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Abstract

Individuals with language disorders often face significant
communication challenges due to their limited language pro-
cessing and comprehension abilities, which also affect their
interactions with voice-assisted systems that mostly rely
on Automatic Speech Recognition (ASR). Despite advance-
ments in ASR that address disfluencies, there has been lit-
tle attention on integrating non-verbal communication meth-
ods, such as gestures, which individuals with language dis-
orders substantially rely on to supplement their communi-
cation. Recognizing the need to interpret the latent mean-
ings of visual information not captured by speech alone, we
propose a gesture-aware ASR system utilizing a multimodal
large language model with zero-shot learning for individuals
with speech impairments. Our experiment results and analy-
ses show that including gesture information significantly en-
hances semantic understanding. This study can help develop
effective communication technologies, specifically designed
to meet the unique needs of individuals with language im-
pairments.

Introduction
Language disorders, such as aphasia, arise from damage
to brain regions responsible for language production and
comprehension. Aphasia is most often caused by acquired
brain injuries, like stroke, and persists chronically in at
least 30% of cases (Broca et al. 1861; Wasay, Khatri, and
Kaul 2014). This means that many are living with apha-
sia – indeed, there are nearly two million with aphasia in
the USA alone (Simmons-Mackie and Cherney 2018). In-
dividuals with language disorders face significant commu-
nication challenges due to difficulties in processing and un-
derstanding language, resulting in impaired social interac-
tions and reduced quality of life (El Hachioui et al. 2017).
As voice-assisted technologies like Siri and Alexa become
integral to daily activities, the inability of individuals with
language disorders to interact effectively with these systems
exacerbates their communication barriers, leading to frustra-
tion and further marginalization (Rohlfing et al. 2021).
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Automatic Speech Recognition (ASR) systems are de-
signed to transcribe spoken language into text, serving as
a cornerstone for many voice-driven technologies. While
recent advancements have made ASR systems more adept
at handling disfluencies such as stuttering, their perfor-
mance heavily depends on clear and consistent audio in-
put (Radford et al. 2023). For individuals with language dis-
orders, speech distortions, substitutions, and disjointed de-
livery pose significant challenges to accurate ASR transcrip-
tion (Sanguedolce, Naylor, and Geranmayeh 2023). As a re-
sult, current ASR solutions often fall short in addressing the
needs of this population.

To enhance the robustness of ASR, researchers have ex-
plored Audio-Visual Speech Recognition (AVSR) systems
that combine auditory and visual information (Cheng et al.
2023b). These systems leverage visual features such as lip
movement (Hu et al. 2023; Cheng et al. 2023a) and facial ex-
pressions (Zadeh et al. 2016; Busso et al. 2008) to improve
speech recognition accuracy. However, these approaches are
not ideal for individuals with language disorders, who of-
ten experience concomitant motor speech disorders and fa-
cial hemiplegia, which can result in ’masked’ facial expres-
sions (Multani et al. 2017; Duffy et al. 2012).

In contrast, individuals with language disorders fre-
quently rely on non-verbal communication, such as gestures,
to compensate for their verbal limitations (Stark and Oed-
ing 2023). Iconic gestures, in particular, serve as powerful
tools for conveying meaning when spoken language is in-
sufficient (de Kleine et al. 2023; van Nispen, van de Sandt-
Koenderman, and Krahmer 2017; Stark and Cofoid 2022;
Stark and Oeding 2023). Unlike speech or facial expres-
sions, iconic gestures offer a visual representation of con-
cepts, enabling individuals with language impairments to
express ideas more effectively (Lee et al. 2023). However,
current ASR and AVSR systems fail to consider the latent
semantic information encoded in these gestures, leaving a
critical gap in understanding the full context of communica-
tion for individuals with language disorders.

To address the limitations of current ASR and AVSR sys-
tems, we introduce a gesture-aware zero-shot speech recog-
nition framework specifically designed for individuals with
language disorders. Our approach harnesses the capabilities
of multimodal large language models (LLMs) to incorpo-



rate linguistic, acoustic, and gestural information, enabling
a deeper understanding of the speaker’s intended meaning.
Unlike traditional systems that rely solely on spoken or vi-
sual cues like lip movements, our method emphasizes the
integration of iconic hand gestures—gestures that visually
represent concepts—to enrich the transcription process. This
allows the system to produce transcripts that not only re-
flect spoken content but also capture the latent meanings
conveyed through gestures, which are crucial for individu-
als with impaired speech.

The core of our method lies in leveraging a zero-shot
framework to align and synthesize multimodal inputs. Our
system processes disfluent or incomplete speech signals
while simultaneously analyzing visual data to identify and
interpret gestures. By fusing these streams of information,
the system generates semantically enriched transcripts that
bridge the gaps left by speech alone. This zero-shot design
eliminates the need for task-specific training, making the ap-
proach adaptable to a wide range of scenarios and linguistic
contexts. This adaptability is particularly advantageous for
language-disordered populations, where speech patterns and
gestures vary widely between individuals.

Our experiments show that our proposed model success-
fully generates transcripts by incorporating significant ges-
tural information to ascertain the latent intent of individu-
als with language disorders, which is not conveyed through
speech alone. This findings indicate that incorporating non-
verbal information can effectively aid in advancing the cre-
ation of more inclusive and effective communication tech-
nologies designed specifically for the distinctive require-
ments of individuals with language impairments.

Related Work
ASR as Assistive Technologies
Assistive technologies play a critical role in supporting clin-
icians to deliver assessments and therapies, as well as in
facilitating communication for individuals with aphasia. In
speech-language pathology, such tools are often referred
to as augmentative and alternative communication (AAC)
systems (Beukelman and Mirenda 1998). ASR technology
has shown promise in enhancing communication by en-
abling real-time, accurate feedback to individuals with apha-
sia (Ballard et al. 2019; Barbera et al. 2021). This is partic-
ularly valuable as individuals with aphasia frequently face
challenges with self-monitoring (Oomen, Postma, and Kolk
2001; Sampson and Faroqi-Shah 2011) and often benefit
from external cues to improve their performance (Tomp-
kins, Scharp, and Marshall 2006; Conroy, Sage, and Lam-
bon Ralph 2009; Schwartz et al. 2016). Additionally, ASR
can improve communication efficiency and quality by com-
pensating for writing or grammatical impairments through
speech-to-text conversion and delivering feedback during
therapy (Ballard et al. 2019; Barbera et al. 2021). Con-
sequently, ASR-based applications have gained popularity
in delivering speech-language services for individuals with
aphasia and other neurogenic conditions, such as Parkin-
son’s disease (Hoover and Carney 2014; McCrocklin 2016;
Strik et al. 2009).

However, despite advancements in ASR, reliance on
voice-based systems alone often results in transcription er-
rors when processing disfluent or incomplete speech, a hall-
mark of language impairments (Jefferson 2019; Le et al.
2016). These inaccuracies can hinder communication and
reduce the overall effectiveness of these tools, further ex-
acerbating barriers faced by individuals with language dis-
orders. To address these challenges, AVSR systems have
emerged, combining visual inputs—such as lip movements
and facial expressions—with audio to enhance recognition
accuracy (Gabeur et al. 2022; Afouras et al. 2018; Dupont
and Luettin 2000; Ma, Petridis, and Pantic 2021; Noda et al.
2015; Mroueh, Marcheret, and Goel 2015; Feng et al. 2017).
However, AVSR systems often fall short for individuals with
language and speech disorders. Speech disorders such as
dysarthria and apraxia frequently disrupt articulation, ren-
dering lip movements unreliable. Moreover, neutral or am-
biguous facial expressions common in these populations
provide limited contextual insight (Tong, Sharifzadeh, and
McLoughlin 2020; Salama, El-Khoribi, and Shoman 2014).

Gesture into Assistive Technology
Gestures play a vital role in communication, often convey-
ing critical information that complements, enhances, or even
substitutes spoken language (Kita 2009; Kendon 1994; Mc-
Neill, Pedelty, and Levy 1990). This holds true for individ-
uals with and without language impairments, as gestures are
co-produced with speech across languages and cultures, aid-
ing both speakers and listeners (Kita 2009). Remarkably,
even congenitally blind speakers, who have never observed
gestures, use gestures as frequently as sighted individuals,
emphasizing their fundamental role in communication (Iver-
son and Goldin-Meadow 1998). For speakers, gestures il-
lustrate abstract concepts, emphasize key points, and pro-
vide additional information that speech alone may struggle
to convey (McNeill, Pedelty, and Levy 1990; Kita 2000;
Goldin-Meadow and Alibali 2013). For listeners, gestures
offer visual cues that complement verbal messages, enhanc-
ing understanding in noisy settings, during non-native lan-
guage processing, and when speech is ambiguous (Cook
and Tanenhaus 2009; Goldin-Meadow 1999). Notably, lis-
teners often recall information received via gestures as if it
were spoken, underscoring their semantic importance (Cas-
sell 2000; Kelly et al. 1999).

Among gestures, representational gestures—those that vi-
sually represent objects or actions—are particularly valu-
able for enhancing communication (McNeill, Pedelty, and
Levy 1990). Iconic gestures, a subtype of representational
gestures, depict concrete referents (e.g., a kicking motion to
signify “kick”) (Novack and Goldin-Meadow 2017). Other
representational gestures include pantomimes, which oc-
cur without speech, and deictic gestures, such as pointing,
which may emphasize or add meaning to speech(Kendon
1994). Additionally, emblems like a “thumbs up” convey
culturally specific meanings independent of speech (Kendon
1994). However, not all gestures are communicative. Non-
communicative movements, such as tucking hair behind the
ear, do not contribute to the conveyed message and can be
irrelevant to the communicative process.



Figure 1: The overall process of the proposed system. Our model integrates incomplete speech and visual data (i.e., iconic
gestures) and generates semantically enriched transcripts.

For assistive technologies, particularly AI-based sys-
tems, distinguishing communicative gestures from non-
communicative movements is essential. Systems must ac-
curately interpret gestures to capture the full intent of a
speaker’s message, especially when assisting individuals
with language impairments. Thus, effectively integrating
linguistic and co-speech gesture information is critical for
improving the utility and effectiveness of AI-driven assistive
tools.

Challenges in Gesture Interpretation for Assistive
Technology
Accurately interpreting the wide variety of gestures individ-
uals use is a significant challenge, as gestures vary in form
and meaning, with some being non-communicative. Even
gestures conveying the same intent, such as cutting, can dif-
fer—for example, an “enacting” gesture mimics the action
of cutting with a flat hand, while a “handling” gesture sim-
ulates gripping an invisible knife (Poggi 2008; Hassemer
and Winter 2018). This variability complicates consistent in-
terpretation, particularly in zero-shot settings. While recent
computer vision methods focus on generating gestures from
text inputs for avatars or video sequences (Ginosar et al.
2019; Ahuja, Lee, and Morency 2022; Liu et al. 2022), they
do not address gesture understanding or intent recognition,
relying instead on predefined datasets. Existing ASR and
AVSR systems also fall short, as they lack the ability to in-
corporate conversational context or personalized knowledge,
both critical for interpreting gestures tied to specific top-
ics or individual habits. For instance, one person may favor
“handling” gestures while another prefers “enacting.” Addi-
tionally, task-specific training required by many systems is
impractical for real-time applications, as it necessitates fre-
quent retraining to accommodate new users and scenarios.
These limitations underscore the need for adaptable systems
capable of real-time, personalized gesture interpretation.

Method
Given that the dataset provides video recordings of persons
with language disorders, the proposed model aims to im-

prove the transcription of audio from individuals with lan-
guage disorders, focusing on enhancing contextual under-
standing, incorporating gesture, and resolving ambiguities
in speech. It consists of three interconnected components:
Speech Recognition, Gesture Recognition, and Contextual
Rewriting. Figure 1 provides a schematic overview of the
system.

Speech Recognition The first step in the pipeline is audio
processing using an ASR system. This component takes an
audio signal A as input and outputs a preliminary transcript
TASR, which represents the system’s initial interpretation of
spoken words. Let the ASR model be represented by fASR
as follows,

TASR = fASR(A), TASR = {w1, w2, . . . , wn} (1)

where wi is the i-th word in the transcript. Consider an au-
dio input from a patient saying, “I um... tomato.” The ASR
model may generate a raw transcript as incomplete speech.
This transcript lacks clarity and completeness, as it fails to
convey the full meaning intended by the speaker. The limita-
tions arise because ASR systems rely solely on the audio sig-
nal and are unable to incorporate accompanying non-verbal
cues, such as gestures, that could provide additional context.

Gesture Recognition The second component focuses on
identifying gestures from the video frames corresponding
to the speech. The input is a sequence of video frames
V = {v1, v2, . . . , vm}, where each frame vi captures a
snapshot of the speaker’s hand or body movements. A ges-
ture recognition model, fGesture, processes these frames to
detect meaningful gestures as follows,

G = fGesture(V), G = {g1, g2, . . . , gk} (2)

where gi represents a detected gesture and its associated
meaning. Due to the scarcity of labeled datasets for iconic
gestures, the framework employs a multimodal large lan-
guage model to perform zero-shot gesture recognition. This
approach allows the model to infer the meanings of gestures
based on generalizable patterns learned from other modali-
ties. Iconic gestures, which represent concrete referents, are



of particular interest because they often clarify or comple-
ment the spoken language.

If the video captures the speaker making a back-and-forth
motion with a flat hand, the gesture recognition model iden-
tifies this as a cutting motion and assigns it the label g=“cut”.
Iconic gestures, however, can vary significantly between in-
dividuals. For instance, one person might perform a “han-
dling” gesture by mimicking the act of holding and moving
an invisible knife, while another might use an “enacting”
gesture, simulating the motion of cutting without mimick-
ing the act of holding. The proposed model is designed to
handle such variability by recognizing these different repre-
sentations and mapping them to a unified semantic meaning,
ensuring that the gesture’s intent is accurately interpreted re-
gardless of individual differences in gesture style.

Contextual Rewriting The third component integrates the
outputs from the ASR and gesture recognition models to
generate a contextually enriched and semantically accurate
transcript. This process is handled by a LLM which takes
the initial transcript TASR, the detected gestures G as inputs.
The final transcript, TFinal, is generated as follows:

TFinal = fLLM(TASR,G), TFinal = {w′
1, w

′
2, . . . , w

′
p} (3)

where w′
i represents a word in the final transcript. The model

directly uses the recognized gestures as the sole non-verbal
input, streamlining the process while focusing on the inte-
gration of multimodal signals.

For example, if the ASR transcript reads, ”I um... tomato,”
and the gesture recognition model identifies the label
g=“cut” from a cutting motion, the LLM rewrites the tran-
script as “I cut tomato.” This correction ensures that the fi-
nal output reflects both the spoken and gestural communica-
tion, improving the system’s ability to understand and rep-
resent the speaker’s intent accurately. This approach enables
the generation of accurate and enriched transcripts, even in
cases where speech alone might be ambiguous or incom-
plete. By leveraging the co-speech gesture input, the system
enhances its interpretive power without requiring additional
external context.

Experiments
We collected the dataset from AphasiaBank (MacWhinney
et al. 2011; Forbes, Fromm, and MacWhinney 2012), a
shared database created by clinical experts for aphasia re-
search; the corpus information is summarized in Table 1.
The dataset includes video recordings of the language evalu-
ation test process between a pathologist and a subject, which
also contains human-annotated transcriptions and subjects’
demographic information.

For our study, we selected the “Peanut Butter Sandwich
Task” as the focal activity where people are asked to ex-
plain the procedure for making a sandwich. This task has
been demonstrated to associate with high rates of iconic
gesturing (Stark and Cofoid 2022; Stark and Oeding 2023;
Pritchard et al. 2015; Illes 1989).

We performed a detailed analysis of the dataset to exam-
ine the distribution and characteristics of gestures used by
participants during this task. Table 2 provides a summary of

Table 1: The corpora from AphasiaBank
Corpus Site

ACWT (Bynek 2013) Aphasia Center of West Texas
Adler (Szabo 2013) Adler Aphasia Center

APROCSA (Wilson 2021) Vanderbilt University Medical Center
BU (Hoover 2013) Boston University

Capilouto (Capilouto 2008) University of Kentucky
CC-Stark (Stark 2022) file for CC

CMU (MacWhinney 2013) Carnegie Mellon University
Elman (Elman 2011, 2016) Aphasia Center of California

Fridriksson (Fridriksson 2013) University of South Carolina
Garrett (Garrett 2013) Pittsburgh, PA
Kansas (Jackson 2013) University of Kansas

Kempler (Kempler 2013) Emerson College
Kurland (Kurland 2013) University of Massachusetts, Amherst

MSU (Boyle 2013) Montclair State University
NEURAL (Stark 2023) NEURAL Research Lab, Indiana University

Richardson (Richardson 2008) University of New Mexico
SCALE (McCall 2013) Snyder Center for Aphasia Life Enhancement
STAR (Corwin 2013) Stroke Aphasia Recovery Program
TAP (Silverman 2013) Triangle Aphasia Project

TCU (Muñoz 2013) Texas Christian University
Thompson (Thompson 2013) Northwestern University
Tucson (Hirsch Kruse 2013) University of Arizona

UCL (Dean 2021) University College London
UMD (Faroqi-Shah and Milman 2018) University of Maryland

UNH (Ramage 2013) University of New Hampshire
Whiteside (Whiteside 2013) University of Central Florida

Williamson (Williamson 2013) Stroke Comeback Center
Wozniak (Wozniak 2013) InteRACT

Wright (Wright 2013) Arizona State University

Table 2: Summary of data statistics of ‘Peanut Butter Task’
based on gesture annotation.

label # utt # user duration (sec)

mean min max

[gesture:cutting] 109 92 3.76 0.21 18.17
[gesture:eating] 54 48 2.01 0.12 20.79
[gesture:folding] 159 145 2.95 0.09 21.31
[gesture:layering] 45 31 3.92 0.39 16.99
[gesture::opening] 34 24 4.56 0.31 16.29
[gesture:spreading] 269 169 4.53 0.14 26.42

total 670 288 3.99 0.26 19.77

the data, showing six distinct gesture types: cutting, spread-
ing, folding, eating, layering, and opening. Each gesture cor-
responds to an action performed to describe or demonstrate a
step in the sandwich-making process. For example, the cut-
ting gesture involves a back-and-forth hand motion mimick-
ing the act of slicing, while the spreading gesture typically
represents the act of spreading condiments with a sweeping
motion of the hand. The data highlights the natural integra-
tion of gestures with speech, making it a valuable resource
for gesture-aware ASR systems.

Among the gestures, spreading was the most frequently
used, appearing in 269 utterances across 169 users, with
an average duration of 4.53 seconds. This gesture reflects a
critical step in the sandwich-making process, as participants
commonly describe spreading peanut butter or other ingre-
dients. Following this, folding emerged as the second most
frequently observed gesture, with 159 instances across 145
users, averaging 2.95 seconds in duration. The cutting ges-
ture ranked third, appearing 109 times across 92 users, with
an average duration of 3.76 seconds. These three gestures
collectively account for a significant portion of the dataset,



Table 3: The Average Word Error Rate (WER) between orig-
inal transcript and ASR results.

Model WER

Whisper (Radford et al. 2023) 0.557
Seamless (Barrault et al. 2023) 0.891
Wave2Vec (Baevski et al. 2020) 0.630

Whisper (conf > 0.2) 0.519

indicating their central role in describing sandwich prepa-
ration. These findings align with linguistic analysis of the
same story, demonstrating cutting, spreading, and folding as
core parts of the story (Dalton et al. 2020).

The dataset also revealed interesting variability in ges-
ture execution. For instance, while spreading gestures were
consistently observed, their duration ranged from brief mo-
tions lasting just 0.14 seconds to extended actions of up
to 26.42 seconds. Similarly, cutting gestures varied in du-
ration, from 0.21 seconds to 18.17 seconds, highlighting
differences in participants’ expressive styles and cognitive
processing abilities. Gestures such as layering and opening
were less frequently observed, occurring 45 and 34 times
respectively, but exhibited average durations comparable to
the more common gestures, suggesting that even less fre-
quent gestures are articulated with similar complexity.

This analysis highlights the diversity in both the fre-
quency and execution of gestures among participants, em-
phasizing the importance of robust recognition systems ca-
pable of capturing these variations. The prevalence of ges-
tures like spreading, folding, and cutting also demonstrates
their importance as key features for understanding commu-
nication in tasks involving procedural explanations. These
findings provide a strong foundation for training and eval-
uating our gesture-aware ASR framework, which seeks to
seamlessly integrate gesture information into speech tran-
scription.

Results
We conducted experiments to evaluate the performance of
ASR models in generating initial transcripts. These exper-
iments are essential for assessing the quality of the ASR
output, which serves as the input for our gesture-aware con-
textual rewriting model. Additionally, we performed a case
study on selected samples to highlight the improvements
made by our proposed approach compared to the initial ASR
outputs.

Speech Recognition Models
The foundation of a successful gesture-aware ASR system
lies in obtaining high-quality initial transcripts from the
speech recognition stage. To this end, we compared state-
of-the-art ASR models on the AphasiaBank dataset to deter-
mine their performance in generating accurate transcripts.
The results, summarized in Table 3, highlight the average
Word Error Rate (WER) for each model, calculated by com-
paring their output with the ground truth human-annotated
transcripts. WER serves as a critical metric for evaluating

Table 4: The result of a case study for comparison between
Whisper and the proposed model. [gesture:] indicates the
type of iconic gestures used by speakers while speaking.

Index Origianl Whisper Ours

1 w [gesture:layering]
is right. There’s right there. You put things right there,

doing a layering action.

2 [gesture:folding] uz@u
uh right yes. right. folding it right.

3 um [gesture:cutting]
[gesture:cutting] banana. Um... Banana. cutting banana.

4 and [gesture:eating]. and and eating

5
but a w knife
[gesture:spreading]
do the stuff like um

night do this stuff
like oh

do this night stuff
like oh spreading

ASR systems, representing the proportion of errors (inser-
tions, deletions, and substitutions) in the generated transcript
relative to the total number of words in the ground truth.

Among the models tested, Whisper (Radford et al. 2023)
demonstrated the best performance, achieving the lowest
WER of 0.557. This indicates that Whisper is particularly
effective in handling speech from participants with apha-
sia, despite challenges such as disfluencies, atypical speech
patterns, and background noise. Wave2Vec (Baevski et al.
2020) performed moderately well with a WER of 0.630,
while Seamless (Barrault et al. 2023), designed for multi-
lingual ASR, showed a higher WER of 0.891, indicating
potential limitations in its robustness to the specific speech
characteristics in this dataset.

To further improve the accuracy of the initial transcripts,
we applied a confidence-based filtering approach to Whis-
per’s outputs. By utilizing Whisper’s token-level confidence
scores, we excluded tokens with a confidence score below
0.2, thereby retaining only the most reliable portions of the
transcript. This refinement reduced Whisper’s WER from
0.557 to 0.519, further solidifying its position as the most
accurate ASR model in our evaluations.

These results highlight the importance of selecting a ro-
bust ASR model for datasets featuring non-standard speech
patterns. Whisper, particularly with confidence-based filter-
ing, provides a strong baseline for generating initial tran-
scripts. The reduced WER achieved by Whisper demon-
strates its ability to capture key elements of speech even un-
der challenging conditions, thereby enhancing the reliability
of the downstream contextual rewriting process.

A Case Study
To evaluate the effectiveness of the proposed multimodal
model in capturing and incorporating the latent meaning
conveyed by iconic gestures, we conducted a case study
comparing its outputs with those of the Whisper ASR model.
Table 4 presents the results, showcasing the original tran-
scripts in the dataset, the transcript generated by Whisper,
and the transcript generated by our multimodal approach.
The goal of this comparison was to determine whether our
model can enhance transcript quality by inferring and inte-
grating the semantic meaning of gestures observed during
speech.

As shown in the table, Whisper provides a literal tran-
scription of the spoken words but fails to capture the contex-



tual or semantic information conveyed by the speaker’s ges-
tures. For example, in the first example, the original input in-
cludes the layering gesture, indicating an action of stacking
or placing items on top of each other. Whisper transcribes
this as “There’s right there,” which misses the gesture’s im-
plicit meaning. In contrast, our proposed model generates
the enriched transcript, “You put things right there, doing a
layering action,” effectively incorporating the gesture’s se-
mantic context into the spoken narrative.

In the second example, the speaker performs a folding
motion, which is entirely absent from Whisper’s transcrip-
tion, resulting in the simple word “right.” However, our
model identifies and integrates this gesture into the tran-
script, producing “folding it right,” which provides a more
comprehensive description of the speaker’s intention.

Similarly, in the third and fourth examples, iconic ges-
tures like cutting and eating are completely omitted from
Whisper’s transcription, leading to outputs that lack essen-
tial contextual details. The proposed model enriches these
outputs by explicitly including the actions, resulting in tran-
scripts like “cutting banana” and “and eating,” which more
accurately reflect the speaker’s message.

The fifth example highlights a limitation in handling more
complex sentences where gestures provide significant con-
textual cues. While our model attempts to incorporate the
spreading gesture into the generated transcript, the result,
“do this night stuff like oh spreading,” is not fully accurate.
This inaccuracy stems from the initial transcription provided
by Whisper, which included the word “night,” leading our
model to generate a sentence misaligned with the speaker’s
actual intent. This example underscores the importance of
having accurate initial transcripts for improving the final
output quality, especially in scenarios where subtle contex-
tual nuances are critical.

It is important to note that the proposed model is capa-
ble of inferring and incorporating the speaker’s underlying
intention more effectively. By leveraging gestures alongside
incomplete or disfluent speech, our approach captures the
full semantic meaning of the speaker’s communication. For
example, when a speaker’s verbal output is fragmented or
ambiguous, the model uses the accompanying gestures to
infer the intended message, producing transcripts that are
both richer and more contextually accurate. Unlike Whisper,
which relies solely on the spoken words and often misses
crucial gestural context, our method bridges the gap between
speech and gesture, offering a more comprehensive repre-
sentation of the speaker’s intent.

Concluding Remarks
In this paper, we proposed a novel approach utilizing multi-
modal LLMs to generate gesture-aware speech recognition
transcripts for patients with language disorders. Our frame-
work integrates verbal speech and iconic gestures, enabling
the generation of enriched transcripts that capture the la-
tent meaning conveyed through both modalities. Through
extensive experimentation, we demonstrated that the pro-
posed method effectively contextualizes incomplete or dis-
fluent speech by incorporating gesture information, lead-
ing to more accurate and meaningful representations of the

speaker’s intent. These findings highlight the potential of our
approach to significantly contribute to the field of speech and
language therapy, offering innovative tools that can enhance
the quality of life for individuals with language disorders by
facilitating better communication and assessment methods.

Ethical Statement
Our dataset was obtained from AphasiaBank with the ap-
proval of the Institutional Review Board (IRB) and adheres
to the data sharing guidelines set by TalkBank1. This in-
cludes complying with the Ground Rules for all TalkBank
databases, which are based on the American Psychological
Association Code of Ethics (Association et al. 2002).

Limitation & Future Work
While the results are promising, we recognize several limi-
tations and outline our plans to extend this work further.

One primary limitation is the absence of a definitive
ground truth for quantitative evaluation. Since our model
generates transcripts by synthesizing speech and gesture
data from scratch, traditional benchmarks, such as com-
parisons with standard speech recognition outputs, are in-
sufficient. Moreover, existing original transcripts lack ges-
ture annotations, making direct comparisons challenging.
In future work, we aim to address this gap by collaborat-
ing with certified pathologists to conduct qualitative assess-
ments, such as A-B preference tests, to evaluate the effec-
tiveness of gesture-enriched transcripts in accurately con-
veying the speaker’s intentions.

To support quantitative evaluations, we plan to develop
novel metrics that assess transcript quality, including gram-
mar accuracy, semantic consistency, and the integration of
multimodal information. Such metrics will provide a more
objective basis for assessing our model’s performance and
facilitate comparisons with other multimodal and unimodal
approaches.

Another limitation of this study is its focus on structured
gestures from a specific task, the Peanut Butter Sandwich
Task. While this task offers a controlled context for testing
our approach, it does not encompass the diversity of gestures
and communication patterns seen in everyday scenarios. As
part of our future work, we plan to expand the scope of our
model to include tasks such as the Cinderella Story Recall
Task (Bird and Franklin 1996), which involves unstructured
and complex narrative gestures. This expansion will allow
us to evaluate the adaptability and robustness of our model
in handling varied linguistic and gestural contexts.

In summary, while this study establishes a strong foun-
dation for gesture-aware speech recognition, we aim to re-
fine and extend our methods through collaborative qualita-
tive evaluations, the development of robust quantitative met-
rics, and broader task applications. These efforts will ensure
that our approach continues to evolve, ultimately contribut-
ing to more effective communication tools and interventions
for individuals with language disorders.

1https://talkbank.org/share/ethics.html
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