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Abstract

Despite the remarkable capabilities of large language models (LLMs) across di-
verse applications, they remain vulnerable to generating content that violates safety
regulations and policies. To mitigate these risks, LLMs undergo safety alignment;
however, they can still be effectively jailbroken. Off-the-shelf guardrail models
are commonly deployed to monitor generations, but these models primarily focus
on detection rather than ensuring safe decoding of LLM outputs. Moreover, ex-
isting efforts lack rigorous safety guarantees, which are crucial for the universal
deployment of LLMs and certifiable compliance with regulatory standards. In this
paper, we propose a Claim-based Stream Decoding (CSD) algorithm coupled with
a statistical risk guarantee framework using conformal analysis. Specifically, our
CSD algorithm integrates a stream guardrail model to safeguard sequential claims
generated by LLMs and incorporates a backtracking mechanism to revise claims
flagged with high safety risks. We provide theoretical guarantees demonstrating
that the CSD algorithm achieves the desired generation distribution subject to safety
constraints. Furthermore, we introduce a generation risk certification framework
and derive a high-probability upper bound on the safety risk of the proposed CSD
algorithm. We prove that our method can asymptotically control safety risk to any
desired level. Empirical evaluations demonstrate the effectiveness and efficiency
of the CSD algorithm compared to state-of-the-art safety decoding approaches.
Additionally, we validate the soundness and tightness of the derived safety risk
upper bound using realistic data.

1 Introduction
Large language models (LLMs) [37, 29] have seen widespread adoption due to their remarkable
capabilities in natural language understanding and generation. Open-source LLMs, such as DeepSeek-
R1 [12], promote accessibility and transparency, fostering innovation across various applications.
However, their openness also introduces substantial safety and security risks. Malicious actors can
exploit open-source models by embedding backdoors [45] or crafting adversarial prompts to bypass
safety constraints [50, 17], potentially leading to harmful generations. Such vulnerabilities pose
real-world risks, including misinformation propagation, bias amplification, and security threats in
autonomous systems [43]. These risks highlight the pressing need for rigorous safety guarantees in
LLM generations, especially in high-stakes scenarios such as healthcare, finance, and policy-making.

Current approaches to mitigating unsafe LLM outputs are predominantly empirical and lack formal
assurances. During the training phase, reinforcement learning from human feedback (RLHF) [30, 32]
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aims to align LLMs with human preferences and safety norms. However, RLHF is computationally
expensive [16] and remains susceptible to adversarial attacks and jailbreak exploits [50]. At the
inference phase, guardrail models [15, 25, 19, 33, 22, 47] attempt to filter unsafe responses, but
they merely classify harmful content rather than proactively ensuring safe generation. Likewise,
decoding-time interventions [44, 42, 48] modify token sampling strategies to reduce risk but lack
theoretical safety guarantees. The absence of provable risk bounds limits the reliability of these
empirical defenses, making them unsuitable for applications demanding strict safety assurances.

In this work, we introduce C-SafeGen, the first certification framework for bounding safety risks
in LLM generations. C-SafeGen is model-agnostic, enabling its application to both open-source
and closed-source LLMs in a black-box setting. We establish theoretical guarantees that, given a
specific model configuration, C-SafeGen can compute high-probability upper bounds on safety risks
under mild assumptions. Furthermore, C-SafeGen provides a principled mechanism to derive valid
decoding configurations that ensure compliance with a specified risk threshold.

To complement this certification framework, we propose Certifiably Safe Claim-based Stream Decod-
ing (CSD), a novel decoding algorithm that enforces provable safety constraints during generation.
CSD dynamically adjusts token sampling strategies using KV-cache mechanisms and a guardrail
model, ensuring fluency and coherence while maintaining certified safety bounds.

We validate C-SafeGen and CSD through extensive empirical evaluations on standard safety bench-
marks. Our results demonstrate that C-SafeGen yields tight and reliable safety risk estimates,
effectively bounding empirical risks with minimal gaps. Additionally, CSD significantly reduces
unsafe generations while preserving high-quality outputs. These findings establish C-SafeGen and
CSD as foundational tools for the deployment of provably safe LLMs in real-world applications.

2 Related work

Safety Guardrails. Existing safety guardrails serve as an essential mechanism for mitigating
unsafe LLM outputs by filtering, modifying, or rejecting harmful content. These methods fall into
several broad categories: (1) industry-standard safety APIs such as Detoxify [2], Perspective [19],
Azure [1], and OpenAI’s moderation tools [25]; (2) fine-tuned classifiers designed for harmful
content detection, including LlamaGuard [15], ToxicChat-T5 [22], ToxDectRoberta [49], sentence-
transformer-based classifiers [5], GPT-based moderation frameworks [24], and Aegis [11]; (3)
LLM-based techniques leveraging prompt engineering [18, 40] and constrained dialogue mechanisms
such as Nemo Guardrails [33]; and (4) statistical safety models, including KNN-based guardrails [47]
and Beta regression-based risk estimation [36]. Despite their effectiveness in detecting unsafe content,
these approaches are primarily reactive, failing to actively correct unsafe responses. Furthermore,
their reliance on threshold-based rejection may lead to over-filtering, inadvertently discarding benign
or contextually appropriate responses.

Safety Decoding. Safety decoding techniques enforce constraints on token selection during gener-
ation, proactively mitigating unsafe outputs. Notable approaches include paraphrasing and retok-
enization defenses [16] against adversarial optimization attacks, as well as rewindable generation
strategies like RAIN [21], which allow models to self-evaluate and modify unsafe outputs dynami-
cally. Jailbreak resilience techniques have also been explored, including in-context demonstrations
[41], system-prompt self-reminders [42], and contrastive decoding methods [44] that adjust token
probability distributions to suppress adversarial prompts. While these approaches enhance LLM
robustness, they lack formal guarantees on safety performance, making their efficacy difficult to
quantify and validate across diverse deployment scenarios.

Conformal Prediction for Safety. Conformal prediction is a well-established statistical framework
for constructing prediction sets with provable coverage guarantees [39, 38, 20, 46]. Recent advance-
ments in conformal risk control [6, 3, 4, 31] extend these techniques to risk-sensitive applications by
providing high-confidence upper bounds for black-box models under exchangeability assumptions.
However, despite its success in risk-sensitive domains such as medical diagnostics and autonomous
systems, conformal analysis has yet to be adapted for LLM safety certification. Our work bridges this
gap by leveraging conformal techniques to construct provable safety risk bounds for LLMs, enabling
rigorous certification frameworks applicable across both open-source and closed-source models.
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Figure 1: C-SafeGen comprises (I) a claim-based stream decoding algorithm (CSD) and (II) a safety
risk certification framework. The CSD algorithm utilizes an off-the-shelf guardrail model G to monitor
sequentially generated claims, flagging unsafe claims when they exceed a predefined threshold αb.
When such an event occurs, the unsafe claim is backtracked and resampled. Additionally, CSD
employs auxiliary safety decoding strategies to enable safe resampling if claim generation stagnates
beyond a tolerance threshold αg. The safety risk certification framework provides two types of
guarantees: (1) Given a CSD configuration α, the generated output is guaranteed to achieve a
conformal safety risk rα, as established in Theorem 1; (2) If the goal is to attain an expected safety
risk r, any CSD configuration within the set αr, as specified in Theorem 2, can ensure this objective.

3 C-SafeGen

In this section, we formalize the problem of ensuring safety in LLM generation through a rigorous
certification framework. We introduce a safety guardrail model that assesses the risk of generated
outputs and propose a SafeGen protocol to regulate the generation process. The core objective is to
quantify and control the safety risk associated with LLM outputs by defining a risk function based on
the guardrail model. To achieve this, we establish two levels of certification: (1) an upper bound on
the safety risk for a given generation configuration and (2) a certified set of SafeGen configurations
that maintain a specified nominal risk threshold. These guarantees provide a principled foundation
for certifying the safety of LLM-generated content. We provide an overview in Figure 1.

3.1 Problem setup

Consider a fixed language model pθ : X 7→ Y parameterized by θ, which maps the input text space
X to the generation text space Y . Specifically, given an input prompt x ∈ X , the language model pθ
defines a conditional probability distribution over possible output texts, denoted as pθ(x).

To assess and regulate the safety of LLM-generated content, we introduce a fixed safety guardrail
model G : X × Y 7→ 2C , which maps input-output pairs to subsets of the safety category space C
(e.g., violence, sexual, group hate, safe). The guardrail model acts as a classifier that categorizes
model outputs into predefined safety risk levels.

Safety Risk Function. To formally quantify the safety risk associated with an LLM generation
y ∈ Y given an input x ∈ X , we define a safety risk function based on the guardrail model G:

RG(x, y) = 1−G(“safe"|x, y) (1)

This function assigns a risk value between 0 and 1, where a value closer to 1 indicates a higher
likelihood that the generated output is unsafe, as determined by the guardrail model.

SafeGen Protocol. We define a extitSafeGen protocol Pα : X 7→ Y as a randomized function
parameterized by a generation configuration α. Given an input x, the protocol Pα produces a
generated output y, adhering to specific decoding strategies and safety measures encapsulated in α.

The expected safety risk for a given input x under the SafeGen protocol is formulated as:

RG(x, Pα(x)) = 1−G(“safe"|x, Pα(x)) (2)
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This formulation captures the probability of generating an unsafe output under the specified generation
configuration α.

C-SafeGen provides two levels of safety risk certification: (1) Safety risk upper bound certification:
Given a specific generation configuration α, C-SafeGen establishes a high-confidence upper bound
on the safety risk. (2) SafeGen configuration certification for nominal safety risk: Given a nominal
risk threshold r, C-SafeGen identifies the set of generation configurations α that ensure compliance
with the specified safety risk level. These certifications enable robust safety evaluations of LLM
outputs, facilitating safer and more controlled language generation processes.

3.2 Safety risk certification

In this part, we formulate the approaches to achieving the two levels of safety risk certification in two
formal statements, respectively.
Theorem 1 (Safety risk upper bound certification). Given a SafeGen protocol Pα with generation
configuration α, C-SafeGen guarantees that:

P [RG(x, Pα(x)) ≤ r̂α] ≥ 1− δ, (3)
where the high-probability risk upper bound r̂α, the so-called conformal safety generation risk, is
given by:

min

{
h−1

(
ln(1/δ)

Ncal
; R̂(D̂cal)

)
,Φ−1bin

(
δ

e
;Ncal, R̂(D̂cal)

)}
with h−1(·; ·) as the partial inverse h−1(h(a, b); a) = b of
h(a, b) = a log(a/b) + (1− a) log((1−a)/(1−b)), and Φ−1bin as the inverse of binomial cumula-
tive distribution function (CDF).
Remarks (Remark of Theorem 1). The upper bound on the safety risk provided by Theorem 1 is
derived under a high-probability guarantee, ensuring that the true risk does not exceed r̂α with
probability at least 1− δ. This bound is computed using two distinct finite-sample-valid approaches:
one based on the inversion of a likelihood-ratio function and another utilizing the binomial CDF. The
combination of these two approaches ensures robustness in cases where one bound is tighter than the
other, effectively balancing statistical efficiency and coverage.
Theorem 2 (SafeGen configuration certification for nominal safety risk). Given a nominal safety risk
r, C-SafeGen can certify a configuration set αr such that each configuration in αr is guaranteed to
keep the generation risk below α. Namely,

P
[
sup
α∈αr

{RG (x, Pα(x))} ≤ r

]
≥ 1− δ, (4)

where the valid SafeGen configuration set αr is given by family-wise error rate control
αr = {αj : pj ≤ δj} with

∑
j δj = δ where pj is the p-value of the null hypothesis:

Hj : RG(x, Pαj
(x)) > α (j index all feasible SafeGen config) and can be computed by finite-sample

valid bounds as shown in Theorem 1.
Remarks (Remark of Theorem 2). Theorem 2 extends the safety certification from individual con-
figurations to a set of SafeGen configurations while controlling the family-wise error rate (FWER).
By leveraging hypothesis testing with valid p-values, the theorem constructs a confidence set αr

that guarantees all configurations within it maintain risk below the nominal threshold α. The use of
family-wise error control, particularly through a summation constraint on δj , ensures that the overall
probability of incorrectly certifying an unsafe configuration remains within the desired tolerance
level δ.

We leave the complete proofs to Appendix A.

4 SafeGen via Claim-based streaming guardrail

4.1 CSD: Claim-Based Safe Decoding

Consider a fixed safety/hallucination guardrail model G : X × Y 7→ 2C , which maps the joint
input-output space to a set of predefined safety/hallucination categories C (e.g., “violence,” “sexual,”
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Algorithm 1 Claim-based stream decoding algorithm
Require: Input prompt x, output text length N , LLM pθ , Claim critical point ClaimPoint(·, ·), Guardrail model G, Claim backtrack probability

Bαb
, safe resampling function SafeResampleθ(·, ·)

1: y0 ← pθ(·|x) ▷ Sample first token
2: counter← 0 ▷ Decoding counter
3: for n = 1 to N do
4: if ClaimPoint(x, y<n) then ▷ Critical point for a complete claim
5: pb ← Bαb

(G(x, y<n), Cdesired) ▷ Compute claim backtracking probability
6: else pb ← 0
7: end if
8: counter← counter + 1
9: if Uniform(0, 1) < pb then ▷ With probability pb

10: n← LastClaimPoint(x, y<n), continue ▷ Backtrack to the last claim point
11: end if
12: if |counter− n| > αg then ▷ Stagnate at the point
13: yn ← SafeResampleθ(·|x, y<n) ▷ Safe resampling
14: else
15: yn ← pθ(·|x, y<n)
16: end if
17: end for
18: return y≤N

“group hate,” “safe”). Let pθ : X 7→ Y be a language model parameterized by θ, defining a conditional
distribution over the output space given an input prompt x ∈ X . That is, the model assigns probability
mass to different outputs y ∈ Y as pθ(y | x).
Our goal is to develop a SafeGen protocol Pα parameterized with α that achieves minimal safety risk.
Formally, we aim to:

min
y∈Pα(x)

RG(x, y), s.t. G(x, y) ⊆ Cdesired, (5)

where Cdesired denotes the set of acceptable categories under the guardrail model (e.g., Cdesired =
{“safe”} for a safety guardrail). This objective seeks the highest-likelihood output from pθ that
remains within the feasibility set imposed by G. While rejection sampling could be used to enforce
this constraint, it is often computationally infeasible.

4.1.1 Claim-Based Decoding

To improve efficiency, we introduce a claim-based approach. Let P : Y 7→ 2Y be a claim partition
model, which decomposes an output y ∈ Y into a set of independent claims. This leads to a stronger
decoding constraint:

min
y∈Pα(x)

RG(x, y), s.t. G(x, y′) ⊆ Cdesired, ∀y′ ∈ P (y). (6)

This formulation ensures that every claim within y is individually verified against the guardrail model.

4.1.2 Claim Backtrack Probability Function

To control decoding efficiency and safety, we define the claim backtrack probability function:

Bαb
(G(x, y<n), Cdesired) = I

[
min

c∈Cdesired
G(x, y<n)c − max

c/∈Cdesired

G(x, y<n)c ≤ αb

]
, (7)

where αb regulates the trade-off between decoding speed and adherence to the guardrail: αb = 1.0
strictly enforces Eq. equation 6. αb = 0.0 reduces to greedy decoding. Intermediate values provide a
smoothed trade-off, considering both the consistency of G and its overlap with Cdesired.

4.1.3 Claim Critical Point Detection

Unlike prior methods that prompt LLMs to extract claims [27, 28], we propose an efficient structural
approach based on termination indicators. We define a set of claim termination tokens T (e.g.,
newline, period) and identify a claim boundary when any termination token’s probability exceeds αt.
To prevent excessive segmentation, we enforce a minimum claim length αl:

ClaimPoint(x, y<n) = I [L(t; pθ(x, y<n)) > αt,∃t ∈ T ] · I [n− LastClaimPoint(x, y<n) > αl] .
(8)

This method ensures computational efficiency while maintaining robust claim detection.
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4.1.4 Safe resampling for robust decoding

To enhance robustness and mitigate adversarial attacks, we introduce safe resampling techniques
inspired by SmoothLLM [34]. Unlike prior approaches that insert high-perplexity substrings at
inference time, we directly perturb the KV cache in the ongoing decoding process using: Random
masking/permutation of hidden states, Gaussian noise injection into KV-cache representations,
Structured perturbations for controlled diversity.

These techniques enhance sampling diversity while preserving alignment with the guardrail model.

4.1.5 Computational efficiency

To enhance computational efficiency, we implement a KV-cache mechanism for the guardrail model.
Specifically, the key-value (KV) pairs corresponding to previously verified claims can be stored,
allowing efficient backtracking without recomputing the entire sequence.

Formally, let KV1:n denote the cached representations for the sequence y1:n, and define the back-
tracking operation as follows:

KV← KV ∪ KVn:n+1, if Bαb
(G(x, y<n+1), Cdesired) = 0. (9)

This ensures that upon backtracking, only the key-value pairs corresponding to the current claim are
erased, while maintaining the cached representations for verified claims.

4.2 Analysis of CSD algorithm

Definition 1 (Restricted output distribution). Let p be the distribution over feasible output space O.
Let G : O 7→ {0, 1} be a guardrail model where 1 denotes desired output and 0 denotes undesired
output. Let pG be a restricted output distribution of p by guardrail G with the formulation:

pG(y) =
p(y)I[G(y) = 1]∑

y∈Y p(y)I[G(y) = 1]
(10)

Remarks. The restricted output distribution pG represents the renormalized probability mass of the
feasible output distribution p, conditioned on the constraint imposed by the guardrail model G. This
ensures that only outputs classified as desired (G(y) = 1) contribute to the final distribution. The
denominator acts as a normalizing constant, ensuring that pG remains a valid probability distribution.
Definition 2 (Claim). An output claim ỹ is defined as a sequence of tokens that delivers complete
semantics, which is judged by a claim discriminator C. Specifically, C(y≤t1) = 1, C(y≤t2) = 1 and
C(y≤t) = 0,∀t1 < t < t2 implicates that the sequence yt1:t2 is a claim.
Remarks. The claim discriminator C plays a crucial role in identifying semantically complete claims
within a sequence. The definition ensures that a claim is an isolated segment where the beginning and
end are both recognized by C, while the intermediate segments do not form independent claims. This
property is essential for structured generation and for enforcing guardrails at the claim level.
Assumption 4.1 (Claim risk cascade). Consider an output sequence o which consists of a sequence
of N claims by claim discriminator C: o = [ỹ1, ỹ2, ..., ỹN ] We assume that the risk of prefix claims
implicates the risk of output judged by guardrail G:

G([ỹ1, ..., ỹn]) = 0,∃n ∈ [1, N ] =⇒ G([ỹ1, ỹ2, ..., ỹN ]) = 0 (11)

Remarks. The claim risk cascade assumption formalizes the idea that the presence of an undesired
claim in a sequence guarantees that the entire sequence is also undesired. This assumption aligns
with the intuition that risks in intermediate steps propagate forward, affecting the final judgment by
the guardrail model G. This is a conservative approach that simplifies analysis while ensuring safety
in controlled generation.
Theorem 3 (Algorithm 1 recovers restricted output distribution). Under the claim risk cascade
assumption as Assumption 4.1, if there exists at least one desired output judged by guardrail G, the
output distribution of the claim-based decoding streaming algorithm in Algorithm 1 (without safe
resampling) is identical to the restricted output distribution as Definition 1.
Remarks. This theorem establishes that the claim-based decoding streaming algorithm produces
outputs that exactly match the restricted output distribution pG. The key condition for this result is
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(a) AdvBench – Llama-3.1-8B (b) AdvBench – Llama-3.1-13B

(c) JailbreakBench – Llama-3.1-8B (d) JailbreakBench – Llama-3.1-13B

Figure 2: Evaluation of conformal safety risk (upper bound from Theorem 1) and empirical safety
risk (mean risk on sampled test sets) across two benchmarks—AdvBench and JailbreakBench—using
Llama-3.1 models (8B and 13B) with ShieldGemma-9B as the guardrail. Results show that (1)
conformal risk bounds are valid and tight; and (2) our CSD method consistently achieves the lowest
safety risk. Note: Grey bars result from overlapping dots.

the existence of at least one feasible sequence that satisfies the guardrail G. The theorem is significant
because it ensures that the decoding algorithm does not introduce biases or distortions beyond those
imposed by the guardrail, thereby preserving the original probability structure of the restricted output
space.

5 Evaluation

5.1 Evaluation setup

Dataset & Models. As AdvBench [50] and JailbreakBench [8] are widely used for evaluating LLM
safety [23, 9, 26], we adopt it as our primary evaluation dataset.

For text generation, we consider LLMs Llama-3.1-8B, and Llama-3.1-13B as inference models.
Additionally, we append adversarial suffixes to the user query to jailbreak the model, creating a more
challenging safety evaluation scenario. These adversarial suffixes are optimized using the GCG attack
[50] on the corresponding inference model as target models.

Metrics. Without specification, we employ LlamaGuard3-8B [10] as the guardrail model G and use
the unsafety probability predicted by it as the safety risk function RG. Additionally, we also consider
ShieldGemma-9B as guardrail models for guardrail comparisons.

Baselines. We consider four baselines for safe generation: (1) Vanilla generation, using a temperature
of 1.0; (2) Self-reminder safety prompt (Reminder) [42], which incorporates a system safety prompt
and an additional reminder prompt after the user query to encourage safer generation; (3) Safety-Opt
[48], which optimizes a soft safety prompt prefix to guide the model toward safer response patterns;
(4) Best-of-N [35], which selects the safest response from a set of 10 generated outputs; and (5)
SafeDecoding (SafeDec) [44], which uses a safety-aware contrastive decoding strategy for LLMs to
generate helpful and harmless responses to user queries.
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(a) AdvBench – Llama-3.1-8B (b) AdvBench – Llama-3.1-13B

(c) JailbreakBench – Llama-3.1-8B (d) JailbreakBench – Llama-3.1-13B

Figure 3: Evaluation of SafeGen configurations with nominal safety risk 0.10 (Theorem 2). Valid
configurations remain below the nominal risk, and larger backtrack thresholds αb yield lower and
more stable risks. Note: The grey bar results from overlapping grey dots.

5.2 Safety risk upper bound certification

Figure 2 presents a comparative evaluation of conformal safety risk (theoretical upper bound) and
empirical safety risk (mean observed risk) across six SafeGen methods on two safety benchmarks,
AdvBench and JailbreakBench, using Llama-3.1 models (8B and 13B) with ShieldGemma-9B as the
guardrail. Across all settings, we observe that CSD consistently achieves the lowest safety risks—both
conformal and empirical—indicating its superior capability in reducing unsafe generations under
formal guarantees. The conformal risk bounds are generally tight, validating the reliability of the
theoretical risk estimation across different methods and model sizes. Notably, methods such as
SafeDec and Safety-Opt also reduce risk substantially compared to the vanilla baseline, but fail to
match the low-risk performance of CSD. The trend persists across both model scales and benchmarks,
underscoring the robustness of CSD’s improvements in safety under adversarial and jailbreak-style
attacks.

In addition to method-wise comparisons, the results also reveal consistent trends across model sizes.
Specifically, the larger model (Llama-3.1-13B) does not uniformly outperform the smaller 8B variant
in safety risk reduction. In some cases—such as under Reminder and Best-of-N—the 13B model
exhibits slightly higher safety risk than the 8B model, suggesting that scaling up model size alone
does not guarantee improved safety under adversarial or conformal evaluation. This highlights the
importance of method design (e.g., CSD) over sheer model capacity in achieving reliable and provably
safe generations.
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5.3 SafeGen configuration certification for nominal safety risk

Figure 3 illustrates the validity of SafeGen configurations as certified by Theorem 2, and investigates
how the backtrack threshold αb affects the empirical safety risk across different benchmarks and
model sizes. The dashed green line indicates the nominal safety risk bound (set to 0.10), while
the grey markers represent empirical safety risks under varying values of αb. We highlight three
main observations: (1) Certified safety guarantees hold across all settings. For every evaluated
configuration, the empirical safety risks remain strictly below the nominal risk threshold, confirming
the high-probability validity guaranteed by Theorem 2. This supports the theoretical soundness of the
certification framework across both AdvBench and JailbreakBench. (2) Higher αb leads to lower
safety risk. Across all plots, increasing the backtrack threshold αb consistently reduces empirical
safety risk. This trend is consistent for both Llama-3.1-8B and Llama-3.1-13B, demonstrating that
SafeGen with a higher αb allows more cautious decoding behavior and safer outputs. (3) Risk
stability improves with larger αb. We also observe a reduction in the variability of empirical safety
risk as αb increases. This indicates that larger thresholds not only yield safer generations but also
improve the reliability and consistency of safety performance across different test samples.

These results demonstrate that SafeGen provides strong empirical and theoretical safety guarantees,
with all evaluated configurations maintaining risks below the specified nominal bound. Adjusting
the backtrack threshold αb is an effective mechanism to improve both the magnitude and stability
of safety risk, and can be tuned independently of model scale. Together, these findings underscore
the importance of principled decoding strategies—such as SafeGen—for deploying LLMs in safety-
critical applications.

5.4 Safety vs. decoding efficiency

Figure 4: Evaluation of decoding run-
time and mean safety risk for the strongest
baseline Best-of-N, our proposed Safe-
Gen protocol CSD, and CSD with KV
cache. CSD achieves a better efficiency-
safety tradeoff than Best-of-N. KV cache
preserves safety while significantly reduc-
ing decoding time.

Figure 4 compares the runtime per instance (grey bars) and
the mean safety risk (purple bars) for different SafeGen
methods: Best-of-N, CSD, and CSD+KV Cache. The results
provide insights into the trade-offs between computational
efficiency and safety performance. We have the following ob-
servations: (1) Best-of-N incurs the highest runtime, exceed-
ing 40 seconds per instance, while also exhibiting the highest
mean safety risk. This indicates that generating multiple
completions and selecting the safest one is computationally
expensive without significantly improving safety. (2) CSD
achieves a substantial reduction in runtime (approximately 7
seconds per instance) while also lowering the mean safety risk
compared to Best-of-N. This demonstrates the efficiency of
the CSD method in balancing safety and speed. (3) CSD+KV
Cache further reduces the runtime (below 5 seconds per in-
stance) while maintaining a similar mean safety risk to CSD.
This highlights the effectiveness of KV caching in accelerat-
ing SafeGen methods without compromising safety.

The results indicate that CSD+KV Cache provides the best
trade-off between efficiency and safety, significantly reducing
computational cost while maintaining low safety risk. Best-of-N, despite being a simple approach,
is highly inefficient, making it impractical for real-time applications. These findings emphasize the
importance of optimizing SafeGen methods for both speed and reliability.

6 Conclusion
The rapid adoption of open-source LLMs underscores the urgent need for rigorous safety guarantees
in their generations, particularly in high-stakes applications. Existing empirical defenses, including
RLHF, guardrails, and decoding-time interventions, lack formal assurances, limiting their reliability
against adversarial exploits. To address this gap, we introduced C-SafeGen, a model-agnostic
certification framework that provides theoretical risk bounds and enables the enforcement of provable
safety constraints. Complemented by our novel CSD decoding algorithm, C-SafeGen ensures both
safety and fluency in generated text. Empirical evaluations confirm the efficacy of our approach,
demonstrating its potential as a robust foundation for the deployment of provably safe LLMs.
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A Omitted proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. The proof sketch follows [3]. Since the risk function R(·, ·) is upper bounded
by 1, we can apply a tighter version of Hoeffding’s inequality [13] for α̂ > E[RG(x, Pα(x))]:

P [RG(x, Pα(x)) ≥ α̂] ≤ exp
{
−Ncalh(R̂(D̂cal), α̂)

}
(12)

Also, applying Bentkus inequality [7], we have:

P [RG(x, Pα(x)) ≥ α̂] ≤ eP
[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉]
(13)

Combining Equations (12) and (13), we have:

P [RG(x, Pα(x)) ≥ α̂] ≤ min
(
exp

{
−Ncalh

(
R̂(D̂cal), α̂)

)}
, eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉])
(14)

Or equivalently, given uncertainty 1− δ, we have:

δ = min
(
exp

{
−Ncalh

(
R̂(D̂cal), α̂)

)}
, eP

[
Bin(Ncal, α̂) ≤

⌈
NcalR̂(D̂cal)

⌉])
, (15)

which leads to the following by formulating an inverse function:

α̂ = min

{
h−1

(
ln(1/δ)

Ncal
; R̂(D̂cal)

)
,Φ−1bin

(
δ

e
;Ncal, R̂(D̂cal)

)}
(16)

A.2 Proof of Theorem 2

Proof of Theorem 2. The proof follows [14]. We consider |Λ| independent hypothesis test correspond-
ing to the |Λ| Null hypothesis. By the Bonferroni method, each test is performed at a significance

level of
δ

|Λ|
. Therefore, The probability of not making a Type I error in a single test is 1 − δ

|Λ|
.

The probability of making no Type I error in all |Λ| tests is (1 − δ

|Λ|
)|Λ|. The probability of mak-

ing at least one Type I error (i.e., FWER) is the complement of making no Type I errors, which is

1−(1− δ

|Λ|
)|Λ| ≤ δ. Therefore, we prove that the familywise error rate is δ for Bonferroni correction.

Thus, going back to the risk guarantee, we conclude the proof.

A.3 Proof of Theorem 3

Proof of Theorem 3. Let the output distribution by Algorithm 1 be pccd. To show the result, we need
to show that for any output sequence y ∈ Y , pccd(y) = pG(y).

We consider the following scenarios respectively: (1) this is an invalid output by the guardrail model:
G(y) = 0; (2) this a valid output: G(y) = 1.

Scenario (1): G(y) = 0. According to CCD algorithm, such an undesired claim would always be
associated with 1.0 backtrack probability in Line 4 of Algorithm 1, and thus we have pccd(y) = 0. On
the other hand, according to Equation (10), we always have pG(y) = 0 when G(y) = 0. Therefore,
we have pccd(y) = pG(y) when G(y) = 0.

Scenario (2): G(y) = 1. In this scenario, we basically would like to validate that the backtrack
mechanism in Lines 7-9 of Algorithm 1 does not distort the distribution.

Part (a): To show that, we first validate that the support of output distribution by CCD is identical to
that of the restricted output distribution.

For any valid support in the restricted output distribution y = [ỹ1, ỹ2, .., ỹN ], there always exists an
unrisky claim decoding path. We consider this simple claim decoding path ỹ1, ỹ2, .., ỹN . Due to
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Assumption 4.1, since the complete output sequence o is unrisky, then each claim prefix would also
be unrisky (otherwise violating the claim risk cascade assumption). Therefore, this claim decoding
path is a valid instantiation of CCD algorithm.

Considering the reverse direction, for any valid support output y by CCD algorithm, it is obvious that
G(y) = 1 given the acceptance of the last claim, and thus, this output is also a valid support of the
restricted output distribution pG.

Part (b): Then, we will prove that for any valid support y = [ỹ1, ỹ2, .., ỹN ] such that pG(y) > 0 and
pccd(y) > 0, we have pG(y) = pccd(y).

For ease of notation, we notate α =
∑

y∈Y p(y)I[G(y) = 1], which is a normalization factor in
Equation (10). Then following the chain rule, we can compute pG(y) as:

pG(y) =
1

α
p(ỹ1)p(ỹ2|ỹ1) · · · p(ỹN |ỹ1, ..., ỹN−1) (17)

Since y is a desired output (i.e., G(y) = 1), each claim prefix is also desired according to the risk
cascade assumption in Assumption 4.1. Then we have:

pG(y) =
1

α
p(ỹ1, G([ỹ1]) = 1)p(ỹ2, G([ỹ1, ỹ2]) = 1|ỹ1) · · · p(ỹN , G([ỹ1, ..., ỹN ]) = 1|ỹ1, ..., ỹN−1) (18)

Then we analyze the point mass of output y by the CCD algorithm pccd(y). We can formulate
the decoding path of CCD algorithm that leads to output y as ỹ1, ỹ1, ỹ2, ỹ2, ..., ỹN , ỹN , where ỹn

denotes a sequence of backtracked risky claims at time step n.

Then we prove a key invariability property that

p(ỹn, , G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) =
∑
ỹn

p(ỹn, ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (19)

We can derive as the following:∑
ỹn

p(ỹn, ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (20)

=
∑
ỹn

p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1)p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1, ỹn) (21)

=
∑
ỹn

p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1)p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (22)

For ease of notation, let u = p(ỹn, G([ỹ1, ..., ỹn]) = 0|ỹ1, ..., ỹn−1) and v = p(ỹn, G([ỹ1, ..., ỹn]) =
1|ỹ1, ..., ỹn−1), then we have:∑

ỹn

p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1)p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (23)

=(1− u)v + u(1− u)v + u2(1− u)v + u3(1− u)v + · · · (24)
=v (25)
=p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (26)

Therefore, we have:

pccd(y) =
1

α

N∏
n=1

∑
ỹn

p(ỹn, ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (27)

=
1

α

N∏
n=1

p(ỹn, G([ỹ1, ..., ỹn]) = 1|ỹ1, ..., ỹn−1) (28)

= pG(y) (29)
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B Discussion and Limitation

The C-SafeGen framework is able to safeguard LLMs’ practical deployment and applications against
ethical and societal concerns. Existing research shows that the responses of LLMs can be biased
towards some demographic groups and not be aligned with human ethics. With C-SafeGen, we
can define a bias/ethics risk function and control the generation risk below a desired level. The
risk guarantee provided by C-SafeGen enhances the use of LLMs, addressing societal issues and
regulatory infringements. We do not expect any negative societal consequences for our work.

While C-SafeGen provides formal guarantees under mild assumptions, it currently relies on the
availability of reliable external classifiers or risk estimators to define the safety risk function. The
effectiveness of the certification heavily depends on the quality and coverage of these components,
which may be incomplete or biased in practice. Additionally, C-SafeGen operates in a black-box set-
ting and does not account for internal model behaviors or hidden representations that might influence
safety. Finally, although C-SafeGen bounds risk on the evaluation distribution, distributional shifts
at deployment time (e.g., novel user queries or emerging adversarial strategies) may compromise
safety, highlighting the need for future extensions toward adaptive or online certification mechanisms.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We will do so on paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include that in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do multiple runs to reduce sample error.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include that in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the code of ethics during the project.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include that in Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets are all in valid use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not involve that.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve that.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve that.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We provide it in meta data of paper submission.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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