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ABSTRACT

Large Language Models (LLMs) have shown strong performance on text-attributed
graphs (TAGs) due to their superior semantic understanding ability on textual node
features. However, their effectiveness as predictors in the few-shot semi-supervised
setting, where labeled nodes are rather limited, remains constrained since fine-
tuning LLMs usually requires sufficient labeled data, especially when the TAG
shows complex structural patterns. In essence, this paper targets two key challenges:
(i) the difficulty of generating and selecting reliable pseudo labels on TAGs for
LLMs, and (ii) the need to mitigate potential label noise when fine-tuning LLMs
with pseudo labels. To counter the challenges, we propose a new framework, GNN-
as-Judge, which can unleash the power of LLMs for few-shot semi-supervised
learning on TAGs by incorporating the structural inductive bias of Graph Neu-
ral Networks (GNNs). Specifically, GNN-as-Judge introduces a collaborative
pseudo-labeling strategy that first identifies the most influenced unlabeled nodes
from labeled nodes, then exploits both the agreement and disagreement patterns
between LLMs and GNNs to generate reliable labels. Furthermore, we develop a
weakly-supervised LLM fine-tuning algorithm that can distill the knowledge from
informative pseudo labels while mitigating the potential label noise. Experiments
on different TAG datasets demonstrate that GNN-as-Judge significantly outper-
forms existing methods, especially under low-resource regimes. Code is available
at https://anonymous.4open.science/r/GNN-as-Judge-2F28/.

1 INTRODUCTION

Text-Attributed Graphs (TAGs), where nodes correspond to text documents and edges represent
their relationships, are pervasive across various applications such as citation networks, social media
platforms, and e-commerce ecosystems (Chang & Blei, 2009; Yang et al., 2015; Hu et al., 2020;
Wu et al., 2025). Unlike conventional attributed graphs, TAGs encode raw textual contents rather
than numerical values, which requires more dedicated mechanisms to effectively capture semantic
information while preserving structural relationships. Recent advances in Large Language Models
(LLMs) have shown exceptional capabilities in text understanding (Brown et al., 2020; Dong et al.,
2022; Minaee et al., 2024), driving growing interest in leveraging their exceptional text understanding
capabilities to address TAG-related tasks (Chen et al., 2024b; Tang et al., 2024; Ye et al., 2024; Chen
et al., 2024c; Hu et al., 2024; Wang et al., 2025; Wu et al., 2025). Many previous studies investigate
LLM-as-Predictors approaches, which employ LLMs as direct predictors by integrating graph context
through graph encoders or carefully crafted prompts (Tang et al., 2024; Chen et al., 2024a;b).

It is noteworthy that current research of LLMs-as-Predictors for node classification on TAGs, primarily
focuses on the supervised setting where abundant labeled data is accessible. This is mainly because
LLMs lack GNNs’ message passing mechanisms to leverage unlabeled nodes, and thus require
sufficient supervision signals for effective fine-tuning (Chen et al., 2024a; Tang et al., 2024; Ye et al.,
2024). However, real-world graphs are usually sparsely labeled, and thus directly applying existing
methods to such few-shot semi-supervised setting (Wan et al., 2021; Ding et al., 2022; Yu et al.,
2025) will easily lead to overfitting and poor generalization (Wu et al., 2025; Tang et al., 2024; Ye
et al., 2024). Although one can leverage pseudo-labeling techniques to augment the limited labeled
training data (Lee et al., 2013; Rizve et al., 2021; Qiao et al., 2018; Liu et al., 2022; Sun et al., 2020;
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Li et al., 2018), previous studies have recognized that “easy” pseudo labels with high confidence
provide limited learning signal, whereas “hard” samples are more informative but introduce greater
label noise (Bengio et al., 2009; Kumar et al., 2010; Mukherjee & Awadallah, 2020). This challenge
becomes even more pronounced when incorporating LLMs, leading to the following two unresolved
challenges in few-shot semi-supervised node classification on TAGs:
• ❶ How to go beyond the knowledge of LLMs to obtain reliable pseudo-labeled data? Since LLMs

are inherently difficult to interpret complex graph structural patterns (Huang et al., 2024; Guo et al.,
2023), solely relying on LLMs with no structural inductive bias to generate pseudo labels is less
desirable. More critically, not all unlabeled nodes are equally valuable for pseudo-labeling, thus,
selecting the most influential subset of unlabeled nodes is crucial for maximizing performance
under computational constraints. Although text-based serialization methods try to encode structural
context into the prompts, those methods could still struggle with self-generated pseudo labels due
to the hallucination and self-bias of LLMs (Chen et al., 2024b; Luo et al., 2024; Liu et al., 2022;
Gao et al., 2024). Generating reliable pseudo-labeled examples that encode not only textual but
also structural inductive biases is therefore crucial for enabling LLMs to transcend their inherent
knowledge limitations on graphs.

• ❷ How to extract the knowledge from pseudo-labeled data while mitigating the potential label
noise during LLM fine-tuning? Despite pseudo-labeling showing its empirical effectiveness in
many fields (Lee et al., 2013; Rizve et al., 2021), the potential label noise has been a longstanding
problem. Especially for those “hard” pseudo-labeled examples that are more valuable for training
the model, they could also bring more label noise if the labels are incorrect. Simply performing LLM
supervised fine-tuning with the noisy pseudo labels can lead to performance degradation (Shumailov
et al., 2023; Kim et al., 2023; Cheng et al., 2020), which necessitates the need to develop a new
learning algorithm that can effectively distill the knowledge and mitigate the label noise when
fine-tuning with pseudo-labeled data.

In this paper, we propose GNN-as-Judge, a novel framework that fine-tunes LLMs on sparsely
labeled graphs using feedback from GNNs. Instead of mining the “easy” and “hard” pseudo-labeled
nodes solely based on LLM itself like standard self-training approaches (Ma et al., 2017; Lee et al.,
2013; Mukherjee & Awadallah, 2020), at its core, a GNN with structural inductive bias acts as a
judge to provide additional guidance for LLM to generate reliable pseudo-labels. GNN-as-Judge
strategically leverages both agreement and disagreement between GNN and LLM as signals to
identify not only “easy”, but more remarkably, “hard” pseudo labels that LLMs are more likely
to make mistakes. To further mitigate the potential label noise, especially in the harder examples,
we develop a weakly-supervised LLM fine-tuning algorithm that jointly performs fine-tuning on
the two selected pseudo-labeled node sets. Specifically, in addition to applying supervised LLM
instruction tuning on the agreement (easy) node set, we propose to conduct preference tuning on the
disagreement (hard) node set, which allows LLM to learn relative preferences between predictions
from the two models. To summarize, our contributions are mainly three-folds:
• We study the problem of LLMs-as-Predictors for graph few-shot semi-supervised learning, a

fundamental but underexplored research problem, where the key challenges lie in selecting reliable
pseudo labels and mitigating label noise during fine-tuning.

• We propose GNN-as-Judge, a novel framework that positions GNNs as judges to select reliable
pseudo labels for fine-tuning LLMs. GNN-as-Judge is also equipped with a new weakly-supervised
fine-tuning algorithm that can further mitigate label noise during LLM fine-tuning.

• We conduct comprehensive experiments on different TAG datasets with various scales. Results
demonstrate that GNN-as-Judge significantly outperforms both traditional GNN-based approaches
and other LLM-based baselines, especially in extreme low-resource scenarios.

2 RELATED WORK

LLMs for Graph Learning. Recent research has extensively explored applying (L)LMs to TAGs,
yielding significant advancements in feature encoding, node classification, and link prediction (Chen
et al., 2024b; Tang et al., 2024; Ye et al., 2024; Hu et al., 2024; Wang et al., 2025; Wu et al., 2025).
Early work primarily employed small-scale pretrained language models such as BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019) as text feature encoders to extract enhanced representations for
graph learning (Yang et al., 2021; Li et al., 2023; Wen & Fang, 2023; Zhao et al., 2023). With the
advent of powerful large language models such as ChatGPT (Achiam et al., 2023), researchers began
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Figure 1: Framework of GNN-as-Judge for few-shot semi-supervised node classification on TAGs.

utilizing these models in two primary ways: as-enhancers and as-predictors. LLM-as-Enhancers
methods (He et al., 2024; Chen et al., 2024c; Lu et al., 2025; Sheng et al., 2025; Yu et al., 2025; Liu
et al., 2024; Wang et al., 2025) utilizes LLMs to generate enhanced knowledge in the form of expla-
nations, embeddings or labels based on the original graph data. LLM-as-Predictors methods frames
graph problems as text generation tasks, directly utilizing LLMs as predictors to output classification
or prediction results by transforming graph structures into natural language descriptions (Wang et al.,
2024a; Ye et al., 2024; Chen et al., 2024a; Tang et al., 2024; Wang et al., 2024b; Chen et al., 2024b;
Hu et al., 2024). While previous studies have explored using LLMs for pseudo-labeling unlabeled
nodes on TAGs, they typically assume sufficient labeled nodes are available to obtain relatively
reliable LLMs (Zhao et al., 2023) or rely heavily on large-scale, powerful LLMs (Chen et al., 2024c;
Sheng et al., 2025; Lu et al., 2025).

Pseudo Label Selection. In semi-supervised learning, pseudo-labeling (Lee et al., 2013; Shi et al.,
2018) serves as an effective solution by augmenting limited labeled datasets with generated labels.
To mitigate the potential label noise, previous research usually leverages model’s confidence to select
“easy” samples that are considered to be clean (Ma et al., 2017; Kumar et al., 2010). Recent research,
however, argues that there is little information to gain with these “easy” examples (Mukherjee &
Awadallah, 2020) and merely relying on high-confidence examples may make the model self-biased
(Rizve et al., 2021; Liu et al., 2022). Consequently, current research emphasizes the importance
of mining both “easy” and “hard” samples during training to maximize model performance (Liu
et al., 2022; Mukherjee & Awadallah, 2020; Shrivastava et al., 2016). Nevertheless, identifying the
“easiness” or “hardness” of samples is often non-trivial,especially for LLMs.

3 PROPOSED APPROACH

In this section, we propose an LLM-GNN pseudo co-labeling framework GNN-as-Judge that addresses
LLM pseudo-labeling challenges through three core designs as shown in Figure 1: (i) a subset
selection strategy that identifies nodes with most information from labeled nodes for pseudo labeling;
(ii) a collaborative pseudo label selection mechanism that leverages GNN as complementary signal
sources for LLM to generate high-quality pseudo labels, and (iii) a weakly-supervised fine-tuning
algorithm that mitigates label noise when fine-tuning LLM with generated pseudo labels.

3.1 PRELIMINARIES

We consider few-shot semi-supervised node classification on text-attributed graphs (TAGs) defined
as G = (V, E ,A,X), where V = {v1, v2, . . . , vN} is the node set, E ⊆ V × V is the edge set,
A ∈ {0, 1}N×N is the adjacency matrix, and X ∈ RN×F contains node features derived from text.
Given a small labeled set Vtrain where each class c ∈ {1, . . . , C} has exactly k labeled nodes, along
with validation set Vval, the goal is to predict labels for test nodes Vtest = V \ (Vtrain ∪ Vval). Common
approaches include: (1) GNN-as-Predictors methods that learn node representations via message
passing, yielding predictions ŷGNN

i = fϕ(vi,A,X) with trainable parameters ϕ, and (2) LLM-as-
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Predictors methods that construct prompts P(vi) from textual attributes and generate predictions
ŷLLM
i =Mθ(P(vi)) using language models with parameters θ.

3.2 GNN-AS-JUDGE FOR LLM PSEUDO LABELING ON GRAPHS

To break the bottleneck of using LLM-generated pseudo labels, our approach tries to mine “easy”
and “hard” pseudo labeled nodes based on the agreement and disagreement between LLM and GNN,
in order to provide reliable pseudo labels for fine-tuning the LLMs. To avoid the computational
constraints of pseudo-labeling over the entire unlabeled set, we first identify the most influential
unlabeled nodes according to graph structures, then apply our collaborative pseudo labeling framework
to this selected subset. Specifically, we leverage the complementary strengths of two distinct models:
a structure-aware GNN fϕ and a text-centric LLMMθ, both trained on the labeled set Vtrain.

Influence-Guided Node Selection for Pseudo Labeling. Due to computational constraints and
efficiency considerations, it is crucial to select a candidate node subset from the entire unlabeled node
set for pseudo labeling. While LLMs excel at processing textual information, they lack awareness of
graph structures and cannot readily capture the influence of labeled data on unlabeled nodes (Dai et al.,
2025; Chen et al., 2024b). To address this, we employ GNNs as a structural proxy to identify subsets
of nodes that carry the most information from labeled data. We leverage the concept of node influence
that quantifies the extent to which one labeled node’s representation can impact another unlabeled
node’s representation through the graph structure (Xu et al., 2018; Huang & Zitnik, 2020; Wang &
Leskovec, 2020; Zhang et al., 2021; Wang et al., 2022). We first provide the formal definition:
Definition 1 (Node Influence). Node influence Ivi,vj of node vi on node vj in the final GNN output

is: Ivi,vj =
∥∥∥∂x(∞)

vj /∂x
(∞)
vi

∥∥∥, where x
(∞)
vi and x

(∞)
vj are the final node representations of vi and vj

learned by the neighborhood aggregation mechanism after infinite layers, the norm is any subordinate
norm, and the Jacobian measures how a change in the representation of vi translates to a change in
the representation of vj .

Definition 1 captures how effectively labeled nodes can propagate their information to unlabeled
nodes. Nodes with high influence from labeled data are ideal candidates for pseudo labeling because:
(i) they receive stronger signals from the labeled set, making pseudo labels more reliable, and (ii)
they better reflect the distributional characteristics of the labeled nodes, ensuring representativeness
and diversity. We then propose Theorem 1, which establishes that the influence of node vi on node vj
decays with their distance and provides a computable upper bound for node influence. The proof is
provided in Appendix E.1.
Theorem 1. Let Pvi,vj denote the set of all paths between nodes vi and vj , and let P∗

vi,vj
⊆ Pvi,vj

denote the set of shortest paths. For any path t ∈ Pvi,vj , let Dt
GM be the geometric mean of node

degrees occurring on path t defined as Dt
GM =

(∏
vk∈t Dvkvk

)1/|t|
, where |t| is the path length

and Dvkvk is the degree of node vk. Define D∗
GM = mint∈P∗

vi,vj
{Dt

GM} as the minimum geometric
mean among shortest paths, h∗ = d(vi, vj) as the shortest path distance between vi and vj , and
|P∗

vi,vj | as the number of shortest paths between vi and vj . Then, the node influence Ivi,vj from vi to
vj satisfies:

Ivi,vj
=
∥∥∥∂x(∞)

vj /∂x(∞)
vi

∥∥∥ ≤ |P∗
vi,vj |

(D∗
GM )h∗ (1)

Based on Theorem 1, we define the influence score of an unlabeled node vj ∈ Vunlabeled as its
maximum influence from any labeled node:

IS(vj) = max
vi∈Vtrain

Ivi,vj = max
vi∈Vtrain

|P∗
vi,vj |

(D∗
GM )h∗ (2)

We then rank all unlabeled nodes based on their influence scores and select the top K nodes with the
highest values:

Vselected = TopK ({IS(vj) : vj ∈ Vunlabeled},K) (3)
This formulation ensures we select unlabeled nodes that are most strongly influenced by the labeled
node set, maximizing the potential for effective information propagation during pseudo labeling.
After obtaining the predictions from both the GNN and LLM on the selected node set Vselected, we
further partition the selected unlabeled node set into agreement node set Vagreed = {vi ∈ Vselected |
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ŷGNN
i = ŷLLM

i } and disagreement node set Vdisagreed = {vi ∈ Vselected | ŷGNN
i ̸= ŷLLM

i }. The intuition
behind using both agreement and disagreement node sets is that they serve complementary roles
in effective LLM fine-tuning. While agreement nodes provide more reliable learning signals that
consolidate the model’s understanding, carefully selected disagreement nodes offer challenging
examples that provide more informative learning signals.

Agreement Node Set Selection with GNN Feedback. We assume that nodes in the agreement set
are more likely to have correct pseudo labels, as agreement between models with distinct inductive
biases suggests higher label reliability. We provide theoretical justification for this assumption, which
shows that the expected accuracy of the agreement set is strictly than that of either individual model:

Theorem 2. Consider Vselected with ground truth labels y∗. Let pLLM and pGNN denote the individual
accuracies of the LLM and GNN respectively. Under conditional independence of model errors due
to different inductive biases and uniform error distribution across incorrect classes, the accuracy of
the agreement set satisfies:

P (y∗i |vi ∈ Vagreed) ≥
pLLM · pGNN

pLLM · pGNN + (1−pLLM)(1−pGNN)
C−1

(4)

where C is the number of classes. Furthermore, this lower bound exceeds max(pLLM, pGNN) when
both models perform better than random guessing.

The proof is provided in Appendix E.2. This theoretical result confirms that the agreement set
provides higher-quality pseudo labels compared to using either model individually.

Disagreement Node Set Selection with GNN Feedback. While pseudo-labeled nodes in the
agreement node set are provably more reliable, simply using easy, self-generated labels where the
LLM already predicts correctly provides limited new learning signals and may lead to overfitting. To
counter this issue, we propose to employ GNN as a judge for selecting high-quality pseudo labels
in the disagreement node set. Since our method selects structurally influential nodes for pseudo
labeling and the GNN’s message-passing mechanism can exploit local neighborhood information that
is inaccessible to the LLM, the GNN is assumed to be more reliable than LLM for pseudo labeling
in this set. To further ensure the quality of pseudo labels, we utilize GNN’s probability distribution
over different classes as a natural indicator of its preference strength. For each node vi ∈ Vdisagreed,
we compute a preference score measuring how strongly the GNN favors its own prediction over the
LLM’s prediction: Spref(vi) = PGNN(ŷ

GNN
i | vi)− PGNN(ŷ

LLM
i | vi), where PGNN(ŷ

GNN
i | vi) is the

GNN’s predicted probability for its top class, and PGNN(ŷ
LLM
i | vi) is the probability assigned to the

LLM’s predicted class. A larger preference score indicates a stronger conviction by the GNN in its
own prediction relative to the LLM’s alternative. We then select the final subset of nodes, V ′

disagreed,
by retaining only those where the GNN’s preference score exceeds a predefined confidence threshold
τ : V ′

disagreed = {vi ∈ Vdisagreed | Spref(vi) ≥ τ}.

Remark: Directly utilizing LLMs to evaluate “easiness” or “hardness” of unlabeled nodes on
TAGs is non-trivial. Our strategy utilize the GNN as a pseudo label judge to effectively identify
“easy” and “hard” samples, providing a practical method to identify reliable pseudo labels.

3.3 LLM WEAKLY-SUPERVISED FINE-TUNING ON GRAPHS WITH GNN FEEDBACK

Weakly-Supervised Fine-tuning Algorithm. Based on our selected pseudo-labeled nodes, we
propose a weakly-supervised fine-tuning algorithm that fine-tunes LLMs on graphs using a unified
objective. Our approach integrates both instruction tuning and preference tuning into a single training
framework:

L(θ) = E(xi,yi)∼Dagreed [LIT(θ;xi, yi)] + λE(xi,yw,i,yl,i)∼Ddisagreed′
[LPT(θ;xi, yw,i, yl,i)] (5)

whereDagreed represents the data distribution over the agreement node set Vagreed,Ddisagreed′ represents
the data distribution over the selected disagreement node set V ′

disagreed, and λ controls the contribution
of the preference tuning loss. For each selected node vi, we construct the input xi as the node’s textual
content formatted with task-specific prompts (detailed prompt templates are provided in Appendix F).
For nodes in Vagreed, yi represents the consensus prediction where both GNN and LLM agree. For
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nodes in Ddisagreed′ , yw,i and yl,i represent the GNN’s prediction (preferred) and LLM’s prediction
(dispreferred) respectively.

LLM Instruction Tuning with LLM-GNN Agreement. For nodes in the agreement set Vagreed, we
apply instruction tuning (Ouyang et al., 2022) to reinforce correct predictions. Given an input node
text feature xi and the agreed pseudo label yi, the instruction tuning loss is defined as:

LIT(θ;xi, yi) = − log pθ(yi|xi), (6)

where pθ(yi|xi) represents the LLM’s probability of generating the label yi given the node text xi,
and θ denotes the model parameters.

LLM Preference Tuning with LLM-GNN Disagreement. Directly fine-tuning the LLM on
pseudo-labels from the disagreement set via standard instruction tuning is problematic because the
disagreement node set contains potentially more label noise compared to the agreement node set. To
address this, we reframe the problem on the disagreement set using a preference tuning objective.
For each node vi ∈ V ′

disagreed, we construct a preference pair where the GNN’s prediction yw,i serves
as the preferred response and the LLM’s prediction yl,i serves as the dispreferred response. This
formulation enables the model to learn from the relative relationship between competing outputs
without requiring absolute correctness from either prediction. The preference tuning objective is
formulated as:

LPT(θ;xi, yw,i, yl,i) = − log σ(gθ(xi, yw,i, yl,i)) (7)

where xi represents the input prompt for node vi, yw,i and yl,i are the preferred and dispreferred
outputs respectively, and gθ(·) is a preference function that scores the relative preference between the
two outputs. In our implementation, we adopt Odds Ratio Preference Optimization (ORPO) (Hong
et al., 2024), which uses the log odds ratio as the preference function:

gθ(x, yw, yl) = log
oddsθ(yw | x)
oddsθ(yl | x)

(8)

where oddsθ(y | x) = Pθ(y | x)/(1 − Pθ(y | x)). By minimizing this loss over V ′
disagreed, the

LLM learns to increase the relative likelihood of the GNN’s predictions compared to its own initial
predictions. This approach mitigates the risk of overfitting to noisy pseudo-labels while still leveraging
the valuable disagreement signal to improve model performance.

Remark: Our framework can be considered as an LLM preference alignment framework by
replacing human feedback with signals derived from GNNs. While we implement preference
tuning using ORPO (Hong et al., 2024), our approach is also compatible with other methods
like such as DPO (Rafailov et al., 2023), SimPO (Meng et al., 2024), and other variants.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train and evaluate our framework on four widely-used benchmark datasets for few-
shot semi-supervised node classification: Cora (Yang et al., 2016), Citeseer (Sen et al., 2008),
Pubmed (Sen et al., 2008), ogbn-arxiv and ogbn-products (Namata et al., 2012). For
Cora, Citeseer and Pubmed, which are three most widely used citation networks, we follow
the experimental setup of previous work Gasteiger et al. (2018) and split each dataset into training
(i.e., K nodes per class for K-shot task), validation set, and test set. To evaluate performance on
large-scale graphs, we also include ogbn-arxiv and ogbn-products from the Open Graph
Benchmark (OGB) (Hu et al., 2020). Detailed statistics of all datasets are summarized in Appendix A.

Baselines and Implementation Details. To evaluate the effectiveness of our proposed framework,
we compare it against baseline methods from three primary categories: (1) Classical GNN Models:
We include established graph neural network models such as GCN (Kipf & Welling, 2017) and
SGC (Wu et al., 2019); (2) LLM-as-Predictors: We also include baselines that utilize general-
purpose LLMs with various prompting strategies such as zero-shot, chain-of-thought, and neighbor-
augmented prompting (Wei et al., 2022; Chen et al., 2024b); (3) LLM-Graph Methods: Aligning
with our focus, we benchmark against various state-of-the-art LLM-Graph methods, including
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GLEM (Zhao et al., 2023), TAPE (He et al., 2024), LLM-GNN (Chen et al., 2024c), LLaGA (Chen
et al., 2024a) and GraphGPT (Tang et al., 2024). We use GCN (Kipf & Welling, 2017) and Llama-3-
8B-Instruct (Grattafiori et al., 2024) as backbone models of our approach. Further descriptions and
implementation details on all methods are provided in the Appendix B and C.

4.2 FEW-SHOT SEMI-SUPERVISED NODE CLASSIFICATION

Table 1: Node classification accuracy (%) across different datasets and shot settings. Results show
mean ± standard deviation performance. Best results are bolded, while second-best results are
underlined.

Shot Method Cora Citeseer Pubmed ogbn-arxiv ogbn-products

3-
sh

ot

GCN 69.45±2.34 63.12±1.02 65.23±1.67 38.33±2.41 59.19±0.79
SGC 67.21±1.25 63.07±0.95 65.34±1.18 39.16±1.49 57.42±1.12

Zero-Shot 65.54±0.26 58.17±0.64 74.51±0.39 50.18±1.44 75.48±1.54
Graph-CoT 63.02±0.77 47.23±1.06 86.22±2.47 49.67±1.23 74.15±1.83
w. Neighbor 68.72±1.56 54.93±1.28 74.98±3.16 49.28±2.09 76.88±1.07

GLEM 67.81±0.92 53.09±1.39 63.85±1.02 36.37±1.96 52.46±1.93
TAPE 73.71±1.86 64.96±0.36 71.33±0.87 48.25±0.77 69.64±1.15
LLM-GNN 73.85±0.74 61.67±0.58 66.01±0.63 42.36±1.72 55.46±0.37
LLaGA 54.79±0.91 32.93±1.24 43.96±1.74 29.73±2.82 30.67±1.54
GraphGPT 57.77±1.62 52.34±1.06 57.51±1.89 31.26±2.73 40.83±2.97
GNN-as-Judge 77.89±1.28 73.59±0.64 87.12±0.89 62.21±1.45 81.02±1.23

5-
sh

ot

GCN 73.69±1.03 63.24±0.87 70.58±0.49 45.67±0.41 68.26±1.54
SGC 72.48±0.35 62.08±0.77 70.74±0.94 49.89±1.23 66.78±1.56

Zero-Shot 65.54±0.26 58.17±0.64 74.51±0.39 50.18±1.44 75.48±1.54
Graph-CoT 63.02±0.77 47.23±1.06 86.22±2.47 49.67±1.23 74.15±1.83
w. Neighbor 68.72±1.56 54.93±1.28 74.98±3.16 49.28±2.09 76.88±1.07

GLEM 74.69±0.46 61.71±0.58 73.29±1.44 39.19±1.57 56.87±1.70
TAPE 74.28±0.81 67.73±0.48 75.02±0.83 55.22±0.48 77.44±1.32
LLM-GNN 75.61±1.04 62.37±1.35 74.33±0.95 45.74±1.66 64.01±0.39
LLaGA 62.88±2.19 43.71±4.36 58.63±1.05 33.74±2.45 37.29±3.12
GraphGPT 60.17±1.44 51.83±2.24 57.39±3.67 36.25±1.87 44.78±2.34
GNN-as-Judge 79.54±0.39 74.39±1.63 87.49±1.23 66.76±0.83 81.93±2.21

10
-s

ho
t

GCN 78.22±0.89 68.38±1.49 75.33±0.94 50.95±1.77 69.65±0.89
SGC 78.49±0.37 67.44±0.60 74.98±1.91 51.89±1.23 67.91±0.48

Zero-Shot 65.54±0.26 58.17±0.64 74.51±0.39 50.18±1.44 75.48±1.54
Graph-CoT 63.02±0.77 47.23±1.06 86.22±2.47 49.67±1.23 74.15±1.83
w. Neighbor 68.72±1.56 54.93±1.28 74.98±3.16 49.28±2.09 76.88±1.07

GLEM 78.11±0.73 66.83±0.61 74.17±2.39 47.73±1.09 60.22±1.89
TAPE 79.33±0.57 69.39±0.65 77.18±1.06 60.37±0.92 79.53±0.63
LLM-GNN 79.39±1.26 66.28±0.94 76.82±0.57 52.74±0.48 66.98±0.39
LLaGA 69.25±0.97 51.22±1.43 67.29±2.26 45.35±1.74 40.55±1.63
GraphGPT 61.58±0.77 55.40±3.16 71.33±2.81 48.67±1.89 51.46±1.05
GNN-as-Judge 80.71±0.83 74.62±1.35 90.17±1.69 67.88±1.03 82.48±1.56

Table 1 presents the comparative performance of our approach against various baseline methods
across multiple datasets and experimental settings. Our results demonstrate three key observations.
Observation 1: Our proposed GNN-as-Judge consistently outperforms all baseline methods across all
datasets and experimental settings, demonstrating superior robustness. Observation 2: Our method
shows particularly strong performance in low-resource settings, highlighting its effectiveness in
real-world applications. In extreme scenarios such as 3-shot and 5-shot settings, GNN-as-Judge
maintains substantial performance advantages, making it highly practical for domains where labeled
data is scarce or expensive to obtain. Observation 3: In low-resource settings, GNN-based methods
consistently show strong performance compared to LLM-based approaches. Traditional GNN
architectures can effectively exploit graph structure and connectivity patterns even with limited
labeled data, while LLM-based methods struggle due to insufficient textual context and unreliable
pseudo label generation in these constrained scenarios.

4.3 CROSS-DATASET ZERO-SHOT NODE CLASSIFICATION

In this section, we evaluate the zero-shot generalization capabilities of GNN-as-Judge. We compared
with various LLMs-as-Predictors graph learning models on the ogbn-arxiv dataset and evaluated
their zero-shot performance on Cora, Citeseer, and Pubmed without additional fine-tuning.
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Table 2: Zero-Shot Cross-Dataset
Node Classification.

Train → Test Model Accuracy

ogbn-arxiv
↓

Cora

LLAGA 16.24±0.95
GraphGPT 6.29±0.73

GNN-as-Judge 68.27±0.91

ogbn-arxiv
↓

Citeseer

LLAGA 14.72±1.12
GraphGPT 5.37±0.84

GNN-as-Judge 56.67±0.89

ogbn-arxiv
↓

Pubmed

LLAGA 30.52±1.18
GraphGPT 10.54±1.05

GNN-as-Judge 83.41±0.76

Unlike traditional GNNs that require task-specific classifica-
tion heads, LLMs-as-Predictors methods can perform zero-shot
learning across different label sets. As shown in Table 2, GNN-
as-Judge demonstrates superior zero-shot transfer performance
across all target datasets. It substantially outperforms GraphGPT
and LLaGA, which struggle with cross-dataset generalization.
Their approach of encoding graph structure into tokens appears
to constrain the LLM’s generalization capabilities, resulting in
performance worse than untuned base LLMs. These results in-
dicate that GNN-as-Judge is more robust to distribution shifts
between graph datasets and better preserves the LLM’s inher-
ent generalization capabilities while incorporating graph-based
insights. This makes our approach particularly valuable for
practical applications where labeled data may be scarce or available only for specific domains,
necessitating models that can effectively generalize to new, unseen graph structures.

4.4 ANALYSIS ON PSEUDO LABEL SELECTION

To evaluate the effectiveness of our influence-guided node selection strategy, we conduct a
comprehensive analysis comparing different pseudo label selection approaches. Figure 2 illus-
trates the accuracy of 1,500 pseudo labels selected using various methods across three repre-
sentative datasets under 3-shot setting and then annotated by GCN (Kipf & Welling, 2017).

Cora Citeseer ogbn-arxiv
Dataset

55
60
65
70
75
80
85
90
95

Ps
eu

do
 L
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cc

ur
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y 
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)

Random
Degree
AGE
LLM-GNN
GNN-as-Judge

Figure 2: Comparison of pseudo label
selection strategies across datasets.

We apply the same GNN-as-Judge filtering process after ini-
tial node selection. We analyze our GNN-as-Judge approach
alongside several alternative selection strategies: (1) Ran-
dom: Randomly selecting pseudo labels; (2) Degree (Page
et al., 1999): Selecting nodes based on their degree central-
ity in the graph; (3) AGE (Cai et al., 2017): Using graph
embedding to identify representative nodes; and (4) LLM-
GNN (Chen et al., 2024c): Specifically, we use the proposed
difficulty-aware strategy combined with AGE (Cai et al.,
2017). As shown in Figure 2, our influence-guided selec-
tion consistently outperforms all baseline approaches across

datasets, achieving the highest pseudo label accuracy after applying the same filtering process. The
results highlight that structural influence from labeled nodes provides a more effective criterion for
pseudo label selection compared to simple graph topology measures. More detailed quantitative
analysis of pseudo label selection is provided in Appendix G.

4.5 ABLATION STUDY

In this section, we conduct an ablation study to analyze the contribution of key modules from our
proposed GNN-as-Judge.
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Figure 3: Ablation study demonstrating the contribution of each component in our GNN-as-Judge
framework.
• Effectiveness of Pseudo Label. We first examine the contribution of pseudo labels by evaluating

the w/o Pseudo Labels variant that only performs supervised fine-tuning on the labeled set without
incorporating pseudo-labeled nodes. As shown in Figure 3, removing pseudo labels leads to
significant performance degradation across all datasets. This demonstrates that our pseudo-labeling
strategy effectively expands the training set with high-quality pseudo labels.

• Effectiveness of Disagreement Node Set. We then evaluate the importance of the disagreement
node set through the w/o Disagreement Node Set variant by excluding these challenging examples
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from our training data. Removing the disagreement node set leads to significant performance
degradation. These nodes, identified through prediction disagreements between different model
variants, represent the most informative hard examples that can provide additional learning signals.

• Effectiveness of Weakly-Supervised Fine-Tuning. Finally, we assess the contribution of our
proposed weakly supervised fine-tuning strategy through the w/o Weakly supervised fine-tuning
variant by replacing it with standard instruction tuning. Our full GNN-as-Judge approach consis-
tently outperforms standard instruction tuning on selected nodes with particularly notable gains on
Pubmed due to potentially more label noise in the disagreement set. Unlike standard instruction
tuning on pseudo-labeled data, our approach is better equipped to handle the inherent uncertainty
or potential noise present in the pseudo labels of the selected nodes.

4.6 SENSITIVITY AND TRAINING TIME ANALYSIS

In this section, we evaluate the framework’s sensitivity to different hyper-parameters and analyze the
computational efficiency. Additional experiments and analysis are provided in Appendix H.

Sensitivity Analysis. We investigate the impact of two critical hyperparameters in GNN-as-Judge:
the top-K selection for unlabeled nodes in pseudo-labeling and the preference score threshold τ
for disagreement node filtering. This analysis is essential for understanding the robustness and the
scalability of our approach.
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Figure 4: Sensitivity analysis of hyperparameters: top-K
unlabeled nodes (left) and preference score threshold τ (right)
across three benchmark datasets.

For the top-K analysis, we vary
the number of selected unlabeled
nodes within the range K ∈
{500, 1000, 1500, 2000, 2500}. Fig-
ure 4 demonstrates that GNN-as-
Judge exhibits scalability properties,
with performance generally improv-
ing as more unlabeled nodes are in-
corporated into the pseudo-labeling
process and then used for training.
However, the performance increase
is moderate as more data points are incorporated, suggesting diminishing returns beyond a certain
threshold while maintaining computational efficiency.
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Figure 5: Training time versus
accuracy.

For the preference score threshold τ , we examine values in the
range τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} to understand how preference
score filtering affects model performance. Notably, the perfor-
mance variations are relatively small when τ ranges from 0.5 to
0.9. This robustness is particularly valuable for practical applica-
tions where precise hyperparameter tuning may be challenging.

Training Time Analysis. Figure 5 presents a comprehensive com-
parison of the computational efficiency and accuracy trade-offs
across different methods. The scatter plot illustrates the relation-
ship between total training time on a single NVIDIA A100 80GB
GPU for the entire pipeline and achieved accuracy for each approach under 3-shot settings for
the ogbn-arxiv dataset. The usage of LLMs extends the training time, but our method gains
substantial accuracy improvements that justify the computational overhead.

5 CONCLUSION

In this paper, we present GNN-as-Judge, a novel framework that addresses the challenge of applying
LLMs to few-shot semi-supervised graph learning. Our approach leverages complementary strengths
from both GNNs and LLMs through three key mechanisms: (i) a subset selection strategy that
identifies nodes with most information from labeled nodes for pseudo labeling; (ii) a strategic pseudo-
label selection that identifies both reliable and challenging nodes, and (iii) a weakly-supervised fine-
tuning strategy combining instruction tuning with preference tuning. Experiments across multiple
datasets demonstrate that GNN-as-Judge consistently outperforms both GNN architectures and
LLM-based methods, particularly in low-resource settings.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide our complete source code at https://
anonymous.4open.science/r/GNN-as-Judge-2F28/. Complete implementation de-
tails are provided in Appendix C.
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APPENDIX

This Appendix provides comprehensive supplementary material for the submitted paper including
detailed information across the following sections:

• Section A: Dataset statistics and descriptions including comprehensive analysis of evaluation
datasets with node/edge counts, feature dimensions, and label space characterization.

• Section B: Comprehensive baseline method descriptions covering Classical GNN Models, LLM-
as-Predictors approaches, and state-of-the-art LLM-Graph integration methods.

• Section C: Implementation details for our approach and all baselines, including hyperparameter
settings, training configurations, and computational environment specifications for reproducibility.

• Section D: Complete algorithmic details for the GNN-as-Judge framework.

• Section E: Theoretical analysis with complete proofs for Theorem 1 and Theorem 2.

• Section F: Detailed prompt templates used for all LLM-based methods including our GNN-as-
Judge framework and baseline approaches.

• Section G: Quantitative analysis of pseudo-label selection including agreement patterns, accuracy
distributions, diversity metrics, and selection strategy comparisons.

• Section H: Additional experimental results covering sensitivity analysis, integration with various
LLMs, performance on heterophilic graphs.

• Section I: Discussion of limitations and potential future research directions for the GNN-as-Judge
framework.

• Section J: Broader impacts and societal implications of the GNN-as-Judge framework.

• Section K: Extended related work.

• Section L: Disclosure of Large Language Model usage in manuscript preparation for transparency
and reproducibility standards.

A DATASET

A.1 DATASET STATISTICS

Table 3: Summary statistics of the evaluation datasets.

Dataset Nodes Edges Features Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
ogbn-arxiv 169,343 1,166,243 128 40
ogbn-products(subset) 54,025 74,420 100 47

Table 3 presents the detailed statistics of the datasets used in our experiments, including the number
of nodes, edges, features, and classes for each dataset.

A.2 DATASET DESCRIPTIONS

Cora (Yang et al., 2016). The Cora dataset comprises 2,708 scientific publications classified into
one of seven machine learning research categories. The citation network consists of 5,429 links,
where papers were selected such that every paper citeps or is citepd by at least one other paper in the
final corpus.

citepseer (Sen et al., 2008). The citepseer dataset contains 3,327 computer science papers classi-
fied into 6 categories across different CS research areas. The citation network includes 4,732 links,
with each paper represented by 3,703-dimensional features derived from bag-of-words representation
of the paper content.
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Pubmed (Sen et al., 2008). The Pubmed dataset consists of 19,717 scientific publications from
the PubMed database pertaining to diabetes research, classified into one of three diabetes-related
categories. The citation network consists of 44,338 links, with each paper represented by 500-
dimensional features extracted from the paper abstracts.

ogbn-arxiv (Hu et al., 2020). The ogbn-arxiv dataset is a directed graph representing the citation
network between computer science arXiv papers indexed by Microsoft Academic Graph (MAG).
Each node represents an arXiv paper, and each directed edge indicates that one paper citeps another.

ogbn-products (Hu et al., 2020). The ogbn-products dataset represents an Amazon product
co-purchasing network with product descriptions as raw text. Nodes represent products sold on
Amazon, and edges between products indicate co-purchasing relationships. We use a subset of 54,025
products for computational efficiency following previous work (He et al., 2024) while maintaining
the dataset’s key characteristics.

A.3 LABEL SPACE

Within each dataset, nodes are labeled according to their academic category, as detailed in Table 4.
For example, the arXiv dataset includes 40 computer science sub-categories such as cs.AI (Artificial
Intelligence) and cs.DB (Databases).

Table 4: Label spaces of the datasets used in our experiments.

Dataset Label Space
Cora Rule Learning, Neural Networks, Case Based, Genetic Algorithms, Theory,

Reinforcement Learning, Probabilistic Methods

citepseer Agents, ML (Machine Learning), IR (Information Retrieval), DB (Databases),
HCI (Human-Computer Interaction), AI (Artificial Intelligence)

Pubmed Experimentally induced diabetes, Type 1 diabetes, Type 2 diabetes

ogbn-arxiv cs.NA, cs.MM, cs.LO, cs.CY, cs.CR, cs.DC, cs.HC, cs.CE, cs.NI, cs.CC, cs.AI,
cs.MA, cs.GL, cs.NE, cs.SC, cs.AR, cs.CV, cs.GR, cs.ET, cs.SY, cs.CG, cs.OH,
cs.PL, cs.SE, cs.LG, cs.SD, cs.SI, cs.RO, cs.IT, cs.PF, cs.CL, cs.IR, cs.MS,
cs.FL, cs.DS, cs.OS, cs.GT, cs.DB, cs.DL, cs.DM

products Home & Kitchen, Health & Personal Care, Beauty, Sports & Outdoors, Books,
Patio Lawn & Garden, Toys & Games, CDs & Vinyl, Cell Phones & Accessories,
Grocery & Gourmet Food, Arts Crafts & Sewing, Clothing Shoes & Jewelry,
Electronics, Movies & TV, Software, Video Games, Automotive, Pet Supplies,
Office Products, Industrial & Scientific, Musical Instruments, Tools & Home
Improvement, Magazine Subscriptions, Baby Products, Appliances, Kitchen &
Dining, Collectibles & Fine Art, All Beauty, Luxury Beauty, Amazon Fashion,
Computers, All Electronics, Purchase Circles, MP3 Players & Accessories, Gift
Cards, Office & School Supplies, Home Improvement, Camera & Photo, GPS
& Navigation, Digital Music, Car Electronics, Baby, Kindle Store, Kindle Apps,
Furniture & Decor

B BASELINE METHODS

To evaluate the effectiveness of our proposed framework, we compare it against established methods
from three primary categories: (1) Classical GNN Models, (2) LLM-as-Predictors, and (3) LLM-
Graph Methods. These baselines represent diverse approaches to handling Text-Attributed Graphs,
ranging from traditional graph neural networks to modern large language model-based methods.
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B.1 CLASSICAL GNN MODELS

We include established graph neural network architectures that rely primarily on graph structure and
node features without leveraging the reasoning capabilities of language models:

• GCN (Kipf & Welling, 2017): Graph Convolutional Networks perform neighborhood aggregation
through spectral convolutions, using a simple and effective message-passing scheme.

• SGC (Wu et al., 2019): Simple Graph Convolution simplifies GCNs by removing nonlinearities
between layers and collapsing weight matrices, resulting in a single linear transformation followed
by a softmax classifier, while maintaining competitive performance with significantly reduced
computational complexity.

B.2 LLM-AS-PREDICTORS METHODS

We include baselines that utilize general-purpose LLMs with various prompting strategies for direct
downstream classification tasks. In this paradigm, a node’s textual and structural information, along
with task-specific instructions, are tokenized and input into an LLM for prediction:

• Zero-shot Prompting: Direct application of LLMs without task-specific training, relying on the
model’s pre-trained knowledge.

• Graph Chain-of-Thought (Wei et al., 2022; Chen et al., 2024b): Enables step-by-step reasoning
by breaking down complex graph-related problems into sequential reasoning steps.

• Neighbor-Augmented Prompting (Chen et al., 2024b): Enriches prompts with structural infor-
mation from node neighborhoods, providing context about graph topology to enhance zero-shot
performance.

B.3 LLM-GRAPH METHODS

Aligning with our focus, we benchmark against various state-of-the-art methods that effectively
integrate LLMs with graph neural networks for enhanced performance on Text-Attributed Graphs:

• GLEM (Zhao et al., 2023): Combines language models with graph neural networks through a
unified framework that leverages both textual and structural information.

• TAPE (He et al., 2024): A text-attributed graph learning framework that effectively harnesses the
power of language models for graph understanding.

• LLM-GNN (Chen et al., 2024c): Integrates large language models with graph neural networks for
improved node classification performance.

• LLaGA (Chen et al., 2024a): Employs a multi-step approach where node text is first encoded
via a language model, then processed through a GNN, concatenated across layers, projected into
the LLM’s dimensionality, and finally combined with instructions for label prediction. Only the
projection layer parameters are tuned using next-token-prediction loss.

• GraphGPT (Tang et al., 2024): Implements a comprehensive framework with three distinct
pre-training and instruction tuning stages to effectively integrate graph structure with language
understanding.

C IMPLEMENTATION DETAILS

This section provides comprehensive details about the implementation, hyperparameter settings, and
training procedures used in our experiments.

C.1 IMPLEMENTATION DETAILS FOR GNN-AS-JUDGE

Data Splits. For the Cora, citepseer, and Pubmed datasets, we follow standard node classifi-
cation protocols using 3-shot, 5-shot, and 10-shot settings, where n-shot refers to n labeled nodes
per class for training. We use 500 nodes for validation and randomly select 1,000 nodes for testing
from the remaining nodes. For ogbn-arxiv and ogbn-products dataset, we adopt the original
split for both validation and testing provided by (Hu et al., 2020). For the training split, we randomly
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select 3-shot, 5-shot, and 10-shot settings by sampling n nodes from each class within the original
training set to create our labeled node sets.

GNN Component. For the GNN component of our GNN-as-Judge framework and other GNN-based
baselines, we implement a 2-layer GCN architecture (Kipf & Welling, 2017) with 64-dimensional
hidden representations. We perform a limited grid search on dropout rates, exploring values in [0.3,
0.5, 0.7], and include batch normalization in our architecture. We set the learning rate to 1e-2 and
train for up to 200 epochs with a patience of 100 for early stopping. For optimization, we use the
Adam optimizer with a weight decay of 5e-4, following standard practices in graph neural network
training.

LLM Component. Our GNN-as-Judge framework utilizes Llama-3-8B-Instruct (Grattafiori et al.,
2024) as the base model. We implement parameter-efficient fine-tuning using LoRA (Hu et al., 2022)
with rank 8 and alpha value of 16, which enables efficient adaptation of the pre-trained weights while
maintaining computational feasibility. We set the dropout rate to 0.1 and use a batch size of 8.

• Instruction Tuning Configuration. We use a learning rate of 5× 10−6 for the Llama-3 model
and train for 10 epochs during the instruction tuning stage.

• Weakly-Supervised Fine-Tuning Configuration. We maintain a learning rate of 1× 10−5 with
8 epochs for all datasets. The hyperparameter λ in Eq. 5, which balances instruction tuning and
preference tuning losses, is set to 0.1 across all datasets and settings based on our parameter
sensitivity analysis.

Selection Hyperparameters. For our proposed GNN-as-Judge pseudo-label selection mechanism
described in Section 3 and outlined in Algorithm 1, we employ several key hyperparameters. We set
the top-K selection parameter to 1,500 influential nodes for all datasets to balance computational effi-
ciency with pseudo-labeling coverage. For large-scale datasets (ogbn-arxiv, ogbn-products),
we implement a subgraph-based approximation method that extracts 2-hop subgraphs around labeled
nodes and uses nodes within a maximum distance of 4 from labeled nodes. The preference score
threshold τ is set to 0.7 across all datasets.

Computational Environment. All experiments are conducted on NVIDIA A100 GPUs with 80GB
memory.

C.2 IMPLEMENTATION DETAILS FOR OTHER BASELINES

• GLEM (Zhao et al., 2023): Following previous work (Wu et al., 2025), we set the number of EM
iterations to 1 and the pseudo-labeling ratio to 0.5. For the GNN module within GLEM, we use 2
layers with 64-dimensional hidden representations. For the LM module, we use RoBERTa (Liu
et al., 2019) as the base model with LoRA optimization and a batch size of 32. The LM is
pre-trained first across all datasets before joint training with the GNN component.

• TAPE (He et al., 2024): We utilize the provided prompt templates from the original paper to
generate explanations using Llama-3-8B-Instruct (Grattafiori et al., 2024). We use RoBERTa (Liu
et al., 2019) as the language model component, which is fine-tuned using LoRA with default
parameter settings, while the GNN configuration remains consistent with our method.

• LLM-GNN (Chen et al., 2024c): To ensure fair comparison with this baseline, we adapt the
original zero-shot approach to our few-shot setting. We use instruction-tuned Llama-3-8B-
Instruct (Grattafiori et al., 2024) on labeled data as the annotator. We employ the DA-AGE
method proposed in the original paper for pseudo-label selection and train the GNN using both
labeled data and pseudo-labeled data together.

• LLaGA (Chen et al., 2024a): We use HO templates for all experiments with the number of hops
set to 4. We use RoBERTa (Liu et al., 2019) as the text encoder. The linear projection layer ϕθ(·)
consists of a 2-layer MLP with a hidden dimension of 2048. The batch size is set to 64 and learning
rate to 1× 10−4. The number of training epochs is set to 10 for all settings.

• GraphGPT (Tang et al., 2024): Following previous work (Wu et al., 2025), we exclude the text-
graph grounding stage since the inclusion of this stage does not consistently lead to performance
improvements. For the self-supervised instruction tuning stage, we construct self-supervised
training data for each dataset to perform dataset-specific graph matching tasks. In the task-specific
instruction tuning stage, we utilize the training data to create ⟨instruction, ground-truth label⟩ pairs
following the original prompt design. The training parameters for self-supervised instruction tuning
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stage include 2 epochs with a learning rate of 1× 10−4 and a batch size of 16. For task-specific
instruction tuning stage, we train for 10 epochs with a learning rate of 1× 10−4 and a batch size of
32.

D ALGORITHM DETAILS FOR GNN-AS-JUDGE

Algorithm 1 GNN-as-Judge for LLM Few-shot Semi-supervised Learning on Graphs

Require: Labeled nodes Vtrain, unlabeled nodes Vunlabeled, GNN fϕ, LLMMθ

Require: Hyperparameters: threshold τ , selection size K, preference weight λ
1: Train GNN fϕ and instruction-tune LLMMθ on Vtrain
2: // Select influential nodes for pseudo-labeling
3: for each vj ∈ Vunlabeled do

4: Compute IS(vj) = maxvi∈Vtrain

|P∗
vi,vj

|
(D∗

GM )h∗

5: end for
6: Vselected ← TopK(IS,K)
7: // Generate predictions and partition by agreement
8: for each vi ∈ Vselected do
9: ŷGNN

i ← argmaxj fϕ(vi)j , ŷLLM
i ← Parse(Mθ(xi))

10: end for
11: Vagreed ← {vi | ŷGNN

i = ŷLLM
i }

12: Vdisagreed ← {vi | ŷGNN
i ̸= ŷLLM

i }
13: // Filter disagreement nodes by GNN preference
14: for each vi ∈ Vdisagreed do
15: Spref(vi)← PGNN(ŷ

GNN
i | vi)− PGNN(ŷ

LLM
i | vi)

16: end for
17: V ′

disagreed ← {vi ∈ Vdisagreed | Spref(vi) ≥ τ}
18: // Construct datasets and fine-tune
19: Dagreed ← {(xi, ŷ

GNN
i ) | vi ∈ Vagreed}

20: Ddisagreed′ ← {(xi, ŷ
GNN
i , ŷLLM

i ) | vi ∈ V ′
disagreed}

21: Fine-tune LLM: L(θ) = EDagreed [LIT] + λEDdisagreed′ [LPT]
22: return Fine-tuned LLMM∗

θ

E THEORETICAL ANALYSIS

E.1 PROOF OF THEOREM 1

Following previous study (Xu et al., 2018; Huang & Zitnik, 2020; Wang & Leskovec, 2020), we
use GCN (Kipf & Welling, 2017) as as the exemplar GNN model. The propagation mechanism for
the l-th layer in GCN is formulated as: H(l+1) = σ(ÂH(l)W(l)), where H(l) represents the node
feature matrix and W(l) denotes the learnable parameter matrix at layer l. The term Â = D−1A
corresponds to the row-normalized adjacency matrix. To simplify our theoretical derivations, we
adopt the standard assumptions from (Wang & Leskovec, 2020), that the activation function σ acts as
the identity operator and the weight matrix W is the identity matrix.
Theorem 1. Let Pvi,vj denote the set of all paths between nodes vi and vj , and let P∗

vi,vj
⊆ Pvi,vj

denote the set of shortest paths. For any path t ∈ Pvi,vj , let Dt
GM be the geometric mean of node

degrees occurring on path t defined as Dt
GM =

(∏
vk∈t Dvkvk

)1/|t|
, where |t| is the path length

and Dvkvk is the degree of node vk. Define D∗
GM = mint∈P∗

vi,vj
{Dt

GM} as the minimum geometric
mean among shortest paths, h∗ = d(vi, vj) as the shortest path distance between vi and vj , and
|P∗

vi,vj | as the number of shortest paths between vi and vj . Then, the node influence Ivi,vj from vi to
vj satisfies:

Ivi,vj
=
∥∥∥∂x(∞)

vj /∂x(∞)
vi

∥∥∥ ≤ |P∗
vi,vj |

(D∗
GM )h∗ (9)
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Proof. According to the GCN propagation rule, the final representation of node vj is:

x(∞)
vj =

1

Dvjvj

∑
vk∈N (vj)

avjvkx
(∞)
vk

(1)

where N (vj) denotes the neighboring nodes of vj , avjvk is the edge weight (typically 1 for un-
weighted graphs), and Dvjvj is the degree of node vj .

By recursive substitution incorporating neighbors at multiple hops:

x(∞)
vj =

1

Dvjvj

∑
vk∈N (vj)

avjvk
1

Dvkvk

∑
vl∈N (vk)

avkvl · · ·
1

Dvmvm

∑
vo∈N (vm)

avmvox
(∞)
vo (2)

The node influence Ivi,vj =

∥∥∥∥∂x(∞)
vj

∂x
(∞)
vi

∥∥∥∥ can be computed by taking the derivative with respect to

x
(∞)
vi . Since we are calculating the gradient between two feature vectors x(∞)

vj and x
(∞)
vi , the partial

derivative on nodes that are not in the paths p1, ..., pm between node vi and vj becomes 0 and these
nodes are removed:

∂x
(∞)
vj

∂x
(∞)
vi

=
∑

t∈Pvj,vi

(
1

Dvjvj

avj ,pt
1

1

Dpt
1,p

t
1

apt
1,p

t
2
· · · 1

Dpt
nt

,pt
nt

apt
nt

,vi

)
∂x

(∞)
vi

∂x
(∞)
vi

(3)

We separate the scalar terms and the derivative term within the matrix norm and use the absolute
homogeneous property (∥αA∥ = |α|∥A∥) of the matrix norm:

∣∣∣∣∣∂x
(∞)
vj

∂x
(∞)
vi

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

t∈Pvj,vi

(
1

Dvjvj

1

Dpt
1,p

t
1

· · · 1

Dpt
nt

,pt
nt

avj ,pt
1
apt

1,p
t
2
· · · apt

nt
,vi

)∣∣∣∣∣∣ ·
∣∣∣∣∣∂x(∞)

vi

∂x
(∞)
vi

∣∣∣∣∣ (4)

Since the Jacobian of the same vectors
∂x(∞)

vi

∂x
(∞)
vi

is the identity matrix I and for any subordinate norm

(∥A∥ = sup∥x∥=1{∥Ax∥}), we have ∥I∥ = 1:

Ivi,vj =

∣∣∣∣∣∣
∑

t∈Pvj,vi

1

DvjvjDpt
1,p

t
1
· · ·Dpt

nt
,pt

nt

avj ,pt
1
apt

1,p
t
2
· · · apt

nt
,vi

∣∣∣∣∣∣ (5)

Using the triangle inequality and identifying the maximum term among all paths:

Ivi,vj ≤
∑

t∈Pvj,vi

∣∣∣∣∣ 1

DvjvjDpt
1,p

t
1
· · ·Dpt

nt
,pt

nt

avj ,pt
1
apt

1,p
t
2
· · · apt

nt
,vi

∣∣∣∣∣ (6)

≤ |Pvj ,vi | · max
t∈Pvj,vi
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1,p

t
1
· · ·Dpt

nt
,pt

nt

avj ,pt
1
apt

1,p
t
2
· · · apt

nt
,vi

∣∣∣∣∣ (7)

For binary networks where edge weights a = 1 (non-negative), and focusing on the path pt
∗

that
maximizes the influence contribution:

Ivi,vj ≤ |Pvj ,vi | ·
1

DvjvjDpt∗
1 ,pt∗

1
· · ·Dpt∗

n∗ ,p
t∗
n∗

(8)

Expressing the degree terms in geometric mean format where |t∗| is the length of path t∗:

Ivi,vj ≤ |Pvj ,vi | ·
1

(Dt∗
GM )|t∗|

(9)
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E.2 PROOF OF THEOREM 2

Theorem 2. Consider Vselected with ground truth labels y∗. Let pLLM and pGNN denote the individual
accuracies of the LLM and GNN respectively. Under conditional independence of model errors due
to different inductive biases and uniform error distribution across incorrect classes, the accuracy of
the agreement set satisfies:

P (y∗i |vi ∈ Vagreed) ≥
pLLM · pGNN

pLLM · pGNN + (1−pLLM)(1−pGNN)
C−1

(10)

where C is the number of classes. Furthermore, this lower bound exceeds max(pLLM, pGNN) when
both models perform better than random guessing.

Proof. We establish a lower bound on the accuracy of the agreement set by analyzing the probability
of correct predictions under model agreement.

The probability that both models agree on their predictions decomposes as:

P (agreement) = P (yLLM
i = yGNN

i = y∗i ) + P (yLLM
i = yGNN

i ̸= y∗i ) = pLLM · pGNN + ϵ (11)
where ϵ represents the probability of agreeing on an incorrect prediction.

Under conditional independence and uniform error distribution across C − 1 incorrect classes:

ϵ =
∑
j ̸=y∗

i

P (yLLM
i = j|yLLM

i ̸= y∗i ) · P (yGNN
i = j|yGNN

i ̸= y∗i )× P (yLLM
i ̸= y∗i ) · P (yGNN

i ̸= y∗i )

(12)

=
∑
j ̸=y∗

i

1

C − 1
· 1

C − 1
· (1− pLLM) · (1− pGNN) =

(1− pLLM)(1− pGNN)

C − 1
(13)

By Bayes’ theorem, the accuracy of the agreement set is:

P (y∗i |agreement) =
P (agreement|y∗i ) · P (y∗i )

¶(agreement)
=

pLLM · pGNN

pLLM · pGNN + ϵ
(14)

=
pLLM · pGNN

pLLM · pGNN + (1−pLLM)(1−pGNN)
C−1

(15)

This establishes the lower bound stated in the theorem.

To show this lower bound exceeds individual model performance, we prove it for pLLM:
pLLM · pGNN

pLLM · pGNN + (1−pLLM)(1−pGNN)
C−1

> pLLM (16)

Cross-multiplying and simplifying:

pLLM · pGNN > pLLM

(
pLLM · pGNN +

(1− pLLM)(1− pGNN)

C − 1

)
(17)

0 > p2LLM · pGNN − pLLM · pGNN +
pLLM(1− pLLM)(1− pGNN)

C − 1
(18)

pLLM · pGNN(1− pLLM) >
pLLM(1− pLLM)(1− pGNN)

C − 1
(19)

Dividing by pLLM(1− pLLM) > 0:

pGNN >
1− pGNN

C − 1
⇒ pGNN(C − 1) > 1− pGNN ⇒ pGNN · C > 1⇒ pGNN >

1

C
(20)

By symmetry, the same holds for pLLM > 1
C . Therefore, when both models perform better than

random guessing, the lower bound exceeds both individual accuracies:

P (y∗i |vi ∈ Vagreed) ≥
pLLM · pGNN

pLLM · pGNN + (1−pLLM)(1−pGNN)
C−1

> max(pLLM, pGNN) (21)
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F PROMPTS

This section provides detailed prompt templates used for all LLM-based methods in our experiments.
We use ⟨raw_text⟩ to denote the node’s original textual content, ⟨labels⟩ to represent the dataset-
specific label space, and ⟨graph⟩ for tokenized graph context when applicable.

F.1 PROMPTS FOR GNN-AS-JUDGE

For our proposed method, we use straightforward instruction-following prompts tailored to each
dataset:

GNN-as-Judge Prompt Templates

Cora: Given a node-centered graph with centric node description: ⟨raw_text⟩, each node represents
a paper, we need to classify the center node into 7 classes: Case_Based, Genetic_Algorithms, Neu-
ral_Networks, Probabilistic_Methods, Reinforcement_Learning, Rule_Learning, Theory, please tell me
which class the center node belongs to?

citepseer: Given a node-centered graph with centric node description: ⟨raw_text⟩, each node represents
a paper, we need to classify the center node into 6 classes: Agents, ML (Machine Learning), IR (Infor-
mation Retrieval), DB (Databases), HCI (Human-Computer Interaction), AI (Artificial Intelligence),
please tell me which class the center node belongs to?

Pubmed: Given a node-centered graph with centric node description: ⟨raw_text⟩, each node represents
a paper about Diabetes, we need to classify the center node into 3 classes: Experimentally induced
diabetes, Type 1 diabetes, Type 2 diabetes, please tell me which class the center node belongs to?

ogbn-arxiv: Given a node-centered graph with centric node description: ⟨raw_text⟩, we need to classify
the center node into 40 arXiv CS sub-categories: cs.AI(Artificial Intelligence), cs.CV(Computer Vision
and Pattern Recognition), cs.LG(Machine Learning), cs.CL(Computation and Language), cs.NE(Neural
and Evolutionary Computing), ..., please tell me which class the center node belongs to?

ogbn-products: Given a node-centered graph with centric node description: ⟨raw_text⟩, each node
represents a product, we need to classify the center node into 47 classes: Home & Kitchen, Health &
Personal Care, Beauty, Sports & Outdoors, Books, Electronics, ..., please tell me which class the center
node belongs to?

F.2 PROMPTS FOR GRAPHGPT

GraphGPT uses graph-aware templates with structured graph tokens:

GraphGPT Prompt Templates

Citation Networks (Cora, citepseer, Pubmed, ogbn-arxiv):
Given a citation graph: ⟨graph⟩ where the 0-th node is the target paper, with the following information:
⟨raw_text⟩. Question: Which of the following specific research does this paper belong to: ⟨labels⟩.
Directly give the full name of the most likely category of this paper.

E-commerce Network (ogbn-products):
Given an e-commerce network: ⟨graph⟩ where the 0-th node is the target product, with the following
information: ⟨raw_text⟩. Question: We need to classify the center product into 47 classes: ⟨labels⟩.
Directly tell me which product category the center product belongs to.

F.3 PROMPTS FOR LLAGA

LLaGA employs HO templates with multi-hop structural information:
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LLaGA Prompt Templates

Citation Networks (Cora, citepseer, Pubmed, ogbn-arxiv):
Given a node-centered graph: ⟨graph⟩, each node represents a paper, we need to classify the center
node into [N] classes: ⟨labels⟩, please tell me which class the center node belongs to?

E-commerce Network (ogbn-products):
Given a node-centered graph: ⟨graph⟩, each node represents a product, we need to classify the center
node into 47 classes: Home & Kitchen, Health & Personal Care, Beauty, Sports & Outdoors, Books,
Patio Lawn & Garden, Electronics, ..., please tell me which class the center node belongs to?

F.4 PROMPTS FOR ZERO-SHOT LLM METHODS

For direct LLM inference without fine-tuning, we employ several prompting strategies:

Zero-Shot Prompting Templates

Chain-of-Thought:
Question: Which of the following types does this [paper/product] belong to? Here are the [N] categories:
⟨labels⟩. Let’s think about it step by step. Analyze the content of the node and choose one appropriate
category. Output format: ⟨reason:⟩, ⟨classification:⟩
Neighbor-Augmented:
Given the information of the node: ⟨raw_text⟩. Given the information of its neighbors ⟨raw_text⟩. Here
I give you the content of the node itself and the information of its 2-hop neighbors. The relation between
the node and its neighbors is [“citation”/“co-purchase”]. Question: Based on this information, which of
the following categories does this [item] belong to? Here are the [N] categories: ⟨labels⟩. Reply only
one category that you think this [item] might belong to.

G QUANTITATIVE ANALYSIS OF SELECTED PSEUDO LABELS

To provide deeper insights into our GNN-as-Judge framework, we conduct a comprehensive analysis
of the pseudo-label selection process across all datasets. This analysis examines the agreement
patterns between LLM and GNN predictions, the accuracy distributions of selected labels, and the
composition of the final augmented training sets. Table 5 presents the quantitative results of our
pseudo-label selection strategy in the 3-shot setting.

G.1 AGREEMENT AND DISAGREEMENT PATTERNS

Table 5: Quantitative analysis of pseudo label selection for the 3-shot setting.

Dataset Initial Pool Final Set

A/D Ratio Agree Acc. Disagree Acc. Size Final Acc. Sel. Disagree Acc.

Cora 978/520 93.35 61.68 1,103 92.11 82.41
citepseer 881/614 91.59 66.56 1,120 88.83 72.17
Pubmed 991/504 92.02 31.55 1,191 83.29 40.03
ogbn-arxiv 611/888 84.40 37.38 817 78.09 59.37
ogbn-products 753/733 87.12 37.24 883 81.99 52.29

Table 5 presents the quantitative results of our pseudo-label selection strategy in the 3-shot setting
(seed=42). The table reveals several key patterns in how LLMs and GNNs agree or disagree on
different datasets. The agreement/disagreement (A/D) ratios vary across datasets. Agreement nodes
consistently achieve high accuracy, validating our theoretical analysis in Theorem 2. Notably, the
disagreement accuracy is much lower and varies substantially across datasets, highlighting the
importance of careful selection within the disagreement set.

To further contextualize our framework’s performance, Table 6 compares the accuracy of our final
selected pseudo-label set “Sel. Acc”) against baselines that randomly select a set of the same size
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Table 6: Accuracy (%) of our final selected pseudo-label set compared to baseline selection methods
of the same size.

Dataset GNN Pred. Acc. LLM Pred. Acc. Sel. Acc.

Cora 82.32 68.44 92.11
citepseer 81.07 60.80 88.83
Pubmed 71.20 82.61 83.29
ogbn-arxiv 55.93 50.55 78.09
ogbn-products 61.38 62.85 81.99

using only GNN or only LLM predictions. The results clearly indicate that our method consistently
outperforms both individual models across nearly all datasets.

G.2 SELECTION STRATEGY COMPARISON

Table 7: Comparison of different pseudo label selection strategies on selected pseudo labels accuracy
(%). Best results are bolded.

Method Cora citepseer ogbn-arxiv

Random 64.44±3.23 60.80±2.15 53.93±1.87
Degree 65.88±1.09 64.26±1.89 50.24±2.86
AGE 67.36±1.74 65.78±0.94 52.31±1.45
Confidence 75.71±0.84 73.89±1.77 66.14±1.48
LLM-GNN 76.49±0.74 72.34±1.28 54.67±1.53

The results in Table 7 reveal several important insights about pseudo label selection strategies. To
ensure fair comparison, all methods follow the same experimental protocol: first selecting 1,500
candidate nodes using the respective selection strategy, then annotating them using Llama3-8B-
Instruct trained under 3-shot setting. The results demonstrate that traditional selection methods
face significant limitations when LLMs are unreliable. Graph topology-based approaches achieve
relatively low accuracy, indicating that structural information alone is insufficient for identifying nodes
suitable for high-quality pseudo-labeling using LLMs. Interestingly, even LLM confidence-based
selection cannot fully ensure high-quality pseudo labels. This highlights a fundamental challenge:
when the underlying LLM is unreliable in low-resource settings, neither graph structure nor model
confidence provides adequate signals for pseudo label selection. These findings motivate our GNN-
as-Judge approach, which addresses these limitations through collaborative filtering that leverages
both structural and semantic information.

G.3 DIVERSITY ANALYSIS OF SELECTED NODES

To understand the diversity of nodes selected by our approach, we conduct an analysis to demonstrate
the diversity and representativeness of nodes selected by our method. From Table 7, we observe that
LLM confidence is a strong baseline for selecting high-quality pseudo labels. While pseudo label
accuracy is crucial, selecting diverse nodes is equally important for effective LLM training, as it
prevents overfitting to specific node types and improves generalization. We compare our approach
with using LLM confidence to select the top 1,500 unlabeled nodes for the ogbn-arxiv dataset,
extracting embeddings using Llama3-8B-Instruct.

Figure 6 provides a compelling visual comparison of the selection strategies. The LLM Confidence
approach shows distinct, tight clusters with strong class separation, indicating it heavily favors nodes
from a limited subset of the feature space. In contrast, our GNN-as-Judge approach selects nodes that
are more broadly distributed across the entire feature space, covering a wider variety of node types
and characteristics. This broader selection ensures that the LLM receives training examples from
diverse areas of the data distribution, leading to better generalization across different node patterns.

Table 8 quantifies the diversity advantages of our approach. Coverage measures the average distance
from each class centroid to the nearest selected node. Representativeness quantifies how well the
selected nodes represent the overall data distribution using the Wasserstein distance between selected
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(a) LLM Confidence (b) GNN-as-Judge

Figure 6: t-SNE visualization of selected pseudo-labeled nodes on the ogbn-arxiv dataset. Colors
represent different classes.

and full node distributions. Intra-class Variance measures the diversity within each class among
selected nodes. This demonstrates that our approach selects nodes that are more representative of the
overall data distribution.

Table 8: Quantitative diversity comparison between selection methods on ogbn-arxiv dataset.

Method Coverage ↓ Representativeness ↓ Intra-class ↑
Confidence 11.62 0.34 12.52
GNN-as-Judge 8.97 0.10 15.29

H ADDITIONAL EXPERIMENTS

H.1 SENSITIVITY TO λ

In our approach, the hyperparameter λ controls the balance between standard instruction tuning
and preference tuning as shown in Eq. 5. Figure 7 (left) illustrates how different λ values affect
performance on Cora, citepseer and Pubmed datasets in 3-shot settings. We observe a clear
trend where lower λ values yield significantly better results, with performance declining as λ increases.
This suggests that using a moderate weight for preference tuning loss will maintain better model
performance.
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Figure 7: (a) Sensitivity analysis of the hyperparameter λ showing performance trends across
different values. Lower λ values generally yield better performance, particularly for Cora and
citepseer. (b) Performance comparison across different preference tuning losses (DPO, SimPO,
ORPO), demonstrating the framework’s compatibility with various optimization methods.

H.2 ADAPTATION TO DIFFERENT PREFERENCE TUNING LOSSES

We evaluate the performance of our GNN-as-Judge framework across different preference tuning
losses, comparing DPO (Rafailov et al., 2023), SimPO (Meng et al., 2024), and ORPO (Hong
et al., 2024) on Cora, citepseer and Pubmed in 3-shot setting. As shown in Figure 7 (right),
these preference tuning methods demonstrate relatively comparable performance. This observation
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highlights that our GNN-as-Judge is a plug-and-play framework where different preference tuning
losses can be seamlessly integrated without compromising overall performance.

H.3 EFFECTIVENESS OF INFLUENTIAL NODE SELECTION

To validate the importance of our influential node selection strategy, we compare the quality of
pseudo labels generated for different node selection approaches. Specifically, we examine: (1)
random selection of 1,000 unlabeled nodes, and (2) our influential node selection according to
node incluence score. Table 9 presents the pseudo-label accuracy when using either GNN or LLM
predictions as pseudo labels.

Table 9: Comparison of pseudo-label accuracy (%) for different node selection strategies on 1,000
unlabeled nodes under 3-shot setting. Higher accuracy indicates better quality of selected nodes for
pseudo-labeling.

Dataset Random Selection Influential Selection (Ours)
GNN Acc. LLM Acc. GNN Acc. LLM Acc.

Cora 68.24±1.83 66.92±2.14 82.39±1.26 68.84±1.52
citepseer 63.18±2.06 60.73±1.97 81.92±1.48 61.88±1.71
Pubmed 65.43±1.37 76.26±1.19 71.56±0.94 83.42±0.87
ogbn-arxiv 38.92±2.45 52.37±2.81 56.51±1.93 51.16±2.12
ogbn-products 60.15±1.94 73.83±1.76 64.54±1.41 62.91±1.28

H.4 INTEGRATION WITH VARIOUS LLMS

To demonstrate the generalizability of our GNN-as-Judge framework, we evaluate its performance
with different backbone LLMs. Table 10 presents results using Mistral-7B-Instruct (Jiang et al., 2023)
and Llama3-8B-Instruct (Grattafiori et al., 2024) under the 3-shot setting, comparing their zero-shot
baseline performance against our framework.

Table 10: Performance comparison of different LLMs integrated with our GNN-as-Judge framework
under 3-shot setting. Results show accuracy (%) with standard deviation.

LLM Method Cora citepseer Pubmed ogbn-arxiv ogbn-products

Mistral-7B Zero-Shot 59.78±1.26 42.56±0.33 77.24±1.15 43.06±2.45 50.80±1.67
GNN-as-Judge 76.16±1.15 73.08±0.89 84.79±0.94 57.36±1.52 79.02±1.41

Llama3-8B Zero-Shot 65.54±0.26 58.17±0.64 74.51±0.39 50.18±1.44 75.48±1.54
GNN-as-Judge 77.89±1.28 73.59±0.73 87.12±0.89 62.21±1.45 81.02±1.23

The results in Table 10 demonstrate the remarkable robustness of our GNN-as-Judge framework
across diverse LLM families. Despite significant variations in the baseline zero-shot capabilities
of these models, our framework consistently elevates performance to competitive levels across all
architectures.

H.5 PERFORMANCE ON HETEROPHILIC GRAPHS

To evaluate the effectiveness of our GNN-as-Judge framework on heterophilic graphs where connected
nodes tend to have different labels, we conduct experiments on Cornell and Wisconsin (Wang
et al., 2025) datasets using H2GCN (Zhu et al., 2020) as the GNN backbone. These datasets exhibit
low homophily ratios (0.11 for Cornell and 0.16 for Wisconsin), presenting unique challenges
where traditional GNN assumptions of homophily do not hold. While our primary focus is not on
heterophilic graphs, these results demonstrate that our framework can seamlessly adapt to different
GNN types without requiring architectural modifications. The consistent performance improvements
over both the GNN baseline and zero-shot LLM approach validate the broad applicability of our
collaborative pseudo-labeling strategy across diverse graph characteristics and GNN architectures.

H.6 MEMORY USAGE ANALYSIS
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Table 11: Performance comparison on heterophilic graphs (Cornell and Wisconsin) using
H2GCN as GNN backbone under 3-shot setting. Results show accuracy (%) with standard deviation.

Method Cornell Wisconsin

H2GCN 48.77±2.84 41.15±3.12
Zero-Shot 79.84±1.92 73.49±1.35
GNN-as-Judge 84.65±1.23 76.95±2.03
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Figure 8: Memory usage versus
accuracy.

Figure 8 presents a comprehensive comparison of the memory
efficiency and accuracy trade-offs across different methods. The
scatter plot illustrates the relationship between peak GPU mem-
ory consumption during training and achieved accuracy for each
approach under 3-shot settings on the ogbn-arxiv dataset us-
ing a single NVIDIA A100 80GB GPU. LLM-based approaches
require substantially higher memory usage. The analysis reveals a
clear accuracy-memory trade-off, where methods achieving higher
performance generally require more computational resources due
to the integration of large language models.

I LIMITATIONS

While GNN-as-Judge demonstrates strong performance, several limitations exist. First, GNN-as-
Judge incorporates several hyperparameters related to pseudo-label selection and loss weighting that
require selection to achieve optimal performance. For future work, developing automatic methods to
select the optimal number of pseudo-labels and reducing hyperparameter dependence could address
these limitations. Additionally, updating the model concurrently with pseudo-label generation may
further improve performance.

J BROADER IMPACTS

In this paper, we propose GNN-as-Judge, a framework that addresses challenges of utilizing LLMs
for graph semi-supervised node classification. In real-world applications, labeled data are expensive
and hard to obtain, thus our proposed approach could facilitate efficiency for many practical tasks
such as social network analysis, citation network mining, and recommendation systems. By enabling
more effective knowledge extraction from unlabeled nodes, our method could significantly reduce
annotation costs and improve model performance when working with limited supervision.

K EXTENDED RELATED WORKS

K.1 LARGE LANGUAGE MODELS PREFERENCE ALIGNMENT

Preference alignment refers to the process of aligning the outputs of language models with human
preferences, often focusing on safety, helpfulness, and factuality (Askell et al., 2021; Ouyang et al.,
2022). Reinforcement Learning from Human Feedback (RLHF) (Leike et al., 2018; Stiennon et al.,
2020) is a prevalent method for aligning LMs with human preferences. The RLHF pipeline typically
involves collecting human preference data, training a reward model, and using reinforcement learning
to optimize the language model against this reward function (Bai et al., 2022; Christiano et al., 2017).

While RLHF has proven effective, its reliance on a separate reward model introduces computational
and methodological complexities. To address these challenges, Direct Preference Optimization (DPO)
(Rafailov et al., 2023) has emerged as a more efficient alternative, eliminating the need for an explicit
reward model by directly optimizing preference probabilities. Several extensions and refinements of
DPO have since been proposed. For instance, KTO (Ethayarajh et al., 2024) incorporates insights
from prospect theory to enhance preference learning. Other variants, such as GPO (Zhao et al., 2024),
ΨPO (Azar et al., 2024), and ODPO (Amini et al., 2024), further improve or generalize DPO in
different theoretical and practical aspects. Recent advancements, including ORPO (Hong et al., 2024)
and SimPO (Meng et al., 2024), simplify the alignment pipeline by removing the need for a reference
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model while maintaining competitive performance. Despite these advancements, the application
and adaptation of preference alignment techniques to structured tasks such as graph-based learning
remain underexplored.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with transparency and reproducibility standards, we disclose that LLMs were employed
to assist with the preparation of this manuscript. Specifically, we utilized LLMs for language polishing,
grammatical correction, and stylistic improvements to enhance the clarity and readability of our
technical writing.
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