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Abstract
We consider the issue of calibration in large lan-
guage models (LLM). Recent studies have found
that common interventions such as instruction
tuning often result in poorly calibrated LLMs. Al-
though calibration is well-explored in traditional
applications, calibrating LLMs is uniquely chal-
lenging. These challenges stem as much from the
severe computational requirements of LLMs as
from their versatility, which allows them to be
applied to diverse tasks. Addressing these chal-
lenges, we propose THERMOMETER, a calibra-
tion approach tailored to LLMs. THERMOMETER
learns an auxiliary model, given data from multi-
ple tasks, for calibrating a LLM. It is computation-
ally efficient, preserves the accuracy of the LLM,
and produces better-calibrated responses for new
tasks. Extensive empirical evaluations across var-
ious benchmarks demonstrate the effectiveness of
the proposed method1.

1. Introduction
Well-calibrated forecasts are a desirable property of any
probabilistic forecaster. They ensure that probabilities pro-
duced by the forecaster can be interpreted as accurate con-
fidence estimates of the forecasts. Informally, this implies
that the forecaster is more often wrong on predictions made
with low probabilities than those made with high probabili-
ties. Such forecasts are useful for both enabling trust in the
forecaster’s predictions and incorporating the forecasts as
part of a larger autonomous or semi-autonomous system.

Large language models (LLMs) (Brown et al., 2020; Raf-
fel et al., 2020; Touvron et al., 2023) define probability
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Figure 1. Calibration performance against inference runtime.
Different methods for calibrating LLaMA-2-Chat 7B compared on
the PROFESSIONAL LAW task of MMLU on a A100, 40 GB GPU.
The task contains 1533 questions. Our method, THERMOMETER

is significantly faster than methods that require multiple forward
passes (Wei & Zou, 2019; Xiong et al., 2023; Jiang et al., 2023a)
at inference time and achieves lower calibration error compared to
methods with comparable runtime (Tian et al., 2023). Vanilla refers
to the no-calibration baseline, and TS-CV is a temperature scaling
variant (Section 5). Similar trends hold for other benchmarks.

distributions over sequences of tokens and produce proba-
bilistic forecasts over future tokens in a sequence2. Their
ability to synthesize knowledge from large volumes of
data, represented as sequences of tokens, has led to re-
markable performance on diverse tasks, including question
answering (Hendrycks et al., 2020), commonsense reason-
ing (Zhong et al., 2019), and machine translation (Zhu et al.,
2020) among others. However, much like other probabilis-
tic forecasters, before deploying LLMs in critical applica-
tions, it is important that they are well-calibrated in addi-
tion to being accurate. Unfortunately, a growing body of
evidence suggests that while pre-trained LLMs are often
well-calibrated, alignment interventions such as instruction
tuning which make the pre-trained LLMs more usable, also
harm calibration (OpenAI, 2023; Zhu et al., 2023).

While calibration has long been studied (Brier, 1950; Dawid,
1982; Gneiting et al., 2007) and different approaches for
improving calibration properties of probabilistic forecast-
ers exist (Platt et al., 1999; Lakshminarayanan et al., 2017;
Gal & Ghahramani, 2016; Guo et al., 2017), LLMs pose
unique challenges. Training a LLM is expensive, and even

2and corresponding semantic entities represented by the tokens.
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inference typically incurs non-negligible expenses. This
makes any calibration approach that requires multiple train-
ing runs prohibitively expensive. Even approaches that only
require multiple inferences at test time can be unreason-
ably expensive for certain applications. Moreover, owing to
their versatility, instruction-tuned LLMs are often applied,
without further adaptation, to a diverse array of tasks. It is
essential that methods for calibrating them do not affect the
accuracy of the uncalibrated LLMs and that the calibration
methods themselves can adapt to new tasks. Finally, measur-
ing and alleviating calibration is challenging in cases where
the LLM is required to generate free-form text. The equiv-
alence class defined by the LLM-generated sequences that
map to the same semantic content is large, making it chal-
lenging to assign meaningful confidence to the generation
or even robustly assess the quality of the generation.

We present THERMOMETER for calibrating LLMs while
alleviating the above challenges. THERMOMETER learns,
from multiple tasks, a parameterized mapping to map the
outputs of the LLM to better-calibrated probabilities. Our
approach is (i) computationally efficient: we do not require
multiple training runs, and at inference time, we are only
∼ 0.5% slower than the uncalibrated LLM, (ii) accuracy
preserving: we build on temperature scaling (Guo et al.,
2017) which provably guarantees that greedy-decoded pre-
dictions do not change after our calibration procedure, and
(iii) takes a step towards being universal: once trained we
do not require retraining when exposed to a similar but new
task. Moreover, similarly to recent work (Kadavath et al.,
2022; Lin et al., 2022), we circumvent the challenges posed
by free-form text generation by mapping the free-form text
generation task to a next-token prediction task. We empiri-
cally evaluate THERMOMETER on diverse benchmarks and
models and find it consistently produce better-calibrated
uncertainties than competing methods at a fraction of the
computational cost. Moreover, we find THERMOMETER
transfers across datasets and model scales. THERMOMETER
trained for calibrating a smaller model (e.g., LLaMA-2-
Chat 7B) also improves calibration of larger models (e.g.,
LLaMA-2-Chat 70B) from the same family of models.

2. Related Work
A variety of methods exist that aim to produce better-
calibrated uncertainties. Post-hoc calibration methods
learn to map the outputs of a pre-trained model to well-
calibrated uncertainties. These include histogram bin-
ning (Zadrozny & Elkan, 2001; Naeini et al., 2015), iso-
tonic regression (Zadrozny & Elkan, 2002), and approaches
that assume parametric maps, including matrix, vector, and
temperature scaling (Platt et al., 1999; Guo et al., 2017) as
well as more ambitious variants (Kull et al., 2019) that aim
to calibrate, in multi-class prediction problems, all class

probabilities rather than just the probability of the most
likely class (confidence calibration). The next-token pre-
diction task is also a multi-class prediction problem, albeit
one with a large number of classes. Here, the number of
classes equals the number of tokens in the LLM’s vocabu-
lary. This high dimensionality motivates us to focus on the
more modest goal of confidence calibration.

We learn an auxiliary model that, given an unlabeled dataset,
predicts a dataset-specific temperature, allowing us to cali-
brate an LLM’s uncertainties on a previously unseen task.
Others (Joy et al., 2023; Yu et al., 2022) have also considered
parameterized temperature maps but with a focus on more
traditional vision models. Joy et al. (2023) predict per-data
instance temperatures, do not learn from multiple datasets,
and find it necessary to learn a variational auto-encoder
for representation learning jointly. In contrast, we leverage
data from multiple tasks to generalize to new tasks, find no
need for additional representation learning, and empirically
find dataset-specific temperatures to better calibrate LLMs
than data-instance-specific temperatures. Yu et al. (2022)
are motivated by making calibration robust to distribution
shifts. Their approach involves a two-step procedure: inde-
pendently learning dataset-specific temperatures for each
dataset and then fitting a linear regression to the learned
temperatures. In contrast, we jointly learn a non-linear aux-
iliary model across multiple datasets by simply maximizing
a lower bound to the likelihood. Moreover, empirically, we
find that THERMOMETER outperforms linear counterparts.

Other ab initio approaches involve training with label-
smoothing (Szegedy et al., 2016), mix-up augmenta-
tions (Zhang et al., 2017), confidence penalties (Pereyra
et al., 2017), focal loss (Mukhoti et al., 2020), or approx-
imate Bayesian procedures (Izmailov et al., 2021). The
substantial changes to the training process required by these
approaches make them difficult to use with LLMs. Yet
other approaches include ensembling over multiple mod-
els arrived at by retraining from different random initial-
izations, for example, deep ensembles (Lakshminarayanan
et al., 2017), or from perturbations of a single model, for
example, Monte-Carlo dropout (Gal & Ghahramani, 2016).
Training multiple LLM variants is prohibitively expensive,
and while perturbations around a single model are possible,
we find them to be not competitive with THERMOMETER.

Jiang et al. (2021); Xiao et al. (2022); Chen et al. (2022)
empirically evaluate calibration of LLMs, find evidence
of miscalibration, and evaluate existing calibration inter-
ventions and combinations thereof with varying degrees of
success. Park & Caragea (2022) use mixup while Desai &
Durrett (2020) find temperature scaling and label smooth-
ing effective for calibrating smaller encoder-only models.
Others (Lin et al., 2022) employ supervised fine-tuning
to produce verbalized uncertainties to be better calibrated
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on certain tasks. Such fine-tuning, however, is compute-
intensive. An alternate body of work (Zhang et al., 2021;
Kadavath et al., 2022; Mielke et al., 2022) approach calibra-
tion indirectly by learning an auxiliary model for predicting
whether a generation is incorrect. There is also a body
of work (Abbas et al., 2024; Han et al., 2023; Jiang et al.,
2023b; Zhao et al., 2021; Zhou et al., 2024) that use the term
calibration to mean de-biasing the predictions of a language
model to biases introduced by the choice and ordering of
in-context examples. This is distinct from our notion of sta-
tistical calibration. Yet others (Tian et al., 2023; Xiong et al.,
2023), similar to our approach, consider RLHF-tuned LLMs
and find that they can express better-calibrated uncertainties
with carefully crafted prompts. Our work is orthogonal,
extending temperature scaling to tasks without labeled data,
and can be combined with their approach.

3. Background
Setup and Notation We consider question answering tasks,
both involving multiple-choice and free form answers. We
pose this as a next token prediction problem by concatenat-
ing the question, any available context, and the multiple-
choice options into a single prompt. In Section 4.3, we
describe our treatment of free form answers within this
setup. See Appendix C.1 for example prompts. Given the
prompt, the next token predicted by the LLM is considered
the answer to the question. We denote the nth prompt in a
dataset by xn and the corresponding completion by yn. We
assume that both the prompt and the completion have been
tokenized, and the prompt xn = xn,tn , . . . , xn,2, xn,1 is a
sequence of tn tokens. The tokens xn,t and yn take one of
V values. We use D = {(xn, yn)}Nn=1 to denote a training
set of prompt, completion pairs. We model

p(yn | xn;M) =
exp(wT

yn
ϕ(xn;W))∑V

v′=1 exp(wT
v′ϕ(xn;W))

,

using a large language model,M, parameterized by weights,
{W,w1, . . . ,wV }. We use p(yn | xn;M) as a nota-
tionally convenient stand in for p(Y = yn|X = xn;M),
where Y and X are random variables corresponding
to the completion and the prompt. We also note that
p(Y | X = xn;M) ∈ ∆V where ∆V is a V -dimensional
probability simplex. We view ϕ(xn,W) as a feature ex-
tractor that transforms the input prompt xn into a D-
dimensional representation. For notational brevity, we will
suppress the dependence on W and use ϕ(xn,W) and
ϕ(xn) interchangeably.

Confidence calibration We aim to confidence calibrateM,
such that among the completions whose top probability is β
the accuracy is also β,

Pr(Y = Ŷ |P̂ = β) = β, for all β ∈ [0, 1],

where Ŷ =argmax p(Y |X;M) and P̂ =max p(Y |X;M).

One common notion of miscalibration is the ex-
pected calibration error (ECE) (Naeini et al., 2015),
E
[∣∣Pr(Y = Ŷ | P̂ = β)− β

∣∣]. An empirical estimate of
the ECE can be computed by partitioning N samples into
M bins based on the confidences max p(Y | xn;M) pre-
dicted by the modelM. Let Bm denote the set of samples
allocated to the M -th bin. Then the empirical ECE esti-
mate is the weighted average over the difference in accuracy,
acc(Bm) = 1/|Bm|

∑
n∈Bm

1 [yn = argmax p(Y |xn;M)] ,
and the average confidence within each bin,
conf(Bm)=1/|Bm|

∑
n∈Bm

max p(Y |xn;M),

ECE =

M∑
m=1

|Bm|
N

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣.
Temperature Scaling A large ECE score indicates the need
for calibration as the model’s prediction is poorly calibrated
on the given dataset. Temperature scaling (Guo et al., 2017;
Platt et al., 1999) is a widely used post-hoc calibration
technique that introduces a single positive, scalar parameter
τ ∈ R+, the temperature, and defines,

p(yn | xn; τ,M) =
exp(wT

yn
ϕ(xn;W)/τ)∑V

v′=1 exp(wT
v′ϕ(xn;W)/τ)

.

The parameter τ is typically learned by minimizing the neg-
ative log likelihood (NLL) on a labeled held-out dataset,
τ̂ = argminτ∈R+

−
∑N∗

n=1 log p(yn | xn; τ,M), freez-
ing all other model parameters. Since temperature scaling
only scales probabilities, it does not change the class with
the maximum probability and preserves accuracy. Recent
work (Chen et al., 2022; Xiao et al., 2022; Tian et al., 2023)
has found temperature scaling effective at calibrating LLMs.
Besides, it does not require additional tuning of the LLM
or multiple forward passes at inference time. However, the
requirement of a held-out labeled dataset can be severely
limiting for LLMs. LLMs are often used on new tasks,
where no labeled data is available!

To alleviate this challenge, we propose to bypass dataset
specific optimization and instead learn to predict the optimal
temperature for a previously unseen and unlabeled dataset.

4. THERMOMETER

Consider a multi-task setting. Given K tasks with labeled
datasets {Dk}Kk=1 = {{

(
xk
n, y

k
n

)
}Nk
n=1}Kk=1, our goal is to

learn to infer task-specific temperature parameters, in order
to accurately infer the temperature for an unseen task given
only N∗ prompts, D∗ = {x∗

n}
N∗
n=1 but not the correspond-

ing completions. To this end, we propose a probabilistic
model with task-specific latent variables, τk, for modeling
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the conditional distribution of completions given a prompt,

p(D1, . . .DK | ν0;M)

=

K∏
k=1

∫
p(τk | ν0)

Nk∏
n=1

p(ykn | xk
n, τk;M)dτk,

(1)

where p(ykn | xk
n, τk;M) =

exp(wT

yk
n
ϕ(xk

n;W)/τk)∑V
v′=1

exp(wT
v′ϕ(x

k
n;W)/τk)

,

p(τk | ν0) is a prior on τk for regularizing it away from
zero and large positive values, and ν0 is the prior’s hyper-
parameters.

Our key idea is to use a recognition network (Dayan et al.,
1995), to infer the per-task latent temperatures. We share
the recognition network across all tasks, allowing us to
amortize computation across tasks and sidestep the need for
task specific optimization for inferring τk. Crucially, we
design our recognition network to condition only on ϕ(xk

n)
and not on the completions ykn, allowing us to infer the
temperature for unlabeled data D∗ at test time. We dub our
recognition network, THERMOMETER, which, much like a
real THERMOMETER, is designed to estimate temperature,
albeit in the context of a dataset.

4.1. A Variational Lower-bound

Figure 2. Evidence accumulation. We illustrate evidence accu-
mulation for the PROFESSIONAL LAW dataset from MMLU. It
contains Nk = 1533 instances. The left panel, shows twenty
of the possible 1533 Gaussians, N (τk | ψθ(ϕ(x

k
n)), ϵ = 0.01).

The right panel, plots the Gaussian proportional to
∏1533

n=1 N (τk |
ψθ(ϕ(x

k
n)), ϵ = 0.01). The resulting Gaussian is nearly a point

mass at 1
1533

∑1533
n=1 ψθ(ϕ(x

k
n)).

We work within the framework of variational inference,
which provides us with a coherent objective to optimize for
learning the recognition network. We begin by forming a
variational lower bound of the logarithm of the marginal
likelihood, p(D1, . . .DK | ν0;M),

L(θ) =
K∑

k=1

Eq(τk;θ)[log p (Dk | τk;M)]

−KL (q(τk;θ) || p(τk | ν0)) ,

(2)

where q(τk;θ) is a variational approximation to the poste-
rior distribution p(τk | D1, . . . ,Dk). We choose a product
of Gaussian PDF for the variational approximation. Each
corresponding Gaussian variable has a fixed variance ϵ, and
a mean parameterized by a recognition network (for exam-
ple, a MLP), ψθ : RD → R+, where θ ∈ RP represents the
parameters of the recognition network that are shared across
D1, . . . ,Dk. The resulting variational approximation is,

q(τk;θ) ∝
Nk∏
n=1

N (τk | ψθ(ϕ(x
k
n)), ϵ),

N
(
τk |

1

Nk

Nk∑
n=1

ψθ(ϕ(x
k
n)),

ϵ

Nk

)
,

(3)

where the last equality follows from standard properties of
Gaussian distributions. We provide a proof in Appendix B.2.
This particular choice of the variational parameterization
affords us several benefits. First, it allows us to accumulate
evidence (Bouchacourt et al., 2018) across data instances
in Dk, with the uncertainty in the inferred τk decreasing
linearly with Nk. Second, by sharing θ across datasets
we share statistical strength across the training datasets
D1, . . . ,DK which allows us to use ψθ to predict τ∗ for
an unseen dataset D∗. Finally, when ϵ is small, our parame-
terization leads to a particularly simple algorithm.

Training Objective Plugging in the variational approxima-
tion Equation (3) in Equation (2), we have,

L(θ) =
K∑

k=1

Eq(τk;θ)[log p (Dk|τk;M)+log p(τk|ν0)]+C,

(4)
where C3 is a constant independent of θ. By further
observing that when ϵ is small, for example, 10−2, for
even moderate Nk the variational approximation q(τk | θ)
is reasonably approximated by a point mass distribution
δ(τk − 1

Nk

∑Nk

n=1 ψθ(ϕ(x
k
n))) (Figure 2). This leads to the

objective for training THERMOMETER,

L̃(θ) =
K∑

k=1

log p

(
Dk

∣∣∣∣ 1

Nk

Nk∑
n=1

ψθ(ϕ(x
k
n));M

)

−λreg log p

(
1

Nk

Nk∑
n=1

ψθ(ϕ(x
k
n))

∣∣∣∣ ν0
)
,

(5)

where we have dropped the constant, plugged in the point
mass approximation in Equation (4), and introduced a hy-
perparameter λreg for balancing the prior and the likeli-
hood terms. We place a Gamma prior, with a mode at
one, on the temperatures τk, p(τk | ν0) = Gamma(τk |
α0 = 1.25, β0 = 4)4. This prior enforces non-negative tem-

3C = K/2 + (K/2) ln(2πϵ)
4We use the shape scale parameterization, with shape = 1.25

and scale = 4.
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peratures, and although the prior’s mode at one encodes
our belief thatM is already reasonably calibrated, the high
prior variance emphasizes that this is only a weakly held
belief. Finally, we train THERMOMETER by minimizing,
θ∗ = argmin

θ∈RP

− L̃(θ), or equivalently maximizing an ap-

proximate5 lower bound to the log-marginal likelihood. We
use stochastic optimization with mini-batched gradients to
optimize L̃(θ). Algorithm 1 summarizes our learning pro-
cedure. The temperature estimation step in the algorithm
involves averaging over the minibatch which introduces a
small bias in the minibatch gradients. However, this bias
decreases linearly with increasing batch size (Lemma 4.1),
and disappears in the full-batch limit. Empirically, we find
performance to be largely invariant to batch size (Table 8).

Algorithm 1 THERMOMETER Training
input Training datasets of K tasks {Dk}Kk=1; pre-trained LLM
M with feature extractor ϕ; prior hyper-parameters ν0; batch
size Nb; learning rate γ; number of iterations M ; checkpoint
parameters {m′,burnin}; initialization θinit

▷ Split {Dk}Kk=1 into a development and validation set,
Ddev = {Ddev

k }Kk=1,D
val = {Dval

k }Kk=1

▷ Initialize THERMOMETER, θ0 ← θinit; Denote the number of
mini-batches by B = ⌈ N

Nb
⌉, where N = |Ddev|.

for m = 1, 2, . . . ,M do
▷ Sample, uniformly at random, a task k and its dataset Ddev

k .
▷ Sample a batch of Nb samples from Ddev

k , i.e.,
{
(
xk
n, y

k
n

)
}Nb
n=1.

▷ Estimate temperature τ̂k = 1
Nb

∑Nb

n=1 ψθ(ϕ(x
k
n)).

▷ Evaluate the loss w.r.t batch of samples, i.e.,

−L̃(θ)Nb = −
Nb∑
n=1

log p(ykn | xk
n, τ̂k;M)− λreg

B
· log p(τ̂k | ν0)

▷ Update the THERMOMETER parameter using AdamW, i.e., θm ←
AdamW(θm−1, γ,−∇θL̃(θ)b).
if m > burnin then

▷ Checkpoint θm every m′ iterations.
end

end
▷ Evaluate L̃(θ) on Dval for each check-pointed θ and set θ∗ to
the check-pointed θ with lowest −L̃(θ).

output Optimized THERMOMETER, θ∗.

4.2. Test Time Procedure

Given a new test task, we assume we have a collection of
N∗ inputs {x∗

n}
N∗
i=1 with which we compute the temperature

to be used for the task,

τ∗ =
1

N∗

N∗∑
n=1

ψθ∗(ϕ(x∗
n)). (6)

5the approximation is increasingly accurate with larger Nk.

Impact of test data size At test time not all the data may
be immediately available when computing the temperature
τ∗ (e.g. deploying on real-world tasks) and N∗ in (6). As
the empirical average used to compute τ∗ is a proxy for
Ex∼P∗ [ψθ(ϕ(x))], where P∗ is the unknown data generat-
ing process for the test task, it is important that N∗ not be
too small or this approximation will not be accurate and
performance may suffer. We can control this error, how-
ever. Under an assumption that for fixed parameters, θ,
0 ≤ ψθ(ϕ(x)) ≤ Cθ for some Cθ (e.g. because the output
of the THERMOMETER model must be bounded if the input
is), we can apply a Bernstein inequality to obtain:
Lemma 4.1. Let X be the support set of the distribution of
x, and assume we haveN∗ i.i.d. samples {xn}N∗

n=1 from P∗.
Assume that for fixed parameters θ, supx∈X ψθ(ϕ(x)) ≤
Cθ for some Cθ, and Var[ψθ(ϕ(xn))] ≤ Vθ.6 Further
assume that we are interested in measuring calibration error
using a metric CE (for example, ECE) that as a function of
temperature, CE(τ) is L-Lipschitz. Then with probability
at least 1− 2

N∗2 ,

E

∣∣∣∣∣ 1

N∗

N∗∑
n=1

ψθ(ϕ(xn))− Ex∼P∗

[
ψθ(ϕ(x))

]∣∣∣∣∣
≤ 4

3
Cθ

logN∗

N∗
+ (2Vθ)

1
2

√
logN∗

N∗
, and,

CE

(
1

N∗

n∑
n=1

ψθ(ϕ(xn))

)
− CE

(
Ex∼P∗

[
ψθ(ϕ(x))

])

≤ L

(
4

3
Cθ

logN∗

N∗
+ (2Vθ)

1
2

√
logN∗

N∗

)
.

The proof is in Appendix B.1. This result guarantees that
these partial sums will converge quickly as N∗ increases,
and that any resulting loss of CE will be small. We confirm
this guarantee experimentally in Appendix A.4. Our bound
can be checked by practitioners as a guide to choosing N∗,
trading off accuracy and the need for more examples. In
practice, both the Lipschitz constant and Vθ can be easily
estimated. Specifically, the former is simple since the tem-
perature is a one-dimensional last-layer parameter of an
otherwise pretrained model, and the latter can be bounded
by using an empirical estimate of the variance.7

4.3. Question Answering with Free Form Answers

As we introduced in Section 3, given a sequence of tokens
as prompts xn, we aim to calibrate the LLM’s prediction
on its corresponding completion token yn. In the context

6This can be replaced with C2
θ/4 if no additional knowledge

of the variance is available.
7This can be done rigorously by deriving and adding a concen-

tration upper bound for the error of the empirical variance before
plugging into the bound in Lemma 4.1 as Vθ .
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of a multiple-choice QA problem, yn typically represents
a single token corresponding to one of the multiple-choice
options, such as ‘A’ or ‘B’. However, in practice, LLMs are
more commonly tasked with generating free-form responses
for arbitrary questions without predefined answer options.

We address this issue by converting the free-form QA prob-
lem into a multiple-choice format, by posing a ‘Yes’ or
‘No’ question to an LLM, inquiring whether its gener-
ated response is correct or incorrect. Given a training set
D = {(xn, yn)}Nn=1, where xn represents the question con-
text, and yn denotes the true answers, we generate a new
prompt x̃n by concatenating the original question xn with
LLM’s generated response zn, i.e., x̃n = [xn, zn], and con-
struct a new target ỹn by comparing generated response zn
and true answer yn, i.e., ỹn is assigned ‘Yes’ if zn closely
approximates yn based on a predefined similarity metric (for
example, the Rouge-L score). The resulting calibration prob-
lem can be tackled in the same manner as multiple-choice
QA, i.e., calibrate LLM’s prediction of single completion
token ỹn (‘Yes’ or ‘No’) given the prompts x̃n.
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Figure 3. LLaMA-2-Chat 7B Scatter Plots: ECE Score of 57
MMLU Datasets. The x-axis and y-axis represent ECE score of
uncalibared and calibrated model, respectively. THERMOMETER

reduces calibration error on all 57 datasets, often substantially.

5. Experiments
We describe the experimental setup here, and present the
main experimental results in Section 5.1, and conduct a
comprehensive analysis in Section 5.2. Additional details
and results are in Appendix A and Appendix C.

Benchmark Datasets We employ two widely used bench-
mark datasets for multiple-choice question-and-answer
(QA) experiments: MMLU (Hendrycks et al., 2020)
and BIG-bench (Srivastava et al., 2022), and adopt
MRQA (Fisch et al., 2019) for experiments on QA with
free form answers. MMLU contains datasets of exam ques-
tions from fifty seven subjects spanning various fields, each
question comprises a question context and four possible
answers. BIG-bench is a massive benchmark containing
more than two hundred datasets covering a wide range of

NLP tasks. We extracted multiple-choice QA datasets with
over thousand training instances, which resulted in twenty
three datasets. The MRQA benchmark comprises of a prede-
fined train and development split, with six training datasets
and six development datasets. The style of questions vary
greatly both within and across the training and development
sets. More details are in Appendix C.2.

Models We aim to enhance the calibration performance of
instruction tuned language models. As decoder-only models
become more ubiquitous in practice, our main experiments
are conducted using decoder-only model LLaMA-2-Chat
7B with seven billion parameters (Touvron et al., 2023).
To demonstrate the robust calibration performance of our
proposed THERMOMETER with respect to different types of
models, we also conduct a set of experiments using encoder-
decoder model FLAN-T5-XL with three billion parame-
ters (Chung et al., 2022). THERMOMETER is an auxiliary
model with a Multi-Layer Perceptron (MLP)-like structure
described in Appendix C.3.

Evaluation Metrics We evaluate the calibration perfor-
mance using following metrics: (1) Expected Calibration
Error (ECE): measures the average error between predic-
tion confidence and accuracy across different confidence
intervals, for which we use 10 bins in our evaluation. (2)
Maximum Calibration Error (MCE) (Naeini et al., 2015):
identifies the largest error between prediction confidence
and accuracy among all confidence bins, represents the
worst-case calibration scenario. (3) Negative log likelihood
(NLL): a proper scoring rule (Gneiting & Raftery, 2007)
that measures closeness to the data generating process in the
Kullback-Leibler sense (Deshpande et al., 2024). (4) Brier
Score (Brier) (Brier, 1950): another proper scoring rule
that measures the mean squared error between prediction
confidence and one-hot labels. (5) Top Label ECE (TL-
ECE) (Gupta & Ramdas, 2021): measures the average error
conditioned on both confidence and top-predicted labels.
TL-ECE also serves as an upper bound of ECE, and is an
alternate measure of calibration error.

Implementation Details For multiple-choice QA tasks,
we employ a leave-one-out approach to assess the
THERMOMETER’s calibration on unseen tasks. We train
the model using K − 1 datasets, and test the trained model
on the remaining single testing task, repeating this process
for all the K datasets. For the QA tasks with free form
answers, we use the established train and dev splits. We
train THERMOMETER on MRQA’s train split, and evaluate
on the six held-out development datasets. In all experi-
ments, we report results averaged over five random trials.
See Appendix C.4 for details.

Baselines Our goal of calibrating models on tasks with no la-
beled data rules out many calibration approaches. Nonethe-
less, we compare THERMOMETER against several classical
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Table 1. LLaMA-2-Chat 7B Average Calibration Performance on MMLU. The results are reported as the mean and two standard error
of the calibration results over 57 datasets. TS serves as the lower-bound as it has access to the labeled data of testing task.

Methods ECE TL-ECE MCE NLL Brier
TS (lower-bound) 0.062±0.008 0.123±0.011 0.298±0.051 1.205±0.043 0.161±0.006

Vanilla 0.260±0.025 0.290±0.023 0.482±0.047 1.760±0.123 0.191±0.012
TS-CV 0.119±0.014 0.167±0.012 0.344±0.037 1.253±0.048 0.166±0.006

MC-Augment 0.242±0.026 0.281±0.021 0.488±0.047 1.716±0.125 0.192±0.012
Elicitation 0.315±0.016 0.340±0.014 0.787 ±0.034 / /

Elicitation-Ensemble 0.202±0.019 0.255±0.017 0.544±0.055 / /
CAPE 0.196±0.021 0.247±0.016 0.431±0.054 1.542± 0.097 0.184±0.009

THERMOMETER 0.078±0.008 0.136±0.011 0.304±0.037 1.220±0.043 0.162±0.006

calibration methods as well as those recently proposed meth-
ods: (1) Vanilla: calibration performance of LLMs without
any calibration techniques applied. (2) Temperature Scaling
(TS): cheats by using labeled data from the testing task to
tune the task-specific temperatures and establishes a lower
bound for the error. (3) Temperature Scaling with cross-
validation (TS-CV): This variant of TS is similar to the
setting of our approach. Here, the temperature is tuned us-
ing data fromK−1 tasks, and used to calibrate the held-out
task, without any task-specific adaptation. (4) Monte Carlo
Dropout (MC-Dropout)8 (Gal & Ghahramani, 2016): per-
forms inference with random dropout multiple times, and
averages the output probabilities across these inferences.
(5) Monte Carlo Augmentation (MC-Augment) (Wei &
Zou, 2019): employs random data augmentations of the
prompts rather than dropout. (6) Elicitation (Tian et al.,
2023) directly generates verbalized confidence by providing
the LLMs with carefully crafted prompts. (7) Elicitation-
Ensemble (Xiong et al., 2023) improves the quality of ver-
balized confidence by aggregation of multiple samples. (8)
CAPE (Jiang et al., 2023a) performs prompt augmentation
using option permutation.

5.1. Main Results

Multiple-choice QA Our main calibration results for
multiple-choice QA tasks are presented in two formats. We
offer an overview of the overall calibration performance by
calculating average results across all datasets. This includes
57 tasks from MMLU and 23 from BIG-bench. The aver-
age results and 95% confidence intervals for MMLU are
presented in Table 1. We provide a finer granularity view
through scatter plots illustrating performance on each task
in Figure 3. In this plots, points above the diagonal are
instances where the calibration method fails to improve over
the uncalibrated model, where THERMOMETER shows zero

8We found dropout to not be functional in LLaMA-2-Chat 7B,
enabling dropout at inference time did not produced any variability,
so we only report MC-Dropout comparisons with FLAN-T5-XL.

Figure 4. THERMOMETER against temperature scaling on
MMLU. Comparison of THERMOMETER predictions and temper-
atures obtained by temperature scaling. Each green dot represents
one MMLU task. The x-coordinate is the temperature learned via
temperature scaling and the y-coordinate is the THERMOMETER

predicted temperature. THERMOMETER accurately predicts the
temperature for unseen task.

failure cases. Furthermore, we compare the predicted tem-
peratures of THERMOMETER, which uses no labeled data
from the test task, with temperatures learned via tempera-
ture scaling that uses all the labeled data from the task in
Figure 4. We find THERMOMETER’s predictions adapt to
different tasks and align with learned temperatures.

The diverse nature of the BIG-bench tasks makes learning
THERMOMETER more challenging. Nonetheless, the results
for BIG-bench, included in Appendix A.1, THERMOMETER
still outperforms other baselines with large margin, while
stays within noise of TS-CV. Finally, we remark that the sim-
ilar behavior of THERMOMETER holds for encoder-decoder
model FLAN-T5-XL (see Appendix A.2). THERMOMETER
shows superior performance over other baseline meth-
ods. For the challenging BIG-bench, THERMOMETER with
FLAN-T5-XL outperforms all competing approaches, pro-
ducing lower ECE and TL-ECE scores than the strongest
competitor, TS-CV, on 20/23 tasks.
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Table 2. LLaMA-2-Chat 7B Average Calibration Performance on MRQA. The results are reported as the mean and two standard error
of the calibration results over the six MRQA validation datasets.

Methods ECE TL-ECE MCE NLL Brier
TS (lower-bound) 0.029±0.005 0.058±0.021 0.115±0.015 0.536±0.042 0.178±0.017

Vanilla 0.127±0.026 0.146±0.023 0.198±0.023 0.656±0.068 0.198±0.022
TS-CV 0.071±0.011 0.099±0.014 0.157±0.015 0.556±0.042 0.183±0.017

MC-Augment 0.335±0.044 0.411±0.034 0.679±0.052 0.997±0.081 0.370±0.026
Elicitation 0.130±0.031 0.207±0.036 0.522±0.169 / /

Elicitation-Ensemble 0.171±0.047 0.237±0.032 0.552±0.206 / /
CAPE 0.067±0.016 0.098±0.028 0.156±0.060 0.556± 0.087 0.183±0.036

THERMOMETER 0.065±0.008 0.093±0.016 0.163±0.027 0.551±0.039 0.182±0.016

Figure 5. THERMOMETER transfers across different model scales of LLaMA-2-Chat. We use LLaMA-2-Chat 7B THERMOMETER

predicted temperatures for calibrating LLaMA-2-Chat 7B (bold axes), LLaMA-2-Chat 13B and LLaMA-2-Chat 70B. In these plots, each
dot represents a MMLU task. The x-coordinate is the ECE achieved by the uncalibrated model, the y-coordinate is the ECE achieved after
calibrating the model with THERMOMETER. We find that THERMOMETER predicted temperatures from the smaller models also improve
calibration of larger models (shown in non-bold axes).

QA with Free Form Answers We use the MRQA shared
task to evaluate THERMOMETER’s efficacy for calibrating
QA tasks with free form answers. We train THERMOMETER
with LLaMA-2-Chat 7B on the MRQA training split and
evaluate on the six non-overlapping datasets from the devel-
opment split. The results are presented in Table 2. Similar
to multiple-choice QA tasks, we find that THERMOMETER
substantially improves calibration of the uncalibrated model
and performs favorably against competing methods. Com-
pared to the closest alternative, TS-CV, THERMOMETER
produces lower ECE and TL-ECE scores on four of the
six datasets. These results suggest broader applicability of
THERMOMETER to (non-QA) free-form generation tasks.

5.2. Analysis

Here, we empirically scrutinize critical aspects of
THERMOMETER using MMLU and LLaMA-2-Chat 7B. Ab-
lations analyzing the choice of THERMOMETER architec-
ture, and batch sizes, are in Appendix A.4.
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Figure 6. THERMOMETER transfers across different datasets.
Applying LLaMA-2-Chat 7B THERMOMETER trained on BIG-
bench calibrates MMLU and vice-versa.

THERMOMETER transfers across model scales and
benchmarks We examine how well THERMOMETER can
transfer its calibration capabilities across models of the same
family but of different scales. The results in Figure 5 demon-
strate a significant finding, i.e., THERMOMETER trained
with a smaller-scale model can effectively calibrate larger-
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scale models within the same family. This can substantially
reduce the computational resources needed for calibrating
large LLMs with THERMOMETER.

We also explore the ability of THERMOMETER to trans-
fer across different benchmark datasets. We train
THERMOMETER on one benchmark dataset and test it on
another. Figure 6 shows that THERMOMETER effectively
transfers across different benchmarks, highlighting the ro-
bustness of THERMOMETER to substantial data shifts.
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Figure 7. Temperature scaling vs. number of labeled instances
In green, we plot ECE (averaged over the fifty seven MMLU
datasets) achieved by TS as a function of the number of labeled
instances. The shaded regions correspond to two standard errors
(95% confidence interval). THERMOMETER outperforms TS when
labeled data is less than thirty.

THERMOMETER is effective in small labeled data
regimes THERMOMETER demonstrates a significant ad-
vantage in calibrating new test tasks by predicting the de-
sired temperature using only unlabeled data. In contrast, TS
requires labeled data for temperature tuning. The TS results
in Table 1, which utilize all available labeled data, serve
as a lower-bound benchmark for our method. However, as
shown in Figure 7, THERMOMETER continues to outper-
form TS when a limited (but non-zero) amount of labeled
data is available. This suggests that when labeled data for a
task is scarce or nonexistent, it is more effective to rely on
THERMOMETER than employing temperature scaling.

THERMOMETER’s performance improves with number
of training tasks How many tasks do we need for training
THERMOMETER? We explore this by varying the number
of training tasks. For each of the fifty seven MMLU tasks,
we select five, ten, twenty five, and all fifty six other tasks
for training. Figure 8 presents our results aggregated over
all MMLU tasks. THERMOMETER’s performance improves
sharply between five and ten tasks and continues to improve
linearly, albeit with a gentler slope, with more tasks.

THERMOMETER’s aggregation procedure is more effec-
tive than sample-wise temperature We further evaluate
the effectiveness of a variant of temperature scaling, i.e.,
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Figure 8. THERMOMETER performance vs. number of training
tasks. THERMOMETER’s calibration performance (average ECE
over fifty seven MMLU tasks) improves as the number of training
datasets increase. The shaded region represents two standard error.

sample-wise temperature scaling approach (Joy et al., 2023)
that learns a unique temperature for each data point. While
their single-task approach doesn’t apply here, we can adapt
THERMOMETER to predict temperatures on a sample-wise
basis, rather than using a single temperature for all samples
in a dataset. The results presented in Figure 9 show that
while sample-wise temperature scaling is effective to a de-
gree, it is sub-optimal when compared to aggregation across
data samples. Our findings indicate that aggregation across
data instances leads to small but consistent improvements
over per-sample temperatures for calibrating LLMs.
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Figure 9. Aggregation v.s. Sample-wise Temperature. Sample-
wise temperature scaling is less effective compared to
THERMOMETER.

6. Concluding Remarks
This work introduces THERMOMETER, a simple yet effec-
tive approach for calibrating LLMs. Through comprehen-
sive empirical evaluations we find that it improves calibra-
tion, is robust to data shifts, and is computationally efficient.
While we demonstrate the effectiveness of THERMOMETER
in question answering tasks with free-form answers, the
potential for its application extends far beyond. Future
directions include adapting THERMOMETER for other com-
plex free-form generation tasks, such as summarization and
translation, and applying THERMOMETER to larger LLMs.
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Table 3. LLaMA-2-Chat 7B Average Calibration Performance on BIG-bench. The results are reported as the mean and two standard
error of the calibration results over 23 datasets.

Methods ECE TL-ECE MCE NLL Brier
TS (lower-bound) 0.044±0.014 0.089±0.025 0.106±0.027 1.229±0.130 0.189±0.013

Vanilla 0.233±0.035 0.263±0.037 0.467±0.055 1.539±0.171 0.232±0.021
TS-CV 0.087±0.020 0.118±0.027 0.240±0.041 1.258±0.129 0.195±0.013

MC-Augment 0.186±0.031 0.231±0.033 0.436±0.043 1.466±0.180 0.214±0.016
Elicitation 0.225±0.048 0.263±0.059 0.745±0.085 / /

Elicitation-Ensemble 0.202±0.049 0.241±0.063 0.753±0.068 / /
CAPE 0.214±0.073 0.235±0.076 0.475±0.107 1.567±0.365 0.231±0.043

Thermometer 0.090±0.018 0.125±0.026 0.243±0.038 1.261±0.132 0.195±0.013
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Figure 10. LLaMA-2-Chat 7B Scatter Plots: ECE Score of 23 BIG-bench Datasets. The x-axis and y-axis represent ECE score of
uncalibared and calibrated model, respectively. THERMOMETER largely reduces calibration error, and rarely fails to improve calibration.

Figure 11. THERMOMETER against temperature scaling on BIG-bench (LLaMA-2-Chat 7B). Comparison of THERMOMETER

predicted temperature and optimal temperature obtained by temperature scaling. While there are a few outliers, THERMOMETER predicted
temperatures are still correlated with the optimal temperatures.

A. Additional Results
A.1. THERMOMETER Consistently Performs Well on BIG-bench

The average calibration performance of THERMOMETER on the BIG-bench dataset is presented in Table 3. Additionally,
scatter plots illustrating these results are detailed in Figure 10. The comparison between THERMOMETER’s predicted tem-
peratures and the optimal temperatures obtained through temperature scaling is depicted in Figure 11. Despite the diversity
and complexity of the BIG-bench datasets, which pose a challenge in predicting the desired temperature, THERMOMETER
still maintains a superior performance compared to other baseline methods.
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Table 4. FLAN-T5-XL Average Calibration Performance on MMLU. The results are reported as the mean and two standard error of
the calibration results over 57 datasets. TS serves as the lower-bound as it has access to the labeled data of testing task.

Methods ECE TL-ECE MCE NLL Brier
TS (lower-bound) 0.063±0.006 0.128±0.010 0.249±0.037 1.141±0.054 0.153±0.008

Vanilla 0.181±0.013 0.215±0.014 0.448±0.049 1.286±0.074 0.167±0.010
TS-CV 0.093±0.007 0.146±0.010 0.314±0.053 1.160±0.054 0.155±0.009

MC-Dropout 0.107±0.015 0.159±0.012 0.372±0.041 1.301±0.065 0.171±0.007
MC-Augment 0.156±0.015 0.198±0.014 0.431±0.045 1.266±0.067 0.167±0.008

CAPE 0.167±0.017 0.210±0.015 0.410±0.048 1.271±0.072 0.166± 0.009
THERMOMETER 0.080±0.008 0.139±0.011 0.319±0.042 1.154±0.055 0.155±0.009
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Figure 12. FLAN-T5-XL Scatter Plots: ECE Score of 57 MMLU Datasets. The x-axis and y-axis represent ECE score of uncalibared
and calibrated model, respectively. THERMOMETER largely reduces calibration error, and rarely fails to improve calibration.

A.2. THERMOMETER Consistently Performs Well on Encoder-decoder LLMs

To demonstrate THERMOMETER’s robustness with respect to different types of language models, we also conduct a set of
additional experiments on encoder-decoder model FLAN-T5-XL with three billion parameters. We empirically observe
that elicitation-based calibration methods (Tian et al., 2023; Xiong et al., 2023) are not even functional on FLAN-T5-XL
model thus omit reporting their results, i.e., by providing the crafted prompts, FLAN-T5-XL often fails to generate the
corresponding verbalized confidence. This indicates that elicitation-based methods (Tian et al., 2023; Xiong et al., 2023)
that rely on the ability of a model to faithfully follow nuanced instructions generally do not perform well for smaller and
mid-sized open source models. In fact, the authors in (Tian et al., 2023) concede that even for Llama2-70b, “The verbal
calibration of the open source model Llama-2-70b-chat is generally weaker than that of closed source models”.

We evaluate the calibration performance of different methods on both MMLU and BIG-bench. The average calibration
performance of THERMOMETER on MMLU datasets and BIG-bench datasets are shown in Table 4 and Table 5, respectively.
We also provide the scatter plots of comparison for MMLU and BIG-bench in Figure 12 and Figure 13, respectively. Finally,
The comparison between THERMOMETER’s predicted temperatures and the optimal temperatures obtained through temper-
ature scaling is presented in Figure 14. Similar to decode-only model LLaMA-2-Chat 7B, THERMOMETER consistently
outperforms other baselines. Furthermore, we further validate that THERMOMETER also transfers well across different
model scales of Flan-T5 in Figure 16.
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Table 5. FLAN-T5-XL Average Calibration Performance on BIG-bench. The results are reported as the mean and two standard error
of the calibration results over 23 datasets.

Methods ECE TL-ECE MCE NLL Brier
TS (lower-bound) 0.043±0.006 0.109±0.022 0.179±0.042 1.087±0.147 0.157±0.013

Vanilla 0.192±0.032 0.230±0.033 0.444±0.055 1.417±0.235 0.183±0.017
TS-CV 0.121±0.018 0.175±0.026 0.306±0.039 1.170±0.150 0.168±0.013

MC-Dropout 0.130±0.015 0.184±0.023 0.360±0.056 1.311±0.184 0.180±0.014
MC-Augment 0.167±0.028 0.211±0.030 0.374±0.058 1.378±0.213 0.186±0.017

CAPE 0.176±0.057 0.213±0.061 0.432±0.122 1.387±0.242 0.181± 0.033
Thermometer 0.078±0.011 0.138±0.021 0.220±0.035 1.113±0.148 0.160±0.013
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Figure 13. FLAN-T5-XL Scatter Plots: ECE Score of 23 BIG-bench Datasets. The x-axis and y-axis represent ECE score of
uncalibared and calibrated model, respectively. THERMOMETER largely reduces calibration error, and rarely fails to improve calibration.

Figure 14. THERMOMETER against temperature scaling on MMLU and BIG-bench (FLAN-T5-XL). Comparison of THERMOMETER

predicted temperature and optimal temperature obtained by temperature scaling. While there are a few outliers, THERMOMETER predicted
temperatures are still correlated with the optimal temperatures.

A.3. THERMOMETER Shows Stronger Transfer-ability Than TS-CV

In Figure 5 and Figure 6, we demonstrate the strong transfer-ability of THERMOMETER across different model scales and
datasets. This is the another advantage of THERMOMETER over those inference-based methods (Wei & Zou, 2019; Tian
et al., 2023; Xiong et al., 2023; Jiang et al., 2023a), which do have the capability to transfer. TS-CV is the only baseline that
has transfer-ability, so we also conduct an additional experiment to compare the transfer-ability of THERMOMETER with the
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Figure 15. THERMOMETER transfers across different model scales of FLan-T5. We use FLan-T5-XL 3B THERMOMETER predicted
temperatures to calibrate FLan-T5-XL 3B (bold axes), FLan-T5-XXL 11B and Flan-UL2 20B. In these plots, each dot represents a
MMLU task. The x-coordinate is the ECE achieved by the uncalibrated model, the y-coordinate is the ECE achieved after calibrating the
model with THERMOMETER. We find that THERMOMETER predicted temperatures from the smaller models also improve calibration of
larger models (shown in non-bold axes).

Figure 16. Compare Transfer-ability of THERMOMETER with TS-CV. Top: We use FLan-T5-XL 3B THERMOMETER predicted
temperatures to calibrate 20B Flan-UL2 in the left subplot, and LLaMA-2-Chat 7B THERMOMETER predicted temperatures for calibrating
LLaMA-2-Chat 13B in the right subplot. Bottom: Applying LLaMA-2-Chat 7B THERMOMETER trained on BIG-bench calibrates MMLU
and vice-versa.

TS-CV baseline. As illustrated Figure 16, Thermometer typically shows stronger transfer-ability than TS-CV, producing
lower calibration errors.
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Table 6. Ablation Study of THERMOMETER Architecture. While Linear fails to generalize well, other MLP architecture achieve
comparable calibration performance.

Architecture ECE TL-ECE MCE NLL Brier
Linear 0.102±0.006 0.151±0.007 0.322±0.015 1.241±0.020 0.165±.003

MLP (one layer) 0.079±0.004 0.137±0.006 0.302±0.018 1.219±0.022 0.162±0.003
MLP (three layers) 0.075±0.004 0.136±0.006 0.305±0.017 1.218±0.023 0.162±0.003

MLP (ours) 0.078±0.008 0.136±0.011 0.304±0.037 1.220±0.043 0.162±0.006

Table 7. Ablation study of λreg. THERMOMETER shows to be insensitive to this hyper-parameter, and it prefers relatively small λreg.
λreg ECE TL-ECE MCE NLL Brier

λreg = 1.0 0.101±0.006 0.161±0.005 0.347±0.021 1.251±0.027 0.164±0.004
λreg = 10−1 0.087±0.004 0.145±0.005 0.318±0.015 1.225±0.023 0.163±0.003
λreg = 10−2 0.078±0.008 0.136±0.011 0.304±0.037 1.220±0.043 0.162±0.006
λreg = 10−3 0.076±0.004 0.134±0.006 0.311±0.018 1.221±0.022 0.162±0.003

Table 8. Ablation study of training temperature inference batch size. THERMOMETER is seen to be relatively insensitive to this
hyper-parameter.

Training temperature batch size b ECE TL-ECE MCE NLL Brier
1 0.083±0.009 0.140±0.012 0.321±0.035 1.222±0.045 0.162±0.006
16 0.074±0.008 0.135±0.012 0.291±0.036 1.217±0.045 0.162±0.006
32 0.077±0.008 0.135±0.012 0.309±0.035 1.220±0.045 0.162±0.006

128 0.078±0.008 0.136±0.011 0.304±0.037 1.220±0.043 0.162±0.006

A.4. Ablation Studies

To obtain a deeper insight into the factors influencing THERMOMETER performance, we conduct an ablation study focusing
on various elements such as the model architecture, the value of the regularizer weight, training batch size, and the size of
the test data used during inference. The results are detailed in Appendix A.4.

THERMOMETER Architecture To determine if the impressive calibration performance of THERMOMETER is influenced
by its specific architectural choice, we conduct an ablation study exploring different model structures. The variants of
model architecture include: (1) Linear: a simple model consisting of a single linear layer without a nonlinear activation
function; (2) MLP (no hidden layer): A MLP with only input and output layers, excluding any hidden layers; (3) MLP (two
hidden layer): A deeper MLP with two hidden layers, offering more complexity. Each of these architectural choices of
THERMOMETER is evaluated on the MMLU dataset, the average ECE results are shown in Table 6. The ablation results
reveal that THERMOMETER’s calibration effectiveness is not sensitive to the architecture, as long as the model is sufficiently
expressive for calibration of different tasks.

Regularizer Weight To explore the sensitivity of THERMOMETER to hyper-parameter tuning, particularly the regularizer
weight λreg in the training objective, we conduct an ablation study with varying values of λreg. The results shown in Table 7
demonstrate that while THERMOMETER shows a overall robustness to changes in the regularizer weight, it prefers smaller
values of λreg. Intuitively, a larger λreg upweights the prior term in the training objective and more strongly discourages large
temperatures. We also tried a variant with λreg = 0, but this caused numerical instability during training and the resulting
models exhibited poor performance.

Temperature Inference Batch Size at Train Time We next explore the sensitivity of THERMOMETER to the size of the
batch used to estimate the temperature in training, i.e. b in Algorithm 1. Based on Lemma 4.1, we expect the method to be
relatively insensitive to this parameter. Here we use λreg = 0.01 and testing temperature batch size 128. Results are shown
in Table 8, confirming this expectation and showing that a batch size of 1 is insufficient.

Temperature Inference Batch Size at Test Time Similarly, we explore the sensitivity of THERMOMETER to the size of
the batch used to estimate the temperature at test time, i.e. N∗. N∗ may need to be small in practice if only a few unlabeled
examples are available before picking a temperature to run on the task. Based on Lemma 4.1, we expect the method to be
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Table 9. Ablation study of testing temperature inference batch size. THERMOMETER is seen to be relatively insensitive to this
hyper-parameter.

Testing temperature batch size N∗ ECE TL-ECE MCE NLL Brier
1 0.081±0.009 0.138±0.012 0.299±0.034 1.220±0.045 0.162±0.006
16 0.074±0.008 0.135±0.011 0.296±0.036 1.217±0.045 0.162±0.006

128 0.078±0.008 0.136±0.011 0.304±0.037 1.220±0.043 0.162±0.006

relatively insensitive to this parameter. Here we use λreg = 0.01 and training temperature batch size 128. Results are shown
in Table 9, confirming this expectation.

B. Derivation and Proofs
B.1. Proof of Lemma 4.1

Recall that by construction ψθ(ϕ(x)) ≥ 0 (desirable since we are estimating a temperature). We can apply a Bernstein
inequality to obtain

Pr

(∣∣∣∣∣
N∗∑
n=1

ψθ(ϕ(xn))− (Eψθ(ϕ(x)))

∣∣∣∣∣ > t

)
< 2exp

(
− 3t2

3N∗Vθ + 2Cθt

)
. (7)

Let us choose t to achieve inverse squared probability concentration in N∗, specifically, we set the right hand size of (7) to
2N−2

∗ and solve for the corresponding t:

−2 logN∗ := − 3t2∗
3N∗Vθ + 2Cθt∗

−6N∗(logN∗)Vθ − 4(logN∗)Cθt∗ + 3t2∗ = 0

The quadratic theorem yields9

t∗ =
4(logN∗)Cθ +

√
16(logN∗)2C2

θ + 72VθN∗ logN∗

6

=
2

3
Cθ logN∗ +

√
4

9
(logN∗)2 + 2VθN∗ logN∗

≤ 4

3
Cθ logN∗ + (2Vθ)

1
2

√
N∗ logN∗.

Substituting this in and dividing both sides by N∗ yields the first part of the lemma statement. The last statement in the
lemma is then an immediate consequence of the Lipschitz assumption.

B.2. Product of Gaussians

From standard exponential family properties we have,

Nk∏
n=1

N (x | µn,Σn) ∝ N (x | µ̂, Σ̂), where Σ̂ =

(
NK∑
n=1

Σ−1
n

)−1

and µ̂ = Σ̂

Nk∑
n=1

Σ−1
n µn. (8)

Equation (3) follows from plugging in Σ1 = Σ2 = . . . = ΣNk
= ϵ and µn = ψθ(ϕ(x

k
n)) in Equation (8).

9Recall we need t∗ ≥ 0.
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Table 10. Prompt Template. “RESPONSE” denotes the LLM’s generated response given the context and questions, and “TARGET”
represents the ground truth answer of the given question. “ROUGE-L” is a metric to measure the similarity between “RESPONSE” and
“TARGET.”

Task Prompt Completion Token

Multiple-choice QA

Choose A, B, C, or D.
Question: {“QUESTION”}

A. {“OPTION 1”}
B. {“OPTION 2”}
C. {“OPTION 3”}
D. {“OPTION 4”}

Answer: {“MASK” }

yn ∈ {“A”, “B”, “C”, “D”}

QA with Free form Answers

Choose A, or B.
Answer in as few words as possible.

Context: {“CONTEXT”}
Question: {“QUESTION”}
Answer: {“RESPONSE”}

Is the above answer correct?
A. Yes
B. No

Answer: {“MASK” }

{
yn = “A”, If ROUGE-L(RESPONSE, TARGET) > 0

yn = “B”, Otherwise

Table 11. Accuracy of LLaMA-2-Chat 7B ’s Self-checking Procedure.
BioASQ DROP DuoRC RACE RelationExtraction TextbookQA
80.6% 77.7% 81.6% 72.0% 88.7% 70.5%

C. Experiment Setup
C.1. Prompt Templates

The construction of prompt templates and completion tokens for multiple-choice QA tasks and QA with free form answers
is outlined in Table 10. For the multiple-choice QA task, the prompt consists of a question followed by possible answers
labeled with letters. The LLM’s task is to predict the letter corresponding to the correct answer option. The completion
token is the ground-truth label token as provided in the original datasets.

For QA with free form answers, the prompt construction begins with generating a response sequence, denoted as “RE-
SPONSE,” based on the given context and question. To limit the length of the LLM’s response, we include the prompt
“Answer in as few words as possible” guiding the LLM to provide concise answers. After generation, this response is
concatenated with the original context and question to form a single prompt. This reconstructed prompt is then used to
query the LLM on the correctness of its response in a self-checking manner. Defining the completion token for this task
requires a additional step. We employ ROUGE-L precision as the metric to evaluate the correctness of the LLM’s generated
response. ROUGE-L precision calculates the ratio of the Longest Common Subsequence (LCS) of word sequences to the
total number of unique tokens in the target sequence. Considering that the LLM might generate extra tokens not relevant to
the actual answer, we consider a response correct as long as the ROUGE-L precision exceeds zero. Given the ROUGE-L
based completion token as the groud-truth label token, we measure the accuracy of LLM’s self-checking procedure on the
six development MRQA datasets in Table 11. Overall, LLaMA-2-Chat 7B can accurately predict whether its own response
is correct or incorrect, and our proposed THERMOMETER can further calibrate its self-prediction.
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Table 12. MMLU Data Examples.
Dataset Name Prompt Completion Token
Anatomy Choose A, B, C, or D.

Question: The best place to listen to the general heart sound with a stetho-
scope is the.
A. fifth left intercostal space in the midclavicular line.
B. second left intercostal space one inch from the sternum.
C. third left rib at its junction with the sternum.
D. sternum midway between the sternal angle and xiphisternum.
Answer: {“MASK” }

“A”

Elementary Mathematics Choose A, B, C, or D.
Question: Rosa has a goal of running a total of 100 miles this month. Each
day that she ran, she ran 5 miles. Which expression could Rosa use to
determine how many miles she has left to run after running for d days?
A. 100− 5d.
B. 5d+ 100.
C. 100/5d.
D. 5d.
Answer: {“MASK” }

“A”

Professional Law Choose A, B, C, or D.
Question: Carol Collector was a serious antique car buyer, and was always
searching for Thunderbirds in good shape. She saw a newspaper ad offering
a 1964 Thunderbird sports coupe for 25, 000, The ad also gave a website
address “to view a picture of the car,” which Carol visited, and which showed
a T-Bird with a perfect body and interior. Carol paid the 25, 000 and signed
a sales contract which specified that the Thunderbird was “used and sold as
is.” When Carol went to pick up the car, she learned it was a 1968 model,
which was not at all rare and worth much less than the advertised 1964
model. If Carol brings suit against the seller, the likely outcome is for
A. Carol, because the internet picture was of a car that had never been driven,
not the actual used car she was to buy.
B. The seller, because the buyer was aware the Thunderbird was sold “as
is.”
C. The seller, unless they were negligent in not explicitly stating the picture
was of a new car, not the actual car to be sold.
D. Carol, because the “as is” disclosure was not totally effective.
Answer: {“MASK” }

“D”

C.2. Data Processing

MMLU MMLU (Massive Multitask Language Understanding) (Hendrycks et al., 2020) is a popular benchmark commonly
used to evaluate the depth of knowledge AI models acquire during pre-training, especially under zero-shot and few-shot
settings. It contains 57 diverse subjects including STEM, humanities, and social sciences, ranging from basic to professional
levels. Given that the datasets within MMLU typically have small training sets, often including only four data points, we
utilize the original testing set for training THERMOMETER and utilize the original validation set for validation. As we
evaluate the trained THERMOMETER using cross validation, we always evaluate THERMOMETER on the original testing set
of the new task. Examples of the processed data, formatted with prompt templates, are detailed in Table 12.

BIG-bench BIG-bench (The Beyond the Imitation Game Benchmark) (Srivastava et al., 2022), with its extensive
collection of over 200 datasets, contains a wide range of NLP tasks. These include but not limited to multiple-
choice question-and-answer (QA), summarization, logical reasoning, and translation tasks. Within this collection,
there are approximately 150 datasets corresponding to multiple-choice QA tasks. However, many of them have
only a small number of training instances. We first filter out those datasets whose training set size is smaller than
1000, resulting in the selection of 23 datasets for our experiments. For computational reasons, among the selected
datasets, we limit the training set size to a maximum of 4000 data instances, and the validation set size is capped
at 1000 data instances. The selected datasets are: ARITHMETIC, BBQ LITE JSON, CIFAR10 CLASSIFICATION,
CONTEXTUAL PARAMETRIC KNOWLEDGE CONFLICTS, COLOR, ELEMENTARY MATH QA, EPISTEMIC REASONING,
FACT CHECKER, FORMAL FALLACIES SYLLOGISMS NEGATION, GOAL STEP WIKIHOW, HYPERBATON, LOGI-
CAL FALLACY DETECTION, MNIST ASCII, MOVIE DIALOG SAME OR DIFFERENT, PLAY DIALOG SAME OR DIFFERENT,
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Table 13. BIG-bench Data Examples.
Dataset Name Prompt Completion Token
bbq lite json Choose A, B, or C.

Question: The parent was considering loaning their car to either their daugh-
ter or their elderly parent for the day. Who was not reckless?
A. Cannot be determined.
B. The daughter.
C. The elderly parent.
Answer: {“MASK” }

“C”

elementary math qa Choose A, B, C, D, or E.
Question: What is the result of the following arithmetic operations?:divide
2 by 5, multiply 100 by the result.
A. 32.
B. 34.
C. 36.
D. 38.
E. 40.
Answer: {“MASK” }

“E”

fact checker Choose A, or B.
Question: On June 2017, the following claim was made: Mutiny on the
Bounty is the second American film based on Treasure Island, the novel. Q:
Was this claim true or false?
A. true.
B. false.
Answer: {“MASK” }

“B”

goal step wikihow Choose A, B, C, or D.
Question: The most reasonable goal of ‘Prepare your finances and research
the host country before you leave’ is
A. Volunteer at a Homeless Shelter.
B. Volunteer with UNHCR.
C. Volunteer at a Dog Shelter.
D. Volunteer at the Local Nursing Home.
Answer: {“MASK” }

“B”

timedial Choose A, B, or C.
Question: Which phrase best fits the {MASK} span? Context: A: Guess
what came in the mail today? B: What? A: My acceptance letter to Yale ! B:
Wow ! Congratulation ! When do classes start? A: Freshman orientation is
the last week of august, but I want to go {MASK} before that to get settled
in. B: You’re so lucky ! Do you have to do many things before you leave? A:
Yes. I’ll be very busy ! I have to get a visa, buy a plane ticket, and pack my
things. But first, I want to register for classes. B: When can you do that? A:
Well, they sent me their prospectus, so I can start looking now. do you want
to help me decide which classed to take? B: Sure. What can you choose
from? A: Well, I have to take all the fundamental course, plus a few from
my major. B: What is your major? A: I hope to major in English literature,
but the admissions counselor told me that many people change their major
many times in their first year, so we’ll see. B: What are the fundamental
course? A: In order to graduate, every student must take a certain amount of
classes in history, math, English, philosophy, science and art. B: Interesting.
That’s very different from the Chinese education system. A: Yes, it is. It’s
also very different from the British education system. B: Really? A: oh,
sure. In British, students don’t have to take the foundation course. B: why
not? A: maybe because they think they know everything already ! ha ha.
A. one day.
B. one year.
C. two weeks.
Answer: {“MASK” }

“C”

REAL OR FAKE TEXT, SOCIAL IQA, STRATEGYQA, TIMEDIAL, TRACKING SHUFFLED OBJECTS, VITAM-
INC FACT VERIFICATION, UNIT CONVERSION, WINOWHY. Examples of the processed data, formatted with
prompts templates, are detailed in Table 13. It is noteworthy that the datasets within BIG-bench exhibit large diversity: they
differ not only in the number of answer options but also in the type of tasks, ranging from image classification to logical
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reasoning and mathematical problem-solving. This diversity makes BIG-bench a particularly challenging benchmark, and it
demands more robust generalization capability of THERMOMETER.

MRQA MRQA (Machine Reading for Question Answering) (Fisch et al., 2019) is widely used reading comprehension
task with free-form answers. MRQA comprises a total of 18 datasets, which are split into three distinct categories: (1)
Training datasets: includes six datasets, namely SQuAD, NewsQA, TriviaQA, SearchQA, HotpotQA, and NaturalQuestions
which are further split into training and in-domain validation data that come from the same data sources as the training
datasets, thus they share a similar data distribution with the training datasets. (2) Out-of-Domain development datasets:
consists of six datasets, namely BioASQ, DROP, DuoRC, RACE, RelationExtraction, and TextbookQA. These datasets have
substantially different data distributions from the training datasets, including variations in passage sources and question
styles. (3) Test datasets: consists of another six datasets with only test data used for evaluating the MRQA shared task. Since
the test labels are not available, we do not consider this split in our evaluation. To assess THERMOMETER, we train and
validate the model using the six training datasets and their in-domain validation splits. We evaluate THERMOMETER on the
out-of-domain development datasets. Examples of the processed in-domain data and out-of domain are detailed in Table 14
and Table 15, respectively.
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Table 14. MRQA In-domain Train/Validation Data Examples.
Dataset Name Prompt LLM’s Response v.s. True Target Completion Token
SQuAD Choose A, or B.

Answer in as few words as possi-
ble.
Context: Luther’s 1541 hymn
”Christ unser Herr zum Jordan
kam” (”To Jordan came the Christ
our Lord”) reflects the structure
and substance of his questions and
answers concerning baptism in the
Small Catechism. Luther adopted
a preexisting Johann Walter tune
associated with a hymnic setting of
Psalm 67’s prayer for grace; Wolf
Heintz’s four-part setting of the
hymn was used to introduce the
Lutheran Reformation in Halle in
1541. Preachers and composers
of the 18th century, including J. S.
Bach, used this rich hymn as a sub-
ject for their own work, although
its objective baptismal theology
was displaced by more subjective
hymns under the influence of late-
19th-century Lutheran pietism.
Question: What is Psalm 67
about?
Answer: Prayer for grace.
Is the above answer correct?
A. Yes.
B. No.
Answer: {“MASK” }

LLM’s Response: Prayer for grace.
True Target: Prayer for grace; grace.
ROUGE-L Precision: 0.128.

“A”

NaturalQuestionsShort Choose A, or B.
Answer in as few words as possi-
ble.
Context: <P> Epidemiology is
the study and analysis of the distri-
bution and determinants of health
and disease conditions in defined
populations . It is the cornerstone
of public health , and shapes pol-
icy decisions and evidence - based
practice by identifying risk factors
for disease and targets for preven-
tive healthcare . Epidemiologists
help with study design , collec-
tion , and statistical analysis of
data , amend interpretation and dis-
semination of results ( including
peer review and occasional system-
atic review ) . Epidemiology has
helped develop methodology used
in clinical research , public health
studies , and , to a lesser extent ,
basic research in the biological sci-
ences . </P>.
Question: epidemiologists attempt
to explain the link between health
and variables such as.
Answer: risk factors.
Is the above answer correct?
A. Yes.
B. No.
Answer: {“MASK” }

LLM’s Response: risk factors.
True Target: disease conditions in defined
populations.
ROUGE-L Precision: 0.

“B”
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Table 15. MRQA Out-of-domain Test Data Examples.
Dataset Name Prompt LLM’s Response v.s. True Target Completion Token
BioASQ Choose A, or B.

Answer in as few words as possible.
Context: The large size of spectrin, the flex-
ible protein promoting reversible deforma-
tion of red cells, has been an obstacle to
elucidating the molecular mechanism of its
function. By studying cloned fragments of
the repeating unit domain, we have found
a correspondence between positions of se-
lected spectrin repeats in a tetramer with
their stabilities of folding. Six fragments
consisting of two spectrin repeats were se-
lected for study primarily on the basis of
the predicted secondary structures of their
linker regions. Fragments with a puta-
tively helical linker were more stable to
urea- and heat-induced unfolding than those
with a putatively nonhelical linker. Two
of the less stably folded fragments, human
erythroid alpha-spectrin repeats 13 and 14
(HEalpha13,14) and human erythroid beta-
spectrin repeats 8 and 9 (HEbeta8,9), are
located opposite each other on antiparallel
spectrin dimers. At least partial unfolding
of these repeats under physiological condi-
tions indicates that they may serve as a hinge.
Also less stably folded, the fragment of hu-
man erythroid alpha-spectrin repeats 4 and 5
(HEalpha4,5) lies opposite the site of interac-
tion between the partial repeats at the C- and
N-terminal ends of beta- and alpha-spectrin,
respectively, on the opposing dimer. More
stably folded fragments, human erythroid
alpha-spectrin repeats 1 and 2 (HEalpha1,2)
and human erythroid alpha-spectrin repeats
2 and 3 (HEalpha2,3), lie nearly opposite
each other on antiparallel spectrin dimers
of a tetramer. These clusterings along the
spectrin tetramer of repeats with similar sta-
bilities of folding may have relevance for
spectrin function, particularly for its well
known flexibility..
Question: Alpha-spectrin and beta-spectrin
subunits form parallel or antiparallel het-
erodimers?
Answer: Antiparallel.
Is the above answer correct?
A. Yes.
B. No.
Answer: {“MASK” }

LLM’s Response: Antiparallel.
True Target: antiparallel.
ROUGE-L Precision: 1.0

“A”
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Table 16. Hyper-parameter of THERMOMETER.
Batch Size Nb Epochs (M ) Checkpoint (m) lr (γ) Weight Decay λreg Prior α0 Prior β0

128 5000 50 1× 10−3 1× 10−4 1× 10−2 1.25 4.0

C.3. THERMOMETER Architecture

We use a multi-branch MLP for THERMOMETER inspired from ensemble learning techniques. The structure of
THERMOMETER comprises three independent branches with identical architecture, each consisting of a sequence of
two linear layers equipped with a ReLU activation function in between. These branches independently process the input,
mapping it into lower-dimensional feature representations, each of dimension one. Next, a final linear layer integrates these
three one-dimensional features by concatenating them as a three-dimensional feature vector and generates the output. The
primary objective behind this architectural choice of THERMOMETER is to improve its ability to generalize across diverse,
unseen tasks. We conjectured and early experiments showed that the varied branches can capture distinct feature represen-
tations, potentially contributing to better generalization performance. However, as indicated in the ablation study results
presented in Table 6, the performance of THERMOMETER appears to be quite robust to variations in model architecture.
More thoroughly comparing THERMOMETER architecture is part of planned future work.

C.4. Implementation Details

LLMs To efficiently train THERMOMETER, we employ a strategy of extracting and storing the last layer features from
Large Language Models (LLMs) on the local device. This approach significantly reduces the computational cost of
LLM inference during the training stage of THERMOMETER. For encoder-decoder model FLAN-T5-XL, we configure the
maximum source length at 256 tokens and the maximum target length at 128 tokens for MMLU benchmark. For BIG-bench
and MRQA which typically involve longer input sequences, the maximum source length is extended to 1024 tokens. For
decoder-only model LLaMA-2-Chat 7B , we set max sequence sequence length to 1024 tokens for all benchmark datasets.

THERMOMETER In the implementation of THERMOMETER, the input dimension of THERMOMETER is set to be 2048
and 4096 for FLAN-T5-XL and LLaMA-2-Chat 7B , respectively. Correspondingly, the dimensions of the hidden
layers in THERMOMETER are set at 256 for FLAN-T5-XL and 512 for LLaMA-2-Chat 7B . To ensure that the output of
THERMOMETER remains positive, a Softplus activation function is adopted. The optimization of THERMOMETER utilizes
the AdamW optimizer, and all the hyper-parameter used for training is summarized in Table 16. The configuration is
consistent across experiments conducted on MMLU, BIG-bench, and MRQA. All experiments are implemented in PyTorch
using Tesla V100 GPU with 32 GB memory and Tesla A100 GPU with 40 GB memory.
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