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Abstract

Large Language Models (LLMs) frequently001
show distracted attention due to irrelevant in-002
formation in the input, which severely im-003
pairs their long-context capabilities. In-004
spired by recent studies on the effective-005
ness of retrieval heads in long-context fac-006
tutality, we aim at addressing this distrac-007
tion issue through improving such retrieval008
heads directly. We propose Multi-Document009
Attention Focusing (MuDAF), a novel method010
that explicitly optimizes the attention distri-011
bution at the head level through contrastive012
learning. According to the experimental re-013
sults, MuDAF can significantly improve the014
long-context question answering performance015
of LLMs, especially in multi-document ques-016
tion answering. Extensive evaluations on re-017
trieval scores and attention visualizations show018
that MuDAF possesses great potential in mak-019
ing attention heads more focused on relevant020
information and reducing attention distractions.021

1 Introduction022

As large language models (LLMs) continue to ad-023

vance and find broader applications, the demand024

for their ability to efficiently handle ultra-long texts025

is growing. For instance, in Retrieval-Augmented026

Generation (RAG) systems (Gao et al., 2023; Jin027

et al., 2024) and LLM agent systems (Guo et al.,028

2024), models are often required to extract critical029

information from long-text corpora to accomplish030

complex generative tasks. However, research has031

shown that the real context window size of existing032

models often falls short of their claimed capabili-033

ties (An et al., 2024a), revealing significant short-034

comings in their ability to utilize information from035

long inputs. This issue is particularly evident in036

two major challenges: the "lost-in-the-middle" (Liu037

et al., 2024a) phenomenon, where the middle por-038

tions of the text are neglected, and the interfer-039

ence from irrelevant information (Shi et al., 2023;040
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Figure 1: Given instructions, long documents and a
specific question, LLMs can often be confused when
facing information from multiple sources. Our method
MuDAF helps LLMs focus on documents related to the
given question. Deeper colors represent higher attention
values.

Wu et al., 2024a). These challenges substantially 041

hinder the performance of models in long-context 042

tasks. 043

In recent years, many studies have conducted 044

in-depth analyses of the role of attention mecha- 045

nisms in long-context modeling (Chen et al., 2024; 046

Hong et al., 2024; Zheng et al., 2024). Notably, 047

some research has identified that specific attention 048

heads found in the Needle-in-a-Haystack (NIAH) 049

test are critical for long-context factuality and has 050

named them retrieval heads (Wu et al., 2024c), 051

which can perform a copy-paste operation from 052

the input context to the output. Inspired by these 053

works, we are extremely curious about such a ques- 054

tion: How can we strengthen these retrieval heads 055

directly to enhance models’ long-context modeling 056

capabilities? 057

In this work, we care about long-context 058

question answering (LCQA), especially multi- 059

document question answering (MDQA), where 060

the long input context contains many irrelevant 061
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documents and causes distractions. However, the062

retrieval heads in MDQA might be different from063

those in the NIAH test, since the NIAH test only064

shows the effectiveness of these heads in the copy-065

paste pattern. Considering the gap between them,066

we need to identify the retrieval heads in the067

MDQA setting and prove their effectiveness in068

helping models utilize relevant information in the069

context. As expected, we indeed found some re-070

trieval heads that were different from those found071

in the NIAH test (§3.1), which may point to the fact072

that attention heads exhibit different levels of re-073

trieval capabilities when applied to different tasks.074

Then, we explored methods to improve such re-075

trieval heads in MDQA. As we know that atten-076

tion weights are calculated by the softmax of the077

scaled dot product between query and key projec-078

tions (Vaswani, 2017), it’s feasible to optimize the079

attention weights allocation by learning better pro-080

jections. Therefore, we propose Multi-Document081

Attention Focusing (MuDAF), a method that ap-082

plies contrastive learning on attention heads to help083

them learn better query-key projections, thus opti-084

mizing their attention distributions. As depicted in085

Figure 1, MuDAF can help attention heads be more086

focused on relevant passages while minimizing in-087

terference from irrelevant content.088

In summary, our contributions are as follows.089

• We provide a method to assess the re-090

trieval capabilities of attention heads in multi-091

document question answering, distinguishing092

special retrieval heads that are different from093

those found in the NIAH test.094

• We propose MuDAF, a novel approach based095

on contrastive learning that optimizes the at-096

tention pattern at the head level to improve097

the long-context modeling ability of LLMs,098

especially in MDQA tasks.099

• Experiments show that our methods can sig-100

nificantly enhance the long-context perfor-101

mance of LLMs and surpass GPT-4o in some102

datasets.103

• We did further analysis and ablations to show104

the effectiveness of our methods. Provid-105

ing several insights about enhancing retrieval106

heads in MDQA.107

2 Related Work108

Attention-Based Salience for Long-Context.109

Since the attention mechanism was first introduced110

by (Bahdanau, 2014), attention weight has be-111

come an important tool for interpreting important 112

information in the input sequence (Serrano and 113

Smith, 2019; Ferrando et al., 2024). For exam- 114

ple, Peysakhovich and Lerer (2023) use attention 115

weights to estimate the importance of documents 116

that can be leveraged to arrange their positions, 117

thus improving the performance of long-context 118

LLMs. Xiao et al. (2024) manage to reduce KV 119

cache for attention heads based on their attention 120

patterns. He et al. (2024a) investigate the impor- 121

tance of attention weights in knowledge retention. 122

Obviously, the attention mechanism has not only 123

been a critical and reliable information resource for 124

processing various long-context tasks (Xiao et al.; 125

Chen et al., 2024) but also presented substantial po- 126

tential for further exploration and optimization (Wu 127

et al., 2024c; Lu et al., 2024; He et al., 2024b). Our 128

approach also highlights the function of certain at- 129

tention heads in in-context retrieval (Ram et al., 130

2023), aiming at optimizing attention distribution 131

to get better long-context LLMs. 132

Distractions by Irrelevant Content. Previous 133

research has shown that LLMs can be easily dis- 134

turbed by irrelevant context (Shi et al., 2023; 135

Wu et al., 2024b), making them overallocate at- 136

tention to useless content. Some methods have 137

been proposed to mitigate such issues. Liu et al. 138

(2024b) introduce an innovative framework that 139

helps LLMs recognize relevant entities in long con- 140

texts through efficient reference management. Wu 141

et al. (2024d) reduce distractions by aligning the 142

representations of the original context and the re- 143

trieved sub-context. Xiong et al. (2024) enhance 144

the retrieval capabilities of LLMs in highly simi- 145

lar contexts through fine-tuning on synthetic data. 146

Another method proposes a novel differential atten- 147

tion mechanism to amplify attention to the relevant 148

context while canceling attention noise (Ye et al., 149

2024). However, these methods do not explicitly 150

optimize the attention distribution based on the 151

input context, while our method provides a more 152

straightforward and effective way. 153

Contrastive Learning on Generative Models. 154

As a self-supervised training technique, contrastive 155

learning (cho, 2005; Hadsell et al., 2006; Robin- 156

son et al., 2021) has been widely leveraged in 157

NLP tasks such as sentence embedding (Gao 158

et al., 2021). With the advancement of genera- 159

tive language models (Radford et al., 2019), con- 160

trastive learning has also exhibited great poten- 161

tial in decoder-only architectures to achieve bet- 162
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Query

Who did Bryan Herta hold off during the 1998 
Honda Grand Prix of Monterey? Answer:_ 

Question

# 1998 Honda Grand Prix of Monterey
… Bryan Herta led the race from start to finish with 
the exception of pit stops, and held off Alex Zanardi …

Positive Passage

# Colton Herta
Colton Herta (born 30 March 2000 in Valencia, 
California) is an open-wheel racing driver …
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Please answer a question based on the given 
documents. <Randomly Positioned Documents>
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Figure 2: An overview of our proposed method. The goal of MuDAF is to adjust the similarity between the Query
features from the question and the Key features from the passages, thus making attention heads allocate more
attention weights in relevant information and reducing distractions. CL means contrastive learning.

ter hidden expressiveness (Su et al., 2022; Jain163

et al., 2023; Yan et al., 2024). For long-context164

tasks, Caciularu et al. (2022) utilize contrastive165

learning to explicitly discriminate representations166

of supporting evidence sentences from negative167

ones in long-context QA. Wu et al. (2024d) also168

leverage contrastive learning to align representa-169

tions of different contexts. However, our method170

applies contrastive learning inside the attention171

head components instead of sequence representa-172

tions. To the best of our knowledge, we are the first173

to show the effectiveness of optimizing attention174

distributions by adjusting the similarity between175

query and key projections at the head level directly.176

3 Method177

In this section, we introduce our proposed method.178

We start by investigating the relationship between179

the performance of an LLM in MDQA and the abil-180

ity of its attention heads for information retrieval to181

identify its retrieval heads (§3.1). We then discuss182

the details of our method (§3.2). An overview of183

our approach is provided in Figure 2.184

3.1 Attention Heads Responsible for IR185

Information retrieval (IR) here means recognizing186

required information from noisy input context. Wu187

et al. (2024c) have proven the existence of retrieval188

heads in the NIAH test (i.e., NIAH retrieval heads),189

which implement the conditional copy algorithm 190

and redirect information from the input to the out- 191

put. However, it remains unclear whether these 192

retrieval heads function similarly in other long- 193

context tasks, such as MDQA, where LLMs are 194

required to retrieve relevant information from pre- 195

vious passages to answer a given question rather 196

than simply repeating patterns found in the context. 197
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Figure 3: The F1 and EM retrieval scores for attention
heads of Llama3.1-8B. We list top 16 retrieval heads
ranked by their F1 scores in the inner graph.

First, we manually labeled golden passages for 198

all questions in the HotpotQA subset of Long- 199

Bench. Our annotation pipeline can be found in Ap- 200
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pendix A.1. We define the retrieval score of a given201

attention head as their ability to attend to golden202

passages among all input passages. Formally, for203

each question q, we have several relevant golden204

passages PG and quite a few irrelevant passages PI .205

We mixed all PG and PI into a long input context206

C in random order, then we concatenated the ques-207

tion q to the end of C to obtain the final prompt P .208

For each attention head, we calculated its attention209

score over all input passages by summing the at-210

tention scores between the last token of the input211

and all tokens in the corresponding passages. The212

passage whose attention score was higher than a213

given threshold ϵ would be considered an attended214

passage PAh
of attention head h. We then calcu-215

lated the F1 score and EM score based on PG, PI216

and PA. Figure 3 presents the curves of F1 scores217

and EM scores of all attention heads in Llama-3.1-218

8B (Meta, 2024), ranked in descending order of F1219

scores. The final retrieval score Rh (0 ≤ Rh ≤ 1)220

of an attention head h is the average F1 score on all221

HotpotQA test cases. The formula for calculating222

Rh is as follows:223

Rh = mean(F1_Score(PG, PI , PA)) (1)224

Details about the calculation process can be found225

in Appendix A.2.226
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Figure 4: Average performance of Llama3.1-8B on
LongBench with different masking strategies. In this ex-
periment, we used the MDQA subset of LongBench, in-
cluding HotpotQA, 2WikiMQA and MuSiQue. Masked
retrieval heads were also randomly selected from the set
of retrieval heads, and the final results were obtained by
averaging three independent experimental runs.

We found that retrieval scores decline smoothly227

from the strongest heads to the weakest heads, mak-228

ing it difficult to distinctly classify them as either229

"strong" or "weak" based on a clear threshold. For 230

convenience, we consider the top 50 attention 231

heads (about 5% of the total) as retrieval heads. 232

To confirm the essentiality of these retrieval heads, 233

we then carried out further masking experiments. 234

As shown in Figure 4, the performance on Long- 235

Bench is severely damaged when strong MDQA 236

retrieval heads are masked, showing that they play 237

a vital role in multi-document modeling. In ad- 238

dition, the model’s performance exhibits smaller 239

fluctuations when random attention heads or NIAH 240

retrieval heads are masked. This experimental re- 241

sult gives us a reliable direction for selecting which 242

attention heads to optimize. In other words, we 243

may assume that only by optimizing attention heads 244

with a strong enough retrieval capability can we 245

improve the long-context modeling ability of the 246

model. 247

3.2 Contrastive Learning for Optimizing 248

Attention Heads 249

We have proven that MDQA retrieval heads can of- 250

fer reliable key information in input context, help- 251

ing LLMs leverage golden information to answer 252

the given question. Therefore, we propose MuDAF, 253

a method based on joint training of casual language 254

modeling (CLM) and contrastive learning, aiming 255

at enhancing MDQA retrieval heads for a better fo- 256

cus on relevant context and reducing the distraction 257

caused by irrelevant content. 258

Preliminary. To better describe our method, we 259

first define some universal notations and variables: 260

• H: attention head set of the model. Hi means 261

the attention head set in the ith layer of the 262

model. 263

• N : the number of layers that the model has. 264

• k and K: k indicates the index of a certain 265

passage. K means the number of passages for 266

a given example. 267

• [h]: a superscript that denotes a specific atten- 268

tion head. 269

Attention Simplification for MDQA. We per- 270

form a simplification to the attention mechanism in 271

the MDQA setting that makes it easy to understand 272

our optimization goal. 273

Let C represent the holistic long context, which 274

consists of golden passages PG, irrelevant passages 275

PI and the question q. We assume that LLMs can 276

better answer a question if they attain more hid- 277

den information directly from golden passages PG. 278
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To describe this information aggregation process279

more concisely, we define the hidden information280

of passage Pk stored at layer i as Ii,k, and we only281

consider the attention distribution of the last input282

token. We simply define a substitutive attention283

weight of head h for a passage Pk as A[h]
k . Mean-284

while, for other tokens in the input, we define their285

attention weight and hidden information as A[h]
◦286

and Ii−1. Then we can simply denote the informa-287

tion obtained by layer i as follows:288

Ii = Oi

(
concatHi

h

{ K∑
k

A[h]
k · Ii−1,k

+A[h]
◦ Ii−1

}) (2)289

where Oi represents the output projection mod-290

ule of layer i, Hi represents the attention heads291

set of layer i, A[h]
k is the attention score on pas-292

sage Pk, while A[h]
◦ represents the sum of atten-293

tion scores of all other non-passage tokens. To294

make LLMs gain more information from golden295

passages and mitigate the disturbance by irrele-296

vant passages, our optimization goal is to increase297

the attention weights assigned to golden passages298

PG while reducing the attention weights assigned299

to irrelevant passages PI . Formally, a multi-head300

attention score (Vaswani, 2017) between the last301

input token t and a token i inside a passage can be302

expressed as:303

attn[h]i =

[
softmax

(
Q

[h]
t (K [h])T√

d

)]
i

=

exp
(Q[h]

t (K
[h]
i )T√
d

)
∑

j exp
(Q[h]

t (K
[h]
j )T

√
d

) .
(3)304

Intuitively, the attention score can be raised through305

aligning the representations of Q[h]
t and K

[h]
i , as306

well as pushing apart Q[h]
t and K projections of307

other tokens in the embedding space. Therefore,308

we can leverage contrastive learning (Hadsell et al.,309

2006) at the head level inside the attention mech-310

anism to adjust the attention allocation. In our311

approach, we argue that aggregating the represen-312

tations of all tokens in a passage for contrastive313

learning is as effective as performing contrastive314

learning on the representation of each individual315

token. Hence, we perform an average pooling op-316

eration on K projections of all tokens to obtain the317

overall K representation of a passage. Then the 318

attention weight A[h]
k can be written as: 319

A[h]
k =

∑
t′∈Pk

attn[h]t′ ≈ attn[h]Pk
(4) 320

321

attn[h]Pk
= softmax

(Q
[h]
t

(
1

|Pk|
∑

t′∈Pk
K

[h]
t′

)T

√
d

)
(5) 322

We denote the pooled K representation of passage 323

Pk as KP : 324

K
[h]
P =

1

|Pk|
∑
t′∈Pk

K
[h]
t′ (6) 325

Objective of Contrastive Learning. To magnify 326

the attention weight allocated to golden passages, 327

the objective of the contrastive learning is to maxi- 328

mize the similarity between Q
[h]
t and K

[h]
PG

, while 329

pushing apart the representations of Q[h]
t and K

[h]
PI

. 330

Therefore, the loss function can be presented as 331

follows: 332

LCON = −
∑
h

log
e
(sim(Q

[h]
t ,K

[h]
Pk

)/τ)∑
Pj∈P e

(sim(Q
[h]
t ,K

[h]
Pj

)/τ)
.

(7) 333

where P = PG ∪ PI , sim(·,·) denotes the cosine 334

similarity function and τ is a temperature hyperpa- 335

rameter. Finally, we combine LCON with a Causal 336

Language Modeling (CLM) loss function as the 337

overall loss function: 338

L = LCLM + λLCON (8) 339

where λ is a hyperparameter to control the weight 340

of LCON. 341

4 Experiments 342

4.1 Setup 343

Benchmarks We evaluated our fine-tuned mod- 344

els on LCQA datasets, including both multi- 345

document question answering and single-document 346

question answering subsets from LongBench (Bai 347

et al., 2024) and ZeroSCROLLS benchmarks (Sha- 348

ham et al., 2023). LongBench is a bilingual 349

and multitask benchmark for long-context un- 350

derstanding. Among its subsets, we included 351

HotpotQA (Yang et al., 2018), 2WikiMQA (Ho 352

et al., 2020), MuSiQue (Trivedi et al., 2022) and 353

Qasper (Dasigi et al., 2021). ZeroSCROLLS also 354

provides various datasets for evaluating models’ 355
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Dataset Type Avg #Words #Items

LongBench
HotpotQA Multi-Doc QA 9,151 200
2WikiMQA Multi-Doc QA 4,887 200
MuSiQue Multi-Doc QA 11,214 200
Qasper Single-Doc QA 3,619 200

ZeroSCROLLS
MuSiQue Multi-Doc QA 1,749 500
Qasper Single-Doc QA 3,531 500

Table 1: An overview of the benchmark statistics. The
metric for these datasets are all F1 scores. Note that
the MuSiQue subset in ZeroSCROLLS contains unan-
swerable questions and models should refused to answer
them.

capabilities in synthesizing information over long356

texts, and we included the MuSiQue and Qasper357

subsets from it. The statistics of benchmarks are358

listed in Table 1.359

Baselines and Foundation Models We com-360

pared our approach to several popular and361

strong long-context LLMs, including GPT-3.5362

Turbo (OpenAI, 2022), GPT-4o (OpenAI, 2024),363

FILM-7B (An et al., 2024b), ChatQA-2-8B (Xu364

et al., 2024), ProLong-8B-64k1 (Gao et al., 2024),365

and Llama3.1-8B-Instruct-128k (Meta, 2024). In366

this paper, our method are applied to the foundation367

model Llama-3.1-8B (Dubey et al., 2024), which368

has 128K context length. We also include an intu-369

itive vanilla supervised fine-tuning (Vanilla-SFT)370

baseline that fine-tuning the foundation model only371

with LCLM loss.372

Training Data We adopted the training dataset373

of HotpotQA (Yang et al., 2018) with additional374

hard negative passages. Here negative samples are375

enriched by similar passages collected from the376

work by Jiang et al. (2024), where they grouped377

multiple Wikipedia documents through hyperlinks.378

Thus, we expanded negative passages utilizing the379

group of existing passages in the original set.380

4.2 Implementation Details381

Target Heads Selection To implement MuDAF,
we first select several strong MDQA retrieval heads
for contrastive learning. Since we have got retrieval
scores of all attention heads in section §3.1, we
could simply select retrieval heads with the highest
retrieval score. However, we found that this greedy

1https://huggingface.co/princeton-nlp/Llama-3-8B-
ProLong-64k-Base

strategy is not the best and not robust. We thus use a
weighted random selection algorithm that randomly
picks attention heads based on their retrieval scores.
More specifically, given attention heads set H and
their retrieval scores {Rh}, the probability P (h)
of selecting the attention head h is computed as:

P (h) =
eRh/τ∑

h′∈H eRh′/τ

where τ > 0 is a temperature parameter (e.g., 0.05), 382

H denotes all attention heads. We set the number 383

of selected target heads to 8. 384

Fine-tuning Details One training sample of con- 385

trastive learning contains one golden passage to the 386

given question and many negative passages. We 387

separately compute Q projection for the last token 388

of the question and pooled KP projection for all 389

passages. During the similarity calculation, we 390

concatenate corresponding representations from all 391

selected attention heads and calculate the overall 392

cosine similarity between them. We found that this 393

implementation is more stable and also effective 394

compared with calculating the similarity for each 395

attention head separately. For Vanilla SFT, the or- 396

der of input passages is randomly shuffled before 397

forming an MDQA input and computing CLM loss. 398

More details can be found in Appendix B. 399

4.3 Main Results 400

Enhancement on LCQA Performance. Our 401

method significantly enhances the model’s LCQA 402

performance. Table 2 compares the performance 403

of our method with other baselines. MuDAF 404

shows great potential in enhancing the LCQA per- 405

formance of models, getting +12.7% improve- 406

ment on average scores compared with the Vanilla- 407

SFT baseline. Meanwhile, our method is also 408

effective on single-document question-answering 409

datasets (e.g., Qasper), indicating that our method 410

is also robust in enhancing the retrieval capabil- 411

ities of LLMs in one long document. Moreover, 412

our method achieves comparable performance to 413

that of GPT-4o, and even performs better on some 414

datasets, proving the effectiveness of our method. 415

Note that one in five questions of the MuSiQue sub- 416

set from ZeroSCROLLS are unanswerable, which 417

may have affected the performance of our method 418

on this dataset. 419

Achieving More Focused Retrieval Heads. Be- 420

sides improvements on QA performance, we 421
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Models LongBench ZeroSCROLLS Avg.
HotpotQA 2WikiMultihopQA MuSiQue Qasper MuSiQue Qasper

GPT-4o (OpenAI, 2024) 68.3 49.5 39.8 46.1 59.5 48.7 52.0
GPT-3.5-Turbo (OpenAI, 2022) 51.6 37.7 26.9 43.3 52.0 27.1 39.8

FILM-7B (An et al., 2024b) 62.1 47.0 39.0 42.2 35.2 54.7 46.7
ChatQA-2-8B (Xu et al., 2024) 52.5 41.8 38.9 28.5 27.3 47.9 39.5
ProLong-8B-64k (Gao et al., 2024) 43.0 24.9 21.3 27.8 25.7 36.7 29.9
Llama3.1-8B-Instruct (Meta, 2024) 54.7 44.0 32.8 44.7 29.1 51.8 42.8
Llama3.1-8B-Vanilla-SFT 46.8 50.5 28.9 29.2 30.1 41.6 37.8
Llama3.1-8B-MuDAF-weak 62.5 53.8 43.1 34.9 23.2 41.8 43.2
Llama3.1-8B-MuDAF (ours) 69.6 66.2 48.2 40.0 31.2 47.9 50.5

Table 2: F1 scores (%) on all tested datasets. Underlined numbers denotes the best performance among all listed
models. Bold numbers indicates the best performance of tested open source models and our models. Vanilla-SFT
means training the foundation model without LCON. MuDAF-weak means that we apply our method to weak
attention heads (§4.4). MuDAF achieves better performance among all tested datasets compared with the Vanilla-
SFT baseline.

want to examine whether MuDAF can genuinely422

strengthen the retrieval capabilities of target at-423

tention heads. Therefore, we make a comparison424

of target attention heads’ retrieval scores between425

the original model, MuDAF and Vanilla-SFT. As426

shown in Figure 5, all target attention heads get427

significant enhancement from MuDAF on retrieval428

scores compared with the original model, and the429

optimization gains are also substantially larger than430

those observed with the Vanilla-SFT baseline. For431

example, head 16-9 achieves a +0.48 improvement432

in retrieval scores through MuDAF, elevating its433

ranking from the 119th to the 3rd place instan-434

taneously. In contrast, the Vanilla-SFT baseline435

brings few improvements to its ranking. It is worth436

noting that stronger heads often achieve smaller im-437

provements, indicating that it is easier to enhance438

those attention heads in the middle part.439

4.4 Analysis440

Effectiveness on Weak Heads. In this paper, we441

regard attention heads with low retrieval scores (i.e.,442

Rh < 0.1) as weak attention heads. Due to the443

promising improvements of both performance and444

retrieval scores when applying MuDAF to strong445

retrieval heads, we are curious about whether our446

method could transform weak attention heads into447

heads with a certain retrieval capability. Therefore,448

we randomly selected attention heads whose re-449

trieval scores are nearly zero for optimization. As450

shown in Table 2, the overall performance is rela-451

tively weak, but it is still an improvement compared452

with the Vanilla-SFT baseline. We further calcu-453

lated their retrieval scores after the training stage.454

As illustrated in Figure 6, MuDAF can exactly en-455

hance the retrieval capabilities of these weak heads, 456

while Vanilla-SFT does nothing in it. This phe- 457

nomenon manifests that we could adjust the atten- 458

tion pattern of one head through MuDAF towards 459

retrieval heads even though they are extremely 460

weak attention heads in the original model. But 461

at the same time, obviously we can hardly achieve 462

the same performance as strong retrieval heads do 463

since their attention values are still relatively low 464

in the middle context. 465

Whole-layer Optimization. Although we are fo- 466

cusing on target attention heads in previous experi- 467

ments, the model parameters of other parts are not 468

frozen, making them possible to get improved as 469

well. So we also calculated the attention scores 470

after the training for other attention heads that are 471

not directly selected for the contrastive learning. 472

Surprisingly, we found that most attention heads 473

within the same layer can also be optimized when 474

incorporating at least one attention head in the con- 475

trastive learning process. We discuss more about 476

this interesting phenomenon in Appendix C. 477

Bottleneck When Scaling the Number of Tar- 478

get Heads. We wonder if it is possible to get a 479

stronger model through applying MuDAF to more 480

attention heads. Unfortunately, we discovered a 481

bottleneck when scaling the number of trained at- 482

tention heads. As depicted in Figure 7, we did not 483

see much improvement if we consistently increased 484

the number of selected attention heads beyond 8 485

heads. Furthermore, if we engage all attention 486

heads in contrastive learning, the training will be- 487

come unstable and struggle to converge, leading 488

to a collapse of the overall performance. We re- 489
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main the investigation of this bottleneck as future 490

research. 491

Case study. We present a case study to show 492

the effectiveness of MuDAF to make the model 493

be more focused on relevant passages within a 494

long context. Through our observations, our ap- 495

proach can correct incorrect attention assignments 496

while enhancing attention weights allocated to 497

golden documents, exhibiting its potential to con- 498

vert weak attention heads into retrieval-capable at- 499

tention heads. Details are provided in Appendix E. 500

5 Conclusion 501

In this paper, we focus on optimizing specific atten- 502

tion heads to enhance their ability to concentrate 503

on relevant content in LCQA tasks. Our analy- 504

sis reveals the existence of specialized retrieval 505

heads in the MDQA setting that differ from those 506

found in the NIAH test. To improve these retrieval 507

heads, we introduce MuDAF, an approach that sig- 508

nificantly enhances the retrieval capabilities of at- 509

tention heads in MDQA regardless of their initial 510

strength. Consequently, the performance of LLMs 511

in LCQA tasks gets remarkable improvements as 512

well. Our method and experiments draw a promis- 513

ing roadmap and provide valuable insights in uti- 514

lizing contrastive learning to optimize the attention 515

distribution at the head level in MDQA tasks. 516
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Limitations517

Although we see improvements on attention scores518

and the LCQA performance through our method,519

it is still hard to explain the relationship between520

optimizing a certain head’s attention distribution521

and the final output of the model, since other at-522

tention heads also engage in reasoning and making523

the final response.524

Moreover, our approach can be affected by the525

position of the question, which means the model526

can better retrieve relevant documents in the input527

through attention focusing only when the question528

is at the end of the input sequence. It is of great529

importance if we can design a more robust method530

to mitigate such positional bias.531
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A Retrieval Head Detection 789

A.1 LongBench Annotation 790

Each question in the HotpotQA subset of Long- 791

Bench has at least two relevant passages that con- 792

tain essential information to answer the question. 793

We manually reviewed each question and annotated 794

its golden passages. Figure 8 shows the annotation 795

interface we used. 796

A.2 Retrieval Score Calculation 797

Assume that for a given question q, we have: 798

• A set of golden (i.e., relevant) passages, PG. 799

• A set of irrelevant passages, PI . 800

These passages are concatenated (in random order) 801

to form the input context C. An attention head h 802

assigns an attention weight ap to every passage 803

p ∈ C (by summing the attention weights over 804

tokens in the passage from the last token of the 805

prompt). In the following we describe two retrieval 806

metrics computed for head h. 807

EM Retrieval Score. For the EM metric, the 808

ranking of passages by their attention weights is 809

used directly without considering the threshold ϵ. 810

Let 811

X = |PG| 812

be the number of golden passages. Define a permu- 813

tation σh that sorts the passages in C in descending 814

order of attention weight: 815

aσh(1) ≥ aσh(2) ≥ · · · ≥ aσh(|C|). 816

Then, for a given question q, the EM Retrieval 817

Score for head h is defined as: 818

EMh(q) =

{
1, if {σh(1), σh(2), . . . , σh(X)} = PG,

0, otherwise.
(9) 819

That is, if the top X passages (i.e., the X passages 820

with the highest attention weights) are exactly the 821

golden passages, we consider the retrieval perfect 822

and set EMh(q) = 1. Otherwise, EMh(q) = 0. 823

The overall EM Retrieval Score for attention head 824

h is then the average over all test queries: 825

REM
h =

1

|Q|
∑
q∈Q

EMh(q), (10) 826

where Q is the set of test questions. 827
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F1 Retrieval Score. For the F1 metric, we first828

use a fixed threshold ϵ to decide whether a passage829

is attended. Specifically, define the set of passages830

attended by head h for question q as:831

PAh
(q) = { p ∈ C | ap > ϵ }. (11)832

Then, we compute the precision and recall based833

on the golden set PG and the attended set PAh
(q):834

Precision =
|PG ∩ PAh

(q)|
|PAh

(q)|
, (12)835

Recall =
|PG ∩ PAh

(q)|
|PG|

. (13)836

The F1 Retrieval Score for head h on question q837

is then defined as the harmonic mean of precision838

and recall:839

F1(q) =
2 · Precision · Recall
Precision + Recall

, (14)840

with the convention that if both precision and recall841

are zero, we set F1(q) = 0. Finally, the overall F1842

Retrieval Score for attention head h is obtained by843

averaging over all test queries:844

RF1
h =

1

|Q|
∑
q∈Q

F1(q). (15)845

Averaging these scores over the test set Q yields846

REM
h [Eq. (10)] and RF1

h [Eq. (15)], which serve as847

our final metrics for evaluating the retrieval capa-848

bility of attention head h.849

B More Implementation Details850

We fine-tuned the Llama3.1-8B model with851

full parameters fine-tuning on 32 (2*16)852

64G AMD INSTINCT MI250X GPUs. The853

distributed training was run with the Deep-854

Speed (Rasley et al., 2020) framework with855

ZeRO stage 2. The learning rate is 5e-6. We use856

AdamW (Loshchilov and Hutter, 2019) as the857

optimizer with β1 = 0.9 and β2 = 0.999. The858

template for the training sequence is: "Based859

on the following passages, answer the ques-860

tion.\n\n<passages>\n{body}\n\n</passages>\n\n861

Question: {question}\nAnswer: {answer}". The862

default EOS token is ’</s>’.863

C Analysis on Whole-layer Optimization864

We compared the retrieval scores of attention865

heads by layer between the Vanilla-SFT baseline,866

MuDAF-strong and MuDAF-weak. Considering 867

the different layers of selected attention heads, we 868

can analyze the impact of a certain head on its 869

layer. Table 3 shows the layer distribution of the 870

two selection strategies. Considering some rep- 871

resentative layers: 15, 16, 17, 25. For the layer 872

15, neither MuDAF-strong nor MuDAF-weak has 873

heads from this layer, so most attention heads in 874

this layer are not influenced with some of them be- 875

ing harmed actually (the line chart is below the zero 876

threshold); For layer 16, both MuDAF-strong and 877

MuDAF-weak select heads from it (four heads fror 878

MuDAF-strong and one head for MuDAF-weak). 879

As we can see, most attention heads are enhanced 880

through MuDAF-strong, even though they are not 881

selected directly, and the improvement is much big- 882

ger than MuDAF-weak. Meanwhile, nearly half 883

of the attention heads also get enhanced through 884

MuDAF-weak, indicating that it is also helpful by 885

selecting just one head; Finally, for layer 17 and 886

25, we can clearly observe that the retrieval scores 887

of all attention heads are significantly improved 888

when the corresponding strategy optimizes more 889

attention heads at that layer (i.e., MuDAF-strong 890

for layer 17 and MuDAF-weak for layer 25). In 891

the contrast, basically no improvement can be seen 892

if no attention head is selected in that layer. We 893

speculate that this phenomenon is related to the 894

Grouped-Query Attention (GQA) (Ainslie et al., 895

2023), where query heads are divided into sev- 896

eral subgroups and each subgroup has only one 897

corresponding key head. It also partly explains 898

why MuDAF-weak can still achieve appreciable im- 899

provements in the overall performance, given that 900

there may exist some relatively strong attention 901

heads within the same group. 902

Strategy Layer Distribution

MuDAF-strong
Layer 13: 2 Heads
Layer 16: 3 Heads
Layer 17: 3 Heads

MuDAF-weak

Layer 16: 1 Head
Layer 19: 1 Head
Layer 25: 4 Heads
Layer 27: 1 Head
Layer 31: 1 Head

Table 3: The distribution of selected attention heads in
two different selection strategies.
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Figure 8: Our annotation interface with attention visualization for reference.
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D More Experimental Results904

We provides full results for the ablation study on905

the number of selected attention heads in Table 4.906

E Case Study907

Figure 10 and Figure 11 show two cases that908

compare the output and attention distribution be-909

tween Llama3.1-8B-Vanilla-SFT and Llama3.1-910

8B-MuDAF. MuDAF effectively optimizes the at-911

tention distribution of the selected attention heads,912

making the model be more focused on relevant913

passages.914
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Input:

Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe 

following are given passages.\n[Passage1: Douglas Murray (author) ...] [Passage2: Press TV controversies ...]

[Passage3: Francis J. Beckwith ...] [Passage4: George Weinstock ...] [Passage5: Richard D. Cummings ...] [Passage6: 

Jeanetta Laurence ...] [Passage7: Carole Hayman ...] [Passage8: Murray Esler ...] [Passage9: Julie Huber ...] \nQuestion: For 

what ogranization does a commentator of Press TV serve as associate director?\nAnswer: 

Llama3.1-8B-Vanilla-SFT

Henry Jackson Society

Llama3.1-8B-MuDAF

The Royal Ballet

1.0

0.0

1.0

0.0

Figure 10: Comparison of the output and passage-level attention distribution (heatmaps below) in three different
layers. This case contains 9 passages. The golden passages are passage#1 and passage#2 (in the dotted box).
Llama3.1-8B-MuDAF is more focused and can redirect the attention from the beginning part (i.e., #0) to the
passages.
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Input:

Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe 

following are given passages.\n[Passage1: Jim Miller (punter)...] [Passage2: Filip Filipović (American football) ...]

[Passage3: Jerry Tubbs ...][Passage4: Jason Garrett ...] [Passage5: Fake field goal ...] [Passage6: Cornell Green (defensive 

back) ...] [Passage7: Rico Gathers ...] [Passage8: John Jett ...] [Passage9: Danny White ...] [Passage10: Todd Lowber...] 

\nQuestion: Where did the punter for the Dallas Cowboys in the 1980s play college football?\nAnswer: 

Llama3.1-8B-Vanilla-SFT

Arizona State University

Llama3.1-8B-MuDAF

University of Mississippi

1.0

0.0

1.0

0.0

Figure 11: This case contains 10 passages. The golden passages are passage#1 and passage#9 (in the dotted box).
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Num
Heads

LongBench ZeroSCROLLS Avg.
HotpotQA 2WikiMultihopQA MuSiQue Qasper MuSiQue Qasper

n=0 46.8 50.5 28.9 29.2 30.1 41.6 37.8
n=2 56.8 46.5 37.8 32.9 26.8 42.6 40.5
n=4 64.7 57.9 41.7 36.9 23.9 43.4 44.7
n=8 71.1 64.7 47.4 36.0 35.2 42.4 49.4
n=16 72.2 68.8 48.9 33.1 28.3 40.2 48.6
n=32 72.6 66.1 48.3 33.2 36.7 40.8 49.6
n=64 69.4 65.8 48.7 36.9 33.8 46.0 50.0

Table 4: Ablations on the number of selected attention heads.
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