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Abstract

While neural networks are the standard for unstructured data, such as images
and text, their performance often lags behind more traditional machine learning
models, like gradient-boosted trees, for tabular data. This is supported by academic
studies, industry practices, and Kaggle competitions. In particular, there is no
straightforward way to increase the number of layers in neural networks applied
to tabular data — a key factor in their success with unstructured data. Deep fully
connected networks suffer from the vanishing gradient problem, and convolutional
layers and transformers are generally not directly applicable to tabular data. Special
constructs, such as skip layers and attention mechanisms, have been adapted
to tabular data models with limited success. In this paper, we show that for
consumer financial tabular data, while standard two-layer neural networks typically
underperform when compared to gradient-boosted trees, sparsely connected layers
can increase network depth and reliably outperform gradient-boosted trees. The
superior performance appears to stem from the sparse layers’ ability to reduce
correlations in the input data, a common challenge in high-dimensional tabular data.
Therefore, we are hopeful that this method could be applicable to other domains
facing similar challenges.

1 Introduction

The past decade has witnessed rapid progress in neural networks for unstructured data, such as images
and text, much of which is due to specialized network constructs that enable very deep architectures
without suffering from the vanishing gradient problem. In particular, convolutional neural networks
have come to dominate nearly all vision tasks [12], and more recently, transformers have become
predominant in language modeling [21].

On the other hand, while tabular data is arguably simpler and easier to process, no generic deep
neural architecture is available for it. Standard two-layer neural networks often lag behind modern
gradient-boosted tree models (GBDT) such as XGBoost [4], LightGBM [11], and CatBoost [15].
For instance, GBDTs dominated the 2022 Kaggle competitions, winning 7 out of 10 challenges [6].
Another survey paper examining academic datasets concluded that decision tree models remain the
state of the art, outperforming others on 7 out of 9 datasets [3].

Motivated by this performance gap, a substantial amount of research has focused on developing
deep neural networks for tabular data, which can be broadly divided into three categories. First,
some approaches combine neural networks with tree-based methods. For instance, [13] proposes a
network structure that imitates a binary decision tree, while [18] argues that an ensemble of the two
methods performs better. Second, the wide and deep network architecture [5] is applicable for certain
datasets. Building on this, DeepFM [9] incorporates a learned Factorization Machine [16] into a
deep network. Finally, recent work has explored using attention mechanisms to capture higher-order
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interactions between features. TabNet [2] applies sequential attention for implicit feature selection,
where each layer emphasizes only a few features, and another method leverages both inter-sample
and inter-feature attention [19].

While working with our industrial-scale financial tabular data, we found that XGBoost significantly
outperforms standard two-layer neural networks. Adding additional fully connected layers further
degrades performance, and other, more sophisticated network architectures struggle to meet baseline
performance in our problem setting. However, a simple sparsely connected layer that organizes input
data into meaningful groups surprisingly outperforms XGBoost by a reliable margin. Further analysis
reveals that our high-dimensional financial data, unsurprisingly, contains highly correlated features.
The sparsely connected layer appears especially effective in automatically reducing this correlation.
We believe this method could be applicable in other domains with high-dimensional tabular data.

2 Our Method

2.1 Financial tabular data

Machine learning is widely applied in the consumer finance domain, for example, propensity models
to acquire customers and risk models for underwriting. A person’s financial history is undoubtedly
valuable for predicting future financial behaviours. Consequently, numerous data providers featurize
and standardize personal financial data for model-building purposes [8]. Example attributes in these
datasets include the number of inquiries made over the past six months, the number of open credit
cards, and the maximum balance over the past three months.

Because these datasets are designed for general purposes, they contain thousands of attributes that
span various financial industries, time periods, and types of behaviours. For example, loans are
categorized into auto, personal, mortgage, student, retail, and other types, while inquiry attributes
cover different time frames, such as the number of inquiries in the past 14 days, 1 month, 3 months,
and 6 months. Derogatory behaviours include categories like delinquency, charge-offs, collections,
and bankruptcies.

2.2 The data correlation problem

These thousands of financial attributes are often correlated. For example, the 3-month inquiry count
is a subset of the 6-month count, and charge-off accounts are frequently preceded by delinquency.

It is well known that correlated features can dramatically impair a model’s performance, especially
in neural networks compared to GBDTs. In neural networks, correlations can incorrectly amplify
gradients, while decision trees are able to ignore redundant features altogether. This is likely a
major reason why GBDTs often outperform neural networks, as data correlation is very common in
high-dimensional tabular data.

However, reducing data correlation is nontrivial. First, with large-scale, high-dimensional data, the
correlation among attributes typically follows a smooth distribution, making it difficult to establish a
clear cutoff threshold for feature removal. This means that correlation will likely persist regardless
of how many features we eliminate. Second, with sparse labels, even subtle differences between
two correlated features can significantly impact model performance. Finally, as business objectives
or macro conditions change, feature reduction analysis must be repeated, which is both tedious
and prone to error. Ideally, we would like the model to automatically select features and eliminate
correlations.

2.3 Our model architecture

Given information about correlated features, we can place those features side by side in the neural
network’s input layer. The first layer of this model consists of small MLPs for each group of input
features, with an output size of G, a hyperparameter we can tune. We refer to this as a sparse layer, as
only the neurons within the group are connected. Figure 1 illustrates a visualization of our proposed
model, specifically in the case where we have only two hidden layers. In practice, any number of
fully connected hidden layers can be used, as the model becomes a regular MLP after the input layer.
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Figure 1: Our proposed model architecture.

3 Experiments

We evaluate all models on a proprietary dataset, with labels representing consumer propensity. The
dataset consists of tens of millions of samples and thousands of features, with a positive sample ratio
in the single digits. For all neural networks, numerical features were scaled to have zero mean and
unit variance, categorical features were one-hot encoded, and missing values were mean imputed. To
ensure a fair comparison, we conducted hyperparameter tuning for each model with at least 100 trials
using Bayesian search with SyneTune [17]. All experiments were performed on AWS using GPU
instances, with training taking a few hours for each model.

Figure 2: Various models’ validation AUCPR on proprietary classification dataset.

3.1 Results

Figure 2 compares our model with several well-known models applicable to tabular data, including
GBDT models (XGBoost, LightGBM, and CatBoost) [4, 11, 15] and neural networks (TabNet,
DeepFM, and AutoInt) [2, 9, 20]. We employ open source implementations for all these models [7,
22, 4, 14, 23]. For GBDT models, one epoch on the x-axis represents 10 estimators. Error bars are
reported with five runs per experiment to ensure consistency.

Overall, GBDT models such as XGBoost and LightGBM demonstrate outstanding performance,
significantly outperforming two-layer fully connected neural networks. Adding an additional fully
connected layer to the neural network actually diminishes performance; however, incorporating our
sparse layer reliably surpasses the performance of both GBDT models.

These performance differences remain consistent across a variety of financial behaviour models we
built using the same feature set, including risk, balance transfer, and refinancing models.

3.2 The effect of the sparse layer

To understand the effect of the sparse layer, Figure 3 presents the covariance matrices of the input data,
the output from the first hidden layer of a three-layer network, and the output from our sparse layer.
Both the hidden layer and our sparse layer contain the same number of neurons for a fair comparison.
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Figure 3: The covariance matrices of the input features, output of a 3-layer MLP first hidden layer,
and the output of the sparse layer in our model. Note activation here refers to the value computed
after applying the activation function.

The input data is highly correlated, as indicated by the bright spots. While the hidden layer of the
three-layer network still shows many clusters, our sparse layer displays no visible clusters.

In our model, we group the input features for the sparse layer by their financial industries, such as
automobile, mortgage, and personal loans. When we instead randomly group the features, the AUCPR
drops from 0.1794 to 0.1730. We also experimented with other grouping criteria, including data
types (balance, payment, time, percentage, etc.) and time periods, and found that their performance
falls between industry-based grouping and random grouping, underscoring the importance of feature
group selection for the sparse layer. Automated and optimal grouping strategies present an interesting
direction for our future studies.

4 Related Works

Tabular data presents unique challenges for deep learning, as traditional neural networks have
struggled to outperform GBDT methods like XGBoost, LightGBM, and CatBoost [4, 11, 15]. These
tree-based methods excel at handling tabular data due to their ability to capture complex feature
interactions and manage missing values effectively. However, a limitation of tree models is that they
do not naturally incorporate domain knowledge, which can be crucial in scenarios where feature
relationships are known but not explicitly provided to the model.

Recent efforts have explored adapting neural networks to work more effectively with tabular data.
TabNet [2] leverages attention mechanisms to dynamically focus on relevant features. DeepFM [9]
and AutoInt [20] aim to explicitly model feature interactions; the former combines factorization
machines with deep neural networks to capture both first- and second-order interactions, while the
latter employs self-attention mechanisms to model higher-order feature interactions without requiring
manual engineering. Group-Connected Multilayer Perceptron Networks (GMLP) [10] also focus on
exploiting feature groupings, but they achieve this by dynamically learning groups during the training
phase using techniques like temperature annealing and entropy loss to encourage sparsity. However,
these models rely on the network to discover feature groupings and relationships during training,
rather than directly encoding domain-specific knowledge into the model.

Additionally, Sparsely-Connected Neural Networks (SCNN) [1] employs stochastic binary masks to
generate sparsity, reducing the number of connections in neural networks to save memory and energy
consumption while maintaining competitive accuracy. Our model shares the goal of introducing
sparsity, but differs in that its sparsity is driven by the natural structure of the data — specifically, by
grouping related features — rather than relying on random mask generation or pruning.

5 Conclusion

Sparsely connected layers represent a new approach to handling high-dimensional tabular data
by explicitly incorporating domain-driven feature groupings into the neural network architecture.
This positions it as a simple yet effective solution compared to more complicated neural network
architectures for tabular data. Since large-scale high-dimensional tabular data often exhibits similar
behaviours as our consumer financial data, we hope to see more use cases of our proposed solution.
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