarial regularizer. FairGNN employs both covariance-
based and adversarial regularizers, therefore its parameter selection is the unification of the previous two
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hyperparameter selection methods. Finally, the parameters 0.01, 0.1, 1, 10 are examined for the HTRDDP

regularizer.

Hyperparameter values for the proposed FairNorm whose results are presented in Section 5.2 can be found in
Table 6. Note that the candidate hyperparameter values for τ and κ are selected to balance the significance of
Lc, Lµ, and L∆ in equation 8 in terms of order of magnitude, so that each component has non-negligible yet
non-dominant effect. These parameters are selected via grid search on cross-validation sets over 5 different
data splits. The range of the parameters are selected based on the corresponding loss terms. Specifically,
the values 10, 100, 1000 values are examined for κ in Pokec networks, and the values 0.01, 0.1, 1 values are
examined for κ in Recidivism network. After the selection of best κ value, the τ is selected together with the
fixed, best κ value. While the values 10´7, 10´8, 10´9, 10´10 values are examined for τ in Pokec networks,
the values 10´8, 10´9, 10´10, 10´11 values are examined for κ in Recidivism network

Table 6: Utilized κ and τ values for the presented results in Table 2

ReLU Pokec-z Pokec-n Recidivism
κ/τ 100{10´7 1000{10´9 0.01{10´10

Sigmoid Pokec-z Pokec-n Recidivism
κ/τ 10{10´7 100{10´8 0.01{10´10

E Experimental Results for GraphSAGE

In order to demonstrate the flexibility of the proposed scheme for different GNN models, we provide further
experimental results herein for GraphSAGE operators proposed in Hamilton et al. (2017b) together with
mean aggregation. The obtained results for node classification on Pokec networks and the Recidivism graph
with ReLU activation are presented in Table 7. The results in Table 7 confirm the efficacy of FairNorm also
for the GraphSAGE-based GNN, since FairNorm still achieves better or similar fairness measures compared
to other fairness-aware baselines together with similar utility. Note that the hyperparameters for this set of
experiments are selected in the same way that is described in Appendix D.

Table 7: Comparative Results for GraphSAGE with ReLU activation

Pokec-z Pokec-n Recidivism

Acc (%) ∆SP (%) ∆EO (%) Acc (%) ∆SP (%) ∆EOp%q Acc (%) ∆SP (%) ∆EOp%q

NoNorm 70.16 ˘ 0.8 6.37 ˘ 1.2 5.32 ˘ 1.1 68.73 ˘ 0.6 2.69 ˘ 1.3 1.76 ˘ 1.6 97.93 ˘ 0.1 9.37 ˘ 0.9 1.42 ˘ 0.1
M-Norm 69.94 ˘ 0.5 2.82 ˘ 1.7 3.52 ˘ 1.6 68.96 ˘ 0.9 2.45 ˘ 1.8 1.82 ˘ 1.5 99.01 ˘ 0.1 9.26 ˘ 0.7 0.56 ˘ 0.2

Covariance 69.95 ˘ 0.7 3.30 ˘ 2.0 3.41 ˘ 2.2 69.61 ˘ 0.6 3.26 ˘ 1.7 2.16 ˘ 1.4 98.68 ˘ 0.2 9.21 ˘ 0.9 0.74 ˘ 0.5
Adversarial 68.99 ˘ 1.0 1.94 ˘ 1.6 1.97 ˘ 1.6 68.94 ˘ 1.0 3.24 ˘ 1.9 2.43 ˘ 2.0 98.88 ˘ 0.1 9.13 ˘ 0.8 0.73 ˘ 0.6
FairGNN 68.92 ˘ 1.1 2.79 ˘ 1.4 2.42 ˘ 1.5 68.99 ˘ 0.9 2.96 ˘ 2.3 2.12 ˘ 1.4 98.82 ˘ 0.1 9.36 ˘ 0.6 0.66 ˘ 0.5
HT RDDP 70.16 ˘ 0.5 2.51 ˘ 1.7 2.90 ˘ 1.8 69.35 ˘ 1.9 2.94 ˘ 2.0 1.66 ˘ 1.2 98.98 ˘ 0.1 9.36 ˘ 0.7 0.56 ˘ 0.1

FairNorm 69.50 ˘ 0.8 1.37 ˘ 1.5 2.00 ˘ 1.9 69.05 ˘ 1.1 2.38 ˘ 1.3 1.30 ˘ 0.6 98.98 ˘ 0.1 9.01 ˘ 0.8 0.55 ˘ 0.6

F Validation Accuracy Curves

Figure 1 has already shown that FairNorm can achieve faster convergence in training compared to the
framework where no normalization is employed. Figure 2 is provided herein to demonstrate the validation
accuracy over 1000 epochs for the case where normalization is not employed, GraphNorm Cai et al. (2021),
and our framework FairNorm. Note that models that achieve the best validation set accuracy are utilized to
obtain the test set performances listed in Table 2. The curves in Figure 2 further signify that FairNorm and
GraphNorm can converge to the model with the best validation set accuracy faster compared to the scheme
that does not use normalization.
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(c) Recidivism (ReLU)
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(d) Pokec-n (Sigmoid)
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Figure 2: Validation curves for different graph data sets when the normalization is not applied (Nonorm)
and applied with/without fairness consideration (FairNorm/GraphNorm).
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