Under review as a conference paper at ICLR 2025

RAG-SR: RETRIEVAL-AUGMENTED GENERATION
FOR NEURAL SYMBOLIC REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic regression is a key task in machine learning, aiming to discover math-
ematical expressions that best describe a dataset. While deep learning has in-
creased interest in using neural networks for symbolic regression, many existing
approaches rely on pre-trained models. These models require significant computa-
tional resources and struggle with regression tasks involving unseen functions and
variables. A pre-training-free paradigm is needed to better integrate with search-
based symbolic regression algorithms. To address these limitations, we propose a
novel framework for symbolic regression that integrates evolutionary feature con-
struction with a neural network, without the need for pre-training. Our approach
adaptively generates symbolic trees that align with the desired semantics in real-
time using a language model trained via online supervised learning, providing
effective building blocks for feature construction. To mitigate hallucinations from
the language model, we design a retrieval-augmented generation mechanism that
explicitly leverages searched symbolic expressions. Additionally, we introduce a
scale-invariant data augmentation technique that further improves the robustness
and generalization of the model. Experimental results demonstrate that our frame-
work achieves state-of-the-art accuracy across 25 regression algorithms and 120
regression tasks [ﬂ

1 INTRODUCTION

Symbolic regression (SR) is a machine learning technique that searches the space of symbolic ex-
pressions to identify models that best fit a dataset (Sun et al., 2023} [Fong et al.l [2023)). Unlike
traditional regression methods, which assume a fixed model structure, SR automatically determines
both the structure and parameters of the model. This flexibility allows SR to achieve both high ac-
curacy and interpretability, making it especially valuable in fields such as physics (Udrescu et al.,
2020), biology (Brunton et al.,[2016)), and finance (Liu & Guo|2023)), where uncovering transparent,
understandable models is crucial for scientific discovery and informed decision-making.

In this paper, we focus on an automated feature construction approach to SR (Cava et al.,|2019). The
key idea is to generate a set of symbolic trees/features, ® = {1, . .., ¢ }, from a dataset (X, Y) to
enhance the performance of an interpretable model M, such as linear regression (Cava et al., 2019
Zhang et al.,[2023a)). The objective is to minimize the loss function £(®; X, y), defined as:

N
L@X,) = 5 UM G1(X0), 6 (X0)30), n

where IV represents the number of instances, and X; and y; represent the features and label for the
i-th instance in the training data. By decomposing the SR task into the discovery of feature sets,
this approach reduces the complexity of the problem. Even if each feature ¢ is weakly correlated
with the target Y, the model can still perform well as long as the features collectively complement
each other in predicting the target. This symbolic regression paradigm is particularly effective for
complex real-world problems, where the complexity of the underlying system cannot be captured
by a simple equation.

ISource Code: https://anonymous.4open.science/r/RAG_SR_ICLR_2025/
experiment /README-RAG-SR.md

https://anonymous.4open.science/r/RAG_SR_ICLR_2025/experiment/README-RAG-SR.md
https://anonymous.4open.science/r/RAG_SR_ICLR_2025/experiment/README-RAG-SR.md

Under review as a conference paper at ICLR 2025

Traditional SR methods, predominantly based on genetic programming (GP) (Banzhaf et al.||1998),
perform gradient-free searches within the symbolic space (Jiang & Xuel |2024). While effective at
exploration, these methods often lack search effectiveness due to limited guidance from accumulated
knowledge during the evolutionary process. Recent advances in deep learning for SR (Biggio et al.|
2021} [Kamienny et al., [2022)) aim to address these inefficiencies by leveraging knowledge more
effectively.

Deep learning-based SR typically follows three primary paradigms: pre-trained language mod-
els (Biggio et al., 2021; [Kamienny et al., 2022), reinforcement learning (Landajuela et al.| |2021)),
and sparse supervised learning (Sahoo et al.| 2018). Sparse supervised learning does not gener-
ate symbolic models directly; instead, it relies on heuristic pruning and neural architecture search
to sparsify the network so that it can be converted into symbolic expressions (L1 et al.l 2024). In
contrast, pre-trained language models and reinforcement learning can generate symbolic models di-
rectly. However, pre-trained language models require prior assumptions about the problem space,
limiting their generalizability to novel tasks involving unseen functions and features. Additionally,
identifying an optimal set of features for modeling complex real-world systems is time-consuming,
making it impractical to generate many pairs of symbolic models and their outputs for pre-training.
While reinforcement learning with a language model offers task adaptability (Landajuela et al.
2022), its low sample efficiency remains a significant drawback. Therefore, it is desirable to explore
supervised learning methods that do not rely on pretraining for SR to overcome these challenges.

To develop an effective and efficient neural network for SR, we propose a novel neural network-
based symbolic regression framework inspired by geometric semantic genetic programming
(GSGP) (Moraglio et al.l 2012). As illustrated in Figure |1} the core idea is to use a neural net-
work to dynamically predict the best feature ¢ to replace an existing feature in the current set
® = {¢1,...,0m}, with the goal of filling the gap in the residual R, referred to as the desired
semantics in this paper. Throughout the evolutionary process, the relationship between the seman-
tics/outputs of each symbolic tree ¢(X) and its symbolic representation ¢ is captured and stored in
a neural semantic library, which is continuously updated in an online fashion.

One challenge with neural semantic libraries is that language models may generate features ¢ that
are grammatically correct but irrelevant to the desired semantics R. In the language model domain,
this is known as hallucination (Sun et al.,[2024). To mitigate this, we propose a retrieval-augmented
generation technique to reduce hallucination and generate symbolic trees that better align with the
desired semantics. In summary, the key contributions of this paper are as follows:

* We propose a semantic descent algorithm to optimize symbolic models using a neural net-
work with online supervised learning. The neural network continuously learns to generate
symbolic trees that precisely capture the desired semantics, pushing the boundaries of deep
symbolic regression to handle complex problems.

* To reduce hallucination in language models, we develop a retrieval-augmented generation
mechanism. This technique makes the generated symbolic models are not only grammati-
cally correct but also better aligned with the desired semantics, resulting in more accurate
predictions.

* To better capture the relationship between desired semantics and retrieved symbolic ex-
pressions, we propose a masked contrastive loss, which more accurately generates sym-
bolic trees by aligning the embeddings of desired semantics with those of the retrieved
expressions.

* We propose a data augmentation and double query strategy to fully exploit the scale-
invariant properties of feature construction-based symbolic regression, further improving
the effectiveness of generated symbolic expressions.

2 RELATED WORK

In the domain of neural symbolic regression, a key advantage of pre-trained models is that, once
pre-trained (Biggio et al) [2021; Kamienny et al. 2022), models can be reused for similar tasks
without further optimization. These models are designed to solve a distribution of tasks through
mechanisms such as invariance encoding (Holt et al., 2023), contrastive learning (Li et al., |2022),

Under review as a conference paper at ICLR 2025

0ld Solution (£3,v)=B1&+B2+BsT New Solution (£7,6)=B1&+B:0+B36
Old Solution
Tree B Tree B
D] Current
old Tree A .
Tree A Semantics Semantics
a7 Sa a7 e &7
Target
o ° ° o ° e Va1 @ Target 54
Tree A Tree B Tree C Tree C Tree o
Delete Replace a Tree with a New Tree Add
Replace Subtrees Tree C Generated by a Neural Network Tree o
Mutation with Randomly | -4
Generated Ones Que ° Prompt
Tree B Y A
00
e 0 o e e
Tree A :
& A T & A Temporal Residual Semantic o000
00 00 00 Semantics Library oo
Tree A* Tree B Tree C 000
Tree C Target Query Neural
New Solution (Pending Replacement) Network
. Neural Network with Retrieval
Computing Residual Augmentation to Generate a New Tree
Evolutionary Algorithm Retrieval Augmented Neural Generation

(Syntactic/Symbolic Space) (Semantic/Output Space)

Figure 1: Comparison of the evolutionary algorithm and retrieval-augmented neural semantic library
for feature construction-based symbolic regression.

or conditional constraints (Bendinelli et al.| [2023)) to capture relationships among different SR tasks
within a problem space. However, these methods may struggle with tasks beyond the scope of
the pre-training data, particularly when encountering different function sets or more variables than

those seen during training (Shojaee et al., 2024a; Meidani et al.,[2024). Fine-tuning could alleviate

the misalignment between training and target tasks, through approaches like reinforcement learn-
ing (Holt et al.| 2023) or using imitation learning to learn successful mutations
2023). However, fine-tuning large pre-trained language models can be challenging. Thus, exploring
how online learning techniques can be applied exclusively to enhance SR remains a promising and
underexplored direction.

Reinforcement learning (RL), on the other hand, learns the probability distribution of promising
symbolic models (Landajuela et al.l 2021}, [Xu et al.,[2024) by interacting with the environment, al-
lowing it to adapt to different function sets for various tasks. However, deep symbolic optimization
via RL often suffers from low sample efficiency, requiring integration with GP
or Monte Carlo Tree Search (MCTS) techniques to improve performance.
Furthermore, RL typically simplifies feedback to a scalar reward, such as mean squared error (Lan-|
dajuela et al., [2021)), which limits the richness of information provided during the search process. A
more effective approach would involve using a loss vector rather than a scalar loss to provide richer
feedback and enhance overall search effectiveness.

Sparse supervised learning methods, such as deep equation learners (Sahoo et al.}[2018)) and efficient
symbolic policy learning 2024), aim to derive interpretable symbolic models by regular-
izing neural networks (Zhang et al.,[2023c). However, since the Ly norm is non-differentiable, these
techniques often rely on heuristic pruning approaches to convert neural networks into interpretable
expressions. Additionally, they typically require neural architecture search methods to identify suit-

able architectures before gradient-based training (Li et al., [2024)).

Evolutionary symbolic regression is primarily based on the GP framework, which automatically
discovers symbolic models without predefined structures to fit the training data (Fong et al., .
Recently, semantic GP has gained substantial attention (Moraglio et al., 2012} [Zhang et al.,[2023b).
Unlike traditional GP, which operates in the syntactic/symbolic space, semantic GP works in the
semantic/output space. By focusing on semantic space, solution generation operators can ensure
that the newly generated solutions have more predictable behavior, such as guaranteed loss reduc-
tion—something conventional GP operators often lack. A key challenge in semantic GP is gener-
ating GP trees that satisfy the desired semantics (Moraglio et all,2012)). A common strategy is to
build a semantic library that stores evaluated GP trees (Pawlak et al.,[2014)). In semantic mutation,
this library is searched for trees that closely match the target semantics, and the best-matching tree
is selected. However, this approach relies solely on existing building blocks without leveraging his-
torical knowledge to create new ones. To address this issue, it is crucial to incorporate deep learning

Under review as a conference paper at ICLR 2025

Algorithm 1 Semantic Descent

1: Input: Features ® = {¢1,..., P}, semantics library £, neural network model N, current semantics
®(X), target Y, neural generation probability Peural
2: Output: Updated features ®

3: O < Random permutation of {1,2,...,m} > Shuffle tree indices
4: for each i € O do

5: 0i(X) + %):’“ > Normalized feature
6: B(X) ™ +— (X)) — Bigi(X)

7: R« Y —o(X)m > Compute residual R
8: if rand() < Pheura then

9: o — NR, L) > Generate new tree using neural model
10: B(X) « D(X)em
11: continue > Proceed to next tree
12: end if

13: ¢new < ExactRetrieval(R, ¢q, L)

14: ¢i, ®(X) + ExactReplacement (¢new, Prew(X), P(X), P(X)“™ R,Y)
15: end for

techniques to learn from the evolutionary learning process and generate better symbolic models that
align with the desired semantics.

3 ALGORITHM

The proposed method is based on an evolutionary algorithm framework, encompassing solution ini-
tialization, generation, evaluation, selection, and archive maintenance. This work primarily focuses
on the solution generation phase, introducing a neural semantic library for solution generation, de-
signed to explicitly retain and apply knowledge throughout the evolutionary process. Solution gen-
eration consists of two primary components: semantic descent and retrieval-augmented generation.

3.1 SEMANTIC DESCENT

In this work, we propose Semantic Descent (SD), an iterative optimization procedure designed to
improve model performance by selectively replacing suboptimal features. Unlike methods such
as geometric semantic GP (Moraglio et al., [2012) or gradient boosting (Feng et al., [2018)), which
incrementally add new features to minimize error, SD focuses on replacing existing trees in the
model with more informative ones. This approach helps maintain a compact model structure while
continuously improving accuracy.

At each iteration, a tree ¢, is randomly selected from the set of trees {¢1, ..., ¢, } that define the
semantics/outputs of the model ®(X) = S1¢1(X) + -+ + Bmdm(X) + «, where 5 represents
the coefficients and « is the intercept. The contribution of ¢; is temporarily removed, resulting in
temporary semantics @™ (X) = ®(X) — 8;6;(X). The residual R = Y — &' (X)) of the model
is then computed, where Y is the target output. The residual R represents the difference between
the prediction and the target.

As shown in Algorithm [T} the core idea of SD is to fill the gap in the residual R by replacing the
current tree ¢; with a better alternative, either generated by a neural model N (line [9) or retrieved
from a semantic library £ (line[I3)). The semantic library £ stores all previously evaluated symbolic
trees and subtrees ¢ along with their semantics/outputs 1/(X). The neural model A learns the
mapping between the semantics ¢)(X) and the corresponding symbolic tree ¢). This enables the
neural network A to construct a new feature ¢y, using R as input, thereby generating a new feature
to reduce the model’s error.

The probability of generating new trees using the neural network is Peyrar, detailed in Section
The probability of retrieving a tree from the semantic library is 1 — Peyra- The key idea of exact
retrieval is to search the library for the tree that most closely matches the desired semantics, i.e.,
the residual R, as detailed in Appendix |Cl Since the linear regression model automatically adjusts
feature magnitudes and intercepts, the residual R is normalized using the Lo norm before being

used as input for retrieval or neural generation, i.e., R <« \1|21;||Iz The replacement process is re-

Under review as a conference paper at ICLR 2025

peated iteratively until all trees ¢ within the solution ® have been traversed. By focusing on feature
replacement instead of addition, SD enables efficient model refinement while maintaining a fixed
feature set, allowing for both interpretability and performance improvements.

3.2 RETRIEVAL-AUGMENTED GENERATION

To learn the mapping between symbolic trees, ¢, and their corresponding semantics, ¢(X), the pro-
cess involves three steps: First, the trees and semantics are collected from the evolutionary process
(Section[3.2.7). Next, they are converted into training data using specially designed encoding rules
(Section [3.2.1). Finally, a neural network is trained on the collected data (Section [3.2.3), using
cross-entropy loss and masked contrastive loss (Section [3.2.4).

3.2.1 DATA COLLECTION AND NETWORK TRAINING

The semantic library £ is dynamically constructed during the evolutionary process. During solution
evaluation, each subtree ¢ and its corresponding semantics 1)(X) are stored in a first-in-first-out
queue () with an upper limit of 10,000 entries for training the neural network and future retrieval.
To facilitate efficient retrieval, a k-dimensional tree (k-d tree) is constructed using the semantics
stored in () at the end of each generation in the evolutionary process, reducing query complexity
to O(log(N)), where N is the number of stored trees. The neural network is also trained at the
end of each generation. To prevent unnecessary training, an internal validation set monitors per-
formance degradation. If the validation loss does not increase, network training is skipped for that
generation to save computational resources. Nevertheless, the retrieval library is updated even when
network training is bypassed, ensuring that knowledge base is continuously updated throughout the
evolutionary process.

3.2.2 ENCODING AND DECODING RULES FOR SYMBOLIC TREES

To ensure that the generated symbolic expression is always valid and to eliminate the need for an end
token in the language model, we designed a specialized encoding and decoding scheme. Symbolic
trees are encoded using a level-order traversal method, specifically through breadth-first search, to
convert the tree into a linear sequence. To maintain interpretability, the number of functions in the
symbolic tree is capped at np. Given this limit and the maximum number of children any function
can have, known as maximum arity, oy, the number of terminals ny required to fill the symbolic
tree in the worst case is:

ny =14 (np X (Qmax — 1))- 2)

Given nr and nr, the output of the neural network is structured as a fixed-length sequence consisting
of nr functions or terminals, followed by nr terminals. This structure transforms the symbolic tree
generation task into a multi-class classification problem. The first np elements of the sequence
are decoded into either functions or terminals, while the subsequent np elements are restricted to
terminals by setting the probability of selecting a function to zero. Detailed pseudocode for the
encoding and decoding processes is provided in Appendix [E]

3.2.3 OVERALL ARCHITECTURE FOR RETRIEVAL-AUGMENTED GENERATION

As shown in Figure 2] the neural architecture consists of two main components: a Multilayer Per-
ceptron (MLP) and a Transformer model. Their relationship is defined as:

O € RB*EXS — Transformer Decoder (Transformer Encoder(¢) ® MLP(R)) WT. (3

Each of the two components plays a distinct and complementary role in generating a symbolic tree
¢ based on the desired semantics R. The MLP transforms raw semantics into a meaningful feature
representation that can guide the generation of the symbolic tree. On the other hand, the Transformer
encoder processes the nearest symbolic tree rj; retrieved from the semantics library £, which serves
as a prompt to reduce hallucination. The outputs of the MLP and Transformer are concatenated and
then passed through a Transformer decoder to generate a sequence of L tokens. W € R5*P is a
linear layer that projects the output of the Transformer decoder Hpecoger € RBXLXD into the symbol
space O € REXEXS where S is the number of unique symbols. These tokens are subsequently
decoded into a valid symbolic tree.

Under review as a conference paper at ICLR 2025

Semantic Transformer Transformer
Library Encoder Decoder inear

Add & Norm
F
Forward I

Positional
Encoding

1 2 3

Feed
Forward

Query @ @

Tree 6 with semantics

Positional
Encoding

Predictions
Inputs
' - Outputs ¢
Desire

(shifted right) 1 2 3

Semantics ‘ . .
000 1 @
‘ A7 Level Order
. ‘ ‘ 2 @ @3 Traversal

MLP Tree
Figure 2: Neural network architecture for symbolic tree generation.

Intention Encoding: The desired semantics R € RP*¥ is processed through an MLP to produce
a feature matrix Fyp € RE*K, where K is the dimensionality of the hidden layer. The MLP
consists of Ny, layers, and at each layer ¢, the transformation is defined as:

Xi+1 = DI'OpOllti (SILUZ (BN1 (Wz - X; + bz))) + Xy (4)

where x; € RBXK s the input to the i-th layer, W; € RE*X js the weight matrix, b; € R¥ is the
bias vector, BN, denotes the batch normalization layer, SiLU; is the Sigmoid Linear Unit activation
function (Elfwing et al., 2018), and Dropout, is the dropout layer with a specified dropout rate. This

MLP layer results in a feature matrix Fyyp € RPXX | which is then passed through a linear layer to

match the dimensionality from K to D, yielding Fia?* ¢ RB*D where D is the dimensionality

of the Transformer-encoded representation.

Retrieval-Augmented Encoding: For the desired semantics R, a KD-Tree is used to retrieve the
nearest symbolic tree (;3 from the semantic library £, based on Euclidean distance and subject to
the constraint that the tree contains no more than nr nodes. The retrieved tree qz@ is then processed
through an embedding layer to generate V s € RBXEXE \where L is the sequence length of the tree
encoding and F is the dimensionality of the embedding space. The embedding layer consists of an
embedding matrix E € R%*¥®, The embedded representation V p is then encoded using the Trans-

former model to produce a symbolic model embedding Hransformer € RB*LxD The Transformer
encoder applies self-attention and feedforward layers with residual connections as follows:

Hseir.aun = LayerNorm (V P SelfAttention (V d>>) € RBXLXK

HTransformer = LayefNOfm (HSelf—Attn + FeedForward (HSelf—Alln))

®)

c RBXLXD

. . . d
Decoding: The combined feature representation Heompined = FﬁaLPlfe ® Hpansformer € REX LA XD

is fed into a Transformer decoder to generate the contextual embeddings Hpecoger € RBXLXD The
decoding process is performed auto-regressively, utilizing a greedy decoding strategy.

3.2.4 Loss FUNCTION

Masked Contrastive Loss: The intention encoding should ideally learn useful knowledge not only
from target expressions ¢ but also from the retrieved symbolic expressions (ﬁ In parallel, the
retrieval-augmented encoding should be aware of the semantics of the nearest symbolic expres-
sions. To fulfill these objectives, we propose a contrastive loss that aligns the embeddings from both
the intention encoding and the retrieval-augmented encoding components.

Given the nearest semantics c/3(X) € REBXN Jitis processed through a MLP to generate a feature ma-
trix of nearest semantics Fpeaest € RZ*X. Simultaneously, the embedding of the symbolic model

Under review as a conference paper at ICLR 2025

Hranstormer € REXEXP s averaged along the sequence length dimension to produce the averaged
embedding H,y, € RP*P. Then, the InfoNCE loss (Oord et al., 2018), a popular objective in
contrastive learning, is employed to maximize the similarity between the nearest semantics feature
matrix Fpearese and the averaged symbolic embeddings H,,e, while minimizing similarity with neg-
ative samples from the same batch. To alleviate false negatives, i.e., when two samples in a batch
are semantically similar, the InfoNCE loss is masked by a mask matrix mask. The mask matrix is
designed such that non-diagonal elements with an absolute cosine similarity greater than 0.99 are
marked as false (indicating false negatives), while all other entries are marked as true. The masked
InfoNCE loss is formally defined as:

LinfoNce = — ZB: log oxp (S (Fneares [1], Havg[1]) /7)
" B i=1 Zf:l exp (Sim(Fnearest M, Havg []]) : mask/T) 7

(6)

where sim(+, -) denotes cosine similarity, and 7 is a temperature parameter controlling the sharpness
of the softmax function. This contrastive loss ensures that the nearest semantics are closely aligned
with their corresponding symbolic representations in the embedding space, while differentiating
them from unrelated samples.

Cross-Entropy Loss: The model is also trained using cross-entropy loss over the sequence of L
symbols. Let o, € R denote the one-hot encoded ground truth for the i-th position, and Opred €

R¥ denote the predicted probability distribution at that position. Formally, the cross-entropy loss for

each sequence is defined as Leross-entropy = — Zle 0l e - log(oli)red). The final loss L is a weighted
sum of the cross-entropy loss and the contrastive loss:
L= Ecross—enlropy + A ‘CInfoNCEa (7)

where) is a hyperparameter that balances the contributions of the two losses.

3.3 DATA AUGMENTATION AND DOUBLE QUERY

In linear regression, the sign of coefficients is automatically adjusted, so the sign of the semantics is
not crucial. However, the training data may only include one side of a training pair (1, ¥ (X)), with-
out considering its opposite, (¢, —1)(X)). Consequently, when the desired semantics is —i)(X), the
model may fail to generate the correct symbolic tree . To address this issue, we augment the train-
ing data by including both (1, ¥ (X)) and (¢, —¢ (X)) pairs:

T < TU{(y,=(X)) | (¥, (X)) € T} (®)

During decoding, both R and — R are used to query the neural network, generating candidate trees ¢
and ¢'. The tree with the highest probability is selected as the final symbolic model. This technique,
referred to as double query (DQ), allows the model to generate symbolic trees with sign-insensitive
semantics, thereby improving the effectiveness of neural generation.

4 EXPERIMENTS

This section is divided into two parts. The first part evaluates the effectiveness of the proposed
components in improving the prediction accuracy of the neural semantic library. The second part
investigates the performance of integrating the SR method with the retrieval-augmented neural se-
mantic library. It compares this integrated approach to state-of-the-art SR methods.

4.1 EXPERIMENTAL RESULTS OF NEURAL SEMANTIC LIBRARY

Experimental Settings: To evaluate the effectiveness of the proposed techniques in enhancing the
learning capabilities of the neural semantic library, we conduct the first experiment on synthetic
data. The objective is to evaluate how various components contribute to the learning effectiveness of
the neural semantic library. In this experiment, 10 variables and 50 training instances are randomly
drawn from a Gaussian distribution A/(0,100). Then, a total of 10000 symbolic expressions with
random heights h € [0, 5] are generated using the grow method (Banzhaf et al., [1998)) from GP and
evaluated on the randomly generated data. The maximum number of functions n is set to 5, and

Under review as a conference paper at ICLR 2025

expressions exceeding this limit are filtered out. To avoid redundancy, only one semantically equiv-
alent GP tree is retained, ensuring no symbolic expressions overlap between training and test sets.
This setup ensures that the final metric reflects the ability of the neural network to learn patterns and
generalize to unseen data, rather than simply fitting to previously seen examples. A total of 80% of
the symbolic models are used for training, while the remaining 20% are reserved for testing. The
evaluation metric is the edit distance (Matsubara et al.| 2022; Bertschinger et al., 2023) between
the generated symbolic tree and the ground truth, where a smaller distance indicates that the neural
semantic library generates more effective building blocks, significantly aiding the evolutionary al-
gorithm in finding optimal solutions. Each experiment is run 5 times to ensure stable and reliable
results.

Parameter Settings: For the neural network, the dropout rate is set to 0.1. The MLP consists of 3
layers, while both the encoder and decoder Transformers have 1 layer each. The hidden layer size
is set to 64 neurons. A learning rate of 0.01 and a batch size of 64 are used. Early stopping with
a patience of 5 epochs is employed to prevent overfitting. The weight of contrastive loss A is set to
0.05.

Experimental Results (Edit Distance): The experimental results for edit distance on the test set
are presented in Figure [3| First, comparing neural generation with simple retrieval from the library
(W/O NN), neural generation performs better by a large margin, indicating the effectiveness of us-
ing a neural network for symbolic tree generation. As for the ablation results of components, the
results show that including all components achieves the lowest median edit distance, indicating that
the combination of all proposed techniques provides the best overall performance. Among the com-
ponents, the RAG technique has the most significant impact, highlighting that external knowledge
from the semantic library significantly improves the neural network’s ability to generate relevant
symbolic trees. Data augmentation (DA) also plays a crucial role, ranking as the second most im-
portant component. Without DA, the model struggles to handle the scale-invariant nature of feature
construction, leading to worse performance. The compact boxplots reflect the consistency and relia-
bility of these components. Dropout has a moderate positive effect, indicating that overfitting control
techniques are helpful for training the neural semantic library. Similarly, contrastive learning (CL)
shows a moderate impact, confirming the effectiveness of using contrastive loss to align the intention
encoding with retrieval augmentation encoding components. Finally, DQ also improves effective-
ness, showing that even simply generating multiple solutions during inference can lead to better
solutions, which aligns with findings from large language models (Wang et al., [2023). The impact
of DQ becomes more pronounced in the absence of DA, suggesting that DA partially compensates
for the lack of DQ.

Experimental Results (Running Time): The running time comparisons in Figure] demonstrate
that RAG moderately increases the overall running time. However, one advantage of incorporating
RAG into the component is that new trees can be seamlessly added to the retrieval library to improve
accuracy without requiring model fine-tuning, making the algorithm efficient for application in an
online learning setting. For DA and DQ, removing these components reduces the running time from
44 seconds to 35 and 29 seconds, respectively, indicating that they do introduce some computational
overhead. However, given the accuracy improvements they provide, the increase in computational
time is acceptable. Although removing both DA and DQ significantly reduces computational cost,
the substantial loss of edit distance from 3.82 to 4.35 outweighs the benefit of faster execution.

Examples of Generated Trees: Table[T|provides examples of symbolic trees generated by the neu-
ral network with and without retrieval augmentation, along with the retrieved trees. The results
demonstrate that the retrieved trees share certain similarities with the ground truth, such as variable
usage. These results validate that providing the retrieval tree as a prompt helps the neural network
generate more relevant trees, reducing hallucination compared to relying solely on the desired se-
mantics.

4.2 EXPERIMENTS OF RAG-SR

Datasets: In this study, we primarily focus on 120 black-box datasets from the PMLB bench-
mark (Olson et al.l [2017), which are particularly challenging for pre-training methods (Kamienny
et al., |2022) due to the potential absence of simple symbolic expressions to model these datasets.
The results on the 119 Feynman and 14 Strogatz datasets are presented in Appendix [L.2}

Under review as a conference paper at ICLR 2025

Table 1: Examples of symbolic trees generated by the retrieval-augmented neural network, simple
neural network, retrieval library, and ground truth.

RAG-NN Generated Tree (Distance) Simple NN Generated Tree (Distance)
sin(sin(ARG3)) (0) cos(cos(cos(ARGY))) (4)
aq(ARG7, ARGS) (0) abs(maximum(ARG7, ARG7)) (3)
maximum(ARG1, ARGS) (0) subtract(ARG1, ARG1) (2)
sqrt(sqrt(ARG2)) (0) abs(abs(ARG2)) (2)
subtract(ARG6, ARG7) (0) maximum(ARG7, ARG7) (2)
Retrieval Tree (Distance) Ground Truth Tree
sin(ARG3) (1) sin(sin(ARG3))
abs(negative(maximum(aq(ARGS, ARGO0), aq(ARG7, ARGS)))) (6) aq(ARG7, ARGS)
maximum(add(absolute(sin(cos(ARG6))), ARGS), ARG1) (6) maximum(ARGI1, ARGS)
square(abs(ARG2)) (2) sqrt(sqrt(ARG2))
subtract(ARG7, ARG6) (2) subtract(ARG6, ARG7)
Distribution of Edit Distance by Configuration . . Median Running Time by Configuration
é 41159
v 4.4 4.29 £
S 4.18 =
Z a2 436 4.18 :E| g
2 . sps 391 - = 5
8407382 25 c
M- R
N P o § X LS P © o & & © o
$\00 & o@‘?o & &\o@ & vao @\00 ° o«°q° & & o“xo
& »® & ©
Figure 3: Ablation study of components based on Figure 4: Ablation study of components with re-
edit distance on the test set. spect to running time (training and inference).

Evaluation Protocol: The evaluation follows the established procedures of state-of-the-art symbolic
regression benchmarks (La Cava et al.| [2021). Specifically, each dataset is split into training and
testing sets with a 75:25 ratio, and experiments are repeated 10 times for robustness. The R? score
on the test set is used as the evaluation metric. To better handle categorical variables, we use a target
encoder (Micci-Barreca, 2001). Furthermore, to prevent any single feature from disproportionately
influencing the semantics, all input features are normalized using min-max scaling (Raymond et al.,
2020).

Parameter Settings: For GP, we follow conventional parameter settings: a population size of 200
and a maximum of 100 generations. Each solution consists of 10 trees, representing 10 features.
The probability of using neural generation, Ppeyral, 1S set to 0.1.

Experimental Results (Accuracy): The experimental results on SRBench are presented in Figure[3}
The proposed method, RAG-SR, outperforms all state-of-the-art symbolic regression and machine
learning techniques in terms of R? scores. Notably, it surpasses the TPSR method (Shojaee et al.,
2024al), which combines MCTS with a pre-trained end-to-end Transformer (Kamienny et al.|[2022).
The improvement is statistically significant, as confirmed by the Wilcoxon signed-rank test with
Benjamini-Hochberg correction, shown in Figure[6] This indicates the effectiveness of using a purely
online training language model for learning symbolic expressions. Compared to SBP-GP (Pawlak
et al., [2014)), which is a purely retrieval-based geometric semantic GP that does not use a neural
network, the significant advantage of RAG-SR demonstrates the effectiveness of using a neural
network to dynamically generate symbolic models.

Experimental Results (Complexity): The model complexity of RAG-SR follows the definition of
SRBench, where the final model is converted into a SymPy-compatible expression, and the number
of nodes in the symbolic tree is counted as a measure of complexity. As shown in Figure[5] RAG-SR
produces models that are an order of magnitude smaller in size compared to PS-Tree (Zhang et al.|
2022), which is a piecewise SR method that ranks second in R? scores in Figure [5| The Pareto
front of test R? scores and model size rank is shown in Figure |7, where RAG-SR appears on the
first Pareto front, indicating that RAG-SR achieves a good balance between accuracy and model
complexity.

Experimental Results (Training Time): The training time of RAG-SR is comparable to that of
FEAT, a standard feature-construction-based SR method (Cava et al., |2019), suggesting that the

Under review as a conference paper at ICLR 2025

R? Test Model Size Training Time (s)
° °
°

*RAG-SR [
*PSTree o
*TPSR -
*Operon °
*SBP-GP -
*FEAT 2 ° °
*SNIP -] L
-2 { J o
L 4
-
L 2

{
s00

*EPLEX
XGB
LGBM
*GP-GOMEA
AdaBoost L
RandomForest 0=
*ITEA ==
“AFP_FE *
*AFP S 2
“FFX —— ° ®
KernelRidge ——
*gplearn ---
*DSR L 2
*MRGP
MLP
Linear
*BSR
*AlFeynman

-0.25 000 025 050 075 1.00 19" 10 10° 10° 10° 10° 102 10°

Figure 5: R? scores, model sizes, and training time of 25 algorithms on 120 regression problems.

Wilcoxon signed-rank test, R2 Test, a = 5.0e-02

p<ile3a 2
FFX <1e2-a
GP-GOMEA P © é
ITEA S
KernelRidge o \
LGBM
1 [
p<tela N
[
°
p<a 3
=

- no significance AFP_FE*

: (e e e
~
(goeam] |

20

KernelRidge

10 15
R? Test Rank

Figure 6: Pairwise statistical comparisons of Figure 7: Pareto front of the rank of test R2
test R? scores on regression problems. scores and model size for different algorithms.

computational cost of learning a neural semantic library is within an acceptable range. However,
compared to TPSR, which directly leverages a pre-trained model to guide SR without requiring
fine-tuning, RAG-SR is an order of magnitude slower. This discrepancy is partly due to the fact
that, in the current implementation, all neural networks in RAG-SR are trained on a CPU due to
limited computational resources. Training the neural networks on a GPU could potentially reduce
the computational time of RAG-SR.

5 CONCLUSIONS

In this paper, we propose a novel feature construction-based SR method with a retrieval-augmented
neural semantic library. Ablation studies confirm that the retrieval augmentation mechanism effec-
tively mitigates the issue of hallucination, enabling the generation of more accurate symbolic trees
that align with the desired symbolic trees. Furthermore, data augmentation and double query tech-
niques effectively improve the neural network’s ability to generate symbolic trees that account for the
scale-invariant characteristics of feature construction-based SR. Experimental results on large-scale
symbolic regression benchmarks demonstrate that RAG-SR significantly outperforms state-of-the-
art SR techniques, including those guided by pre-trained language models. For future directions,
introducing constraints on model complexity may help reduce the risk of overfitting, particularly
with datasets that contain noise or limited samples, presenting a promising direction for future re-
search.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ignacio Arnaldo, Krzysztof Krawiec, and Una-May O’Reilly. Multiple regression genetic program-
ming. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation,
pp. 879-886, 2014.

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic programming:

an introduction: on the automatic evolution of computer programs and its applications. Morgan
Kaufmann Publishers Inc., 1998.

Tommaso Bendinelli, Luca Biggio, and Pierre-Alexandre Kamienny. Controllable neural symbolic
regression. In International Conference on Machine Learning, pp. 2063-2077. PMLR, 2023.

Amanda Bertschinger, Q Tyrell Davis, James Bagrow, and Joshua Bongard. The metric is the mes-
sage: Benchmarking challenges for neural symbolic regression. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 161-177. Springer, 2023.

Manish Bhattarai, Javier E Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel
O’Malley. Enhancing code translation in language models with few-shot learning via retrieval-
augmented generation. arXiv preprint arXiv:2407.19619, 2024.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In International Conference on Machine Learning,
pp- 936-945. Pmlr, 2021.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932-3937, 2016.

William La Cava, Tilak Raj Singh, James Taggart, Srinivas Suri, and Jason Moore. Learning concise
representations for regression by evolving networks of trees. In International Conference on
Learning Representations, 2019.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3-11, 2018.

Ji Feng, Yang Yu, and Zhi-Hua Zhou. Multi-layered gradient boosting decision trees. Advances in
Neural Information Processing Systems, 31, 2018.

Kei Sen Fong, Shelvia Wongso, and Mehul Motani. Rethinking symbolic regression: Morphol-
ogy and adaptability in the context of evolutionary algorithms. In The Eleventh International
Conference on Learning Representations, 2023.

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
bolic regression with a learned concept library. arXiv preprint arXiv:2409.09359, 2024.

Jiaming Guo, Rui Zhang, Shaohui Peng, Qi Yi, Xing Hu, Ruizhi Chen, Zidong Du, Ling Li, Qi Guo,
Yunji Chen, et al. Efficient symbolic policy learning with differentiable symbolic expression.
Advances in Neural Information Processing Systems, 36, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 10261034, 2015.

Thomas Helmuth, Lee Spector, and James Matheson. Solving uncompromising problems with lex-
icase selection. IEEE Transactions on Evolutionary Computation, 19(5):630-643, 2014.

Samuel Holt, Zhaozhi Qian, and Mihaela van der Schaar. Deep generative symbolic regression.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=07koEEMA1bR.

Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. Latent programmer:
Discrete latent codes for program synthesis. In International Conference on Machine Learning,
pp. 4308-4318. PMLR, 2021.

11

https://openreview.net/forum?id=o7koEEMA1bR
https://openreview.net/forum?id=o7koEEMA1bR

Under review as a conference paper at ICLR 2025

Nan Jiang and Yexiang Xue. Racing control variable genetic programming for symbolic regression.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12901-12909,
2024.

Pierre-Alexandre Kamienny, Stéphane d’ Ascoli, Guillaume Lample, and Francois Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269-10281, 2022.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with monte-carlo-tree-search. In International Conference on Ma-
chine Learning, pp. 15655-15668. PMLR, 2023.

William La Cava, Thomas Helmuth, Lee Spector, and Jason H Moore. A probabilistic and multi-
objective analysis of lexicase selection and e-lexicase selection. Evolutionary Computation, 27
(3):377-402, 2019.

William La Cava, Bogdan Burlacu, Marco Virgolin, Michael Kommenda, Patryk Orzechowski,
Fabricio Olivetti de Franca, Ying Jin, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. Advances in neural information processing systems,
2021(DB1):1, 2021.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
forcement learning. In International Conference on Machine Learning, pp. 5979-5989. PMLR,
2021.

Mikel Landajuela, Chak Shing Lee, Jiachen Yang, Ruben Glatt, Claudio P Santiago, Ignacio Ar-
avena, Terrell Mundhenk, Garrett Mulcahy, and Brenden K Petersen. A unified framework for
deep symbolic regression. Advances in Neural Information Processing Systems, 35:33985-33998,
2022.

Wengiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh
International Conference on Learning Representations, 2022.

Wengiang Li, Weijun Li, Lina Yu, Min Wu, Linjun Sun, Jingyi Liu, Yanjie Li, Shu Wei, Deng
Yusong, and Meilan Hao. A neural-guided dynamic symbolic network for exploring mathematical
expressions from data. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=IejxxE9DO2.

Jiacheng Liu and Siqi Guo. Symbolic regressions in non-physical systems, 2023. URL https:
//openreview.net/forum?id=RuCQRXk7a7G.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In /n-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skg89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqgY7.

Yoshitomo Matsubara, Naoya Chiba, Ryo Igarashi, and Yoshitaka Ushiku. Rethinking symbolic
regression datasets and benchmarks for scientific discovery. Journal of Data-centric Machine
Learning Research, 2022.

Kazem Meidani, Parshin Shojaee, Chandan K. Reddy, and Amir Barati Farimani. SNIP: Bridging
mathematical symbolic and numeric realms with unified pre-training. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=KZSEgJGPxul

Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems. ACM SIGKDD explorations newsletter, 3(1):27-32, 2001.

12

https://openreview.net/forum?id=IejxxE9DO2
https://openreview.net/forum?id=RuCQRXk7a7G
https://openreview.net/forum?id=RuCQRXk7a7G
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=KZSEgJGPxu
https://openreview.net/forum?id=KZSEgJGPxu

Under review as a conference paper at ICLR 2025

Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. Geometric semantic genetic pro-
gramming. In Parallel Problem Solving from Nature-PPSN XII: 12th International Conference,
Taormina, Italy, September 1-5, 2012, Proceedings, Part I 12, pp. 21-31. Springer, 2012.

Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Brenden K Petersen, et al.
Symbolic regression via deep reinforcement learning enhanced genetic programming seeding.
Advances in Neural Information Processing Systems, 34:24912-24923, 2021.

Ji Ni, Russ H Drieberg, and Peter I Rockett. The use of an analytic quotient operator in genetic
programming. IEEE Transactions on Evolutionary Computation, 17(1):146-152, 2012.

Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H Moore.
Pmlb: alarge benchmark suite for machine learning evaluation and comparison. BioData mining,
10:1-13, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
Retrieval augmented code generation and summarization. arXiv preprint arXiv:2108.11601,
2021.

Tomasz P Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Semantic backpropagation for design-
ing search operators in genetic programming. /EEE Transactions on Evolutionary Computation,
19(3):326-340, 2014.

Christian Raymond, Qi Chen, Bing Xue, and Mengjie Zhang. Adaptive weighted splines: A new
representation to genetic programming for symbolic regression. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference, pp. 1003—1011, 2020.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442—4450. Pmlr, 2018.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan Reddy. Transformer-based
planning for symbolic regression. Advances in Neural Information Processing Systems, 36, 2024a.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K Reddy.
Llm-sr: Scientific equation discovery via programming with large language models. arXiv
preprint arXiv:2404.18400, 2024b.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discov-
ering governing equations via monte carlo tree search. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
ZTK3SefE8_7Zl

YuHong Sun, Zhangyue Yin, Qipeng Guo, Jiawen Wu, Xipeng Qiu, and Hui Zhao. Benchmarking
hallucination in large language models based on unanswerable math word problem. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
(eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), pp. 2178-2188, Torino, Italia, May
2024. ELRA and ICCL. URL https://aclanthology.org/2024.1lrec-main.196.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Advances in
Neural Information Processing Systems, 33:4860-4871, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw.

13

https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=ZTK3SefE8_Z
https://aclanthology.org/2024.lrec-main.196
https://openreview.net/forum?id=1PL1NIMMrw

Under review as a conference paper at ICLR 2025

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F Xu, Yiqing Xie, Graham Neubig,
and Daniel Fried. Coderag-bench: Can retrieval augment code generation? arXiv preprint
arXiv:2406.14497, 2024.

Yilong Xu, Yang Liu, and Hao Sun. Reinforcement symbolic regression machine. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=PJVUWpPNZCl

Hengzhe Zhang, Aimin Zhou, Hong Qian, and Hu Zhang. PS-Tree: A piecewise symbolic regression
tree. Swarm and Evolutionary Computation, 71:101061, 2022.

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang. Modular multi-tree
genetic programming for evolutionary feature construction for regression. IEEE Transactions on
Evolutionary Computation, 2023a.

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang. A semantic-based
hoist mutation operator for evolutionary feature construction in regression. IEEE Transactions on
Evolutionary Computation, 2023b.

Michael Zhang, Samuel Kim, Peter Y Lu, and Marin Soljaci¢. Deep learning and symbolic regres-
sion for discovering parametric equations. /[EEE Transactions on Neural Networks and Learning
Systems, 2023c.

14

https://openreview.net/forum?id=PJVUWpPnZC
https://openreview.net/forum?id=PJVUWpPnZC

