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Abstract

Despite their dominance in modern DL and, es-
pecially, NLP domains, transformer architectures
exhibit sub-optimal performance on long-range
tasks compared to recent layers that are specif-
ically designed for this purpose. In this work,
drawing inspiration from key attributes of long-
range layers, such as state-space layers, linear
RNN layers, and global convolution layers, we
demonstrate that minimal modifications to the
transformer architecture can significantly enhance
performance on the Long Range Arena (LRA)
benchmark, thus narrowing the gap with these
specialized layers. We identify that two key prin-
ciples for long-range tasks are (i) incorporating
an inductive bias towards smoothness, and (ii) lo-
cality. As we show, integrating these ideas into
the attention mechanism improves results with a
negligible amount of additional computation and
without any additional trainable parameters. Our
theory and experiments also shed light on the rea-
sons for the inferior performance of transformers
on long-range tasks and identify critical proper-
ties that are essential for successfully capturing
long-range dependencies.

1. Introduction

Enhancing the long-range capabilities of deep learning mod-
els is a central challenge for the field. This aspect is crucial
for real-world time-series analysis, and can significantly
boost performance in processing long-form data modalities,
such as text, speech, or videos. The problem of capturing
long-range dependencies encapsulates two aspects: effec-
tiveness and efficiency. Researchers have proposed several
transformer variants with sub-quadratic complexity to solve
the efficiency problem. However, such mechanisms may
not be beneficial without solving the effectiveness problem.
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Therefore, our work focuses on the effectiveness part, which
is a critical bottleneck that has been identified by (Mehta
et al., 2022) who observe that transformers struggle to ex-
ploit long context, and (Xiong et al., 2021), which show
that full-length transformers often perform comparably to
local-attention-based transformers on long range tasks.

The lack of effectiveness of transformers in this setting
was also exposed by the Long Range Arena (LRA) bench-
mark (Tay et al., 2020). This benchmark highlights that stan-
dard sequence models, such as transformers, perform poorly
even on seemingly simple long-range tasks. As modern
deep learning heavily relies on transformers, understanding
why transformers do not perform well on these tasks, or
how to improve those abilities is an essential research topic.

Motivated by recent advances in deep long sequence mod-
eling, we delve into the question of why long-range layers
such as state-space layers (Gu et al., 2021b;a; Gupta et al.,
2022a) and long convolutions (Li et al., 2022; Fu et al., 2023)
perform well on the LRA benchmark and other long-range
tasks. We discern two simple yet significant conditions
(i) an exponential decaying positional structure, and (ii) a
regularized smooth global operator. Building upon these
two principles, we introduce Local and Smooth Attention
(LaS-Attention), a variant of attention that adheres to this
pair of principles. Empirical analysis shows that this layer
can boost Transformer performance on long-range tasks and
narrow the gap with state-space layers and long convolu-
tions, with negligible additional complexity compared to
vanilla transformers.

Our main contributions encompass the following main
aspects: (i) We furnish theoretical and empirical insights
about long-range sequence modeling and identify the de-
sired properties for achieving success in long-range tasks,
(i1) We demonstrate that a smoothness-promoting inductive
bias and positional locality are vital principles for capturing
long-range dependencies. Moreover, we empirically iden-
tify that these concepts present a crucial bottleneck affecting
the long-range capabilities of current transformers. (iii) We
present a novel variant of attention that is empirically proven
to be effective in capturing long-range dependencies, and
furthermore (iv) present an LaS-chunk variation that satis-
fies both the effectiveness and efficiency criteria, by having
a linear complexity while maintaining high accuracy com-
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pared to other transformer variants. Finally, (v) We provide
the first layer that does not rely on 1-D long convolution
and yet achieves an average score higher than 70 on the
LRA benchmark. This is compared to 55 of the original
transformer and other transformer variants such as (Kitaev
et al., 2020; Wang et al., 2020; Choromanski et al., 2020).
While the new layer is not SOTA on all LRA benchmarks,
the gained insights and the design elements open the door
for other transformer-based long-range attention variants.

We note that our results are counter-intuitive at first, since lo-
cality and long-range are often viewed as opposing concepts.
Nevertheless, this is explained by the fact that long-range
layers capture far-away dependencies through a hierarchi-
cal combination of local dependencies. Such hierarchical
dependencies are challenging to capture via pairwise inter-
actions, without introducing locality.

2. Background

Global convolution layers Standard convolution layers are
a fundamental building block of DL (LeCun et al., 1998;
Ronneberger et al., 2015). These layers parameterize fil-
ter of size L and C channels with L*C parameters, where
each element is defined explicitly. An emerging approach
implicitly defines the convolution kernel via a learnable
function (Romero et al., 2021). Namely, the kernel k? (fil-
ter) at position 4 and channel A is defined by a function f"
such that f(i) = k;.

These methods have three main advantages: (i) These lay-
ers can operate over an unrestricted context, as opposed to
fixed-size explicit filters. (ii) The layers have sub-quadratic
time dependency on sequence length, and (iii) As the num-
ber of parameters is decoupled from the sequence length,
these kernels are regularized by design, which appears to be
necessary for their effectiveness.

S4 (Guetal., 2021a) and state-space layers (Gu et al., 2021b)
were the pioneers to show the effectiveness of this approach,
by parameterizing convolution kernels via the linear state-
space model (SSM), which was then simplified using di-
agonal and real SSMs (Gupta et al., 2022a;b). Similar ap-
proaches by (Ma et al., 2022; Lutati et al., 2023), use learn-
able components, including EMA and IIR filters, instead of
SSMs to formulate the parameterization. As an alternative,
Hyena (Nguyen et al., 2023) and CkConv (Romero et al.,
2021) established the parameterization by applying standard
Feedforward neural network (FFN) layers that operate on
positional encoding. These approaches provide superior per-
formance in several areas, such as NLP (Mehta et al., 2022;
Wang et al., 2022; Dao et al., 2022b), speech (Saon et al.,
2023a), RL (Lu et al., 2023; David et al., 2022), time series
analysis, and more, especially in tasks that require capturing
long-range dependencies. Although these methods were
originally designed to process 1-dimensional sequences,

several extensions to these layers have been shown to effec-
tively handle multi-dimensional sequences (Nguyen et al.,
2022; Baron et al., 2023; Zimerman & Wolf, 2024).

Long range transformers Transformers (Vaswani et al.,
2017) have emerged as highly effective models for NLP (De-
vlin et al., 2018; Radford et al., 2019), Computer Vi-
sion (Dosovitskiy et al., 2020), Audio modeling, and many
other tasks. However, their widespread adoption has been
challenged by the quadratic cost of the self-attention mecha-
nism and the demonstrated poor performance on long-range
tasks. Many approaches have been applied to overcome
this challenge and to create efficient transformer architec-
tures (Fournier et al., 2021; Tay et al., 2022).

From the perspective of efficiency, techniques such as sparse
attention (Child et al., 2019), low-rank attention (Wang et al.,
2020; Winata et al., 2020), kernel-based attention (Choro-
manski et al., 2020), recurrent mechanisms (Hutchins et al.,
2022; Dai et al., 2019), and efficient IO-awareness-based
implementation (Dao et al., 2022a) proved efficient. From
the perspective of effectiveness, (Yu et al., 2023; Ivgi et al.,
2023) combine local and global attention models hierar-
chically, enhancing the model’s ability to handle extensive
context. (Zhou et al., 2022) expands long-range capabili-
ties by applying attention in the frequency domain. Finally,
(Gupta & Berant, 2020; Al Adel, 2022; Al Adel & Burtsev,
2021) employ global memory-based Attention. A recent
strategy to enhance the effectivness of transformers in long-
range tasks involves incorporating global convolution layers
into the transformer architecture (Ma et al., 2022; Saon et al.,
2023b; Fathullah et al., 2023)

Alibi (Press et al., 2021) is a method that enhances length
extrapolation in transformers by adding a positional-based
linear bias to the attention scores. It computes attention by:

0 0 0
Dy = : : S )
(L—1) (L—2) --- 0

QKT —m:- DL
Vdy,
where Dy, is the distance matrix of size of the sequence

length L multiplied by the causal mask, and SF is the soft-
max function.

Attention(Q, K, V) = SF ( > V )

The Long Range Arena (LRA) benchmark In recent
years, numerous long-range transformer models have been
introduced to address the inherent scalability and perfor-
mance issues associated with long sequences in transform-
ers. The LRA benchmark has emerged as a sought-after
dataset tailored for evaluating these models across a variety
of long-context scenarios, tasks, and data types. By offering
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a common ground for comparison, LRA scrutinizes model
capabilities with sequences ranging from 1K to 16K tokens,
encompassing text, visual data, and mathematical expres-
sions. Recently, it has been shown that global convolution
layers such as S4 (Gu et al., 2021a) perform much better
than transformers on this benchmark.

3. Analyzed Long-Range Dependencies

This research starts with a systematic attempt to understand
the reasons behind the inferior performance of transformers
in long-range modeling, compared to state-space and long
convolution layers. We initiate our analysis by evaluating
the transformer’s capability to model long-range dependen-
cies, focusing on aspects of expressiveness, optimization,
and generalization, aiming to identify the core bottleneck.

The overall claim of this section is that the observed sub-
optimal performance of transformers on long-range tasks
does not arise necessarily from issues of optimization or ex-
pressiveness, which are inherent to the architecture. Rather,
it is likely a matter of generalization, which can be mitigated
effectively by incorporating appropriate inductive bias. This
insight motivated our research, which explores the nature
of long-range inductive bias and how it can be incorporated
into transformers.

Expressiveness Transformers are high-capacity models,
which makes expressivity less likely to be the root cause
of failure in long-range tasks. To demonstrate that expres-
siveness is not the root of the problem, we make two ar-
guments: (i) We observe that when training vanilla trans-
formers (equipped with positional encoding) on the LRA
benchmarks including the validation set, large transformers
can achieve near 100% accuracy, illustrating their capability
to shatter the LRA benchmarks. (ii) In Theorem B.1, in
Appendix B we show that a single layer of a transformer
(with positional encoding at the layer level) with N heads
and a sufficiently large hidden dimension, can express any
state-space layer with NV channels. This can be substantiated
by the fact that each channel of the state-space layer incorpo-
rates a long convolution kernel K, which can be expressed
via the attention matrices. Note that our proof holds for
any kernel &, not only for kernels constructed through state-
space parametrization, and therefore it further elucidates the
relationship between transformers and global convolution
layers (see Sec. 2) by demonstrating that transformers are
theoretically more expressive.

Optimization Long-range dependencies are often associ-
ated with optimization issues, such as exploding and van-
ishing gradient problems. The following two arguments
support the view that this is not the primary bottleneck in
transformers: (i). Unlike RNNSs, transformers do not process
tokens through recurrent steps. Rather, they parallelize the
processing of every pair of tokens using the self-attention

mechanism, ensuring direct interaction between all pairs.
Furthermore, each pair of tokens is processed in the same
manner, thus there is no reason to assume that gradients
are more likely to vanish or explode on long interactions
than on short interactions. Moreover, in the insightful work
of Orvieto et al. (2023), it was empirically demonstrated
that vanishing and exploding gradient issues on the LRA
benchmarks arise from a high number of non-linear oper-
ations between distant tokens, which is identified as one
of the advantages of linear over standard RNNs. Similar
to linear RNNS, in transformers the amount of nonlinearity
is constant and does not depend on the distance between
tokens. (ii). Transformers make extensive use of normal-
ization layers, such as LayerNorm and softmax, as well as
residual connections, which makes them relatively stable.

Instead of a lack of expressiveness and pathological opti-
mization dynamics, we claim that the primary factor behind
the suboptimal performance of transformers on long-range
tasks is probably the lack of generalization, caused by an
unsuitable inductive bias that results in an unfavorable hy-
pothesis class. In other words, the existing transformers
overfit the long-range data. We support this claim with
two observations: (i) models exhibiting exceptional per-
formance on LRA benchmarks tend to contain layers with
strong inductive bias, such as state-space layers, Exponen-
tial Moving Average (EMA), or other specialized layers (Ma
et al., 2022), and (ii) as shown in Sec. 5 (Fig. 6), there is a
significant improvement in the performance of our models
on the LRA benchmark as the amount of data increases.
This does not occur as much for other transformers. This
implies that with the right type of inductive bias, the model’s
ability to fit the underlying data distribution increases. A
similar phenomenon was recently observed by Amos et al.
(2023), which demonstrated that increasing the inductive
bias of a model through self-supervised pre-training leads
to significant improvements on the LRA benchmark. This
approach effectively closes the performance gap between
transformers and state-space layers.

4. Method

We begin by exploring ways to incorporate suitable induc-
tive bias into the transformer architecture. By observing
specially designed long-range layers, we learn that expo-
nentially decaying kernels and kernel smoothness are often
promoted. We then explain how we incorporate these prin-
ciples into the attention layers.

Sec. 3 presents the motivation for incorporating inductive
bias to shape the hypothesis class favorably towards long-
range dependencies, which can mitigate the generalization
gap. However, the existence and specific characteristics
of such inductive bias remain unclear. To address these
questions, we aim to discern the common key principles
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underlying the design choices in layers that successfully
capture long-range dependencies (See Appendix E for more
details). Given the wide variety of long-range layers, in-
cluding state-space layers (Gu et al., 2021b;a; Gupta et al.,
2022a; Hasani et al., 2022; Smith et al., 2022), Toeplitz
NN (Qin et al., 2023a), linear diagonal RNNs Gupta et al.
(2022b); Orvieto et al. (2023), and long convolution lay-
ers (Li et al., 2022; Fu et al., 2023), and the fact that these
layers are built on many design principles such as unique
initialization (HIPPO (Gu et al., 2020)), regularized param-
eterization (NPLR (Gu et al., 2021a), diagonal (Gu et al.,
2022; Gupta et al., 2022a), full kernel (Fu et al., 2023)),
numerically stable computation (Gu et al., 2021b), and ad-
ditional mechanisms such as novel gating (Ma et al., 2022;
Mehta et al., 2022) and normalization methods (Orvieto
et al., 2023), discerning the exact reasons why these layers
perform well, especially when compared to Transformers,
is a challenging task.

We, therefore, delve into the investigation of those layers.
This discussion will be based on observing the kernels of
several long-range layers, see Fig. 1.

A common design choice in long-range layers is to use con-
volution kernels with an exponential decaying structure (Li
et al., 2022). This trend of exponential decay can be seen
in Fig. 1. It is integrated into the kernels through initializa-
tion (Fu et al., 2023), parameterization (Gu et al., 2021a;
Gupta et al., 2022a; Li et al., 2022; Ma et al., 2022), or
computation (Qin et al., 2023a). All these convolutional
kernels have a decaying structure, that is, the weights for
interactions with closer neighbors are larger than for those
with more distant ones.

(Li et al., 2022) also suggest that having regularized con-
volutional kernels is essential for capturing long-range de-
pendencies. Following this, (Fu et al., 2023) empirically
demonstrate that smoothness can be a powerful tool for
kernel regularization. This smoothness can be achieved by
reducing the size of kernel weights in the time domain using
a squashing operator, which enforces sparsity, leading to
smoothness in the frequency domain. Moreover, layers such
as EMA or linear-state space layers are naturally smooth in
their design, as can be seen in Fig. 1(b).

4.1. Local and Smooth (LaS) Attention

While smooth and exponentially decaying kernels are asso-
ciated with a long-range inductive bias, it is unclear if such
principles are pertinent to convolution kernels only or to any
global operator. To further explore this matter empirically,
we introduce the Local and Smooth (LaS) attention, a mech-
anism that modifies the attention computation by adjusting
the attention matrix to incorporate a long-range inductive
bias into the attention operator.

A comprehensive depiction of the LaS attention is provided
in Fig. 1. The principle of smoothness is implemented by
applying 1-D average pooling to each row in the attention
matrix, while the exponentially decaying principle is en-
acted by the element-wise multiplication of the attention
matrix at each head with a non-learnable locally decaying
matrix. It is worth noting that, similarly to self-attention,
both our local and smooth operators can manage unrestricted
context with varying lengths.

Formally, one head of self-attention is given as:

T
Attention(Q, K,V) = SF <C\2/% > \% 3)

Given this formulation, the ¢ LaS attention head can be
defined by:

LaSc(Q, K, V) = AP (SF (exp(facDL) O] (%))) 1%

where AP denotes an operator that executes 1-D average
pooling individually for each row of the attention matrix.
Given an input sequence of length L, the dimensions of

the attention scores (Q—\/Ig) and exp(—a,.Dy) are L x L.
Average pooling is applied with corresponding padding to
preserve the identical shape of the original attention scores.
Lastly, our LaS attention contains two operators: the smooth
operator implemented by AP, and the local operator imple-
mented by the Exponentially Locally Decay (ELD) opera-
tor, which is defined by: ELD : RL*L _y RLXL gych that
ELD(B) = exp(—a.Dy) ® B, and we define the ELD
matrix as exp(—a.Dy,). To preserve the exponential decay
trend, it is essential to establish directionality within the
model. Therefore, causal models are consistently used in
our work. This is achieved by defining the matrix Dy, as
the distance matrix multiplied by the causality mask. It
is noteworthy that our added mechanism incurs negligible
computational overhead and does not introduce any addi-
tional learnable parameters.

To control the decay rate in the c-th attention head, we utilize
different values of «, across attention heads. We utilized
distinct «r, values across the attention heads, instead of per
position in the sequence to facilitate each head focusing on
dependencies of a uniform scale, and provide a natural ap-
proach to operate on sequences with varying lengths. Hence,
the model can capture a spectrum of local dependencies at
multiple scales within each layer. This, in turn, facilitates
the recognition of global dependencies at the level of the en-
tire model, creating a hierarchical blend of local interactions
that translate to global long-range dependencies.

The bottom part of the rightmost panel of Fig. 1 presents
sample LDM matrices for different values of c.. Note that
the ELD matrices S; ; are Toeplitz matrices, which can
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Figure 1. Examples of random kernels of several long-range layers, such as (a) S4 (Gu et al., 2021a), (b) Mega (Ma et al., 2022), and (c)

SGConv (Li et al., 2022). For a kernel k = (k1, k2, . .

., kL) of length L, the axis y shows the value of k; at position ¢
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Table 1. (Left) Our Local and Smooth (LaS) attention. (Middle) Original attention. (Right) Visualization of our local operator and ELD

matrices that are discussed in Sec. 4.1

be succinctly represented by their first row. The first row
values for different values of o, are depicted in the top
part of the same panel of Fig. 1. It can be observed that
these Toeplitz matrices bear a resemblance to convolutional
kernels, exhibiting a relatively similar structure and rule,
particularly with simpler global convolution layers, such as
Mega (Ma et al., 2022), see Fig. 1(b).

Initialization of o, To encourage attention heads to focus
on varying types of dependencies, we regulate the effective
lengths of the LDM matrices across distinct channels. This
is achieved by creating a sequence of evenly spaced .
values in exponential space. To facilitate a straightforward
comparison with the standard transformers, we set ag = 0in
the first attention head, and remove any positional decaying
bias, which results in a vanilla attention head. In particular,
we initialized o, exponential-uniformly in [0, B] (namely,

enforce that exp(—a.) is uniformly distributed in [0, B]),
where B is a hyper-parameter in the interval (0, 1).

S. Experiments

We empirically evaluate our method on standard long-range
benchmarks. We first compare LaS-Attention with other
transformer variants and long-range layers in Sec. 5.1. Then,
in Sec. 5.2, we justify our design choices by ablating each
of the model’s components. In Sec. 5.3 we investigate how
various factors, such as the amount of training data and
the context length of the attention influence performance.
Finally, Sec. 5.5 and Sec. 5.4 provides an empirical evalua-
tion of LaS attention for NLP tasks, along with an analysis
of its failure cases. The experimental setup remains con-
sistent across all subsections, and is described in detail in
Appendix. A. Additional experiments are introduced in the
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appendix. For instance, the attention matrices of LaS atten-
tion are visualized in Appendix D.

5.1. Results on long-range tasks

In this section, we present and analyze our findings on long-
range tasks, focusing on the LRA benchmark and variations
of sequential MNIST.

LRA Tab. 2 compares the performance of our method
to several previously published Transformer-based models
and long-range layers. In comparison to the Transformer-
based methods, including strong sub-quadratic competitors
such as Reformer (Kitaev et al., 2020), Linformer (Wang
et al., 2020), and Performer (Choromanski et al., 2020),
LaS Attention consistently improves performance on all the
evaluated tasks, and it outperforms the previous best model
Luna transformer (Ma et al., 2021) in this group by a margin
of 12.04%.

Specifically, on the Image task, our model outperforms all
the other transformer variants by a margin of at least 22%.
This finding may be attributed to the inductive bias towards
smoothness and locality in our method, which is not only
relevant for long-range tasks but also for natural signals,
such as vectorized images.

Additionally, we propose a variant with linear complexity
named LaS-Chunk attention that segments input sequences
into fixed local blocks of size 128 to ensure minimal loss
of local information. As can be seen, this variant surpasses
all transformers on all tasks, with the exception of the
Pathfinder task. LaS-Chunk even outperforms more com-
putationally intensive models such as vanilla transformers,
which compute the full-attention matrix and have a quadratic
complexity, with an average accuracy boost of 11.34%.

Compared to long-range layers incorporating global con-
volutions, such as MEGA (Ma et al., 2022) and S4 (Gu
et al., 2021a), our method exhibits sub-optimal performance.
This suggests that there is more to learn from these layers
in terms of improving transformer architectures and under-
standing the shape of long-range inductive bias. A potential
reason for this performance gap could be the difference in
directional processing. While our models operate in a causal
(unidirectional) manner, the global convolution layers in the
discussed methods (with the exception of S4-v1) leverage
bidirectionality. In fact, moving from unidirectional pro-
cessing in S4-v1 to bidirectional processing in S4-v2 was a
key upgrade, demonstrating that adopting bidirectional pro-
cessing in LaS attention (which can be easily achieved at the
cost of doubled complexity and computational load) could
further decrease the performance gap between transformers
and SOTA long-range layers.

Sequnaital MNIST The Sequential MNIST tasks present
a challenging problem by treating 2-D images as vectors.

This setup ensures that the spatial relations present in the
original images are reflected as long-range dependencies in
the vectorized image. Permuted MNIST is a variant where
the order of pixels in each image is scrambled, intensifying
the challenge and preventing models from relying on locality
and periodicity. The results are presented in Tab. 3. As can
be observed, LaS attention enhances performance on both
tasks. For instance, on SMNIST, the local and smooth op-
erators boost performance by 0.28%, improving the scores
from 98.90% to 99.18%, while on pMNIST, performance is
boosted by 0.15%, from 97.90% to 98.05%.

5.2. Justifying Design Choices and Model Variants

Our design principles yield the following model variants:
(i) the LaS-attention described in Eq. 4, along with two ab-
lated models, namely (ii) L-attention and S-attention, each
containing only the local (ELD) or the smoothing operator,
respectively. To empirically delve into and understand the
contributions of each component, we conducted additional
experiments on the LRA benchmark. To reduce computa-
tional burdens, we employ LaS chunk attention as a baseline
model, and assess the models on the ListOps, Text, Retrieval,
and Image tasks. We avoid conducting these experiments
on the Pathfinder task, since the LaS chunk struggles to
generalize in this task, making the results less informative
and distinct.

As can be seen in Tab. 4, each operator contributes to the
success of the method. For instance, upon removal of the
Smoothness operator, LaS attention significantly outper-
forms L-Attention, with a difference of 0.08%, 3.25%, 3.2%,
and 3.52% across the evaluated tasks. Alternatively, when
the contribution of the ELD operator is removed, LaS atten-
tion surpasses the resutling S-Attention by 5.13%, 8.46%,
2.42%, and 5.42% for these tasks.

Relation to and Differences from Alibi Both our Expo-
nentially Locally Decaying (ELD) operator and Alibi (Press
et al., 2021) manipulate the attention matrix via the dis-
tant matrix, albeit with varying motivations and impacts.
Alibi was created with the intention of achieving length ex-
trapolation, whereas our operator is designed to integrate a
long-range specific inductive bias into the attention mecha-
nism. In this light, our global operator can be seen as a type
of relative positional encoding designed for long-range tasks.
This distinction in motivation is manifested in the subse-
quent differences in the computation of the attention scores.
With respect to performance and long-range capabilities, at
least on the subset of the four tasks from the LRA bench-
marks including ListOps, Text, Retrival and Image tasks,
Tab. 4 presents that there is a considerable margin between
the methods, and it appears that the additional exponential
decaying structure significantly contributes to enhancing
the long-range capabilities of the model, as reflected by an
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Models ‘ ListOps Text Retrieval Image Pathfinder Path-X | Avg. Speed Mem.
Transformers
Transformer? 36.37 64.27 57.46 42.44 71.40 - 54.39 - -
Local Attention} 1582 5298 53.39 41.46 66.63 - 46.06 - -
XFMi 37.11 65.21 79.14 42.94 71.83 - 59.24 1x 1x
Reformers 37.27  56.10 53.40 38.07 68.50 - 50.67 0.8x  0.24x
Linformert 3570 5394 52.27 38.56 76.34 - 5136 5.5x  0.10x
BigBirdi 36.05 64.02 59.29 40.83 74.87 - 55.01 1.1x  0.30x
Performert 18.01 65.40 53.82 42.717 77.05 - 5141 5.7x  0.11x
Luna-2561 3798  65.78 79.56 47.86 78.55 - 61.95 49x  0.16x%
LAS (ours) 53.05 79.28 85.56 70.44 81.62 - 73.99 - -
LAS-chunk (ours) 46.21 79.11 83.84 64.90 54.61 - 65.73 - -
Models that rely on global convolutions
S4-v1i 5835  76.02 87.09 87.26 86.05 88.10 | 80.48 - -
S4-v21 59.60  86.82 90.90 88.65 94.20 96.35 | 86.09 - -
SG-Convi 61.45 89.20 91.11 87.97 95.46 97.83 | 87.17 - -
LongConvs} 62.20  89.60 91.30 87.00 93.20 96.0 86.60 - -
MEGAZ 63.14 9043 91.25 90.441 96.01 9798 | 88.21 29x 0.31x
MEGA-chunk 58.76  90.19 90.97 85.80 94.41 93.81 | 85.66 55x 0.13x

Table 2. (Long Range Arena) Accuracy on the full suite of long range arena tasks, together with training speed and peak memory
consumption comparison on the Text task with input length of 4K. Results marked with I are as reported in previous literature.

SMNIST PMNIST
Attention-Based Models
Transformer 98.90 97.90
LaS (ours) 99.18 98.05
Non Attention-Based Models
LSTM 98.90 95.11
S4 99.63 98.70

Table 3. Accuracy (percents) for vectorized image classification
on the Sequential (sMnist) and Permuted (PMnist) MNIST. All
results except LaS copied from (Gu et al., 2021a)

average improvement of 6.69% in accuracy when not using
the Smooth operator (the baseline is L-attention), and 8.61%
when smoothing is added to both.

5.3. The impact of Data Quantity and Context-Length
on Long Range Tasks

Effective Context Length To further understand whether
our LaS transformer can capture long-range dependencies,
we modified the context length within the attention layers by
gradually reducing the chunk size. This modification forces
the model to learn interactions up to the maximum length
of the chunk size at each layer. We evaluated these models
on a subset of the LRA benchmarks, including Image, Text,

Listops, and Pathfinder tasks. As can be seen in Fig. 5 across
all experiments, a significant decrease in performance is
observed as the context window narrows. This empirical
evidence indicates that our LaS attention can benefit greatly
from an extended context.

Impact of Dataset size To delve deeper into the factors af-
fecting the performance of our models on long-range tasks,
we conducted experiments with varying amounts of training
data and assessed their impact on model accuracy. Fig. 6
illustrates that as the quantity of training data increases,
performance on all assessed tasks including Image, Text,
Listops, and Pathfinder consistently improves. This trend
suggests that with an increased volume of training data, the
performance of transformers improves, potentially narrow-
ing the performance gap with long-range layers. Moreover,
this trend supports the arguments presented in Sec. 3, which
proposes that the primary bottleneck for transformers on
long-range tasks is the generalization gap, rather than issues
related to optimization or limited expressiveness, and that
this gap can be mitigated by a more suitable inductive bias.

5.4. Failure Cases

To further understand LaS-attention, we investigate the fail-
ure cases of our method through experiments on synthetic
tasks that are inherently non-smooth and non-local. We
focus on a subset of Atomic tasks defined in (Gupta et al.,
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Table 4. (Ablations) Evaluate the contributions of the smooth and local operators within our method by comparing the Exponentially
Locally Decaying (ELD) operator with Alibi on a subset of the LRA benchmark. The baseline utilized for this comparison is a Transformer

with a chunk size of 128 (cT).

Models | ListOps  Text Retrieval Image | Avg.
Non-Smooth Models
CT+ALIBI 39.94 66.10 77.61 42.24 | 56.47
CT+ELD (L-ATTENTION) 41.08 70.65 81.42 59.48 | 63.16
Smooth Models
CT+SMOOTH (S-ATTENTION) 46.13 75.86 80.64 61.38 | 66.00
CT+SMOOTH+ALIBI 40.61 66.35 81.02 51.68 | 59.92
CT+SMOOTH+ELD (LAS-ATTENTION) 46.21 79.11 83.84 64.90 | 68.52

Image Text

ListOps Pathfinder

50
45

40
800 1000 0

a0
500 1000 1500 2000 2500 3000 3500 4000

40
0 250 500 750 1000 1250 1500 1750 2000 0

Table 5. The effect of limiting the context window during training (x-axis) by decreasing the chunk size, and the resulting model accuracy
(y-axis) on a subset of datasets from the LRA benchmark. As the context window narrows, performance decreases, highlighting that LaS
attention can learn long-range dependencies at the layer level end exploit long context.

Image Text

ListOps Pathfinder

0.2

0.2 0.6

Table 6. The impact of varying the number of training samples (x-axis) on the model accuracy (y-Axis) across a subset of datasets from

the LRA benchmark.

2022b), specifically the Select, CumSum, and CumMax
tasks. For example, given a sequence x = (z1, T2, ,2L),
the output im the CumSum task y = (y1,¥y2,- - ,yL) is
defined by a normalized score of y; = > j<i®;- Fora
detailed description of these tasks, please refer to Sec. 3.1
in (Gupta et al., 2022b). To ensure a fair evaluation, we
used identical settings, including the training procedure and
hyperparameters, for both the baseline vanilla attention and
our LaS variants. Tab. 7 presents results for non-smooth
and non-local tasks, which are averaged over 5 seeds, and
it reveals that LaS-attention lags behind the baseline. For
instance, it achieves a score of 0.783 compared to the base-

line’s 0.971 for the select task, which requires selecting an
element from the sequence - a task that is highly non-local
and non-smooth. This demonstrates that LaS-attention is
less effective for such tasks.

Select CumMax CumSum
Vanilla Attention 0.971 1.0 1.0
LaS-Attention (ours)  0.783 0.995 0.997

Table 7. Empirical evaluation of the R? score on a subset of Atomic
Tasks that are non-local and non-smooth by design. Results are
averaged over 5 seeds. Higher is better.
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5.5. Language Modeling

Despite LaS-Attention not being originally designed for
language modeling as it relies on non-textual principles,
we have evaluated our model on an NLP task to provide a
more comprehensive view of the empirical capabilities of
our layer. We assessed both the vanilla and LaS-Attention
models on the Text-8, and Enwik8 datasets for predicting
the next token. Utilizing a BERT-like architecture with six
layers and a model width of 768, each model was trained
with a context length of 512. We employed the same hyper-
parameters across the experiments and measured averaging
bpb score over three seeds. The findings in Tab. 8 under-
score the effectiveness of LaS attention variants, confirming
our hypothesis that LaS attention is pivotal for tasks where
inductive bias plays a significant role, especially in rela-
tively small datasets like Text8 and Enwik8. To provide a
comprehensive view, the training curves are presented in
Fig. 2. In contrast to these results, on larger datasets such as
Wikitext-103 and larger models with 12 layers, we observed
a small degradation when employing LaS attention, results
are presented in Appendix C.

Text8  Enwik8
Vanilla Attention 1.3557  1.2885
LaS-Attention (ours) 1.3332  1.2826

Table 8. Empirical evaluation of the R? score on a selected subset
of Atomic Tasks that are non-local and non-smooth by design.
Results are averaged over 5 seeds. Higher is better.

—— Vanilla-Attention
—— LaS-Attention

—— Vanilla-Attention
—— LaS-Attention

Test\bpb
Test\bpb

0 5 10 20 25 30 35 40 0 5 10 20 25 30 35 40

i i
Training Epoch Training Epoch

Figure 2. Training curves for LaS and vanilla attention models
trained on the Enwik8 dataset are shown on the left, and those for
the Text8 dataset are on the right. The figures indicate the bits per
byte (bpb) scores across various epochs.

6. Discussion

Developing theories, tools, and well-defined concepts can
significantly enhance the long-range capabilities of modern
Al systems. A compelling illustration of the necessity for
such tools is provided in (Liu et al., 2023), which empirically
demonstrates that LLMs, despite being trained on extensive

data, struggle to exploit long contexts and that there are
cases where performance continues to decrease as context
length increases, particularly when crucial information is
located in the middle of the context. Furthermore, while lay-
ers such as Mega and state-space layers achieve exceptional
results on long-range tasks, it remains unclear if such layers
can scale as well as transformers, and how they should be
scaled up. Hence, finding alternative mechanisms and iden-
tifying the bottlenecks that prevent Transformer success in
long-range tasks is an important research direction.

7. Conclusions

The perceived inability of transformers to learn long se-
quences has led to a proliferation of innovative methods. It
is now time to examine these methods and to understand the
key principles that hold transformers behind in this domain.
We identify two such principles: inductive bias towards lo-
cality and smoothness along the sequence domain. Both
of these are unintuitive at first, since one wishes to identify
a distant signal and carry it without degradation, similarly
to, e.g., the goal of the memory cells in LSTM. However,
not only are these properties shared among the long-range
layers, they provide us with actionable hypotheses to verify.

Indeed, when the transformer architecture is modified such
that an exponentially decaying locality kernel modulates
the attention scores, the performance in long-range tasks
improves. A similar improvement is obtained when an
attention-smoothing term is introduced. Both modifications
together bridge much of the gap in performance between
transformers and the leading long-range methods. We note
that while recent long-range layers have almost solved the
LRA benchmark, the domain of long-range dependencies is
still not understood. In this regard, this research represents
an initial step in identifying and characterizing the inductive
bias essential for long-range tasks, shedding light on the
underlying factors required to address these dependencies.
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A. Experimental Setup

We conducted all our experiments using PyTorch and built our repository upon the existing S4 repository. The experiments
were executed on a single V100 GPU, each running for a maximum duration of two days. To ensure consistency, each result
was obtained by averaging over three different seed values. In all experiments, we employ causal transformers with 8 heads.
Our training procedure and hyperparameters remained aligned with the configurations pre-specified in the S4 repository
for analogous tasks. Exceptions include modifications aimed at saving computational resources, such as reducing model
width, decreasing the number of epochs, and adjusting batch size, which were not optimized. The learning rate, which
was determined through a grid search over the range [1e-3, le-4] and the orignal learning rate in the S4 repository for the
corresponding task, and setting the dropout for 0 in all experiments.

The hyperparameters of the LaS attention layer are: (i) the value of B, which controls the values of ., and (ii) the window
size in the 1-D average pooling layer in the smooth operator, denoted by P. Hyperparameter tuning was executed via grid
search on the following grid: B € [0.0001,0.001], Pin[3, 5]. The final set of hyperparameters for each task is presented in
Tab 9. Hyperparameters that changed from the original configuration of S4 and were optimized are denoted by (*).

Table 9. The values of the best hyperparameters found for the LRA benchmark. LR is learning rate and WD is weight decay. BN and LN
refer to Batch Normalization and Layer Normalization.

Depth Features H Norm Pre-norm LR* Batch Size Epochs WD P* B*

ListOps 6 256 BN False le-3 50 50 0.01 5 0.001
Text 4 64 BN True le-4 50 20 0 5 0.0001
Retrieval 6 256 BN True 0.002 64 20 0 5 0.001
Image 6 256 LN False le-3 50 100 0.01 3 0.001
Pathfinder 6 256 BN True 0.004 64 100 0 3 0.001

B. Theorems and proofs

Theorem B.1. One head of self-attention can express one channel of state-space layer

Assumption B.2. Our assumptions are: (i) We assume that the sequence length of the input to the transformer is at most
L + 1, and it include one additional empty token (similar to classification token) at the end. (ii) The hidden dimension of the
transformer is equal to L + 1, implying that the key, query, and value matrices have dimensions of (L + 1) x (L + 1). (iii)
The positional encoding function is an indicator function, defined as:

PE: R — RIH!

PEJ(’UJz) = { I %

and the positional encoding are concatenate to the input u, namely,

0 otherwise.

v = PE(u) ou 5)

Proof. We will demonstrate that under the assumptions specified in B.2, Theorem B.1 holds true.

We initiate our proof by revisiting the concept of state-space layers. To maintain a level of generality that is applicable to
various forms of state-space layers, we consider a general state-space parameterization. The recurrent rule of such a system
can be succinctly represented by a convolutional kernel in the following manner:

y=kxu

for some kernel %k, where k denotes a kernel, and * represents the operation of non-circular convolution, and v :=
(ug,u1,- - ,ur_1) and y := (yo,y1,--- ,yr_1) are scalar sequences, namely u,y € R¥.

Traditionally for state-space layers, a kernel k is parameterized by the system matrices A and the input and output matrices
Band C, such that k; = f(A, B,C,i) = CA'B.
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The applicability of our proof extends to any convolutional kernel k := (k1,. .., k;, ..., kr), which encompasses the kernels
employed in various architectures like Hyena (Poli et al., 2023), CKConv (Romero et al., 2021), Focus (Lutati et al., 2023),
TNN (Qin et al., 2023a), and others.

This convolutional kernel can be expressed via matrix multiplication y = Ay u as follows:

My ] k1 0 0 0 0 O]r up |
n ko k1 0 0 U1
: ky K 0
_ 2 1 , (6)
0
' kL,1 kg ]{?1 0
LYL—1] L kL kL—l cee e k‘g kl_ LYWL —1]

We will demonstrate that with a given kernel k, it is possible to manipulate the attention mechanism, and specifically modify
the keys, queries and values matrices (W*, W% W?) to replicate the convolution. To do so, we assume that the input
sequence u include one additional empty token (similar to classification token) at the end.

The construction is outlined as follows:

e WV = CIL+1, Cc = ZtLZI kt

In Ay[i, j] ifi,j € [L)]
e e JI0en ;=Y ke ifj=L+1i€[L—1]
J Inc ifj=L+1,i=L+1

In0 otherwise

[ Inky In0 In0 In0 In0 InO Inc; 7
In ko In kq In0 In0 In ¢co
: In ko Ink; . In0 Incg
- . In0 Inc; 7
Inkr_1 “. Inky lnky In0 Incp_;
Inky, Inkp_1 ... ... Inky Ink In0
In0 In0 ... In0 InoO Inc |

A Wk = deL+1
where I is the identity matrix of size L + 1. Please note that the definition of ¢; and c enforces that the sum of the
exponents be identical across the rows of W4.

We begin by revisiting the formulation of self-attention:
(W) (' WH)"
Vg

Based on assumption B.2 (iii), and for reasons of simplicity, we assume that the input u does not affect the attention matrix.
Therefore v/ = PFE(u). In practice, this can be achieved by nullifying (set to zeros) the weights associated with the input
and preserving those associated with the positional encoding (PE).

Self-Attention(u) = softmax ( ) (W'WV") ®

Self-Attention(u) = softmax <(PE(U)WQ)(PE(U)WK)T

u/ \%
o )( W) ©)
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Note that v’ = PE(u) is the identity matrix I, of size L + 1:

Self-Attention(u) = softmax (W) (uW") (10)

Now, since WV is a scalar matrix, it commutes. By applying the definitions of the row-softmax function and the values of
W matrix from Eq. 7, we obtain:

Self-Attention(u) = ZWVu = Zeu, Z = softmax (W) (11)

exp(in(Ala. b)) _ Agla, b 1

Va,b € (L] : Zoy = = Zipon = A’ (12)

c c
where Z.p, .1, is the leading principal L-submatrix of Z.

By plugging Eq. 12 in Eq. 11, ignoring the output representation of the empty token, and assuming that the values
corresponding to the empty token are zeros, it is simple to demonstrate that:

Self-Attention(u) = Axu (13)

This construction demonstrates that for a single channel of a state-space layer characterized by a kernel k, and the associated
matrix Ay, there exist values of attention head matrices W7 W W1 such that the self-attention mechanism becomes
equivalent to the state-space layer. O

C. LaS Attention for Language Modeling on Wikitext-103

Under the settings described in Sec.5.5, with a BERT-like model architecture featuring 12 layers and a model width of 768,
we measured the perplexity for four variants: (1) vanilla attention, (2) LaS attention, and two ablations: (3) L-attention
and (4) S-attention, averaging the results over two seeds. Fig. 3 presents the perplexity trends during training. It is evident
that L-Attention closely matches the original model’s performance, while the S-attention variants tend to fall behind. At
the conclusion of training, vanilla attention achieves a perplexity of 20.20, just edging out L-attention, which sits at 20.34.
S-attention and LaS attention record perplexities of 21.69 and 21.87, respectively.

Perplexity vs. Epoch
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Figure 3. Evaluating LaS-Attention variants in NLP via the wikitxt-103 benchmark.

D. Visualize Attention Matrices

In Fig. 4, we present a visual analysis of attention matrices obtained from both the LaS and vanilla attention models
across different layers, with both models based on a BERT-like 12-layer causal model with context length of 512, trained
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on Wikitext-103 for next-token prediction with the same training procedure. For clearer visualization we use min-max
normalization, and we use examples from the test set of wikitext-103. As can be seen in figures, the LaS attention matrices
are more attuned to long-range dependencies, especially in the upper layers, in contrast to the vanilla transformer, which
primarily focuses on short-range dependencies. Furthermore, LaS attention produces smoother attention matrices, which
reduce self-attention bias toward pairwise interactions.

LaS Attention: Laver-2 Vanilla Attention: Laver-2
LaS Attention: Laver-4 Vanilla Attention: Laver-4
LaS Attention: Laver-6 Vanilla Attention: Laver-6
LaS Attention: Laver-8 Vanilla Attention: Layer-8
LaS Attention: Layer-10 Vanilla Attention: Layer-10

Figure 4. Visualizing the attention maps
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E. Long range layers and their design aspects

In Tab. 10 we provide an extensive comparison of various long-range layers and their design aspects, focusing on layers that
achieve an LRA score above 0.85 or achieve new state-of-the-art results in other long-range benchmarks.

We consider multiple design aspects: (i) “Decaying structure* refers to layers that generate kernels with values decreasing
over time, exemplified by state space layers which parameterize a convolutional kernel k& := (ky,--- , k) such that
k; = C A'~1 B, exhibiting exponential decay where | A| < 1. (ii) For regularization ('R’), we identify layers that incorporate
explicit regularization mechanisms vs. those layers where regularization is an inherent result of their parameterization.
For example, in (Li et al., 2022) the kernels were regularized explicitly by the parameterization, and in (Fu et al., 2023)
smoothness was used as a regularization tool. (iii) Unique Initialization ("U.I’) can be manifested through the Hippo
matrix (Gu et al., 2020), used by SS, S4, DSS, and their derivatives, or through other distinctive initialization strategies. (iv)
The *Numerically Stable’ designation is reserved for layers that provide explicit proof of stability or are constructed from
elements specifically designed to enhance stability.

Our comprehensive analysis extends to other aspects, such as *G’ for layers relying on gating, *C’ for layers that their
parameterization is based on complex numbers, and "N’ for layers explicitly employing unique normalization techniques.

Lastly, we denote layers that can be trained without recurrent rules (which are often considered a more stable approach for
capturing long-range dependencies) by ’Non-Recurrent’.

Even though there are more criteria and layers (Hasani et al., 2022; Zhang et al., 2023; Qin et al., 2023b), the aforementioned
represent the predominant design choices.

Our review indicates that all successful long-range layers have a decaying structure, and almost none of these employ
normalization or explicit regularization.

Decaying R UI Numerically Non

Layer Type structure stable recurrent

SS (Gu et al., 2021b)

S4 (Gu et al., 2021a)

DSS (Gupta et al., 2022a)
GSS (Mehta et al., 2022)
MEGA (Ma et al., 2022)
S5 (Smith et al., 2022)
SGCONV (Li et al., 2022)
DLR (Gupta et al., 2022b)
H3 (Dao et al., 2022b)
FLASHBUTTERFLY (Fu et al., 2023)
LRU (Orvieto et al., 2023)
TNN (Qin et al., 2023a)

LT ETr:
ZZALZ 2R 2222 ZZ
Z 222
Z 2 Z
ZZZALZ 2L 22 Z
ZHLZ AL L ZRZZ < Z| A
22222222222 2
HZ 22

Table 10. Mapping of layers to their design aspects. 'R’ for regularization, ’N’ for normalization, G’ for gating, *U.I’ for Unique
Initialization, *C’ for parametrization over C. We denote by ’Non Recurrent’ layers that can be computed without recurrent steps.

17



