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ABSTRACT

While most machine learning models can provide confidence in their predictions,
confidence is insufficient to understand and use the model’s uncertainty reliably.
For instance, the model may have a low confidence prediction for a sample that
is far from the training distribution or is inherently ambiguous. In this work, we
investigate the relationship between how atypical (or rare) a sample is and the
reliability of a model’s confidence for this sample. First, we show that atypicality
can predict miscalibration. In particular, we empirically show that predictions
for atypical examples are more miscalibrated and overconfident, and support
our findings with theoretical insights. Using these insights, we show how being
atypicality-aware improves uncertainty quantification. Finally, we give a framework
to improve decision-making and show that the atypicality framework improves
selectively reporting uncertainty sets. Given these insights, we propose that models
should be equipped not only with confidence but also with an atypicality estimator
for reliable uncertainty quantification. Our results demonstrate that simple post-hoc
atypicality estimators can provide significant value.

1 INTRODUCTION

Typicality is an item’s resemblance to other category members (Rosch & Mervis, 1975). For example,
while a dove and a sparrow are highly typical birds, a penguin is an atypical bird. A large body of
cognitive science literature (e.g., Rips (1989); Rips et al. (1973); Mervis & Pani (1980)) suggests
that typicality plays a crucial role in the human understanding of categories. For instance, humans
have been shown to learn, remember, and refer to typical items a lot faster (Murphy, 2004). Similarly,
the representativeness heuristic is the tendency of humans to use the typicality of an event as a basis
for decision-making (Tversky & Kahneman, 1974). This cognitive bias is effective in allowing
people to make swift decisions, but it can also result in poor judgments of uncertainty. For instance,
the likelihood of typical events can be overestimated (Tversky & Kahneman, 1974), or uncertainty
judgments can be very poor for atypical events (Tversky & Kahneman, 1992).

While it is hard to quantify the uncertainty of human judgments, machine learning models report
confidence in their predictions. However, confidence alone can be insufficient to understand the
reliability of a prediction. For instance, a low-confidence prediction could have an ambiguity that is
easily communicated, or it could be a result of the sample being far from the training distribution.
Similarly, a high-confidence prediction could be reliable or miscalibrated. Our main proposal is that
models should quantify not only the confidence but also the atypicality to understand how reliable
predictions are, or to understand the coverage of the training distribution. However, a large volume
of machine learning practice works through downloading pretrained models that can report only
confidence, without access to a notion of atypicality. To support our position, we use a simple
formalization of atypicality estimation. With the following empirical and theoretical studies, we show
how simple atypicality estimators improve a model’s reliability.
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Figure 1: Atypicality in Uncertainty. On the left, we show examples from the ImageNet-R
dataset with our atypicality framework. On the top right, we provide a conceptualization of each
of the quadrants. On the bottom right, we demonstrate the use cases. By using atypicality, we can
better understand miscalibration (Section 3), improve calibration (Section 4), and improve decision-
making (Section 5).

Understanding Miscalibration: Calibration is a key metric for assessing the quality of probabilistic
models (Gneiting & Raftery, 2007), measuring how well the predicted probabilities of a model match
the true likelihoods of outcomes. Neural networks (Guo et al., 2017) or even logistic regression (Bai
et al., 2021) can be miscalibrated out-of-the-box. Here, we argue that using atypicality can give
insights into when to trust a model’s confidence. Through extensive experiments, we demonstrate
that atypicality is highly correlated with miscalibration. We show that predictions for atypical points
are more miscalibrated and overconfident. We support our empirical study with theoretical insights.

Improving Calibration: Recalibration methods offer some mitigation to the problem of miscalibra-
tion (Platt et al., 1999; Guo et al., 2017). These methods involve adjusting the output of a potentially
miscalibrated probabilistic model to improve its calibration. We show that models need different
adjustments to the confidence according to the atypicality of individual points, and hence atypicality
is a key factor in recalibration. Here, we propose a method called Atypicality-Aware Recalibration.
Our algorithm takes into account the atypicality of a sample in the recalibration process and is simple
to implement. We empirically show that complementing recalibration methods with atypicality
improves uncertainty quantification, and support our findings with theoretical insights.

Improving Decision-making: Uncertainty quantification can improve transparency and increase
user trust (Bhatt et al., 2021). One way to achieve this is through selective classification (Geifman
& El-Yaniv, 2017), where the model can abstain from making a prediction. Another approach
leverages conformal prediction (Vovk et al., 2005) which provides the user with uncertainty sets,
i.e., a set of classes that contain the true label with high probability. However, these actions are
often evaluated independently. We argue that atypicality offers a unifying perspective, and propose
Selective Conformal Prediction. We show that by taking atypicality into account, we can better decide
when to report uncertainty sets and when to abstain.

Summary of Contributions: Overall, atypicality offers a valuable framework for understanding and
improving uncertainty quantification. First, we demonstrate that predictions for atypical examples are
more miscalibrated and overconfident. Using our insights, we present how being atypicality aware
improves and complements existing recalibration methods. Finally, we use atypicality to selectively
report uncertainty sets. Our findings are supported by both experiments and theory. Thus, we propose
that models should also quantify atypicality, and we show simple- and cheap-to-implement
atypicality estimators can provide significant value.

2 INTERPRETING UNCERTAINTY WITH ATYPICALITY

Motivation: In many applications of machine learning, we have access to a model’s confidence.
It aims to quantify the likelihood that a prediction will be accurate. In classification, the model
output is a probability distribution over the classes. In most practical scenarios, model confidence
is the primary tool used to evaluate the uncertainty of a prediction. However, the uncertainty
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obtained from confidence can contain multiple sources of uncertainty (Mukhoti et al., 2021), and
distinguishing the source can lead to actionable outcomes such as abstention (Geifman & El-Yaniv,
2017), or data collection (Kirsch et al., 2019). Here, we first argue that model confidence can
have different semantics in different cases. We present examples from the Imagenet-R (Hendrycks
et al., 2021) dataset for illustration. In Appendix A we discuss how confidence is not enough to
distinguish between high-confidence and representative and high-confidence yet far from the
support examples; or having low confidence due to being far from distribution and low confidence
due to ambiguity. In summary, relying solely on model confidence does not provide a complete
understanding of the uncertainty in the predictions, and to better interpret the uncertainty we need a
better vocabulary. Even when the model is well-calibrated, confidence does not help us distinguish
between an ambiguous sample from a sample that is far from the distribution.

Atypicality Provides a Natural Decomposition We propose that atypicality provides a natural way
to understand uncertainty when combined with confidence. In general, we consider a sample to be
typical if it is representative of the previously observed examples. For instance, an image of a dog that
closely resembles other dogs that were seen during training would be considered typical. However,
if the image is unlike any other observed during training, it would be considered atypical. In the
following sections, we will formally define and explain the concept of typicality. We discuss the
relation to earlier works in Appendix B.1.

The Reliable Quadrant contains typical, high-confidence examples. Since the sample is typical
and the model has high confidence in its prediction, these examples are likely to have higher-
quality predictions and uncertainty estimates. The Extrapolation Quadrant contains atypical,
high-confidence examples. These samples are farther from the support of the training data, but
the model still has high confidence in its predictions. We note that in this case, the model may be
poorly calibrated and the uncertainty estimates may not be reliable. The Untrustworthy Quadrant
comprises atypical, low-confidence examples. These examples are highly atypical, and the model has
low confidence in its predictions. This quadrant can include corrupted examples, such as images with
heavy noise or blur, or samples from classes that the model has not been trained on. The Ambiguous
Quadrant comprises typical, low-confidence examples. These examples are typical in the sense that
they may belong to multiple classes, but due to the inherent ambiguity in the sample, the model has
low confidence in its predictions. This quadrant includes samples with inherent ambiguity, such as
an image that could be of either a ferret or a polecat, or multi-label examples that contain multiple
objects that are from valid classes in an object recognition task.

Formalizing Atypicality We use atypicality with respect to a training distribution. Informally, a
sample is atypical if it is far from the training distribution of a model, e.g., if there are no or a limited
number of similar examples to a sample, then it can be called atypical. More formally, let X ∈ Rd be
the random variable denoting features and Y ∈ Y = {1, . . . , C} denote the label where we focus on
C-class classification settings. We use a(x) to denote the atypicality of a sample x.

Definition 2.1 (Atypicality). For a sample x, we define the atypicality of a sample as1

a(x) = 1−max
y

P(X = x|Y = y) (1)

For a dog image x, if P(X = x|Y = dog) is low, then we call x an atypical dog image. If a(x) is
high, then we call x an atypical sample. In words, if a sample is not typical for any class, then it is
atypical with respect to the training distribution. Similarly, we can also use a notion of distance2 or
marginals P(X = x) to quantify atypicality. Appendix D discusses estimation of atypicality.

3 UNDERSTANDING CALIBRATION WITH ATYPICALITY

Here, we demonstrate how our framework can be applied to predict the miscalibration of samples. Let
us denote a probabilistic predictor by P̂, where P̂(Y = y|X = x) represents the predicted probability
of an input x belonging to class y. Let us define ŷ = argmaxy∈Y P̂(Y = y|X = x) as the predicted
class for input x. We describe the datasets and models we use in Appendix E.

1This notion of atypicality is different than typical sets in information theory (Thomas & Joy, 2006).
2For a sample x, if the nearest neighbor distance is large, x is called atypical as samples in the training set

are far from x. The density and distance notions of atypicality are connected through non-parametric estimation.
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3.1 MODEL CALIBRATION AND ATYPICALITY

First, we use atypicality to understand calibration. Calibration is used to evaluate the quality of a
probabilistic model (Gneiting & Raftery, 2007). Informally, a model is considered perfectly calibrated
if all events that are predicted to occur P% of the time occur P% of the time for any P ∈ [0, 100].

There are different notions of miscalibration. We employ the following definition: For the sake of sim-
plicity, consider a binary classification problem where Y ∈ {0, 1}, and the predictor P̂ : X → [0, 1].
Calibration Error (CE) is defined as: CE[P̂] = E[|P(Y |P̂(X) = p)− p|]. However, it is computation-
ally infeasible to calculate the above expectation with the conditional probability P(Y |P̂(X) = p).
In practice Expected Calibration Error (ECE) is used to estimate CE, see Appendix F.1.

Here, we aim to examine the relationship between model calibration and atypicality. Given any K > 1,
we consider the quantiles of a(X), a1, a2, . . . , aK+1 such that P(a(X) ∈ (ak, ak+1]) = 1/K for
k ∈ [K]. Specifically, we investigate the atypicality-conditional calibration error ECE[P̂ | a(X) ∈
(ak, ak+1]], i.e., the expected calibration error of a sample that falls within the atypicality quantile k.

Figure 2: Miscalibration Distribution Across Confidence and Atypicality. Here, points are
grouped according to the Atypicality Quantile (x-axis) and Confidence Quantiles (y-axis). On the
left, values show the accuracy within a bin. On the right, values show the difference between the
confidence and the accuracy for a bin, lighter color indicates higher overconfidence. We observe
that within the same confidence range, atypical groups have larger miscalibration rates and are more
overconfident.

Co
ve

ra
ge

b) Conformal Prediction vs Atypicality 

EC
E

Atypicality Percentile

c) Recalibration with Atypicality

EC
E

Atypicality PercentileAtypicality Percentile

Co
ve

ra
ge

a) Expected Calibration Error vs Atypicality 

Figure 3: Atypicality for Reliable Uncertainty. a) Expected Calibration Error vs Atypicality. We
observe that atypical examples are poorly calibrated compared to typical examples. b) Conformal
Prediction vs Atypicality We observe that atypical examples have worse uncertainty sets where the
coverage is not satisfied compared to typical examples. The dashed line shows the 90% marginal
coverage guarantee. c) Recalibration with Atypicality We observe that with atypicality-aware
recalibration, we can improve the calibration of models and obtain more uniform coverage rates.
Atypical Examples are Poorly Calibrated: In Figure 6, we show the distribution of miscalibration
where each bin within the grid contains the intersection of the corresponding confidence and atypical-
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ity quantiles. We observe that within the same confidence range, predictions for atypical points have
lower accuracies and are more miscalibrated and overconfident.

In Figure 3a, we present the miscalibration (ECE) analyses. In these experiments, we split samples
into 5 quantiles according to atypicality and compute the expected calibration error for samples
within each group. The results show a monotonically increasing relationship between atypicality and
ECE. Specifically, we see that predictions for atypical examples are more miscalibrated compared to
typical samples. In Appendix Figure 7, we present the reliability diagrams decomposed by atypicality.
Predictions are more overconfident for atypical points; and our Theorem 3.1 supports this finding.

Overall, these results demonstrate that atypicality can predict calibration. This finding has several
practical implications. First, having an atypicality estimator can help us identify samples where
probabilistic predictors are less reliable. Furthermore, it suggests that predictions for minority
groups (groups with lower probability mass) are likely to be more miscalibrated, and this violates the
sufficiency criterion in the fairness literature (Barocas et al., 2017).

3.2 CONFORMAL PREDICTION: ATYPICAL SAMPLES HAVE WORSE UNCERTAINTY SETS

Conformal Prediction (Angelopoulos & Bates, 2021) is a framework that assigns a calibrated
uncertainty set to each instance. Given an instance X ∈ X and the true label Y ∈ Y , the goal is to
find a function C : X → 2Y that returns a subset of the label space such that Y ∈ C(X) with high
probability. The framework guarantees marginal coverage, i.e. P(Y ∈ C(X)) ≥ 1− α, for a choice
of α. See Appendix G.2 for further details.

Conditional Coverage quantifies the coverage for a group, i.e., P(Y ∈ C(X) | X ∈ G). While
conformal prediction provides marginal coverage guarantees, it may not guarantee the same for
specific groups, lacking conditional coverage guarantees. Lu et al. (2022) showed that conformal
prediction for skin lesion classifiers does not satisfy coverage when conditioned on groups of skin
color. Here, we investigate how conformal prediction performs with respect to atypicality, and focus
on analyzing atypicality-conditional coverage: P(Y ∈ C(X) | a(X) ∈ (ak−1, ak]) ≥ 1− α.

Results: In Figure 3b, we present the results. For each experiment, we fit a threshold using the
calibration set and produced prediction sets for each of the samples in the test set. Next, similar to
previous experiments, we split samples into atypicality quantiles and compute the coverage for that
group. The results show a monotonically decreasing relationship between atypicality and coverage.
Specifically, we observe that while typical examples satisfy the conditional coverage criterion, atypical
examples do not perform as well. See Tables 3,4 for the results in tabular format.

3.3 THEORETICAL ANALYSIS: CHARACTERIZING CALIBRATION ERROR WITH ATYPICALITY

Here, we aim to characterize the calibration error with atypicality. We build on the results from Bai
et al. (2021) and extend the analyses for atypicality-conditional calibration. We analyze Logistic
Regression with the Gaussian data model and describe the setting more formally in Appendix J.1.
Theorem 3.1. Consider the data generative model and the learning setting in Appendix J.1. For any K > 1,
suppose we consider the quantiles of a(X), a1, a2, ..., aK , aK+1 such that P(a(X) ∈ (ak, ak+1]) = 1/K for
k ∈ [K]. We assume ∥β∗∥ ≤ c0, and d/n = κ, for some sufficiently small c0, κ > 0. Then, for sufficiently
large n, for k = 2, . . . ,K, we have

E[u− P(Y = 1 | P̂1(X) = u) | a(X) ∈ [ak−1, ak]] > E[u− P(Y = 1 | P̂1(X) = u) | a(X) ∈ (ak, ak+1]]

That is, the resulting classification model is over-confident, and the level of over-confidence becomes
larger when the data is more atypical (with smaller a(X)). In addition, the gap becomes larger for
smaller sample sizes n. Proof of the theorem can be found in Appendix J.2.

4 IMPROVING RECALIBRATION WITH ATYPICALITY

In the following section, we delve into how atypicality can complement and improve post-hoc
recalibration methods. Specifically, we will examine Temperature Scaling (TS) (Guo et al., 2017). TS
adjusts the probability estimates of a model to improve its calibration. By utilizing our understanding
of atypicality, we will show how atypicality awareness helps improve TS and conformal prediction.
We empirically and theoretically show that taking atypicality into account improves recalibration.
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Figure 4: Fitted Temperature vs Atypicality. We observe a monotonically increasing relationship
between the atypicality of a group and the temperature parameter fitted to that group with TS.

Parametric Recalibration: Different Groups need Different Temperatures. Temperature scaling,
a single parameter variant of Platt Scaling (Platt et al., 1999), is a simple recalibration algorithm that
calibrates the model using a single temperature parameter. Namely, the predictor is of the form

P̂TS(X) = Softmax(f(X)/τ), (2)

where f : X → R|Y|, τ ∈ R. f is the model that takes an input and outputs scores/logits, and τ is
the recalibration parameter. In practice, τ is optimized using a calibration set to minimize a proper
scoring rule such as the cross-entropy loss. We refer the reader to Guo et al. (2017) for more details
on TS. Next, we look at the relationship between ECE and atypicality after recalibration.

Results: We separately perform Temperature Scaling on points grouped according to the atypicality
quantiles. Namely, we fit a separate temperature parameter to each of the atypicality quantiles,
let us denote it by τak

for the quantile covering a(X) ∈ (ak−1, ak]. In Figure 4, we observe an
increasing relationship between the values ak and τak

. We observe that different atypicality groups
need different adjustments to become calibrated, and more atypical groups need larger temperatures.
This suggests that being atypicality aware can potentially improve calibration. Furthermore, this can
mean that while a single temperature value improves average calibration, it may hurt other groups.

Atypicality-Aware Recalibration. Our findings point us to a simple proposal: Recalibration
algorithms should be parameterized not only by the model confidence but also by the atypicality.
Generally, we suggest that a recalibration method should take the following form:

P̂ATS(X) = R(P̂(X), a(X)), (3)

where the function is monotonic in both of its arguments, which are confidence and atypicality.
Concretely, we define a simple implementation with a quadratic function τ(a(X)) = c2a(X)2 +

c1a(X) + c0, where P̂ATS(X) = Softmax(f(X)/τ(a(X))). We optimize the parameters c0, c1, c2
over a calibration set to perform post-hoc recalibration. See Appendix G.1 for implementation details.

In Figure 3c, with the top 2 plots we show the ECE analyses, and with the bottom 2 plots we
show the results of performing conformal prediction after Atypicality-Aware Recalibration. Overall,
we observe that we improve the calibration and coverage rates obtained with existing methods.
For instance, we observe that coverage rates are more uniform across typical and atypical points,
without explicitly performing conformal prediction across these groups. Similarly, we obtain lower
calibration errors across all groups. In Table 1, we present the results in the tabular format. Our
results show that atypicality awareness can improve the existing recalibration methods, and in this
sense, it complements existing post-hoc approaches. Theory: In Appendix Theorem J.2, we analyze
atypicality-aware recalibration and show that it achieves lower calibration errors compared to TS.

5 IMPROVING DECISION-MAKING WITH ATYPICALITY

Reporting uncertainty can improve transparency and increase user trust (Bhatt et al., 2021; Chua et al.,
2022). Babbar et al. (2022) reports that the use of uncertainty sets improves user trust and Human+AI
performance. In the Selective Classification setting (Geifman & El-Yaniv, 2017), the model can
choose when to report a prediction or when to defer to a user. We argue that the atypicality framework
gives us a way to unify these actions. Our argument follows from the difference between the
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Figure 5: Selective Conformal Prediction with Atypicality. Here, coverage is the fraction of
samples that were not rejected, and the risk is the average number of samples where the true label was
not in the uncertainty set. We observe that using atypicality provides better Risk-Coverage curves.

Untrustworthy and Ambiguous quadrants. The Ambiguous quadrant has higher-quality uncertainty
sets, while the Untrustworthy quadrant has lower coverage, as we showed that atypical examples
have poor uncertainty sets. We give a simple classification setup for Selective Conformal Prediction:

O(X,Y, P̂) =

{
Y ∈ C(X) #Use uncertainty set
Y /∈ C(X) #Abstain

(4)

If we can reliably predict O(X,Y ), then we can pick the action based on this predicted outcome.
To do so, we can train a simple classifier Ô(X, P̂) to predict this outcome. To demonstrate how
atypicality provides useful information over using only confidence, we train two such classifiers:
1-Using only the confidence: Ô(X, P̂) = g(P̂(X)); and 2-Using atypicality and the confidence:
Ô(X, P̂) = g(P̂(X), a(X)). If the latter performs better than the former, we understand that using
atypicality can improve the decision-making process. The exact form of g can be flexible. In the
experiments we use XGBoost to make the decisions; we refer to Appendix I for details.

To evaluate our approach, we employ the Risk-Coverage curves used in the Selective Classification
literature (Geifman & El-Yaniv, 2017). 3 For a fixed coverage rate, the goal is to achieve lower risk by
knowing when to abstain. Here, we define the notion of risk to be the fraction of samples where the
uncertainty set does not contain the true label, namely 1[Y /∈ C(X)], and the abstention is needed.

Results: In Figure 10, we present the Risk-Coverage curves. Using atypicality in the decision
function provides strictly better Risk-Coverage curves, providing an easy way to improve the decision-
making process. Namely, we can better prioritize when it is better to reject the sample, and when the
uncertainty set is more likely to contain the true label.

6 CONCLUSION

In conclusion, our research demonstrates that atypicality offers a valuable framework to better
understand model reliability and generate actionable insights. The atypicality framework can help
us better predict uncertainty, better recalibrate models, and make better decisions. We propose that
pretrained models should be released not only with confidence but also with an atypicality estimator.
While there are many other relevant notions in the literature, our main goal is to show that atypicality
can provide a unifying perspective to discuss uncertainty, understand individual data points, and
improve fairness. While we analyzed only classification problems, our analyses can be naturally
extended to regression or generation settings. Furthermore, we would like to extend the theoretical
analysis to more general settings, as our empirical results demonstrate that the observed phenomena
hold more broadly. In light of our findings, we further encourage the community to mitigate the
adverse effects that could be caused by using models on the atypical data.

3Please note that in this context, the term Coverage means the fraction of samples where we did not abstain.
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A ATYPICALITY IS NEEDED TO UNDERSTAND UNCERTAINTY

High-confidence and representative: A sample and prediction are considered reliable if the model
makes a high-confidence prediction that is well-calibrated. For instance, the first image on the top
right quadrant of Figure 1 is highly representative of the golden retriever class, and the model makes
a high-confidence prediction for this sample.

High-confidence yet far from the support: Even though the model has high confidence in a
prediction, this confidence may not be reliable. In case the sample does not have support in the
training distribution yet the model has a confident prediction (extrapolation), the prediction may not
be reliable. For instance, the second image in the top left quadrant of Figure 1 is a toy hog, and the
model may not have seen similar objects during training.

Low confidence and far from distribution: A model can have low confidence in far-from-the-
distribution samples. For example, the third image in Figure 1 bottom left quadrant is an origami,
which can be out-of-distribution. We expect low-quality predictions in such cases.

Low confidence due to ambiguity: A low confidence prediction may be the result of ambiguity
in a sample. For instance, the second image in the bottom left quadrant of Figure 1 is both a hog
and can be a comic book. This is an inherent ambiguity, which is tied to the concept of aleatoric
uncertainty (Der Kiureghian & Ditlevsen, 2009).

B RELATED WORKS

B.1 RELATION TO EARLIER WORKS

The notion of atypicality has been shared in earlier works. Our distinct goal is to show that the
atypicality perspective is necessary and complementary to understanding and improving various
aspects of model uncertainty. We propose that if all models are equipped with simple-to-use atypicality
estimators, we can improve the reliability of the predictions. Methodologically, Mukhoti et al. (2021)
take a very similar approach to quantify density to distinguish epistemic and aleatoric uncertainty.
However, the source of uncertainty for an atypical example could be a combination of both epistemic
and aleatoric uncertainty, as noted by Mukhoti et al. (2021), and achieving this decomposition is
not our primary goal. An image of an unusual-colored dog would be atypical with high epistemic
uncertainty, yet a corrupted or highly noisy sample would be atypical with high aleatoric uncertainty.
Liu et al. (2020) propose a related notion of ‘distance awareness’. The underlying principles are highly
relevant, however, the findings and the methodologies proposed by both works are different. The
notion of ‘out-of-distribution’ (Hendrycks & Gimpel, 2016) is closely related to atypicality, however,
we do not aim to make the binary decision between ‘in-distribution’ and ‘out-of-distribution’. For
instance, we emphasize that samples could be in-distribution and atypical, e.g. rare subgroups (Sagawa
et al., 2019), and our goal is to perform reliably in the entire spectrum.

C ADDITIONAL RELATED WORK

Uncertainty and Atypicality: Closest in spirit and methodology to our work is Mukhoti et al.
(2021); Postels et al. (2020) where they use density estimation in the feature space to quantify and
disentangle the epistemic uncertainty and aleatoric uncertainty. Using this decomposition, they
show significant improvements in active learning and OOD detection. Similarly, Seedat et al. (2022)
use epistemic-aleatoric decomposition to characterize tabular data points. Lee et al. (2018) use
Mahalanobis distance to detect OOD examples, utilizing class-conditional gaussian likelihoods. In
concurrent work, Gonen et al. (2022) reports that perplexity, a measure of atypicality, is correlated
with the performance of language models in zero-shot classification. Hacohen et al. (2022) discuss
active learning, showing that model performance depends on atypicality in different regimes of
active learning. Liu et al. (2020) propose the relevant notion of distance-awareness in uncertainty
estimation, showing that accounting for distance leads to better uncertainty quantification. Namely,
they propose architecture and training modifications to improve uncertainty quantification whereas
here, we analyze the uncertainty of existing models with respect to our framework, and propose very
simple, post-hoc approaches to mitigate the found issues. Liu et al. (2019a) relate the excess risk
of a binary classifier to calibration, showing that the calibration gap for discrete groups is bounded
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by the excess risk for the group. Here, we extend these results and provide the characterization
with respect to atypicality. Multicalibration (Hébert-Johnson et al., 2018; Jung et al., 2021) is a
relevant notion where the calibration criterion holds for a collection of discrete groups. The notion of
‘out-of-distribution’ (Hendrycks & Gimpel, 2016) is highly relevant to atypicality, yet our goal is not
to make the binary distinction between ‘in-distribution’ and ‘out-of-distribution’. We aim to perform
reliably in the entire spectrum from atypical (e.g., rare groups) to typical (e.g., ambiguous samples).
Related findings include poor calibration under distribution shifts (Ovadia et al., 2019), uncertainty in
Gaussian Processes (Rasmussen, 2004), forgetting time for rare examples (Maini et al., 2022), the
poor performance of groups with lower sample sizes (Chen et al., 2018), using energy-based models
improving calibration (Grathwohl et al., 2020) showing the relationship between some notion of
atypicality versus uncertainty-related quantities. Our new findings include showing that predictions
for atypical samples are more miscalibrated and overconfident, and atypicality awareness improves
recalibration. More broadly, while there are many other relevant notions in the literature, our distinct
goal is to show that post-hoc atypicality estimation is a simple yet useful framework to understand and
improve uncertainty quantification, and complements existing methods. Thus, we take the position
that released models should have atypicality estimators.

Recalibration: There is a rich literature on recalibration methods: Temperature scaling (Guo et al.,
2017), Platt Scaling (Platt et al., 1999), conformal calibration (Shafer & Vovk, 2008; Angelopoulos
et al., 2020) among many. Lu et al. (2022); Romano et al. (2019); Barda et al. (2021); Bastani et al.
(2022) make a relevant observation in classification and regression respectively, showing that the
coverage of conformal prediction is not equal across all groups. They propose group conformal
calibration, which requires group labels whereas our proposal is unsupervised and does not depend on
any attribute information. Concurrent work (Joy et al., 2022) explores sample-dependent TS, where
they modify the training pipeline and train a separate network. However, our parameterization of
temperature is based only on atypicality, and our approach is post-hoc and cheap.

Uncertainty and Decision-Making: Uncertainty of a model has been used in various ways.
Selective classification (Geifman & El-Yaniv, 2017; Fisch et al., 2022) proposes abstaining as an
option in downstream decisions. Conformal prediction (Shafer & Vovk, 2008; Angelopoulos et al.,
2020) proposes to provide uncertainty sets instead of a single class prediction. However, it is still an
open research direction to assess the utility of these approaches. Bhatt et al. (2021) gives a broad
overview of the topic. Babbar et al. (2022) studies the utility of prediction sets, showing that when
used carefully they can improve user trust and Human-AI collaboration performance. Overall, our
approach demonstrates that post-hoc atypicality estimators help unify these settings and achieve
improvements.

D ATYPICALITY ESTIMATION

Quantifying atypicality requires access to the class-conditional / marginal distributions. However,
in practice, we do not have access to these, and hence, we need to compute the estimates. This
estimation can be challenging if the dimensionality is large, or the data is unstructured as in language
or vision modalities, requiring assumptions about the distributions. Prior work such as Mukhoti
et al. (2021); Lee et al. (2018) have shown that Gaussian Mixture Models in the embedding space of
neural networks can be used to model these distributions. In our experiments we use class-conditional
Gaussian distributions with shared covariance matrices, i.e. P̂(X = x|Y = c) ∼ N(µ̂c, Σ̂), to
estimate atypicality. We perform these in the penultimate layer of the neural networks used to make
predictions. The parameters are estimated using maximum-likelihood estimation with samples from
the training dataset. We explore other methods to compute atypicality, such as k-Nearest Neighbors
distance as an atypicality metric. We give implementation details of these methods in Appendix D.1
and report results with different atypicality metrics. Further, we refer to the probability of the
top-class, i.e. max

y
P̂(Y = y|X = x) as the Confidence.

D.1 DENSITY ESTIMATION

To estimate atypicality, we use two ways to estimate the likelihood of a point under the training
distribution.
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Fitting individual Gaussians to Class Conditionals Here, we follow a similar approach to Mukhoti
et al. (2021). Namely, we model the clas-conditionals with a gaussian, where the covariance matrix is
tied across classes:

P̂(X|Y = y) ∼ N(X;µy,Σ) (5)

We fit the parameters µy and Σ with maximum likelihood estimation. The reason to tie the covariance
matrix is due to the number of samples required to fit the density. Namely, for a d-dimensional
problem, the total number of parameters to fit individual matrices become O(yd2), which results in
low-quality estimates. Then, the atypicality becomes

a(X) = 1−max
y∈Y

P̂(X|Y = y) (6)

D.2 COMPUTING DISTANCE WITH K-NEAREST NEIGHBORS

k-Nearest Neighbors: Similarly, we can use the nearest neighbor distance. Concretely, we use
the nearest neighbor distance, a(x) = dmin(x,Dtrain) = minx′∈Dtrain |x′ − x| , as the atypicality
metric. Alternatively, we can use different notions such as the average of k-nearest neighbors, or the
distance to the kth neighbor. Below, we report the results by using the average distance to 10-nearest
neighbors.

D.3 FITTING THE ESTIMATORS

For all of the atypicality estimators, we fit the estimators using samples from the training sets and
make inference for the calibration and test sets. For instance, we use the training split of ImageNet
to fit the corresponding density estimator and compute the atypicality for the samples from the
validation/test split of ImageNet. All of our results using atypicality are reported for the test splits of
the below datasets.

D.4 ATYPICALITY AND CONFIDENCE

Figure 6: Atypicality and Confidence. Here, x-axis reflects the typicality quantile, and y-axis
indicates the confidence. The coloring for the figure on the left indicates the accuracy within a bin,
and the figure on the right has the difference betwee the confidence and the accuracy within a bin. We
observe that even within the same confidence range, atypical examples tend to be more miscalibrated
compared to typical examples.

Are atypicality and confidence equally informative? Beyond the data perspective given in Figure 1,
here we provide quantitative results to demonstrate the difference. In Figure 6, we provide a grid plot
where the x-axis indicates the typicality quantile of a point, and the y-axis indicates the confidence of
a point. The coloring on the left indicates the accuracy within a bin split according to accuracy, and
the right has the difference between average confidence and the accuracy. Observe that for a certain
confidence interval, larger values of typicality mean better quality probabilistic estimates, and larger
atypicality means more miscalibration.
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E EXPERIMENTAL DETAILS

Throughout this study, we focus on classification problems across a range of datasets and architectures.
We utilize publicly available datasets and models, which are detailed in Appendix E. Specifically,
we evaluate image classifiers ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2020), text
classifiers RoBERTa (Liu et al., 2019b) and DistilBERT (Sanh et al., 2019), and XGBoost (Chen
& Guestrin, 2016) for tabular classification. We employ CIFAR10, CIFAR100 (Krizhevsky, 2009),
and ImageNet (Deng et al., 2009) for object recognition, MNLI (Williams et al., 2018) for natural
language inference, Banking77 (Casanueva et al., 2020) for banking intent classification, and the
Electricity dataset (Vanschoren et al., 2013), which is a tabular classification dataset for predicting
electricity price shifts.

E.1 DATASETS

Below is a full list of datasets:

1. ImageNet (Deng et al., 2009) from Torchvision (Marcel & Rodriguez, 2010) is an object
recognition dataset with 1000 classes.

2. CIFAR10, CIFAR100 (Krizhevsky, 2009) from Torchvision (Marcel & Rodriguez, 2010)
are object recognition datasets with 10/100 classes.

3. MNLI (Williams et al., 2018) from Huggingface Datasets (Lhoest et al., 2021) is a natural
language inference dataset with 3 classes, indicating entailment, neutral, and contradiction
outcomes.

4. Banking77 (Casanueva et al., 2020) from Huggingface Datasets (Lhoest et al., 2021) is a
banking intent classification dataset with 77 classes.

5. Electricity from OpenML (Vanschoren et al., 2013) obtained through Scikit-Learn (Pe-
dregosa et al., 2011)

For the electricity dataset, we use the average distance to 10-nearest-neighbors as the atypicality
metric. All of our experiments were run on a single Nvidia GeForce RTX 2080Ti GPU.

E.2 MODELS

Most of the models are public models, e.g., obtained from the Transformers Library (Wolf et al.,
2020) or Torchvision (Marcel & Rodriguez, 2010). Below we give the full model details and how
one can access them:

1. ViT(HuggingFace Ahmed9275/Vit-Cifar100), pretrained on Imagenet-21k (Rid-
nik et al., 2021) then finetuned on CIFAR100. One can use the id given here on HuggingFace
to download the model.

2. RoBERTa(HuggingFace roberta-large-mnli) trained on the MNLI dataset. One
can use the id given here on HuggingFace to download the model.

3. ResNet18 from (Torchvision (Marcel & Rodriguez, 2010)) trained on ImageNet.

4. ResNet20 trained on CIFAR10, which can be downloaded from (PyTorchCV4)

5. DistilBERT trained on Banking77(HuggingFace optimum/distilbert-base-uncased-finetuned-banking77)
which can be downloaded from HuggingFace

6. XGBoost: We train our own XGBoost model on the tabular dataset where we use the
XGBoost library, https://github.com/dmlc/xgboost.

For all BERT (Devlin et al., 2019) style models we use the [CLS] token embeddings in the final
layer, and for all vision models, we use the penultimate layer embeddings to fit the density estimators
and perform the analyses.

4https://github.com/osmr/imgclsmob
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F CALIBRATION

We run all our experiments with 10 different random seeds, where the seeds are {0, 1, 2, . . . , 9}.
Randomness is over fitting the atypicality estimators, and calibration-test splits (we use the same
splits with the recalibration experiments for the sake of consistency).

F.1 EXPECTED CALIBRATION ERROR

To compute ECE, we generate B = {B1, B2, ..., BM}, M equally-spaced bins where samples are
sorted and grouped according to their confidence, to compute

ECE[P̂] =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (7)

where acc(Bm) = 1
|Bm|

∑|Bm|
i=1 1[ŷi = yi] is the accuracy for the bin m, and conf(Bm) =

1
|Bm|

∑|Bm|
i=1 P̂(Y = ŷi|X = xi) gives the average confidence within the bin. |Bm| is the size

of the bin m, N is the total number of samples, and 1[·] is the indicator function.

Throughout our experiments, we let the number of bins |B| = 10 by default.

F.2 RELIABILITY DIAGRAMS

Here, we present the reliability diagrams decomposed by atypicality for more fine-grained analysis.
For instance, one can observe that for ImageNet and ResNet18, the direction of miscalibration is
towards overconfidence. Particularly, predictions for more atypical points are more overconfident
compared to the typical points, see Figure 7.

Furthermore, if we look at the miscalibration rates after recalibration, we observe that miscalibration
rates get more flat with Atypicality-Aware recalibration, improving calibration across the board, see
Figure 8.
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Figure 7: Reliability diagrams for ResNet18 on ImageNet. Here, we share the reliability diagrams
for all recalibration methods and atypicality quantiles. We observe that a) the model is more
overconfident for atypical points, b) Atypicality-Aware Recalibration improves ECE for all groups.

F.3 ECE AND ATYPICALITY RESULTS WITH DIFFERENT ATYPICALITY METRICS

We further experiment with different atypicality metrics, such as the average distance to the 10-nearest
neighbors (Figure 9). We broadly observe that while there are slight differences in the quantitative
results between different atypicality metrics, the qualitative phenomena remain intact.

G RECALIBRATION

Through all our recalibration results, we first split the test set into two equally sized calibration
and test splits. Then, we fit the recalibration method using the calibration split and compute the
performance on the test split. We run all our experiments with 10 different random seeds.

G.1 TEMPERATURE SCALING

To perform temperature scaling (Guo et al., 2017), we use the calibration set to fit the temperature
parameter. To perform the optimization, we use the LBFGS (Liu & Nocedal, 1989) algorithm from
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Figure 8: Reliability diagrams for recalibration with ResNet18 on ImageNet. Here, we share the
reliability diagrams for all recalibration methods and atypicality quantiles. We observe that a) the
model is more overconfident for atypical points, b) Atypicality-Aware Recalibration improves ECE
for all groups.

a) Expected Calibration Error vs Atypicality b) Conformal Prediction vs Atypicality 
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Figure 9: Atypicality with 10-nearest neighbors and Uncertainty. Here, we report the results of
the same experiments as Figure 3 with the average of the distance to the 10-nearest neighbors as the
atypicality metric. See the Tables 2 and 4 for the results in tabular format.

PyTorch with strong Wolfe line search, following Guo et al. (2017). Namely, we optimize the
parameter τ with

P̂TS(X) = Softmax(f(X)/τ) (8)
and then use it during inference to rescale the logits produced by f .

G.2 CONFORMAL PREDICTION

We follow the presentation in Angelopoulos & Bates (2021); Angelopoulos et al. (2020). Let π(X)

be the permutation of Y = {1, . . . , C} that sorts P̂(Y = c|X), i.e. the predicted probabilities for
each class c. We define a score function

s(x, y) =

c∑
j=1

P̂(Y = j|X),where y = πc. (9)

This means greedily including classes until the set contains the true label, and using the cumulative
sum of the probabilities as the score function. We compute all of the scores for the calibration
set, Scalib = {s(x1, y1), ..., s(xN , yN )}, we the ⌈(N+1)(1−α)⌉

N th quantile of the scores, q̂. Then, the
uncertainty set is defined as

C(x) = {y : s(x, y) ≤ q̂} (10)
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ResNet18 on ImageNet RoBERTa on MNLI

Figure 10: Selective Conformal Prediction with Atypicality. Here, coverage is the fraction of
samples that were not rejected, and the risk is the average number of samples where the true label was
not in the uncertainty set. We observe that using atypicality provides better Risk-Coverage curves.
We can further add randomization to the procedure where we have the uncertainty set function to
be C(x, u) : X × [0, 1] for randomization purposes to satisfy exact coverage. We refer to Vovk et al.
(2005); Angelopoulos et al. (2020); Angelopoulos & Bates (2021) for a more thorough presentation.

G.3 ATYPICALITY-AWARE RECALIBRATION

To perform the Atypicality-Aware Recalibration, we parameterize the temperature with
τ(X) = c2a(X)2 + c1a(X) + c0 (11)

which leads to
P̂ATS(X) = Softmax(f(X)/τ(X))

Similar to vanilla temperature scaling, we use LBFGS with strong wolfe search to optimize the three
parameters, with the same splits as temperature scaling.

H TABLES FOR RESULTS

Here, we present the table version of the results in Figure 3. Tables 1 and 2 contain the ECE analysis,
and Tables 3 and 2 contain the coverage analyses for the two atypicality metrics.

I DECISION-MAKING

For the decision-making setup, we train 2 sets of classifiers:

1. Using only the confidence: Ô(X, P̂) = g(P̂(X))
2. Using atypicality and the confidence: Ô(X, P̂) = g(P̂(X), a(X))

We XGBoost to predict the outcome. We run hyperparameter search with 5-fold cross-validation
using the calibration set, over the following parameters: min child weight ∈ {1, 5, 10}, gamma
∈ {0.5, 1, 1.5, 2, 5}, subsample ∈ {0.6, 0.8, 1.0}, colsample bytree ∈ {0.6, 0.8, 1.0},
max depth ∈ {2, 3, 4, 5}, n estimators ∈ {10, 20, 40}. We refer the reader to the XGBoost
documentation5 page for the detailed semantics of each hyperparameter.

J THEORY

J.1 SETTING

Data Generative Model: We consider the well-specified logistic model for binary classification with
Gaussian data, where Y ∈ {−1, 1} and the probability of Y = 1 given X is defined by the sigmoid

5https://xgboost.readthedocs.io/en/stable/
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Table 1: Analyzing Expected Calibration Error versus Atypicality. Here, the atypicality metric is
through fitting Gaussians as class-conditionals. All experiments were run with 10 random seeds and
means along with standard errors are reported.

Atypicality (−maxc P̂(X|Y = c)) vs Expected Calibration Error
Atypicality Quantile Atypicality-Aware Recalibration Temperature Scaling Before Recalibration

ResNet18 on ImageNet

0.2 0.019± 0.001 0.033± 0.001 0.019± 0.001
0.4 0.017± 0.001 0.021± 0.001 0.019± 0.001
0.6 0.022± 0.001 0.022± 0.001 0.025± 0.002
0.8 0.023± 0.001 0.026± 0.001 0.043± 0.002
1.0 0.023± 0.001 0.034± 0.001 0.054± 0.001

ResNet20 on CIFAR10

0.2 0.001± 0.000 0.004± 0.000 0.002± 0.000
0.4 0.005± 0.001 0.004± 0.001 0.004± 0.000
0.6 0.011± 0.001 0.010± 0.002 0.012± 0.001
0.8 0.014± 0.001 0.016± 0.001 0.019± 0.002
1.0 0.020± 0.002 0.022± 0.002 0.026± 0.002

ViT on CIFAR100

0.2 0.004± 0.001 0.009± 0.001 0.004± 0.001
0.4 0.004± 0.001 0.009± 0.001 0.011± 0.001
0.6 0.011± 0.001 0.010± 0.001 0.026± 0.001
0.8 0.042± 0.002 0.045± 0.002 0.079± 0.002
1.0 0.085± 0.003 0.100± 0.003 0.196± 0.002

RoBERTa on MNLI

0.2 0.006± 0.001 0.013± 0.001 0.005± 0.001
0.4 0.008± 0.001 0.013± 0.001 0.016± 0.001
0.6 0.018± 0.001 0.015± 0.001 0.034± 0.002
0.8 0.029± 0.002 0.031± 0.002 0.061± 0.002
1.0 0.022± 0.003 0.028± 0.002 0.065± 0.002

DistilBERT on Banking77

0.2 0.004± 0.001 0.003± 0.001 0.007± 0.001
0.4 0.005± 0.001 0.009± 0.001 0.016± 0.001
0.6 0.011± 0.002 0.015± 0.001 0.023± 0.001
0.8 0.040± 0.004 0.036± 0.003 0.026± 0.002
1.0 0.059± 0.004 0.068± 0.005 0.049± 0.004

function:
P(Y = 1 | X) = σ(⟨β∗, X⟩), X ∼ N(0, Id).

Where Id denotes the d-dimensional identity matrix, β∗ is the ground truth coefficient vector, σ(x) =
1/(1 + e−x), and we have i.i.d. observations {(xi, yi)}ni=1 sampled from the above distribution.

The estimator: We focus on studying logistic regression, which produces a solution that minimizes
the following:

β̂ = argmin
β

1

n

n∑
i=1

[log(1 + exp(β⊤xi))− yi · β⊤xi].

For k ∈ {−1, 1}, the confidence P̂k(x) is an estimator of P̂(y = k|x), and it takes the form
P̂k(x) =

1

e−k·β̂⊤x+1
.

Calibration: Here we consider the case where P1(X) > 1/2, as the case where P1(X) ≤ 1/2 can
be analyzed similarly by symmetry. For u ∈ (1/2, 1), the signed calibration error at a confidence
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Table 2: Analyzing Expected Calibration Error versus Atypicality. Here, the atypicality metric is the
average distance to 10-nearest neighbors. All experiments were run with 10 random seeds and means
along with standard errors are reported.

Atypicality (average distance to 10-nearest neighbors) vs Expected Calibration Error
Atypicality Quantile Atypicality-Aware Recalibration Temperature Scaling Before Recalibration

ResNet18 on ImageNet

0.2 0.018± 0.001 0.021± 0.002 0.022± 0.001
0.4 0.019± 0.001 0.022± 0.001 0.020± 0.001
0.6 0.022± 0.001 0.024± 0.001 0.022± 0.001
0.8 0.024± 0.001 0.026± 0.001 0.031± 0.001
1.0 0.029± 0.001 0.033± 0.001 0.054± 0.001

ResNet20 on CIFAR10

0.2 0.001± 0.000 0.006± 0.000 0.004± 0.000
0.4 0.001± 0.000 0.006± 0.000 0.004± 0.000
0.6 0.007± 0.001 0.005± 0.001 0.006± 0.001
0.8 0.016± 0.002 0.019± 0.002 0.023± 0.002
1.0 0.018± 0.002 0.031± 0.002 0.035± 0.002

ViT on CIFAR100

0.2 0.002± 0.000 0.009± 0.001 0.003± 0.001
0.4 0.003± 0.001 0.012± 0.001 0.007± 0.001
0.6 0.014± 0.002 0.011± 0.001 0.030± 0.001
0.8 0.033± 0.002 0.042± 0.002 0.074± 0.001
1.0 0.080± 0.004 0.103± 0.003 0.202± 0.003

RoBERTa on MNLI

0.2 0.003± 0.000 0.011± 0.001 0.002± 0.000
0.4 0.009± 0.001 0.013± 0.002 0.016± 0.001
0.6 0.014± 0.001 0.015± 0.001 0.029± 0.001
0.8 0.029± 0.003 0.035± 0.003 0.066± 0.002
1.0 0.029± 0.003 0.028± 0.002 0.065± 0.002

DistilBERT on Banking77

0.2 0.002± 0.001 0.007± 0.001 0.013± 0.001
0.4 0.003± 0.001 0.004± 0.001 0.012± 0.001
0.6 0.003± 0.001 0.007± 0.001 0.017± 0.001
0.8 0.022± 0.003 0.020± 0.002 0.020± 0.002
1.0 0.065± 0.006 0.084± 0.005 0.059± 0.004

level u is

u− P(Y = 1 | P̂1(X) = u).

We want to show that when X is atypical, i.e., when a(X) := exp(−∥X∥2/2) is smaller6, the
accuracy P(Y = 1 | P̂1(X) = u) would be generally smaller than the confidence u (over-confidence).

J.2 PROOF OF THEOREM 3.1

Theorem J.1 (Restatement of Theorem 3.1). Consider the data generative model with the algo-
rithm described in Section 3.3. For any K > 1, suppose we consider the quantiles of a(X),
a1, a2, ..., aK , aK+1 such that P(a(X) ∈ (ak, ak+1]) = 1/K for k ∈ [K]. In addition, we assume

6The definition of atypicality follows from the data model: density for the Gaussian with zero mean and
identity covariance.

20



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Table 3: Analyzing Coverage versus Atypicality. Here, the atypicality metric is through fitting
Gaussians as class-conditionals. All experiments were run with 10 random seeds and means along
with standard errors are reported.

Atypicality (−maxc P̂(X|Y = c)) vs Coverage
Atypicality Quantile Atypicality-Aware Recalibration Temperature Scaling Before Recalibration

ResNet18 on ImageNet

0.2 0.901± 0.001 0.919± 0.001 0.920± 0.001
0.4 0.902± 0.002 0.913± 0.001 0.913± 0.002
0.6 0.899± 0.001 0.903± 0.001 0.901± 0.001
0.8 0.895± 0.002 0.891± 0.001 0.886± 0.001
1.0 0.902± 0.002 0.873± 0.001 0.873± 0.002

ResNet20 on CIFAR10

0.2 0.901± 0.003 0.904± 0.004 0.910± 0.004
0.4 0.897± 0.003 0.903± 0.004 0.906± 0.003
0.6 0.899± 0.004 0.898± 0.003 0.902± 0.003
0.8 0.901± 0.003 0.894± 0.004 0.898± 0.005
1.0 0.900± 0.003 0.893± 0.004 0.893± 0.002

ViT on CIFAR100

0.2 0.902± 0.004 0.913± 0.002 0.947± 0.002
0.4 0.902± 0.003 0.910± 0.004 0.940± 0.001
0.6 0.890± 0.004 0.905± 0.003 0.923± 0.003
0.8 0.878± 0.002 0.877± 0.002 0.884± 0.003
1.0 0.909± 0.002 0.886± 0.003 0.812± 0.003

RoBERTa on MNLI

0.2 0.900± 0.004 0.918± 0.003 0.919± 0.003
0.4 0.900± 0.004 0.912± 0.003 0.913± 0.003
0.6 0.892± 0.003 0.895± 0.005 0.897± 0.003
0.8 0.894± 0.003 0.889± 0.003 0.882± 0.004
1.0 0.901± 0.002 0.890± 0.004 0.882± 0.002

DistilBERT on Banking77

0.2 0.904± 0.008 0.906± 0.005 0.911± 0.005
0.4 0.912± 0.005 0.913± 0.006 0.913± 0.005
0.6 0.910± 0.004 0.918± 0.004 0.914± 0.004
0.8 0.885± 0.006 0.886± 0.006 0.890± 0.003
1.0 0.895± 0.005 0.872± 0.005 0.886± 0.004

∥β∗∥ ≤ c0, and d/n = κ for some sufficiently small c0, κ > 0. Then for sufficiently large n, we have

Eu[u− P(Y = 1 | P̂1(X) = u) | a(X) ∈ [ak−1, ak]] >

Eu[u− P(Y = 1 | P̂1(X) = u) | a(X) ∈ (ak, ak+1]],

for k = 2, ..,K.

Proof. Following Bai et al. (2021), we have

u− P(Y = 1 | P̂1(X) = u) = u− EZ [σ(
∥β∗∥
∥β̂∥

cos θ̂ · σ−1(u)) + sin θ̂ · ∥β∗∥Z],

where cos θ̂ = β̂⊤β∗

∥β̂∥·∥β∗∥
and Z ∼ N(0, 1).
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Table 4: Analyzing Coverage versus Atypicality. Here, the atypicality metric is the average distance
to the 10 nearest neighbors. All experiments were run with 10 random seeds and means along with
standard errors are reported.

Atypicality (average distance to 10-nearest neighbors) vs Coverage
Atypicality Quantile Atypicality-Aware Recalibration Temperature Scaling Before Recalibration

ResNet18 on ImageNet

0.2 0.900± 0.001 0.904± 0.001 0.907± 0.001
0.4 0.902± 0.001 0.908± 0.002 0.911± 0.002
0.6 0.900± 0.002 0.907± 0.001 0.906± 0.001
0.8 0.896± 0.001 0.899± 0.001 0.895± 0.001
1.0 0.900± 0.002 0.881± 0.002 0.874± 0.002

ResNet20 on CIFAR10

0.2 0.905± 0.002 0.908± 0.002 0.915± 0.003
0.4 0.901± 0.003 0.905± 0.003 0.909± 0.004
0.6 0.896± 0.003 0.902± 0.004 0.903± 0.004
0.8 0.889± 0.004 0.885± 0.005 0.893± 0.003
1.0 0.906± 0.003 0.891± 0.002 0.888± 0.002

ViT on CIFAR100

0.2 0.896± 0.003 0.914± 0.004 0.949± 0.002
0.4 0.899± 0.003 0.911± 0.003 0.940± 0.002
0.6 0.887± 0.004 0.902± 0.004 0.919± 0.001
0.8 0.882± 0.003 0.880± 0.002 0.887± 0.003
1.0 0.916± 0.003 0.885± 0.003 0.812± 0.003

RoBERTa on MNLI

0.2 0.896± 0.003 0.913± 0.003 0.924± 0.002
0.4 0.899± 0.004 0.916± 0.004 0.908± 0.003
0.6 0.899± 0.003 0.903± 0.003 0.902± 0.003
0.8 0.892± 0.004 0.886± 0.003 0.880± 0.004
1.0 0.900± 0.003 0.884± 0.004 0.879± 0.002

DistilBERT on Banking77

0.2 0.908± 0.007 0.915± 0.005 0.913± 0.005
0.4 0.900± 0.004 0.909± 0.006 0.908± 0.003
0.6 0.913± 0.006 0.918± 0.003 0.916± 0.006
0.8 0.901± 0.004 0.897± 0.007 0.904± 0.004
1.0 0.886± 0.005 0.856± 0.006 0.872± 0.004

According to Sur & Candès (2019), we have ∥β̂∥ → R∗ = R∗(κ, β∗) and cos θ̂ → c∗ = c∗(κ, β∗),
for two quantities R∗ and c∗ that depend on κ and β∗. We then have

u− P(Y = 1 | P̂1(X) = u) = u− EZ [σ(
∥β∗∥
R∗ c∗ · σ−1(u)) +

√
1− c∗2 · ∥β∗∥Z].

Using the proof of Theorem 3 in Bai et al. (2021), we have that

u− P(Y = 1 | P̂1(X) = u) = Cκ(u) · κ+ o(κ),

where
Cκ(u) = c1σ

′(σ−1(u)) · σ−1(u)− c2σ
′′(σ−1(u)),

for two positive constants c1, c2.

Since when z ∈ [−1, 1], z · σ′(z) and −σ′′(z) are both increasing, we then have Cκ(u) increasing
for β̂⊤x = σ−1(u) ∈ (−1, 1).
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Proving the result for {k = 2, . . . ,K−1} In addition, by our model assumption x ∼ N(0, Id), we
have that ∥x∥ and x

∥x∥ are independent, and x
∥x∥ ∼ S where S is a uniform distribution on the sphere

in the d-dimensional space. As the monotonic transformations will not change the events defined by
quantiles, and exp(−∥x∥2/2) is a monotonic function in ∥x∥, for the simplicity of presentation we
use a(X) = ∥X∥ in the rest of this proof. As a result, given ∥x∥ = a, we have

β̂⊤x | ∥x∥ = a
d
= a · β̂⊤S = a · ∥β̂∥ · S1,

where S1 is the first coordinate of S.

Consequently, if we further condition on the event where β̂⊤x > 0 (as we assume u > 0 throughout
Section 3.3), we have

β̂⊤x
d
= a · ∥β̂∥ · S1 | S1 > 0

d
= a · ∥β̂∥ · Z1√

Z2
1 +Q

→ a ·R∗ · Z1√
Z2
1 +Q

,

where Q ∼ χ2
p−1, Z1 ∼ N(0, 1) and they are independent.

Due to the monotonicity of Cκ(u) on u, we have that for any a1 > a2,

Cκ(u) | ∥x∥ = a1
d
> Cκ(u) | ∥x∥ = a2,

where the notation
d
> denotes stochastic dominance.

Consequently, we have

Eu[u−P(Y = 1 | P̂1(X) = u) | a(X) ∈ [ak−1, ak]] < Eu[u−P(Y = 1 | P̂1(X) = u) | a(X) ∈ (ak, ak+1]],

for k = 2, ..,K − 1.

Proving the result for k = K To complete the proof, it suffices to show that the inequality is also
true for Kth quantile:

Eu[u−P(Y = 1 | P̂1(X) = u) | a(X) ∈ [aK−1, aK ]] < Eu[u−P(Y = 1 | P̂1(X) = u) | a(X) ∈ (ak, ak+1]],

which is equivalent to

Eu[(u−P(Y = 1 | P̂1(X) = u))·1{a(X) ∈ [aK−1, aK ]}] < Eu[(u−P(Y = 1 | P̂1(X) = u))·1{a(X) ∈ (ak, ak+1]}].

In the above inequality, the right hand side can be decomposed into

Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ (ak, ak+1]}]
=Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [aK , 2p]}]
+ Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [2p, aK+1]}].

Denote the α quantile of χ2
p by χ2

α,p. We then have ak = χ2
k

K+1 ,p
. We further decompose the equation

into

Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [aK , 2p]}]
=Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [aK , χ2

K+δ
K+1 ,p

]}]

+ Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]}].

In the following, we proceed to prove

Eu[(u−P(Y = 1 | P̂1(X) = u))·1{a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]}] > Eu[(u−P(Y = 1 | P̂1(X) = u))·1{a(X) ∈ [aK−1, aK}].
(12)

We now use the approximation of the chi-square quantile: when p → ∞, we have

aK =
1

2
(z K

K+1
+
√

2p)2 + o(1), and χ2
K+δ
K+1 ,p

=
1

2
(zK+δ

K+1
+

√
2p)2 + o(1),
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where zα denotes the α-quantile of a standard normal random variable.

Then

χ2
K+δ
K+1 ,p

− aK =
1

2
(zK+δ

K+1
− z K

K+1
)(zK+δ

K+1
+ z K

K+1
+ 2

√
2p).

Using the fact that z1− 1
K

=
√
2 logK + o(1) for K → ∞, then we have

zK+δ
K+1

− z K
K+1

=
− log(1− δ)√

2 logK
+ o(1).

In addition, for any a ∈ [χ2
K+δ
K+1 ,p

, 2p] and a′ ∈ [aK−1, aK ], we have

Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) = a]− Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) = a′]

≥C(zK+δ
K+1

− z K
K+1

),

for some universal constant C.

Therefore

Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]]− Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]]

≥C(zK+δ
K+1

− z K
K+1

).

Then

Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]}]

=Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]] · P(a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p])

≥
(
Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]] + C(zK+δ

K+1
− z K

K+1
)
)
· ( 1

K
− δ

K + 1
+ o(

δ

K + 1
))

=Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [aK−1, aK}]

+ C(zK+δ
K+1

− z K
K+1

)− (1 + o(1))
δ

K + 1
· Eu[(u− P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]].

The last equality uses the fact that P(a(X) ∈ [aK−1, aK ]) = 1/K, and therefore

Eu[(u−P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]· 1
K

= Eu[(u−P(Y = 1 | P̂1(X) = u))·1{a(X) ∈ [aK−1, aK}]

Then use the fact that |Eu[(u − P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]]| = O(1) and we
choose δ = o(1/ logK) so

δ

K
= o(| log(1− δ)√

logK
|).

Consequently,

C(zK+δ
K+1

−z K
K+1

)−(1+o(1))
δ

K + 1
·Eu[(u−P(Y = 1 | P̂1(X) = u)) | a(X) ∈ [aK−1, aK ]] > 0,

which implies

Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [χ2
K+δ
K+1 ,p

, 2p]}] ≥ Eu[(u− P(Y = 1 | P̂1(X) = u)) · 1{a(X) ∈ [aK−1, aK}].

We, therefore, prove equation 12 and complete the proof.
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J.3 THEORY: ATYPICALITY-AWARE RECALIBRATION

We analyze atypicality-aware recalibration under the same learning setting and generative model as
Theorem 3.1. For a predictor P̂, let us denote its conditional calibration error at an atypicality level γ
by CEγ(P̂) = E[(P̂(Y = 1|X)− E[Y |P̂(Y = 1|X)])2|a(X) = γ].
Theorem J.2. Consider the setting in Theorem 3.1. Let the temperature function τ̂(a(X)) =

argminτ E[l(Y, Softmax(f(X)/τ(a(X))))] where l is the cross-entropy loss, and P̂ATS(X) =
Softmax(f(X)/τ̂(a(X))). Then

CEγ(P̂ATS) ≤ min{CEγ(P̂TS),CEγ(P̂)}. (13)

That is, for all atypicality values γ, The proof can be found in Appendix J.4.

J.4 PROOF OF THEOREM J.2

Theorem J.3 (Restatement of Theorem J.2). Consider the same setting as Theorem 3.1. Suppose the
temperature function τ̂(a(X)) = argminτ E[l(Y, Softmax(f(X)/τ(a(X))))] with l being the cross
entropy loss, and let P̂ATS(X) = Softmax(f(X)/τ̂(a(X))). Then

CEγ(P̂ATS) ≤ min{CEγ(P̂TS),CEγ(P̂)}. (14)

For a prediction function f , we first define the conditional mean squared error of f at an atypicality
level γ by MSEγ(f) = E[(f(X)− Y )2 | a(X) = γ], then we have

MSEγ(f)− CEγ(f) =E[(f(X)− Y )2 | a(X) = γ]− E[(f(X)− E[Y | f(X), a(X) = γ])2 | a(X) = γ]

=E[(E[Y | f(X), a(X) = γ]− Y ) · (2f(X)− E[Y | f(X), a(X) = γ]− Y ) | a(X) = γ]

=E[(E[Y | f(X), a(X) = γ]− Y ) · (E[Y | f(X), a(X) = γ]− Y ) | a(X) = γ]

+ 2E[(E[Y | f(X), a(X) = γ]− Y ) · (f(X)− E[Y | f(X), a(X) = γ])) | a(X) = γ]

Since

E[Y E[Y | f(X), a(X) = γ] | a(X) = γ]

=Ef(X)|a(X)=γE[Y E[Y | f(X), a(X) = γ] | f(X), a(X) = γ]]

=E[(E[Y | f(X), a(X) = γ])2 | a(X) = γ],

we have

E[(E[Y | f(X), a(X) = γ]− Y ) · (f(X)− E[Y | f(X), a(X) = γ])) | a(X) = γ] = 0,

and therefore

MSEγ(f)− CEγ(f) = E[(E[Y | f(X), a(X) = γ]− Y )2 | a(X) = γ]

Now that P̂ATS(P̂(x), a(x)) is monotonic on the P̂(x), we have

E[Y | P̂(x), a(X) = γ] = E[Y | P̂ATS(P̂(x), a(X)), a(X) = γ],

implying
MSEγ(P̂ATS)− CEγ(P̂ATS) = MSEγ(P̂)− CEγ(P̂). (15)

Similarly, we have

MSEγ(P̂TS)− CEγ(P̂TS) = MSEγ(P̂)− CEγ(P̂). (16)

In the following, we will show that

MSEγ(P̂ATS) < min{MSEγ(P̂TS),MSEγ(P̂)}. (17)

First, as we consider the binary classification setting, with l being the cross entropy loss, we have

l(Y,Softmax(f(X)/τ(a(X)))) = Y log(σ(f1(X)/τ(a(X)))+(1−Y ) log(1−σ(f1(X)/τ(a(X))),
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where σ(x) = 1/(1 + ex).

Then, by the definition of τ̂(a(X)), we have that

τ̂(a(X)) = argmin
τ

E[Y log(σ(f1(X)/τ(a(X))) + (1− Y ) log(1− σ(f1(X)/τ(a(X)))]

= argmin
τ

E[E[Y log(σ(f1(X)/τ(a(X))) + (1− Y ) log(1− σ(f1(X)/τ(a(X))) | a(X)]].

Taking the derivative on the last line and setting it to zero, we have

E[
Y

σ(f1(X)/τ̂(a(X))
− 1− Y

1− σ(f1(X)/τ̂(a(X))
| a(X)] = 0,

implying
E[σ(f1(X)/τ̂(a(X)) | a(X)] = E[Y | a(X)].

This makes the derivative of E[(Y − σ(f1(X)/τ(a(X))))2 | a(X)] zero and therefore τ̂(a(X)) is
also a minimizer of E[(Y − σ(f1(X)/τ(a(X))))2 | a(X)]:

τ̂(a(X)) = argmin
τ

E[Y log(σ(f1(X)/τ(a(X)))+(1−Y ) log(1−σ(f1(X)/τ(a(X)))] = argmin
τ

E[(Y−σ(f1(X)/τ(a(X))))2].

Letting g(γ) = argminc E[(Y − σ(f1(X)/c))2 | a(X) = γ], we have that

g(a(X)) = argmin
τ

E[(Y − σ(f1(X)/τ(a(X))))2 | a(X)],

and therefore

g(a(X)) = argmin
τ

E[E[(Y − σ(f1(X)/τ(a(X))))2 | a(X)] = τ̂(a(X)).

As a result,

MSEγ(P̂ATS) =E[(P̂ATS(X)− Y )2 | a(X) = γ]

=E[(P̂ATS(X)− Y )2 | a(X) = γ]

=E[(σ(f1(X)/τ̂(a(X))− Y )2 | a(X) = γ]

=E[(Softmax(P̂(X)/g(a(X))− Y )2 | a(X) = γ]

= argmin
c

E[(σ(f1(X)/c− Y )2 | a(X) = γ]

≤E[(σ(f1(X)− Y )2 | a(X) = γ]

=MSEγ(P̂).

Similarly, we have MSEγ(P̂ATS) ≤ MSEγ(P̂TS), and therefore equation 17 holds.

Combining with equation 15 and equation 16, we have

CEγ(P̂ATS) ≤ min{CEγ(P̂TS), CEγ(P̂)}.

K LIMITATIONS

K.1 QUANTIFYING ATYPICALITY

Since we do not have access to the true distribution of P(X), we estimate it through the model, e.g.
using the embeddings. This means we are capturing the atypicality not solely with respect to the
training distribution but also the model. It is possible that a model that does not fit the data well
and produces low-quality atypicality estimates. In general, we observe that our findings hold for
large datasets and widely used models, and atypicality gives a semantically meaningful way to group
data points qualitatively. However, initial explorations with smaller datasets resulted in cases with
noisy estimates. Our findings suggest that we can unify the understanding and improve uncertainty
quantification and recalibration methods with atypicality, however, practitioners should be careful
about incorporating atypicality, as poor atypicality estimates can lead to worse performance.
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K.2 THEORETICAL ANALYSIS

Following the earlier work (Bai et al., 2021; Sur & Candès, 2019), we analyzed the calibration
behavior of well-specified logistic regression. However, our empirical findings suggest that the
phenomena are much more broadly applicable. We suggest that future work can analyze the behavior
in more general settings to better understand the dynamics.
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