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Abstract

Learning to act from observational data without active environmental interaction
is a well-known challenge in Reinforcement Learning (RL). Recent approaches
involve constraints on the learned policy or conservative updates, preventing strong
deviations from the state-action distribution of the dataset. Although these methods
are evaluated using non-linear function approximation, theoretical justifications
are mostly limited to the tabular or linear cases. Given the impressive results of
deep reinforcement learning, we argue for a need to more clearly understand the
challenges in this setting. In the vein of Held & Hein’s classic 1963 experiment,
we propose the “tandem learning” experimental paradigm which facilitates our
empirical analysis of the difficulties in offline reinforcement learning. We identify
function approximation in conjunction with fixed data distributions as the strongest
factors, thereby extending but also challenging hypotheses stated in past work. Our
results provide relevant insights for offline deep reinforcement learning, while also
shedding new light on phenomena observed in the online case of learning control.

1 Introduction

Learning to act in an environment purely from observational data (i.e. with no environment interac-
tion), usually referred to as offline reinforcement learning, has great practical as well as theoretical
importance (see [Levine et al., 2020] for a recent survey). In real-world settings like robotics and
healthcare, it is motivated by the ambition to learn from existing datasets and the high cost of en-
vironment interaction. Its theoretical appeal is that stationarity of the data distribution allows for
more straightforward convergence analysis of learning algorithms. Moreover, decoupling learning
from data generation alleviates one of the major difficulties in the empirical analysis of common
reinforcement learning agents, allowing the targeted study of learning dynamics in isolation from
their effects on behavior.

Recent work has identified extrapolation error as a major challenge for offline (deep) reinforcement
learning [Achiam et al., 2019, Buckman et al., 2021, Fujimoto et al., 2019b, Fakoor et al., 2021,
Liu et al., 2020, Nair et al., 2020], with bootstrapping often highlighted as either the cause or an
amplifier of the effect: The value of missing or under-represented state-action pairs in the dataset can
be over-estimated, either transiently (due to insufficient training or data) or even asymptotically (due
to modelling or dataset bias), resulting in a potentially severely under-performing acquired policy.
The corrective feedback-loop [Kumar et al., 2020b], whereby value over-estimation is self-correcting
via exploitation during interaction with the environment (while under-estimation is corrected by
exploration), is critically missing in the offline setting.
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Figure 1: (top-left) Held and Hein [1963] experiment setup. (top-right) Illustrations of the Tandem
and Forked Tandem experiment setups. (bottom) Tandem (active and passive) performance on 4
selected Atari domains. In all figures, active agent performance is shown in gray.

To mitigate this, typically one of a few related strategies are proposed: policy or learning update
constraints preventing deviations from states and actions well-covered by the dataset or satisfying
certain uncertainty bounds [Fujimoto et al., 2019a,b, Kumar et al., 2019, 2020c, Achiam et al., 2019,
Wang et al., 2020b, Wu et al., 2021, Nair et al., 2020, Wu et al., 2019, Yu et al., 2020], pessimism
bias to battle value over-estimation [Buckman et al., 2021, Kidambi et al., 2020], large and diverse
datasets to improve state space coverage [Agarwal et al., 2020], or learned models to fill in gaps
with synthesized data [Schrittwieser et al., 2021, Matsushima et al., 2020]. While many of these
enjoy theoretical justification in the tabular or linear cases [Thomas et al., 2015], guarantees for the
practically relevant non-linear case are mostly lacking.

In this paper we draw inspiration from the experimental paradigm introduced in the classic Held and
Hein [1963] experiment in psychology. The experiment involved coupling two young animal subjects’
movements and visual perceptions to ensure that both receive the same stream of visual inputs,
while only one can actively shape that stream by directing the pair’s movements (Fig. 1, top-left).
By showing that, despite identical visual experiences, only the actively moving subject acquired
adequate visual acuity, the experiment established the importance of active locomotion in learning
vision. Analogously, we introduce the ‘Tandem RL’ setup, pairing an ‘active’ and a ‘passive’ agent
in a training loop where only the active agent drives data generation, while both perform identical
learning updates from the generated data1. By decoupling learning dynamics from its impact on data
generation, while preserving the non-stationarity of the online learning setting, this experimental
paradigm promises to be a valuable analytic tool for the precise empirical study of RL algorithms.

Holding architectures, losses, and crucially data distribution equal across the active and passive agents,
or varying them in a controlled manner, we perform a detailed empirical analysis of the failure modes
of passive (i.e. non-interactive, offline) learning, and pinpoint the contributing factors in properties of
the data distribution, function approximation and learning algorithm. Our study confirms some past
intuitions for the failure modes of offline learning, while refining and extending the findings in the
deep RL case. In particular, our results indicate an empirically less critical role for bootstrapping
than previously hypothesized, while foregrounding erroneous extrapolation or over-generalization
by a function approximator trained on an inadequate data distribution as the crucial challenge.
Among other things, our experiments draw a sharp boundary between the mostly well-behaved (and
analytically well-studied) case of linear function approximation, and the non-linear case for which
theoretical guarantees are lacking. Moreover, we delineate different, more and less effective, ways of
enhancing the training data distribution to support successful offline learning, e.g. by analysing the
impact of dataset size and diversity, the stochasticity of the data generating policy, or small amounts of
self-generated data. Our results provide hints towards a hypothesis relevant in both offline and online
RL: robust learning of control with function approximation may require interactivity not merely as
a data gathering mechanism, but as a counterbalance to a (sufficiently expressive) approximator’s
tendency to ‘exploit gaps’ in an arbitrary fixed data distribution by excessive extrapolation.

1The ‘tandem’ analogy is of course that of two riders, both of whom experience the same route, while only
the front rider gets to decide on direction.
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2 The Experimental Paradigm of Tandem Reinforcement Learning

The Tandem RL setting, extending a similar analytic setup in [Fujimoto et al., 2019b], consists of two
learning agents, one of which (the ‘active agent’) performs the usual online training loop of interacting
with an environment and learning from the generated data, while the other (the ‘passive agent’) learns
solely from data generated by the active agent, while only interacting with the environment for
evaluation. We distinguish two experimental paradigms (see Fig. 1, top-right):

Tandem: Active and passive agents start with independently initialized networks, and train on an
identical sequence of training batches in the exact same order.

Forked Tandem: An agent is trained for a fraction of its total training budget. It is then ‘forked’ into
active and passive agents, which start out with identical network weights. The active agent is ‘frozen’,
i.e. receives no further training, but continues to generate data from its policy. The passive agent is
trained on this generated data for the remainder of the training budget.

2.1 Implementation

Our basic experimental agent is ‘Tandem DQN’, an active/passive pair of Double-DQN agents2 [van
Hasselt et al., 2016]. Following the usual training protocol [Mnih et al., 2015], the total training
budget is 200 iterations, each of which consists of 1M steps taken on the environment by the active
agent, interspersed with regular learning updates (on one, or concurrently on both agents, depending
on the paradigm), on batches of transitions sampled from the active agent’s replay buffer. Both agents
are independently evaluated on the environment for 500K steps after each training iteration.

Most of our experiments are performed on the Atari domain [Bellemare et al., 2013], using the
exact algorithm and hyperparameters from [van Hasselt et al., 2016]. We use a fixed set of four
representative games to demonstrate most of our empirical results, two of which (BREAKOUT, PONG)
can be thought of as easy and largely solved by baseline agents, while the others (SEAQUEST, SPACE
INVADERS) have non-trivial learning curves and remain challenging. Unless stated otherwise, all
results show averages over at least 5 seeds, with confidence intervals indicating variation over seeds.
In comparative plots, boldface entries indicate the default Tandem DQN configuration, and gray
lines always correspond to the active agent’s performance.

2.2 The Tandem Effect

We begin by reproducing the striking observation in [Fujimoto et al., 2019b] that the passive learner
generally fails to adequately learn from the very data stream that is demonstrably sufficient for its
architecturally identical active counterpart; we refer to this phenomenon as the ‘tandem effect’ (Fig. 1,
bottom). We ascertain the generality of this finding by replicating it across a broad suite of environ-
ments and agent architectures: Double-DQN on 57 Atari environments (Appendix Figs. 10 & 11),
adapted agent variants on four Classic Control domains from the OpenAI Gym library [Brockman
et al., 2016] and the MinAtar domain [Young and Tian, 2019] (Appendix Figs. 12 & 15), and
the distributed R2D2 agent [Kapturowski et al., 2019] (Appendix Fig. 14). Details on agents and
environments are provided in the Appendix3.

Empirically, we make the informal observation that while active and passive Q-networks tend to
produce similar values for typical state-action pairs under the active policy (where the action is
the active Q-value function’s argmax for a given state), their values are less correlated for other
(non-argmax) actions, and in fact the active and passive greedy policies of a Tandem DQN tend to
disagree in a large fraction of states under the behavior distribution (on average > 75% of states,
after 100M steps of training, across 57 Atari games; see Appendix Fig. 13). Moreover, in a fraction
(≈ 12/57) of Atari games, we observe the passive agent’s network to strongly over-estimate a fraction
of state-action values, with the over-estimation growing as training progresses.

2Our choice of Double-DQN as a baseline is motivated by its relatively strong performance and robustness
compared to vanilla DQN [Mnih et al., 2015], paired with its simplicity compared to later variants like Rainbow
[Hessel et al., 2018], which allows for more easily controlled experiments with fewer moving parts.

3We provide two Tandem RL implementations: https://github.com/deepmind/deepmind-research/tree/
master/tandem_dqn based on the DQN Zoo [Quan and Ostrovski, 2020], and https://github.com/google/
dopamine/tree/master/dopamine/labs/tandem_dqn based on the Dopamine library [Castro et al., 2018].
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Figure 2: Active vs. passive performance when using the active agent’s target policy and/or value
function for constructing passive bootstrapping targets.

3 Analysis of the Tandem Effect

In line with existing explanations [Levine et al., 2020], we propose that the tandem effect is primarily
caused by extrapolation error when certain state-action pairs are under-represented in the active
agent’s behavior data. Specifically with ε-greedy policies, even small over-estimation of the values of
rarely seen actions can lead to sufficient behavior deviations to cause catastrophic under-performance.

We further extend this hypothesis: in the context of deep reinforcement learning (i.e. with non-linear
function approximation), an inadequate data distribution can drive over-generalization [Bengio et al.,
2020], making such erroneous extrapolation likely. While the tandem effect can show up as learning
inefficiency even in the tabular case [Xiao et al., 2021], it proves especially pernicious in the case
of non-linear function approximation, where erroneous extrapolation can lead to errors not just on
completely unseen, but also rarely seen data, and can persist in the infinite-sample limit.

Coalescing this view and past analyses of challenges in offline RL (e.g. [Levine et al., 2020, Fujimoto
et al., 2019b, Liu et al., 2020]) into the following three potential contributing factors in the tandem
effect provides a natural structure to our analysis:

Bootstrapping (B) The passive agent’s bootstrapping from poorly estimated (in particular, over-
estimated) values causes any initially small mis-estimation to get amplified.

Data Distribution (D) Insufficient coverage of sub-optimal actions under the active agent’s policy
may lead to their mis-estimation by the passive agent. In the case of over-estimation, this may lead to
the passive agent’s under-performance.

Function Approximation (F) A non-linear function approximator used as a Q-value function may
tend to wrongly extrapolate the values of state-action pairs underrepresented in the active agent’s
behavior distribution. This tendency can be inherent and persistent, in the sense of being independent
of initialization and not being reduced with increased training on the same data distribution.

These proposed contributing factors are not at all mutually exclusive; they may interact in causing
or exacerbating the tandem effect. Insufficient coverage of sub-optimal actions under the active
agent’s behavior distribution (D) may lead to insufficient constraint on the respective values, which
allows for effects of erroneous extrapolation by a function approximator (F). Where this results in
over-estimation, the use of bootstrapping (B) carries the potential to ‘pollute’ even well-covered
state-action pairs by propagating over-estimated values (especially via the max operator in the case
of Q-learning). In the next sections we empirically study these three factors in isolation, to establish
their actual roles and relative contributions to the overall difficulty of passive learning.

3.1 The Role of Bootstrapping

One distinguishing feature of reinforcement learning as opposed to supervised learning is its frequent
use of learned quantities as preliminary optimization targets, most prominently in what is referred to
as bootstrapping in the widely used TD algorithms [Sutton, 1988], where preliminary estimates of
the value function are used as update targets. In the Double-DQN algorithm these updates take the
form Q(s, a)← r + γQ̄(s′, arg maxa′ Q(s′, a′)), where Q denotes the parametric Q-value function,
and Q̄ is the target network Q-value function, i.e. a time-delayed copy of Q.

Four value functions are involved in the active and passive updates of Tandem DQN: QA, Q̄A, QP

and Q̄P , where the A/P subscripts refer to the Q-value functions of the active and passive agents,
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respectively. The use of its own target network by the passive agent makes bootstrapping a plausible
strong contributor to the tandem effect. To test this, we replace the target values and/or policies in the
update equation for the passive agent, with the values provided by the active agent’s value functions:

QP (s, a)←


r + γQ̄P (s′, arg maxa′ QP (s′, a′)) Vanilla Tandem DQN
r + γQ̄A(s′, arg maxa′ QP (s′, a′)) Same Target Q
r + γQ̄P (s′, arg maxa′ QA(s′, a′)) Same Target π
r + γQ̄A(s′, arg maxa′ QA(s′, a′)) Same Target π&Q

As shown in Fig. 2, the use of the active value functions as targets reduces the active-passive gap by
only a small amount. Note that when both active target values and policy are used, both networks are
receiving an identical sequence of targets for their update computations, a sequence that suffices for
the active agent to learn a successful policy. Strikingly, despite this the tandem effect appears largely
preserved: in all but the easiest games (e.g. PONG4) the passive agent fails to learn effectively.

To more precisely understand the effect of bootstrapping with respect to a potential value over-
estimation by the passive agent, in Appendix Fig. 16 we also show the values of the passive networks
in the above experiment compared to those of the respective active networks. As hypothesised, we
observe that the vanilla tandem setting leads to significant value over-estimation, and that indeed
bootstrapping plays a substantial role in amplifying the effect: passive networks trained using the
active network’s bootstrap targets do not over-estimate compared to the active network at all.

These findings indicate that a simple notion of value over-estimation itself is not the fundamental
cause of the tandem effect, and that (B) plays an amplifying, rather than causal role. Additional
evidence for this is provided below, where the tandem effect occurs in a purely supervised setting
without bootstrapping.

3.2 The Role of the Data Distribution

The critical role of the data distribution for offline learning is well established [Fujimoto et al., 2019b,
Jacq et al., 2019, Liu et al., 2020, Wang et al., 2021]. In particular, Wang et al. [2020a] showed that
simpler notions of state-space coverage may not suffice for efficient offline learning with function
approximation (even in the linear case and under a strong realizability assumption); much stronger
assumptions on the data distribution, typically not satisfied in practical scenarios, may actually be
required. Here we extend past analysis empirically, by investigating how properties of the data
distribution (e.g. stochasticity, stationarity, the size and diversity of the dataset, and its proximity to
the passive agent’s own behavior distribution) affect its suitability for passive learning.

The exploration parameter ε A simple way to affect the data distribution’s state-action coverage
(albeit in a blunt and uniform way) is by varying the exploration parameter ε of the active agent’s
ε-greedy behavior policy (for training, not for evaluation). Note that a higher ε parameter affects the
active agent’s own training performance, as its ability to navigate environments requiring precise
control is reduced. In Fig. 3 (top) we therefore report the relative passive performance (i.e. as a
fraction of the active agent’s performance, which itself also varies across parameters), with absolute
performance plots included in the Appendix for completeness (Fig. 17). We observe that the relative
passive performance is indeed substantially improved when the active behavior policy’s stochasticity
(and as a consequence its coverage of non-argmax actions along trajectories) is increased, and
conversely it reduces with a greedier behavior policy, providing evidence for the role of (D).

Sticky actions An alternative potential source of stochasticity is the environment itself, e.g. the use
of ‘sticky actions’ in Atari [Machado et al., 2018]: with fixed probability, an agent action is ignored
(and the previous action repeated instead). This type of environment-side stochasticity should not be
expected to cause new actions to appear in the behavior data, and indeed Fig. 3 (bottom) shows no
substantial impact on the tandem effect.

Replay size Our results contrast with the strong offline RL results in [Agarwal et al., 2020]. We
hypothesize that the difference is due to the vastly different dataset size (full training of 200M

4PONG is an outlier in that it only has 3 actions, and in a large fraction of states actions have no (irreversible)
consequences, making greedy policies somewhat robust to errors in the underlying value function.
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Figure 3: Passive as fraction of active performance for varying active ε-greedy behavior policies (top);
regular Atari vs sticky-actions Atari (bottom). We report relative passive performance, as active
performance varies across configurations. See Appendix Figs. 17 & 18 for absolute performance.
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Figure 4: Active vs. passive performance for different replay sizes (for passive agent).

transitions vs. replay buffer of 1M). Interpolating between the tandem and the offline RL setting
from [Agarwal et al., 2020], we increase the replay buffer size, thereby giving the passive agent
access to somewhat larger data diversity and state-action coverage (this does not affect the active
agent’s training as the active agent is constrained to only sample from the most recent 1M replay
samples, as in the baseline variant). A larger replay buffer somewhat mitigates the passive agent’s
under-performance (Fig. 4), though it appears to mostly slow down rather than prevent the passive
agent from eventually under-performing its active counterpart substantially. As we suspect that a
sufficient replay buffer size may depend on the effective state-space size of an environment, we also
perform analogous experiments on the (much smaller) classic control domains; results (Appendix
Fig. 22) remain qualitatively the same.

Note that for a fixed dataset size, sample diversity can take different forms. Many samples from a
single policy may provide better coverage of states on, or near, policy-typical trajectories. Meanwhile,
a larger collection of policies, with fewer samples per policy, provides better coverage of many
trajectories at the expense of lesser coverage of small deviations from each. To disentangle the impact
of these modalities, while also shedding light on the role of stationarity of the distribution, we next
switch to the ‘Forked Tandem’ variation of the experimental paradigm.

Fixed policy Upon forking, the frozen active policy is executed to produce training data for the
passive agent, which begins its training initialized with the active network’s weights. Note that this
constitutes a stronger variant of the tandem experiment. At the time of forking, the agents do not
merely share analogous architectures and equal ‘data history’, but also identical network weights
(whereas in the simple tandem setting, the agents were distinguished by independently initialized
networks). Moreover, the data used for passive training can be thought of as a ‘best-case scenario’:
generated by a single fixed policy, identical to the passive policy at the beginning of passive training.
Strikingly, the tandem effect is not only preserved but even exacerbated in this setting (Fig. 5, top):
after forking, passive performance decays rapidly in all but the easiest games, despite starting from a
near-optimally performing initialization. This re-frames the tandem effect as not merely the difficulty
of passively learning to act, but even to passively maintain performance. Instability appears to
be inherent in the very learning process itself, providing strong support to the hypothesis that an
interplay between (D) and (F) is critical to the tandem effect.
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Figure 5: Performance of a Forked Tandem DQN, training passively after freezing its data generating
policy (top) or its replay buffer (bottom). Vertical lines indicate forking time points.

In Appendix Fig. 23 we additionally show that similarly to the regular tandem setting, stochasticity
of the active policy after forking influences the passive agent’s ability to maintain performance.

Fixed replay A variation on the above experiments is to freeze the replay buffer while continuing
to train the passive policy from this fixed dataset. Instead of a stream of samples from a single
policy, this fixed data distribution now contains a fixed number of samples from a training process
of the length of the replay buffer, i.e. from a number of different policies. The collapse of passive
performance here (Fig. 5, bottom) is less rapid, yet qualitatively similar. In Appendix Fig. 24 we
present yet another variant of this experiment with similar results, showing that the effect is robust to
minor variations in the exact way of fixing the data distribution of a learning agent.

These experiments provide strong evidence for the importance of (D): a larger replay buffer,
containing samples from more diverse policies, can be expected to provide an improved coverage of
(currently) non-greedy actions, reducing the tandem effect. While the forked tandem begins passive
learning with the seemingly advantageous high-performing initialization, state-action coverage is
critically limited in this case. In the frozen-policy case, a large number of samples from the very
same ε-greedy policy can be expected to provide very little coverage of non-greedy actions, while in
the frozen-replay case, a smaller number of samples from multiple policies can be expected to only
do somewhat better in this regard. In both cases the tandem effect is highly pronounced.

On-policy evaluation The strength of the last two experiments lies in the observation that, since
active and passive networks have identical parameter values at the beginning of passive training,
their divergence cannot be attributed to small initial differences getting amplified by training on an
inadequate data distribution. With so many factors held fixed, the collapse of passive performance
when trained on the very data distribution produced by its own initial policy begs the question whether
off-policy Q-learning itself is to blame for this failure mode, e.g. via statistical over-estimation
bias introduced by the max operator [van Hasselt, 2010]. Here we provide a negative answer, by
performing on-policy evaluation with SARSA [Rummery and Niranjan, 1994] (Fig. 6), and even
purely supervised regression on the Monte-Carlo returns (Appendix Fig. 25), in the forked tandem
setup. While evaluation succeeds, in the sense of minimizing evaluation error on the given behavior
distribution, atypical action values under the behavior policy suffer substantial estimation error,
resulting in occasional over-estimation. The resulting ε-greedy control policy under-performs the
initial policy at forking time as catastrophically as in the other forked tandem experiments (more
details in Appendix A.3). Strengthening the roles of (D) and (F) while further weakening that of
(B), these observations point to an inherent instability of offline learning, different from that of Baird’s
famous example [Baird, 1995] or the ‘Deadly Triad’ [Sutton and Barto, 2018, van Hasselt et al.,
2018]; an instability that results purely from erroneous extrapolation by the function approximator,
when the utilized data distribution does not provide adequate coverage of relevant state-action pairs.

Self-generated data Our final empirical question in this section is ‘How much data generated
by the passive agent is needed to correct for the tandem effect?’. While a full investigation of this
question exceeds the scope of this paper and is left for future work, the tandem setup lends itself to a
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Figure 6: Passive performance in Forked Tandem DQN after policy evaluation with SARSA.
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Figure 7: Passive performance for different amounts of self-generated data in the passive agent’s
replay batches.

simple experiment: both agents interact with the environment and fill individual replay buffers, one
of them (for simplicity still referred to as ‘passive’) however learns from data stochastically mixed
from both replay buffers. Fig. 7 shows that even a moderate amount (10%-20%) of ‘own’ data yields
a substantial reduction of the tandem effect, while a 50/50 mixture completely eliminates it.

3.3 The Role of Function Approximation

We structure our investigation of the role of function approximation in the tandem effect into two
categories: the optimization process and the function class used.

Optimization Agarwal et al. [2020] and Obando-Ceron and Castro [2021] demonstrated that the
Adam optimization algorithm [Kingma and Ba, 2015] outperforms RMSProp [Tieleman and Hinton,
2012] used in our experiments. In Appendix Fig. 20 we show that while both active and passive
agents perform better with Adam, the tandem effect itself is unaffected by the choice of optimizer.

Another plausible hypothesis is that the passive network suffers from under-fitting and requires
more updates on the same data to attain comparable performance to the active learner. Varying the
number of passive agent updates per active agent update step, we find that more updates worsen
the performance of the passive agent (Appendix Fig. 21). This rejects insufficient training as a
possible cause, and further supports the role of (D). We also note that, together with the forked
tandem experiments in the previous section, this finding distinguishes the tandem effect from the
issue of estimation error in the offline learning setting [Xiao et al., 2021]: while in the tabular setting
estimation error dominates the learning challenge and a sufficient training duration (assuming full
state-space coverage) guarantees convergence to a good solution, this is not necessarily the case with
function approximation trained on a given data distribution.

Function class Given that the active and passive agents share an identical network architecture,
the passive agent’s under-performance cannot be explained by an insufficiently expressive function
approximator. Performing the tandem experiment with pure regression of the passive network’s
outputs towards the active network’s (a variant of network distillation [Hinton et al., 2015]), instead
of TD based training, we observe that the performance gap is indeed vastly reduced and in some
games closed entirely (see Appendix Fig. 19); however, strikingly, it remains in some.

Next, we vary the function class of both networks by varying the depth and width of the utilized
Q-networks on a set of Classic Control tasks. As can be seen in Fig. 8 (and Appendix Fig. 28),
the magnitude of the active-passive performance gap appears negatively correlated with network
width, which is in line with (F): an increase in network capacity results in less pressure towards
over-generalizing to infrequently seen action values and an ultimately smaller tandem effect. On the
other hand, the gap seems to correlate positively with network depth. We speculate that this may
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Figure 8: Passive performance as a fraction of active performance in CartPole: varying number of
hidden layers and units.
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Figure 9: Active vs. passive performance, with first k of 5 layers of active/passive networks shared.

relate to the finding that deeper networks tend to be biased towards simpler (e.g. lower rank) solutions,
which may suffer from increased over-generalization [Huh et al., 2021, Kumar et al., 2020a].

Finally, we investigate varying the function class of only the passive network by sharing the weights
of the first k (out of 5) layers of active and passive networks, while constraining the passive network
to only update the remaining top 5 − k layers, and using the ‘representation’ at layer k acquired
through active learning only. This reduces the ‘degrees of freedom’ of the passive agent, which we
hypothesize reduces its potential for divergence. Indeed, Fig. 9 illustrates that passive performance
correlates strongly with the number of tied layers, with the variant for which only the linear output
layer is trained passively performing on par with the active agent. A similar result is obtained in the
forked tandem setting, see Appendix Fig. 27. This finding provides a strong indirect hint towards (F):
with only part of the network’s layers being trained passively, much of its ‘generalization capacity’ is
shared between active and passive agents. States that are not aggregated by the shared bottom layers
(only affected by active training) have to be ‘erroneously’ aggregated by the remaining top layers of
the network for over-generalization to occur. A more thorough investigation of this, exceeding the
scope of this paper, may involve attempting to measure (over-)generalization more directly, e.g. via
gradient interference [Bengio et al., 2020].

4 Applications of the Tandem Setting

In addition to being valuable for studying the challenges in offline RL, we propose that the Tandem
RL setting provides analytic capabilities that make it a useful tool in the empirical analysis of general
(online) reinforcement learning algorithms. At its core, the tandem setting aims to decouple learning
dynamics from its impact on behavior and the data distribution, which are inseparably intertwined in
the online setting. While classic offline RL achieves a similar effect, as an analytic tool it has the
potential downside of typically using a stationary distribution. Tandem RL, on the other hand, presents
the passive agent with a data distribution which realistically represents the type of non-stationarity
encountered in an online learning process, while still holding that distribution independent from
the learning dynamics being studied. This allows Tandem RL to be used to study, e.g., the impact
of variations in the learning algorithm on the quality of a learned representation, without having to
control for the indirect confounding effect of a different behavior causing a different data distribution.

While extensive examples of this exceed the scope of this paper, Appendix A.5 contains a single such
experiment, testing QR-DQN [Dabney et al., 2018] as a passive learning algorithm (the active agent
being a Double-DQN). This is motivated by the observation of Agarwal et al. [2020], that QR-DQN
outperforms DQN in the offline setting. QR-DQN indeed appears to be a nontrivially different passive
learning algorithm, significantly better in some games, while curiously worse in others (Fig. 29).
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5 Discussion and Conclusion

At a high level, our work can be viewed as investigating the issue of (in)compatibility between
the data distribution used to train a function approximator and the data distribution relevant in its
evaluation. While in supervised learning, generalization can be viewed as the problem of transfer
from a training to a (given) test distribution, the fundamental challenge for control in reinforcement
learning is that the test distribution is created by the very outcome of learning itself, the learned
policy. The various difficulties of learning to act from offline data alone throw into focus the role of
interactivity in the learning process: only by continuously interacting with the environment does an
agent gradually ‘unroll’ the very data on which its performance will be evaluated.

This need not be an obstacle in the case of exact (i.e. tabular) functions: with sufficient data,
extrapolation error can be avoided entirely. In the case of function approximation however, as
small errors compound rapidly into a difference in the underlying state distribution, significant
divergence and, as this and past work demonstrates, ultimately catastrophic under-performance can
occur. Function approximation plays a two-fold role here: (1) being an approximation, it allows
deviations in the outputs; (2) as the learned quantity, it is (especially in the non-linear case) highly
sensitive to variations in the input distribution. When evaluated for control after offline training, these
two roles combine in a way that is ‘unexplored’ by the training process: minor output errors cause a
drift in behavior, and thereby a drift in the test distribution.

While related, this challenge is subtly different from the well-known divergence issues of off-policy
learning with function approximation, demonstrated by Baird’s famous counterexample [Baird,
1995] (see also [Tsitsiklis and Van Roy, 1996]) and conceptualized as the Deadly Triad [Sutton
and Barto, 2018, van Hasselt et al., 2018]. While these depend on bootstrapping as a mechanism
to cause a feedback-loop resulting in value divergence, our results show that the offline learning
challenge persists even without bootstrapping, as small differences in behavior cause a drift in the ‘test
distribution’ itself. Instead of a training-time output drift caused by bootstrapping, the central role is
taken by a test-time drift of the state distribution caused by the interplay of function approximation
and a fixed data distribution (as opposed to dynamically self-generated data).

Our empirical work highlights the importance of interactivity and ‘learning from your own mistakes’
in learning control. Starting out as an investigation of the challenges in offline reinforcement learning,
it also provides a particular viewpoint on the classical online reinforcement learning case. Heuristic
explanations for highly successful deep RL algorithms like DQN, based on intuitions from (e.g.)
approximate policy iteration, need to be viewed with caution in light of the apparent hardness of a
policy improvement step based on approximate policy evaluation with a function approximator.

Finally, the forked tandem experiments show that even high-performing initializations are not robust
to a collapse of control performance, when trained under their own (but fixed!) behavior distribution.
Not just learning to act, but even maintaining performance appears hard in this setting. This provides
an intuition that we distill into the following working conjecture: The dynamics of deep reinforcement
learning for control are unstable on (almost) any fixed data distribution.

Expanding on the classical on- vs. off-policy dichotomy, we propose that indefinitely training on any
fixed data distribution, without strong explicit regularization or additional inductive bias, gives rise
to ‘exploitation of gaps in the data’ by a function approximator, akin to the over-fitting occurring
when over-training on a fixed dataset in supervised learning. Interaction, i.e. generating at least
moderate amounts of one’s own experience, appears to be a powerful, and for the most part necessary,
regularizer and stabilizer for learning to act, by creating a dynamic equilibrium between optimization
of a function approximator and its own data-generation process.

Broader impact statement This work lies in the realm of foundational RL, contributing to the
fundamental understanding and development of RL algorithms, and as such is far removed from
ethical issues and direct societal consequences. On the other hand, it highlights the empirical difficulty
and limitations of offline deep RL for control - increasingly important for practical applications,
e.g. robotics, where interactive data is costly, and learning from offline datasets is desirable. In this
way it complements existing theoretical hardness results in this area and provides additional context
to existing empirical techniques which aim to overcome or circumvent those limitations. We believe
that an improved understanding of these challenges can play an important role in creating robust and
stable offline learning algorithms whose outputs can be more safely deployed in the real world.
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