
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE MODELING CAPABILITIES OF LARGE LAN-
GUAGE MODELS FOR SEQUENTIAL DECISION MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large pretrained models are showing increasingly better performance in reasoning
and planning tasks across different modalities, opening the possibility to leverage
them for complex sequential decision making problems. In this paper, we investi-
gate the capabilities of Large Language Models (LLMs) for reinforcement learning
(RL) across a diversity of interactive domains. We evaluate their ability to produce
decision-making policies, either directly, by generating actions, or indirectly, by
first generating reward models to train an agent with RL. Our results show that,
even without task-specific fine-tuning, LLMs excel at reward modeling. In particu-
lar, crafting rewards through artificial intelligence (AI) feedback yields the most
generally applicable approach and can enhance performance by improving credit
assignment and exploration. Finally, in environments with unfamiliar dynamics,
we explore how fine-tuning LLMs with synthetic data can significantly improve
their reward modeling capabilities while mitigating catastrophic forgetting, further
broadening their utility in sequential decision-making tasks.

1 INTRODUCTION

Large Language Models (LLMs) are generative models of natural language that can produce accurate
general and domain-specific knowledge (Singhal et al., 2022; Imani et al., 2023; Manigrasso et al.,
2024; Liu et al., 2024a), reason over long textual contexts (Reid et al., 2024), and generalize zero-
shot (Kojima et al., 2022). These capabilities suggest that LLMs might be well-suited for complex
sequential decision-making problems, such as in embodied settings where an agent acts in an
environment. Recent research has begun exploring this potential, investigating how LLMs can serve
as sources of intrinsic motivation (Wang et al., 2024; Klissarov et al., 2024), demonstrating world
modeling capabilities (Lin et al., 2024; Liu et al., 2024b), and for acting and/or planning directly in
an environment (Wang et al., 2023; Padalkar et al., 2023; Zhang et al., 2024).

However, as the predominant paradigm for training LLMs is not inherently aligned with the challenges
of sequential decision-making problems, such as active exploration, it is not obvious how to best
bridge their capabilities to tackle such challenges in a general manner. We study this problem through
the lens of reinforcement learning (RL, Sutton & Barto, 2018), which formalizes how an agent
interacts with an environment, receiving scalar rewards for each of its actions over a trajectory. We
examine the capabilities of LLMs to solve RL tasks by comparing how they model policies 1) directly
by generating action tokens, to 2) indirectly through a reward model derived from the LLM to be
used within an RL algorithm. We perform a comprehensive evaluation on a diverse set of domains,
including MiniWob (Liu et al., 2018), NetHack (Küttler et al., 2020), and Wordle (Lokshtanov &
Subercaseaux, 2022), and MetaWorld (Yu et al., 2019). The environments we study present a variety
of challenges, such as different action space granularities, observation modalities ranging from natural
language to pixel data, and varying horizon lengths.

We first consider the off-the-shelf capabilities of LLMs for decision-making without updating them
through additional gradient updates coming from the RL task. We find that indirectly modeling
policies by first extracting knowledge from LLMs in the form of a Bradley-Terry model (Bradley &
Terry, 1952; Christiano et al., 2017) provides the best and most consistent performance across the
environments we study. We empirically analyze the various benefits, and limitations, provided by
this approach, showing that it improves on long-standing challenges in RL problems, such as credit
assignment and exploration.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Finally, while LLMs possess knowledge useful for many decision making tasks of interest, domains
with complex or unfamiliar dynamics can significantly restrict their broader utility. We explore
how fine-tuning an LLM with domain-specific data can bridge this knowledge gap and study the
effect of this procedure on the LLM’s previous knowledge, as measured through success on datasets
like POPE (Li et al., 2023b), GQA (Hudson & Manning, 2019), AI2D (Kembhavi et al., 2016) and
MMMU (Yue et al., 2024). Our investigation reveals that fine-tuning for indirect policy modeling
mitigates catastrophic forgetting more effectively than direct policy modeling, offering a broadly
applicable strategy for leveraging LLMs across diverse sequential decision-making tasks.

2 USING LANGUAGE MODELS TO SOLVE RL TASKS

We first introduce the types of RL problems as well as formalize the methodologies for using LLMs
for RL tasks used in this work.

Reinforcement Learning. An RL task can be defined through a Markov Decision Process (MDP,
Puterman, 2014), which is composed of a state space S, an action space A, a transition function
p : S × A → ∆(S) which describes the forward dynamics of the system, a reward function
r : S × A → R and a discount factor γ ∈ [0, 1]. Since it is often the case that the state is only
partially observable, we also assume the environment emits an observation ot ∼ pO : S → ∆(O)
from observation space O. A policy, or actor, is a probability distribution π : S → ∆(A) which
describes the action to be taken at every step. The objective of a rational actor is to maximize the
expected cumulative rewards over horizon H > 0,

max
π

E[
H∑
t=0

γtr(st, π(st))|s0] = max
π

Es0 [V
π(s0)], (1)

where the value function, V π(s), represents the expected discounted sum of rewards over the entire
trajectory, re-weighted by the environment’s dynamics model, p, and the actor’s policy, π.

Large Language Models. An LLM is a generative model of discrete random variables (i.e. tokens)
conditioned on a history (i.e. context). The LLM models the data distribution autoregressively:

p(xt+1|x1, .., xt) =

t∏
t′=1

p(xt′ |x<t′) = LLM(x<t, l) (2)

where x ∈ X are token variables taken from a valid vocabulary. The suitability of LLMs for
solving RL tasks without additional fine-tuning primarily hinges on the hypothesis that LLMs contain
information – i.e., knowledge – about the underlying MDP, for instance, through the policy or reward
function. How that information is extracted depends on the data the LLM was trained on, the ability
of the practitioner to properly prompt the model and interpret its responses to solve decision-making
tasks.

2.1 PROMPTING

In this section, we describe the inputs, or prompts, to the LLM used in this work which allow to
change the LLM’s output distribution to be useful for solving RL tasks. All prompts in this work
use 1) task specification using natural language as input to provide information about the MDP to
the LLM as context and 2) episode history in order to address issues of partial-observability in some
environments (similar to the Act-only baseline prompt found in Yao et al., 2022). We additionally
use the following set of techniques,

• Chain of Thought. By prompting the LLM to provide a step-by-step reasoning process for
its output, rather than just the final answer, we can help surface its internal decision-making
and improve the resulting performance (Wei et al., 2022).

• In-Context Learning. To enhance the LLM’s ability to solve the task, example solutions
(e.g., from expert policies) are provided for in-context learning (Brown et al., 2020), where
solutions contain sequences of a combination of states, actions, and rewards.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Self-Refinement. To further refine its output, the LLM is prompted to provide recursive
criticism and improvement from its generated outputs. This general strategy knows many
variants, such as feedback from an environment (Yao et al., 2022), self-critique (Zelikman
et al., 2022), or self-reflection (Shinn et al., 2023). In this work, we use Recursive Criticism
and Improvement (RCI, Kim et al., 2024) for its state-of-the-art performance on web agent
domains and general applicability. In its original form, the LLM is given a task description
and generates a high-level plan. This plan is used along with the task description and current
state to refine an action so that it is grounded in the current observation and the action space.

2.2 POLICY MODELING USING LLMS

As shown in Equation 1, the goal of a decision making agent is to learn a high performing policy π.
This can be done either by maximizing the expected cumulative rewards and directly modeling the
policy parameters (Sutton et al., 1999; Kakade & Langford, 2002). Equivalently, this can be done
indirectly by first modeling the parameters of the value function and applying a greedy operator,
such as in Q-Learning (Watkins & Dayan, 1992). A similar separation between direct and indirect
approaches can be useful to study the capabilities of LLMs to model RL policies.

Direct Policy Modeling. The most straightforward way to obtain a policy using LLMs is for the
LLM to generate tokens that will be directly interpreted as actions from the environment, a ∈ A (Yao
et al., 2022; Shinn et al., 2023; Kim et al., 2024). To ensure the outputted actions adhere to the
environment’s action set, the LLM output tokens can be projected back onto A using projection
operator proj(·,A) (e.g., see Huang et al., 2022; Kim et al., 2024, for examples of projection
operators). A variety of prompting techniques can be combined to increase the ability of the LLM to
act, without task-specific fine-tuning, as a policy, which we detail in Section 2.1. This direct policy
method will be referred to in our experiments as LLM Policy.

Indirect Policy Modeling. On the other hand, we can prompt the LLM to output tokens representing
intermediate quantities that will then be used to learn a policy. For example, one can model the
forward dynamics of the environment for planning (Liu et al., 2024b) or an affordance model for
action selection (Mullen Jr & Manocha, 2024).

In this work, we focus on the case where these intermediate quantities will be used to generate rewards
– i.e., a reward model – which will then be maximized by an off-the-shelf RL policy. In Section 2.3,
we enumerate the different approaches for modeling reward functions with LLMs covered in our
work. It is important to note that there exists many more ways in which we could indirectly model
the policy. In Appendix A.4, we present in detail these possibilities and, in Figure 2b, provide initial
investigations that showcase their potential and limitations.

In direct policy modeling experiments (LLM Policy), we found combining all of the prompting
techniques in Section 2.1 to work the best, while for indirect modeling methods through reward
we relied only on chain-of-thought prompting. Additional details, such specific prompt details and
ablations on these choices are presented in the Appendix A.3.

2.3 INDIRECTLY MODELING POLICIES THROUGH REWARD MODELS

We consider a diversity of methods for modeling reward functions using LLMs, with a particular
attention to methods that are applicable to a diversity of environments and modalities. We study the
following set,

• Direct Scalar. (Kwon et al., 2023) The LLM generates tokens that directly encode the
reward (e.g., as a float or integer) given an observation (or a sequence of observations and
actions). This reward is then given to the RL agent.

• AI Feedback (Lee et al., 2023; Klissarov et al., 2024)). Ask the LLM to express a
preference y = {1, 2,∅} between two observations, o1 and o2, for the one showing the
most progress towards a certain goal, or no preference if both observations are equally
good. These labels can then be collected as a dataset of observation-preference tuples

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Dpref = {(o(i)1 , o
(i)
2 , y(i))}Mi=1, which are then used to train a reward function modeled as,

rθ = argmin
θ

E(o1,o2,y)∼Dpref

[
I[y = 1] logPθ[o1 ≻ o2] + I[y = 2]Pθ[o2 ≻ o1]

+
1

2
I[y = ∅] log

(
Pθ[o1 ≻ o2]P [o2 ≻ o1]

)] (3)

where Pθ[o1 ≻ o2] =
erθ(o1)

erθ(o1)+erθ(o2) the probability of preferring an observation to another,
referred to as the Bradley-Terry model for preference learning (Bradley & Terry, 1952). The
minimization of this equation is commonly done through binary cross-entropy.

• Reward as Code (Xie et al. (2023),Yu et al. (2023); Ma et al. (2023)). Prompt the LLM
to write code that will take as input a subset of symbolic features from the environment
observations and will produce a scalar output representing the reward. The code defining the
reward function is then updated throughout environment interactions as in Li et al. (2023a).
When symbolic features are not available, these are constructed as in Venuto et al. (2024).

• Embedding-based (Rocamonde et al., 2023; Du et al., 2023; Liu et al., 2024b). Instead
of querying language tokens from the LLM, we can instead, for a given input, leverage
the information encoded in its latent represention, or embeddings. These embeddings are
used to calculate the cosine similarity with respect to the embeddings of natural language
specification of a goal or a behaviour. The resulting similarity value is given as a reward to
the agent.

Additional details, such specific prompts, are presented in the Appendix A.2.

3 PERFORMANCE OF INDIRECT AND DIRECT POLICY MODELS

AI Feedback
Reward as Code
Embedding-based
Direct Scalar

0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

MiniWob-Hard Wordle NetHack MetaWorld

Figure 1: AI feedback as the highest performance across different reward models derived from
LLMs tested. AI feedback, which is a preference-based method for deriving a reward model from an
LLM generally outperforms other methods.

Due to fundamentally different challenges between direct and indirect policy modeling approaches,
conducting a fair comparison requires care. For example, using the LLM directly as a policy requires
grounding its outputs in the action space defined by the environment (Ahn et al., 2022; Huang et al.,
2022). As the action space can vary significantly between environments and attempting to solve this
problem adds additional algorithm- or domain-specific complexities (e.g. by crafting skills, see (Ahn
et al., 2022; Wang et al., 2023)), we fix our experimental setting to the following

1. Atomic actions. We only study approaches which can directly interface with the action
space supported in the environment. In other words, the action space is at least a subspace
of the space of language generated by the LLM. This allows for a more direct comparison
across a variety of domains and study the relationship between an LLM’s knowledge and
the fixed action space defined by the environment.

2. No finetuning. In most of the paper we assume that LLMs are used without any gradient
updates, i.e. without fine-tuning from the RL task, and evaluate their off-the-shelf capabilities.
In Section 5, we perform a preliminary study on the trade-offs between fine-tuning for direct
and indirect policy modeling.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Action Granularity

AI Feedback
LLM Policy

(a)

MiniWob-Hard Wordle NetHack MetaWorld
40

50

60

70

80

90

100

Bi
na

ry
 P

re
di

ct
io

n
Ac

cu
ra

cy Random Guess Performance
Action Prediction
Observation Prediction

(b)

Figure 2: a) Building a reward model more-readily solves RL tasks than using an LLM as an
actor. LLM-policy only performs well in domains with coarse-grained actions while LLM feedback
presents strong performance across the entire range of action granularities. b) LLMs have unreliable
zero-shot understanding of the environment dynamics. While LLMs can be used to craft useful
reward models, their failure as direct policies may be explained by their poor understanding of the
action space and the transition function.

We investigate four separate domains, where each domain aims to highlight a specific capability of
LLMs: 1) MiniWob-Hard, a subset of hard tasks from the full MiniWob suite, tests web interaction
in observation/action spaces close to natural language, 2) Wordle measures reasoning and planning
capabilities, 3) NetHack presents the difficulty of exploring open-ended environments under partial
observability, long horizons and procedural scenarios, and 4) MetaWorld assesses the ability to
control low-level, high-frequency actions in continuous space. We provide a detailed description of
each domain in Appendix A.1.

Direct policy modeling is done by querying the closed source GPT-4o model, whereas indirect policy
modeling is done through the open source models of Llama 3 (Dubey et al., 2024), when environment
observations consist of text, and PaliGemma (Beyer et al., 2024), when environment observation
consist of pixel images. In the Appendix A.11, we investigate a larger set of LLMs, including Claude
3.5, Gemini Pro 1.5, Llama 3.2-V and Qwen 2.5 (Qwen Team, 2024). All results are averaged over
10 seeds with error bars indicating the standard error.

Indirect policy modeling through rewards. We first present a comparison of the various indirect
policy modeling approaches discussed in Section 2.3. In these experiments, the LLM generates a
reward function which will be given to a RL agent for optimization, without access to any rewards
coming from the environment. When learning policies through RL we do not perform any hyper-
parameter search and simply borrow the existing empirical setup for each domain, as detailed in
Appendix A.1.

In Figure 1, we present the performance across domains as measured by the average success rate
on all domains, except for NetHack, where performance (the in-game score) is normalized by the
highest recorded value. Results show that AI feedback is the only method that successfully crafts
rewards across all environments and modalities 1. On easier domains such as MiniWob-Hard, which
consists of short episodes and limited scope of variations, the Direct Scalar method performs nearly
as well as AI feedback. However, the disparity between methods is much more pronounced on harder,
open-ended tasks such as NetHack. Out of all the methods, Embedding-based leads to the lowest
performance. Finally, the effectiveness of Reward as Code appears to be highly contingent on the
availability of symbolic features for code processing. In Appendix A.5, we further examine the
assumptions—such as access to functional knowledge of the environment—under which Reward as
Code can achieve performance comparable to AI feedback.

Direct vs indirect policy modeling. We now compare the direct policy modeling method, LLM
Policy, to the best performing indirect modeling method, AI feedback, reporting performance across
the same set of domains. Results in Figure 2a show that, despite the more complex prompting

1In Appendix A.6, we verify that AI feedback yields policies with performance on par with those optimized
using human-designed environment rewards.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

strategies and the use of a more capable closed source model, LLM Policy is unable to perform well
in most environments, with the exception of MiniWob-Hard, where the performance is on-par with
AI feedback. Given that the reward modeling baseline proceeds to fine-tuning the RL policy, we
may wonder if, for a similar amount of compute and environment samples, what performance could
the LLM Policy achieve by fine-tuning the LLM. In Appendix A.13, we also study this question,
revealing that reward modeling is significantly more efficient. In Figure 15 of Appendix A.12, we
additionally investigate whether the reward obtained by the AI feedback method can be given to the
LLM Policy as context, in order to improve the direct modeling performance. Results indicate that
this additional information does not significantly change the performance.

A question emerging from these results is: what factors cause this significant performance disparity
between direct and indirect policy models? One possible explanation is that LLMs, when directly
queried for actions in an unfamiliar environment, may struggle to understand its dynamics (e.g., the
transition function and action space). To test this hypothesis, we conduct the following experiment.
We prompt the LLM to select between 1) a pair of candidate next observations given the current
observation and action (probing knowledge of p(ot+1|at, o≤t)), or 2) a pair of candidate actions
given the next observation and current observation (probing knowledge of p(at|ot+1, o≤t)). In each
case, the pair contains the ground-truth and random sample. In this experiment, a 50% accuracy
corresponds to a random guess.

Results presented in Figure 2b show that the LLM performs relatively poorly on both of these tasks,
indicating limited understanding of both the action space and the environment dynamics. This can
potentially explain the limited performance of the LLM Policy approach on MiniWob-Hard, NetHack,
and MetaWorld, while results on Wordle suggest that additional contributing factors are at play.

4 ANALYSIS OF AI FEEDBACK FOR RL

Our results so far suggest that, without additional fine-tuning, indirectly modeling policies by
constructing reward functions through AI feedback is the most effective approach across the range
of environments and modalities we studied. In this section, we examine how rewards shaped by
this method can assist RL agents in addressing core decision-making challenges, such as credit
assignment and exploration. Through this analysis, we also emphasize the ways in which reward
misspecification can unintentionally arise and severely impair performance.

0 5 10 15 20 25 30
Time Step

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
w

ar
d

M
od

el
 V

al
ue

0.0 0.5 1.0 1.5

Transitions 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

DoorKey-8x8

AI Feedback Environment Reward

Figure 3: Rewards learned through AI Feedback distribute rewards to key timesteps. By doing
so, the problem of credit assignment, or learning from delayed rewards, is significantly reduced.
Such distribution effectively shortens the horizon over which the RL algorithm must propagate credit
through its update rule.

4.1 CREDIT ASSIGNMENT

Setting aside performance of the direct policy method, we now turn our attention to why reward
modeling with AI feedback is performing well. AI feedback-based rewards depend on the prompt

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

used to capture preferences. In the experiments conducted so far, these prompts were designed
to elicit preferences by emphasizing states that contribute to task progress (see prompts Appendix
A.2). Additionally, a key aspect of our methodology involved presenting the LLM with observations
sampled randomly within trajectories. This enabled querying preference for any observation in the
environment, rather limiting the focus to final states - a distinction also known as process-based and
outcome-based reward models (Uesato et al., 2023; Lightman et al., 2023). What are the resulting
characteristics of the reward model under such choices?

Qualitative experiment In Figure 3, we present the output of the AI feedback-based reward model
over each timestep of an episode within a simple grid world environment. This task includes an agent,
a key, a door, and a goal (Chevalier-Boisvert et al., 2023). We notice that this reward model naturally
captures the fact that picking up the key, as well as opening the locked door, are important steps
towards the goal. By propagating credit over such key moments in a trajectory, the LLM effectively
shortens the horizon over which the RL algorithm must assign credit through temporal difference
learning (Sutton & Barto, 2018). This is manifested in Figure 3 where the agent learning through
AI feedback reaches a high success rate in a fraction of the timesteps required by a similar agent
learning from the environment feedback (which in this case is sparse reward of +1 for reaching the
goal). The dense reward resulting from LLM feedback can be seen as a form of reward redistribution
(Arjona-Medina et al., 2018), which is an established method for improving credit assignment.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Policy degree of optimality

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Corr(rAIF, renv)
Corr(rAIF, v)

(a) Wordle

0M 100M 300M 500M 700M 900M
Training Steps

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Co
rre

la
tio

n

Corr(rAIF, renv)
Corr(rAIF, v)

(b) NetHack

0 100k 200k 300k 400k 500k
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
rre

la
tio

n

Corr(rAIF, renv)
Corr(rAIF, v)

(c) MetaWorld

Figure 4: LLM preferences correlate with value function preferences. The correlation between
Bradley-Terry models trained from frozen LLM state preferences and value function preferences
increases as the online policy improves in 3 different domains.

Quantitative experiment In Figure 4, we present the correlation between the reward model derived
from AI feedback and the value function of an RL agent across various levels of policy optimality.
We observe that AI feedback generates reward functions with a stronger correlation to value functions
obtained later in the training process compared to those from earlier stages. Additionally, this
correlation is higher than that observed with the environment reward. In the Wordle game, we
generate, in code, a near-optimal policy and estimate its value function using Monte Carlo. We then
compare it to the LLM-derived reward function find an almost perfect correlation. These findings
suggest that the reward models derived from AI feedback inherently encode aspects of high-quality
value functions, which, when used as rewards for the RL agent, can substantially simplify the credit
assignment process. In Appendix A.7, we provide additional insights from the lens of heuristic-guided
reinforcement learning (Cheng et al., 2021).

4.2 EXPLORATION

In the previous section, we investigated how our standard prompting strategy can ease the problem
of credit assignment in downstream RL tasks. This outcome stemmed from the specific preferences
we requested from the LLM, that is, promoting task progress. However, to address different RL
objectives, in particular the one of exploration, we may need to elicit alternative preferences.

Previously, Klissarov et al. (2024) employed AI feedback to design an effective reward function for
an agent operating in the open-ended environment of NetHack. However, before applying this reward
to the RL agent, the authors implemented the following transformation:

r(ot) ∝ rAIF (ot)/N(ot)
β , (4)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where rAIF is the reward model obtained from AI feedback, N(ot) denotes the number of times
a particular observation ot was seen in an episode, and β is a positive real-valued coefficient set
to 3. The counting term was added to encourage exploration (Henaff et al., 2022), which is a key
difficulty in NetHack. However, instantiating such a counting function proves difficult in many
practical settings (Bellemare et al., 2016). Given the flexibility of natural language, can we alleviate
the need for such a term and integrate the notion of exploration in the prompt itself?

Online Preferences &
Non-Markovian Model

Offline Preferences &
Markovian Model

0.0

0.2

0.4

0.6

0.8

1.0
Score
Scout
Dungeon Level

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Figure 5: By changing the prompt,
LLMs can be steered to provide feed-
back that promotes exploration on
NetHack. Additionally, to avoid degen-
erate solutions, preferences should be
elicited in an online fashion and the re-
ward function be non-Markovian.

In Figure 5, we demonstrate that this is indeed possible,
leading to performance comparable when using count-
based exploration by directly modifying the prompt used
for preference elicitation. Specifically, when querying
the LLM for preferences, we present it with a pair of
sequences of observations (rather than a single observa-
tion) which provides crucial context. The prompt was also
modified to steer the LLM towards avoiding low entropy
sequences, i.e. sequences with repetitions (see Appendix
A.2).

Our findings reveal two potential failure modes: the of-
fline nature of the preference elicitation method and the
assumption of a Markovian reward model. Previous re-
search has demonstrated that online preference querying
can outperform offline methods when aligning LLMs (Bai
et al., 2022; Touvron et al., 2023). In our experiments,
offline elicitation led to a performance collapse, likely due
to frequent RL policy updates during online learning. Ad-
ditionally, assuming a Markov reward model—where the current observation fully determines the
reward—can lead to an equally poor performance, as complex tasks often require historical context
beyond immediate observations (see Appendix A.8 for a full breakdown).

5 BEYOND ZERO-SHOT REWARD MODELING

So far, we have explored the ability of LLMs to model policies, directly and indirectly, without any
fine-tuning. However, in many cases the prior knowledge encoded in LLM might not contain the
necessary information to do so successfully. In such instances, fine-tuning becomes an effective
method for incorporating task-specific knowledge into the model.

We consider the sweep-into task from MetaWorld, where AI feedback rewards lead to a success rate
of only 15%. When measuring the perplexity score of the PaliGemma model on captions describing
the pixel observations from the task, we obtain a value of 16.03. Both of these results indicate poor
understanding and the necessity to adapt the model.

We therefore fine-tune PaliGemma on image-caption pairs annotated by GPT-4o and trained the
model to predict the caption for a given image. Figure 6a shows significant gains in downstream RL
performance after only a few fine-tuning epochs and as few as approximately 100 image-caption pairs.
Moreover, Figure 6a shows how this procedure only marginally decreases performance of the LLM
on the standard multi-modal reasoning benchmarks, such as POPE (Li et al., 2023b), GQA (Hudson
& Manning, 2019), AI2D (Kembhavi et al., 2016) and MMMU (Yue et al., 2024). Surprisingly,
performance on the AI2D benchmark improves as the number of RL-specific fine-tuning epochs
increases.

We contrast these findings with Figure 6b, where we fine-tune PaliGemma with behaviour cloning on
expert data on the same MetaWorld task. Similarly to RT-2 (Brohan et al., 2023), we overwrite the
least frequent tokens with residual VQ-VAE codebooks (Szot et al., 2024). In this case, any significant
increase of RL performance comes at the cost of catastrophically forgetting all previous knowledge.
These results hint at an important trade-off: if preserving prior language reasoning knowledge is
important, fine-tuning for AI feedback offers a viable approach. However, if maximizing downstream
RL performance is the sole objective, directly fine-tuning for action selection can be more effective.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.2 0.3 0.4 0.5 0.6 0.7

RL Performance

0.83

0.84

0.85

0.86

0.87

0.88

P
O

P
E

POPE vs RL Performance

0.2 0.3 0.4 0.5 0.6 0.7

RL Performance

0.590

0.595

0.600

0.605

0.610

0.615

0.620

0.625

0.630

G
Q

A

GQA vs RL Performance

0.2 0.3 0.4 0.5 0.6 0.7

RL Performance

0.37

0.38

0.39

0.40

0.41

0.42

A
I2

D

AI2D vs RL Performance

0.2 0.3 0.4 0.5 0.6 0.7

RL Performance

0.240

0.245

0.250

0.255

0.260

0.265

0.270

0.275

0.280

M
M

M
U

MMMU vs RL Performance

Off-the-shelf 1 Epoch 2 Epochs 10 Epochs

(a) Fine-tuning for AI feedback

0.0 0.2 0.4 0.6 0.8

RL Performance

0.0

0.2

0.4

0.6

0.8

P
O

P
E

POPE vs RL Performance

0.0 0.2 0.4 0.6 0.8

RL Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6
G

Q
A

GQA vs RL Performance

0.0 0.2 0.4 0.6 0.8

RL Performance

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
I2

D

AI2D vs RL Performance

0.0 0.2 0.4 0.6 0.8

RL Performance

0.23

0.24

0.25

0.26

M
M

M
U

MMMU vs RL Performance

Off-the-shelf 2000 Epochs 4000 Epochs 6000 Epochs

(b) Fine-tuning for direct policy modeling

Figure 6: Fine-tuning LLMs for AI feedback better preserves their prior knowledge. LLMs fine-
tuned for AI feedback in (a) retain a higher portion of their original language reasoning knowledge
than those fine-tuned for direct action selection in (b).

6 RELATED WORKS

Large language models (LLMs) require additional adaptation for general-use language tasks (Chris-
tiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Mialon et al., 2023). Without additional
context and/or fine-tuning, LLMs can generate misleading, harmful, or even nonsensical answers to
queries or conversations with humans (Bai et al., 2022). To modify their behavior, it is necessary
to tune their prompts and/or fine-tune their outputs to ensure their output is desirable w.r.t. some
set of linguistic tasks before deployment. This at least if not more true in embodied settings, where
real-world actions can have physical consequences, and methodologies for modifying LLM behavior
in embodied settings more-or-less align with efforts in the language space.

Prompt tuning Arguably the most common theme among techniques that modify LLM behavior
in general is to change the prompt such that the distribution of LLM outputs better-fits a given
desiderata on behavior. Prompt-engineering can greatly align or calibrate an LLM, pretrained or
no, to desired beneficial behavior (Christiano et al., 2017; Glaese et al., 2022; Bai et al., 2022), or
even expose harmful or other unexpected behaviors. Chain-of-thought (CoT, Wei et al., 2022) is
an in-context method to either few-shot or zero-shot (Kojima et al., 2022) adjust an LLM’s outputs
to generate more correct responses to question-and-answering tasks. Further modifications to the
prompt such as providing feedback from an environment (Yao et al., 2022), self-critique (Zelikman
et al., 2022), or self-reflection (Shinn et al., 2023) can improve LLM performance in language as well
as tasks that have an environment. The biggest promise of in-context-based methods in RL is that
somewhere within the LLM’s conditional distribution is the optimal policy for any given task (Brohan
et al., 2023; Szot et al., 2023), an accurate world-explicit model (Lin et al., 2024), and/or a useful
reward-model (Klissarov et al., 2024). For example, Sun et al. (2023) has shown strong results
on text-based domains such as web agents by using LLMs as policies. Other approaches combine
different quantities from the RL problem within the same algorithm, for example by providing LLM
rewards/critiques as context to an LLM acting as a policy (Zhou et al., 2023; Liu et al., 2024c). LLMs
have also been shown to be particularly good at devising high-level plans that will guide an agent
acting in the environment (Nottingham et al., 2023).

Querying model for feedback Another hypothesis is that LLMs contain knowledge relevant to tasks,
and this knowledge can be extracted (Xu et al., 2024) in a way to train a policy that has desirable

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

behavior (Huang et al., 2022). Kwon et al. (2023) first studies the possibility of querying an LLM
to design reward functions. In their method, the LLM is given a task description, examples and an
objective specified by a user, and is used to outputs text that is mapped to a binary value. Their
results show that their approach is significantly more sample efficient compared to a supervised
learning approach. The most successful reward modeling method in our paper is based on RL from
AI Feedback (RLAIF Bai et al., 2022; Lee et al., 2023), a scalable method akin to but without the
practical issues that come paired with RL from Human Feedback (RLHF Christiano et al., 2017), the
goal of which is to fine-tune an existing LLM to be more specific, accurate, innocuous, etc. RLAIF
trains a reward model on a dataset collected from an LLM’s preferences given a dataset of language
responses from an LLM and a given set of queries, and this reward model is used to train a policy
using RL, for example using PPO. This process of extracting knowledge using preference data can
also be directly used to train a policy without a reward model, as in Direct Preference Optimization
(Rafailov et al., 2024). A related line of work studies the possibility of LLMs crafting their own
rewards to improve their capabilities. Yuan et al. (2024) leverage DPO to improve an LLM’s ability
to for instruction following. Investigating this idea within the domain of sequential decision making
is particularly promising.

7 DISCUSSION

In this paper, we explored two distinct approaches to leveraging LLMs for solving RL tasks: 1)
directly, by modeling policies and 2) indirectly, by modeling rewards to be leveraged within a policy
learning algorithm. Our results indicate that, without task-specific fine-tuning, current LLMs only
show limited decision-making capabilities when directly generating actions. However, despite this
limitation, LLMs are capable zero-shot reward modelers. In particular, when eliciting preferences
to define rewards through the Bradley-Terry model, LLMs show strong performance across a wide
range of domains presenting various challenges.

In cases where an LLM’s prior knowledge is not enough to obtain useful reward functions, we also
investigated fine-tuning with task-specific data to bridge this gap. Notably, fine-tuning to enhance
reward modeling capabilities helps mitigate catastrophic forgetting, which is a crucial consideration
for preserving the LLM’s general-purpose abilities Maintaining these capabilities is essential for
broad applicability to sequential decision-making tasks, including out-of-distribution tasks, and for
supporting continued natural language interaction with users.

The reward modeling capabilities presented in this work offer potential solutions to challenges in
RL. First and foremost, LLM-derived reward models alleviate the need for human-designed reward
functions, which are often complex and costly to develop. Second, our empirical analysis reveals
that AI-feedback based rewards produce dense functions which correlate positively with high-quality
value functions. Such reward functions can significantly reduce the difficulty of assigning credit
by redistributing rewards across different steps within a trajectory. Finally, distilling knowledge
from LLMs into reward models opens new possibilities for applying RL in environments where
simulators or symbolic features are unavailable—such as embodied AI agents interacting with humans.
Additionally, when dealing with real-world scenarios, we may be concerned by the speed at which
a model may react to its environment. Direct policy modeling implies that the LLM is executed
in the environment, which might limit the frequency with which it can queried. For example, the
report from Black et al. (2024) emphasizes the necessity of using special techniques such as action
chunking to achieve a 50 Hz control frequency. In contrast, indirect policy modeling can distill an
LLM’s knowledge into a smaller neural network, which would be queried much faster.

Some notable limitations and caveats exist. It is possible that by using LLM feedback to design
reward functions, we may obtain contradictory and inconsistent preferences, simply by virtue of
LLMs having an imperfect understanding of the task at hand. In fact, we believe this is the main
reason why, without fine-tuning, the PaliGemma model produces some unsuccessful RL policies
on MetaWorld, as seen in Figure 6. If a particular task requires detecting subtle, incremental
progress, it is entirely possible that the LLM might miss key milestones. Additionally, interacting
with LLMs through natural language requires experimenting with various prompting techniques and
specifications. However, this flexibility also enables the shaping of reward functions to incorporate
valuable strategies (Knox et al., 2013), such as promoting exploration, which can further enhance the
performance of RL agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, and Byron David et al.
Do as i can, not as i say: Grounding language in robotic affordances. In Conference on Robot
Learning, 2022. URL https://api.semanticscholar.org/CorpusID:247939706.

Anonymous. Placeholder title, 2024. Under review.

José Antonio Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, and Sepp
Hochreiter. Rudder: Return decomposition for delayed rewards. In Neural Information Processing
Systems, 2018. URL https://api.semanticscholar.org/CorpusID:49320673.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos.
Unifying count-based exploration and intrinsic motivation. In Neural Information Processing
Systems, 2016. URL https://api.semanticscholar.org/CorpusID:8310565.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel M.
Salz, Maxim Neumann, Ibrahim M. Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello,
Thomas Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey A.
Gritsenko, Neil Houlsby, Manoj Kumar, Keran Rong, Julian Martin Eisenschlos, Rishabh Kabra,
Matthias Bauer, Matko Bovsnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica,
Ivana Balazevic, Joan Puigcerver, Pinelopi Papalampidi, Olivier J. Hénaff, Xi Xiong, Radu Soricut,
Jeremiah Harmsen, and Xiao-Qi Zhai. Paligemma: A versatile 3b vlm for transfer. 2024. URL
https://api.semanticscholar.org/CorpusID:271088378.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James
Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-language-
action flow model for general robot control, 2024. URL https://arxiv.org/abs/2410.24164.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324, 1952. URL https://api.semanticscholar.org/
CorpusID:125209808.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, and Krzysztof Choro-
manski et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control,
2023. URL https://arxiv.org/abs/2307.15818.

Ethan Brooks, Logan Walls, Richard L Lewis, and Satinder Singh. Large language models can
implement policy iteration. Advances in Neural Information Processing Systems, 36, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020. URL
https://api.semanticscholar.org/CorpusID:218971783.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement learning.
Advances in Neural Information Processing Systems, 34:13550–13563, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

11

https://api.semanticscholar.org/CorpusID:247939706
https://api.semanticscholar.org/CorpusID:49320673
https://api.semanticscholar.org/CorpusID:8310565
https://api.semanticscholar.org/CorpusID:271088378
https://arxiv.org/abs/2410.24164
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://arxiv.org/abs/2307.15818
https://api.semanticscholar.org/CorpusID:218971783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association
for Computational Linguistics, 2019. URL https://api.semanticscholar.org/CorpusID:
52967399.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, P. Abbeel, Abhishek Gupta,
and Jacob Andreas. Guiding pretraining in reinforcement learning with large language models. In
International Conference on Machine Learning, 2023. URL https://api.semanticscholar.
org/CorpusID:256846700.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and Ahmad Al-Dahle et al.
The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue
agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. NeurIPS, 2022.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274, 2002.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
A diagram is worth a dozen images. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 235–251.
Springer, 2016.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=tmBKIecDE9.

W. B. Knox, Peter Stone, and Cynthia Breazeal. Training a robot via human feedback: A case study.
In International Conference on Software Reuse, 2013. URL https://api.semanticscholar.
org/CorpusID:266033110.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

12

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:256846700
https://api.semanticscholar.org/CorpusID:256846700
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=tmBKIecDE9
https://api.semanticscholar.org/CorpusID:266033110
https://api.semanticscholar.org/CorpusID:266033110

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=10uNUgI5Kl.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, et al. Rlaif: Scaling reinforcement learning
from human feedback with ai feedback. arXiv preprint arXiv:2309.00267, 2023.

Hao Li, Xue Yang, Zhaokai Wang, Xizhou Zhu, Jie Zhou, Yu Qiao, Xiaogang Wang, Hongsheng Li,
Lewei Lu, and Jifeng Dai. Auto mc-reward: Automated dense reward design with large language
models for minecraft. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 16426–16435, 2023a. URL https://api.semanticscholar.org/CorpusID:
266210361.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. ArXiv,
abs/2305.20050, 2023. URL https://api.semanticscholar.org/CorpusID:258987659.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language, 2024. URL https://arxiv.org/abs/2308.01399.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018. URL https://arxiv.org/abs/1802.08802.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

Zeyuan Liu, Ziyu Huan, Xiyao Wang, Jiafei Lyu, Jian Tao, Xiu Li, Furong Huang, and Huazhe
Xu. World models with hints of large language models for goal achieving. arXiv preprint
arXiv:2406.07381, 2024b.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled architecture for autonomous llm agents. In International Con-
ference on Machine Learning, 2024c. URL https://api.semanticscholar.org/CorpusID:
272330199.

Daniel Lokshtanov and Bernardo Subercaseaux. Wordle is np-hard. ArXiv, abs/2203.16713, 2022.
URL https://api.semanticscholar.org/CorpusID:247839521.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. ArXiv, abs/2310.12931, 2023. URL https://api.semanticscholar.
org/CorpusID:264306288.

Francesco Manigrasso, Stefan Schouten, Lia Morra, and Peter Bloem. Probing llms for logical
reasoning. In International Conference on Neural-Symbolic Learning and Reasoning, pp. 257–278.
Springer, 2024.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave,
Yann LeCun, and Thomas Scialom. Augmented language models: a survey, 2023. URL https:
//arxiv.org/abs/2302.07842.

James F Mullen Jr and Dinesh Manocha. Towards robots that know when they need help: Affordance-
based uncertainty for large language model planners. arXiv preprint arXiv:2403.13198, 2024.

13

https://openreview.net/forum?id=10uNUgI5Kl
https://api.semanticscholar.org/CorpusID:266210361
https://api.semanticscholar.org/CorpusID:266210361
https://api.semanticscholar.org/CorpusID:258987659
https://arxiv.org/abs/2308.01399
https://arxiv.org/abs/1802.08802
https://api.semanticscholar.org/CorpusID:272330199
https://api.semanticscholar.org/CorpusID:272330199
https://api.semanticscholar.org/CorpusID:247839521
https://api.semanticscholar.org/CorpusID:264306288
https://api.semanticscholar.org/CorpusID:264306288
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. Do embodied agents dream of pixelated sheep?: Embodied decision making
using language guided world modelling. In International Conference on Machine Learning, 2023.
URL https://api.semanticscholar.org/CorpusID:256389514.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster, Jack
Parker-Holder, and Tim Rocktäschel. Balrog: Benchmarking agentic llm and vlm reasoning on
games, 2024. URL https://arxiv.org/abs/2411.13543.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In International Con-
ference on Machine Learning, 2021. URL https://api.semanticscholar.org/CorpusID:
231591445.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL
https://arxiv.org/abs/2305.18290.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. In Advances in Neural Information Processing Systems,
2023. URL https://arxiv.org/abs/2306.00245.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning.(2023). arXiv preprint
cs.AI/2303.11366, 2023.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. arXiv preprint arXiv:2212.13138, 2022.

Charles Burton Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for
natural language generation with implicit language q learning. ArXiv, abs/2206.11871, 2022. URL
https://api.semanticscholar.org/CorpusID:249954054.

14

https://api.semanticscholar.org/CorpusID:256389514
https://arxiv.org/abs/2411.13543
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2306.00245
https://api.semanticscholar.org/CorpusID:249954054

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reasoning, 2024. URL https://arxiv.org/abs/
2409.12183.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. ArXiv, abs/2305.16653, 2023. URL https:
//api.semanticscholar.org/CorpusID:258947337.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. In Neural Information Processing Systems,
1999. URL https://api.semanticscholar.org/CorpusID:1211821.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie
Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representations,
2023.

Andrew Szot, Bogdan Mazoure, Harsh Agrawal, Devon Hjelm, Zsolt Kira, and Alexander Toshev.
Grounding multimodal large language models in actions. arXiv preprint arXiv:2406.07904, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, and Yasmine Babaei
et al. Llama 2: Open foundation and fine-tuned chat models. ArXiv, abs/2307.09288, 2023. URL
https://api.semanticscholar.org/CorpusID:259950998.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Yamamoto Siegel, Lisa
Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-based and outcome-based feedback, 2023. URL https://openreview.net/forum?
id=MND1kmmNy0O.

David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit Anand.
Code as reward: Empowering reinforcement learning with vlms. ArXiv, abs/2402.04764, 2024.
URL https://api.semanticscholar.org/CorpusID:267522976.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv preprint
arXiv:2402.03681, 2024.

Christopher Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992. URL
https://api.semanticscholar.org/CorpusID:208910339.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022. URL https://api.semanticscholar.org/CorpusID:246411621.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Automated dense reward function generation for reinforcement learn-
ing. ArXiv, abs/2309.11489, 2023. URL https://api.semanticscholar.org/CorpusID:
262053612.

15

https://arxiv.org/abs/2409.12183
https://arxiv.org/abs/2409.12183
https://api.semanticscholar.org/CorpusID:258947337
https://api.semanticscholar.org/CorpusID:258947337
http://incompleteideas.net/book/the-book-2nd.html
https://api.semanticscholar.org/CorpusID:1211821
https://api.semanticscholar.org/CorpusID:259950998
https://openreview.net/forum?id=MND1kmmNy0O
https://openreview.net/forum?id=MND1kmmNy0O
https://api.semanticscholar.org/CorpusID:267522976
https://api.semanticscholar.org/CorpusID:208910339
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:262053612
https://api.semanticscholar.org/CorpusID:262053612

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng,
Yang Wang, and Enhong Chen. Large language models for generative information extraction: A
survey, 2024. URL https://arxiv.org/abs/2312.17617.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao,
Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Manfred Otto Heess, Dorsa Sadigh, Jie Tan, Yuval
Tassa, and F. Xia. Language to rewards for robotic skill synthesis. ArXiv, abs/2306.08647, 2023.
URL https://api.semanticscholar.org/CorpusID:259164906.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. ArXiv, abs/2401.10020, 2024. URL https://api.
semanticscholar.org/CorpusID:267035293.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
standing and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Shenao Zhang, Sirui Zheng, Shuqi Ke, Zhihan Liu, Wanxin Jin, Jianbo Yuan, Yingxiang Yang,
Hongxia Yang, and Zhaoran Wang. How can llm guide rl? a value-based approach. arXiv preprint
arXiv:2402.16181, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ArXiv, abs/2310.04406,
2023. URL https://api.semanticscholar.org/CorpusID:263829963.

16

https://arxiv.org/abs/2312.17617
https://api.semanticscholar.org/CorpusID:259164906
https://api.semanticscholar.org/CorpusID:267035293
https://api.semanticscholar.org/CorpusID:267035293
https://api.semanticscholar.org/CorpusID:263829963

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ENVIRONMENT DETAILS

In our experiments, we investigate tasks from four different domains: MiniWob (Liu et al., 2018),
NetHack (Küttler et al., 2020), and Wordle (Lokshtanov & Subercaseaux, 2022), and MetaWorld (Yu
et al., 2019). The observation space for all these environments is text, except fro MetaWorld which
consists of RGB pixels.

In the MiniWob domain, we sample the subset of the five tasks on which state-of-the-art results
are low. Specifically, we carry experiments on: click-tab-2-hard, click-checkboxes-soft,
count-shape, tic-tac-toe and use-autocomplete. To learn RL policies from LLM-based
rewards, we leverage the experimental setup of Shaw et al. (2023). In NetHack, we use the same
environment and the same algorithmic setup as in Klissarov et al. (2024). In Wordle, we build on
the code made available by Snell et al. (2022) and use their proposed subset of 200 words from the
official list of the game. Finally, in MetaWorld we study the same subset of environments presented
in (Wang et al., 2024) consisting of drawer-open-v2, soccer-v2 and sweep-into-v2. Across all
experiments where RL policies are learned, we use the original hyperparameter values defined in the
respective experimental setups we are building upon.

A.2 DETAILS ON INDIRECT POLICY MODELING THROUGH LLM-BASED REWARDS

We use the following prompt templates to query the agent for AI feedback, Scalar Reward and Reward
as Code across various environments. For the Embedding-based approach, we use calculate the cosine
similarity between the representation, provided by a BERT (Devlin et al., 2019) sentence encoder
(specifically the same paraphrase-MiniLM-L3-v2 model) when environments are text-based, and
otherwise we use the CLIP encoder (Radford et al., 2021). The similarity is measured between the
current observation and the same goal description contained in the each of the following prompts
given for the other baselines.

MiniWob Prompt For Reward Modeling with AI feedback

I will present you with two HTML descriptions from a web interaction
environment.

{task_description}
Write an analysis describing the semantics of each description
strictly using information from the descriptions.
Provide a comparative analysis based on first principles.
Finally, express a preference based on which description is the
most likely to make some progress towards the goal, writing either
("best_description": 1), ("best_description": 2).
You could also say ("best_description": None).

html_description_1: {description_1}

html_description_2: {description_2}

Prompt 1

In Figure 7, we verify the importance of the chain-of-thought prompting used for our AI feedback
baseline. Results show no statistical difference in performance compared to using chain-of-thought.
To understand this result, we can refer to Sprague et al. (2024) which show that across 14 LLMs,
chain-of-thought only significantly helps for mathematical and symbolic problems. We believe
the way LLMs help the tasks studied in this paper (i.e., for generating feedback on trajectories of
experience) can be characterized as being part of the Commonsense and Knowledge categories from
Sprague et al. (2024), in which chain-of-thought does not improve performance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Wordle Prompt For Reward Modeling with AI feedback

I will present you with two short gameplay descriptions of Wordle.

First, tell me about your knowledge of Wordle.

Mention the goal of Wordle. Use the following information for Wordle
states: black means that the provided letter is not present anywhere
in the hidden word. yellow means that the provided letter is present
somewhere in the hidden word, but not at the correct position. green
means that the provided letter is present in the hidden word exactly
at the correct position.

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of Wordle.
Provide a comparative analysis based on first principles.
Finally, express a preference based on which description is the
most likely to make some progress towards the goal, writing either
("best_description": 1), ("best_description": 2).
You could also say ("best_description": None).

description_1: {description_1}

description_2: {description_2}

Prompt 2

NetHack Prompt For Reward Modeling with AI feedback

I will present you with two short gameplay descriptions of Nethack.

First, tell me about your knowledge of NetHack.

Mention the goal of NetHack. Prefer agents that maximize the score
in the game, for instance by killing monsters, collecting gold or
going down the stairs in the dungeon.

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack.
Provide a comparative analysis based on first principles.
Finally, express a preference based on which description is the
most likely to make some progress towards the goal, writing either
("best_description": 1), ("best_description": 2).
You could also say ("best_description": None).

description_1: {description_1}

description_2: {description_2}

Prompt 3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

NetHack Prompt For Online Reward Modeling with AI feedback

I will present you with two short gameplay descriptions of Nethack.

First, tell me about your knowledge of NetHack.

Mention the goal of NetHack. Prefer agents that maximize the score
in the game, for instance by killing monsters, collecting gold or
going down the stairs in the dungeon.

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack.
Provide a comparative analysis based on first principles.
Finally, express a preference based on which description is the
most likely to make some progress towards the goal, writing either
("best_description": 1), ("best_description": 2).
You could also say ("best_description": None).

description_1: {description_1}

description_2: {description_2}

Prompt 4

MetaWorld Prompt For Reward Modeling with AI feedback

Does the image satisfy {current_task}?
image_1: {image_1}
{llm_response}

Does the image satisfy {current_task}?
image_2: {image_2}
{llm_response}

Prompt 5

A.3 DETAILS ON DIRECT POLICY MODELING

We present the exact prompts used to query GPT-4o for each of the domains we have considered.
These are presented through Prompt 13, 15, 14 and 16.

Additionally, in Figure 8, we ablate the prompting techniques used in our direct policy modeling
approach. Results show that a combination of all prompting techniques presented in Section 2.1
works best.

A.4 ADDITIONAL INDIRECT POLICY MODELING METHODS

There are a number of other prompting methods for extracting information or knowledge from an
LLM that may be relevant to solving RL tasks.

• Direct State Generation. The model generates tokens that will represent next states (or
other-future-time states). This is similar to world modeling. The next state prediction can be
conditioned on an action, or marginalized over a policy distribution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

AI Feedback AI Feedback (no CoT)

Figure 7: Ablation on the usefulness of chain-of-thought in the AI Feedback baseline.

0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Chain-of-Thought + In-Context Learning + Self-Refinement
Chain-of-Thought + In-Context Learning
Chain-of-Thought

Figure 8: Ablation on the set of prompting techniques used for direct policy modeling. The reported
performance is averaged over all domains and tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

MiniWob Prompt For Reward Modeling with Scalar Reward

I will present you with an HTML descriptions from a web interaction
environment.

{task_description}

Write an analysis describing the semantics of the description
strictly using information from the description.

Finally, output a scalar value between 0 and 5, with higher values
correlation with progress towards the goal.

html_description: {description}

Prompt 6

Wordle Prompt For Reward Modeling with Scalar Reward

I will present you with a gameplay description of Wordle.

First, tell me about your knowledge of Wordle.

Mention the goal of Wordle. Use the following information for Wordle
states: black means that the provided letter is not present anywhere
in the hidden word. yellow means that the provided letter is present
somewhere in the hidden word, but not at the correct position. green
means that the provided letter is present in the hidden word exactly
at the correct position.

Write an analysis describing the semantics of the description
strictly using information from the description.
Finally, output a scalar value between 0 and 5, with higher values
correlation with progress towards the goal.
description: {description}

Prompt 7

• High-level plans. Ask the LLM to generate a high-level plan. This can be similar to direct
state generation, but potentially relies on some subset of features (for examples the inventory
in MineCraft) and is typically temporally extended.

• Action Preference. Ask the LLM to select, among two choices, the most likely action given
previous and future observations.

• State Preference. Ask the LLM to select, among two choices, the most likely next state or
observation conditioned on prior history and/or actions.

Many of the above could theoretically be used to construct a policy, yet a full implementation is out
of scope from this paper due to the lack of available code-bases to build upon and we do not seek to
build new algorithms from scratch. For instance, generating a high-level plan can be constructed in
various ways: ranging from in-context learning to hierarchical reinforcement learning agents, with
many variables to be decided upon. For example, what is the space over which plans are established?
Is it the full observation space, a subset of it (e.g., in Minecraft, should it be pixel space or the
inventory)? What action space should be considered (e.g., in web agents tasks should it be low level
mouse click and drag, or human-crafted high levels as we see in many baselines?)? Additionally, the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

NetHack Prompt For Reward Modeling with Scalar Reward

I will present you with a gameplay description of Nethack.

First, tell me about your knowledge of NetHack.

Mention the goal of NetHack. Prefer agents that maximize the score
in the game, for instance by killing monsters, collecting gold or
going down the stairs in the dungeon.

Write an analysis describing the semantics of the description
strictly using information from the description.
Finally, output a scalar value between 0 and 5, with higher values
correlation with progress towards the goal.
description: {description}

Prompt 8

MetaWorld Prompt For Reward Modeling with Scalar Reward

From 0 to 5, how much does the image achieve{current_task}?
image: {image}

Prompt 9

MiniWob Prompt For Reward Modeling with Reward as Code

I will present you with HTML descriptions from a web interaction
environment.

{task_description}

Write an analysis describing the semantics of the descriptions
strictly using information from the descriptions.

Finally, write a code that, when executed, will help make progress
towards the goal.

html_descriptions: {descriptions}

Prompt 10

choice of these variables might not easily generalize across many environments, which is why we
decided not to focus on this direction. We do believe that this is a particularly important direction for
future work.

However, in Figure 2b we perform investigations into the capabilities of LLMs to perform Action
Preference and State Preference. The results show that current LLMs struggle to achieve strong
performance on any of these tasks. Additionally, in Table 1, we report the accuracy with which LLMs
directly predicts the next observation (Direct State Generation), providing a probe into their direct
world modeling capabilities. Results show limited performance, except on MiniWob-Hard tasks,
which are fully observable and encode deterministic transitions.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Wordle Prompt For Reward Modeling with Reward as Code

I will present you with gameplay descriptions of Wordle.

First, tell me about your knowledge of Wordle.

Mention the goal of Wordle. Use the following information for Wordle
states: black means that the provided letter is not present anywhere
in the hidden word. yellow means that the provided letter is present
somewhere in the hidden word, but not at the correct position. green
means that the provided letter is present in the hidden word exactly
at the correct position.

Write an analysis describing the semantics of the descriptions
strictly using information from the description.
Finally, write a code that, when executed, will help make progress
towards the goal.
descriptions: {descriptions}

Prompt 11

NetHack Prompt For Reward Modeling with Reward as Code

I will present you with gameplay descriptions of Nethack.

First, tell me about your knowledge of NetHack.

Mention the goal of NetHack. Prefer agents that maximize the score
in the game, for instance by killing monsters, collecting gold or
going down the stairs in the dungeon.

Write an analysis describing the semantics of the descriptions
strictly using information from the descriptions.
Finally, write a code that, when executed, will help make progress
towards the goal.
descriptions: {descriptions}

Prompt 12

A.5 ABLATING REWARD AS CODE

In Table 2, we ablate the performance of the Reward as Code baseline across LLMs, observation
spaces and additional assumptions. For pixel observations, we follow the methodology laid out in

Accuracy

MiniWob-Hard 65± 11.4%
Wordle 28± 8.3%
NetHack 0.0± 0.0%
MetaWorld N/A

Table 1: LLMs struggle to predict the next observation. We show the decreasing accuracy of the
LLM to predict the next observation with increasing task complexity. LLMs are unable to generate
pixel observations, which are used in MetaWorld.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

MiniWob-Hard Prompt For Direct Policy Modeling

We have an autonomous computer control agent that can perform atomic
instructions specified by natural language to control computers.
There are two types of instructions it can execute.

First, given the instruction that matches the regular expression,
"^type.{1,}$"
Second, given the instruction that matches the regular expression,
"^clickxpath\s.{1,}$" it can click an HTML element with an xpath that
is visible on the webpage. The target of this instruction should be
a valid xpath.

Below is the HTML code of the webpage where the agent should solve
a task.

{html_observation}

Examples:
task: {example_task}
plan: {example_plan}

Current task: Enter an item that starts with Äntiänd ends with d̈a.̈
Think step-by-step before answering, what is the current plan?
{llm_plan}

===============
Repeat N times:

Find problems with this plan for the given task compared to the
example plans.

{llm_criticism}

Based on this, what is the plan for the agent to complete the task?

Below is the HTML code of the webpage where the agent should solve
a task.
{html_observation}

Current task: Enter an item that starts with Äntiänd ends with d̈a.̈
Think step-by-step before answering, what is the current plan?
{llm_plan}
===============

Prompt 13

(Venuto et al., 2024), whereas for proprioceptive observations we follow the one from (Yu et al.,
2023). Both methods heavily depend on access to a state-of-the-art, closed-source model to achieve
performance comparable to that of AI Feedback, which uses the smaller, open-source model of
Paligemma (Beyer et al., 2024). Additionally, each method requires expert demonstrations or
specialized domain knowledge to guide the reward design process. While these assumptions may
be viable in certain situations, such as in a controlled simulation environment, they can present
significant practical challenges in more general contexts. In contrast, AI Feedback operates by simply
comparing observations and reasoning using a chain-of-thought approach.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Wordle Prompt for Direct Policy Modeling

Let’s play a game of Wordle. You will have to guess the words and I
will give you the colors.

Use the following information for Wordle colors:
black means that the provided letter is not present anywhere in the
hidden word.
yellow means that the provided letter is present somewhere in the
hidden word, but not at the correct position.
green means that the provided letter is present in the hidden word
exactly at the correct position.

You can choose among this list of words: {list_of_words}

Here are examples trajectories, containing past observations and
actions, together with an appropriate action.

Example 1:
Trajectory: {example_trajectory}
Action: {example_action}

Example 2:
Trajectory: {example_trajectory}
Action: {example_action}

Current trajectory: {trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}

==============
Repeat N times:

Find problems with this action for the given task compared to the
example actions.

{llm_criticism}

Based on this, what is the action for the agent to make progress on
the task?

Current trajectory: {trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}
==============

Prompt 14

A.6 LEARNING FROM ENVIRONMENT REWARDS

In Figure 9, we compare the performance of an RL agent trained using a reward function derived from
AI feedback with that of an agent trained on human-designed rewards across different environments.
We observe that AI feedback achieves comparable results, with an average score of 89.93 versus 86.3
for the human-designed reward. The objective of this experiment is not to argue that LLM-based
rewards consistently outperform human-crafted ones—since expert human knowledge can always be
encoded into a reward function—but rather to contextualize the performance of LLM-based rewards.
Notice that for MetaWorld we report the performance after fine-tuning the LLM as described in
Section 5.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

NetHack Prompt for Direct Policy Modeling

Let’s play the game of NetHack.

First, tell me about your knowledge of NetHack. Mention the goal
of NetHack.

Prefer maximizing the score in the game, for instance by killing
monsters, collecting gold or going down the stairs in the dungeon.

Here are examples sub-trajectories, containing past observations and
actions, together with an appropriate action.

Example 1:
sub-Trajectory: {example_sub-trajectory}
Action: {example_action}

Example 2:
sub-Trajectory: {example_sub-trajectory}
Action: {example_action}

Current sub-trajectory: {sub-trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}

==============
Repeat N times:

Find problems with this action for the given task compared to the
example actions.

{llm_criticism}

Based on this, what is the action for the agent to make progress on
the task?

Here is the current sub-trajectory, containing past observations and
actions: {sub-trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}
==============

Prompt 15

A.7 AI FEEDBACK AND HEURISTIC FUNCTIONS

While prior works have shown that rewards can be extracted from a language model (Kwon et al., 2023;
Brooks et al., 2024; Klissarov et al., 2024), it can be more generally thought of as encoding a heuristic
function h. The function h contains high-level, multi-step information about the MDP M . To extract
it, one can solve the re-shaped MDP M̃ with r̃(st, at) = r(st, at) + (1 − λ)γEst+1|st,at

[h(st+1)]

and γ̃ = λγ where λ ∈ [0, 1] Cheng et al. (2021). Solving M̃ yields a policy π∗ that is also optimal
in M - its value function’s bias can be shown to converge to V ∗ in M as a function of ||h− V ∗||∞.

Specifically, assume access to an initial dataset D0, from which a heuristic h can be computed. In
the reshaped MDP M̃ , one can learn a new policy π which optimizes r̃ with λ ∈ [0, 1]. Equation (5)
shows the performance difference lemma Kakade & Langford (2002) as a function of true and
reshaped MDP quantities:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

MetaWorld Prompt for Direct Policy Modeling

You are controlling a robot for the following task:

{meta_world_task}

Here are examples sub-trajectories, containing past observations and
actions, together with an appropriate action.

Example 1:
sub-Trajectory: {example_sub-trajectory}
Action: {example_action}

Example 2:
sub-Trajectory: {example_sub-trajectory}
Action: {example_action}

Current sub-trajectory: {sub-trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}

==============
Repeat N times:

Find problems with this action for the given task compared to the
example actions.

{llm_criticism}

Based on this, what is the action for the agent to make progress on
the task?

Here is the current sub-trajectory, containing past observations and
actions: {sub-trajectory_so_far}
Think step-by-step before answering, what should be the current
action? {llm_action}
==============

Prompt 16

L(π, h) =ED0
[V ∗(s)− V π(s)]

=c1ED0

[
Ṽ ∗(s)− Ṽ π(s)

]
+ c2EDπ

[
Ṽ ∗(s)− Ṽ π(s)

]
+ c3EDπ

[
h(s′)− Ṽ ∗(s′)

]
,

(5)

where c1, c2, c3 are non-negative constants. Minimizing L(π, h) with respect to π and h can be
achieved by minimizing each individual term. In particular, the red term suggests that the heuristic h
has to be updated on data from Dπ in order to not become "stale". This points out a shortcoming
of existing LLM-as-critic algorithms, which sometimes fix h after distilling the language model
knowledge into it Klissarov et al. (2024)

These theoretical findings suggest, in particular, that heuristic h (in our case, the Bradley-Terry prefer-
ence model), has to be updated with on-policy samples, similarly to empirical results from Figure 5.

A.8 ADDITIONAL CONSIDERATIONS FOR PREFERENCE-BASED REWARD MODELING

In Figure 10, we present the properties that were important to obtain effective exploration on NetHack,
without the counting term shown in Equation 4.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Reward as Code - RGB Observations

GPT-4o
w/o expert demonstration 0%± 1%
with expert demonstration 79%± 7%

Reward as Code - Proprioceptive Observations

Llama 3 70B
w/o background functional knowledge 0%± 1%
with background functional knowledge 10%± 3%

GPT-4o
w/o background functional knowledge 5%± 3%
with background functional knowledge 76%± 6%

AI Feedback - RGB Observations

PaliGemma 72%± 8%

Table 2: AI Feedback performs on par with Reward as Code, without proprioceptive observa-
tions or expert demonstrations. To match AI Feedback performance on Metaworld, Reward as
Code requires GPT-4o level knowledge, augmented with either in-context expert demonstrations or
proprioceptive observations.

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

No
rm

al
ize

d
Pe

rfo
rm

an
ce

AI Feedback Environment Reward

Figure 9: Comparison between the best performing LLM-based reward (AI Feedback) and human
designed rewards for each domain.

Online Preferences
 & Non-Markovian Model

Online Preferences
 & Markovian Model

Offline Preferences
 & Non-Markovian Model

Offline Preferences
 & Markovian Model

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Score
Scout
Dungeon Level

Figure 10: Successful exploration on Nethack depends on both online preference elicitation and a
non-Markovian reward function.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A.9 IN-CONTEXT LEARNING FOR REWARD MODELING

In Figure 11, we present a variation on the Wordle game where the color code has been altered, which
we refer to as Eldrow (reverse Wordle). Under this transformation, the off-the-shelf model provides
feedback that correlates very poorly with the optimal value function. When we measure the perplexity
of the LLM on a natural language description of the new rule set of Eldrow (see Appendix A) we
obtain a value of 6.97 which is higher than the one measured on the standard rule set of Wordle, with
a value of 5.06. Given that the difference in values is not very large, we leverage the simplest way for
adapting the LLM: through in-context learning. As shown in Figure 11b, by providing hints in the
prompt about the new rule set, the LLM adapts its preferences and generates a Bradley-Terry model
that recovers the correlation values we witnessed in 4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Policy degree of optimality

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Co
rre

la
tio

n

Corr(BTLLM, v)

(a) Before in-context learning

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Policy degree of optimality

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

Corr(BTLLM, v)

(b) After in-context learning

Figure 11: AI feedback can be adapted to novel settings through in-context learning. While the
original LLM does poorly on Eldrow due to out-of-distribution, it manages to correct its feedback the
task using in-context hints.

A.10 LLMS AS NOVELTY DETECTORS

We hypothesize that LLMs with long contexts can effectively act as novelty detectors. Within
the scope of RL problems, this implies the ability to tell, for example, whether a sub-trajectory is
contained in the replay buffer.

To test this, we query Gemini-1.5 Pro (Team et al., 2023) with a context video containing 500
frames of an agent exploring the bottom-left room (Figure 12-left) and a single frame sampled
uniformly at random from a query episode which covers in the top-right room, center and bottom of
the maze (Figure 12-middle). We ask the LLM to identify novel query states, i.e. states which are not
seen in the context episode. We then train a direct predictor (3-layer MLP) to estimate the probability
of any state on the grid to be novel with respect to the context (Figure 12-right). The language model
correctly identifies the top-right portion of the trajectory to be novel, knowledge which could then be
used to construct an intrinsic reward function.

A.11 INVESTIGATING A LARGER SET OF LLMS

In Figure 13, we investigate a larger set of LLMs for the LLM Policy method. We run experiments
using Claude 3.5 Sonnet and Gemini Pro 1.5 across all environments. Results indicate that the
performance of these frontiers models is generally the same, mirroring recent results from Paglieri
et al. (2024). In Figure 14, we extend the of LLM studied for the AI Feedback method, which is the
best performing method from the reward modeling approaches. We investigate the Qwen 2.5 model
on MiniWob-Hard, Wordle and NetHack (as they are text-based domains), and the Llama 3.2-V
model on MetaWorld (pixel-based). Once again, the results show little difference in performance
across most models, except for the comparison on the MetaWorld domain where the Llama 3.2-V
model performs significantly better than PaliGemma.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 12: LLMs can capture observation novelty. Given the context trajectory (red), and a
single observation sampled uniformly at random from the query trajectory (blue), the LLM correctly
identifies novel states that are seen in the query but not in the context (green).

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

GPT-4o Gemini Pro Exp-114 Claude 3.5 Sonnet

Figure 13: Comparison between different frontier closed-source models as used within the LLM
Policy method.

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Llama 3 Qwen 2.5 PaliGemma Llama 3.2-V

Figure 14: Comparison between the Llama 3 model and Qwen 2.5 on the three text-based domains
(MiniWob-Hard, Wordle and NetHack) as well as a comparison between the PaliGemma model
and Llama 3.2-V on the pixel-based domain (MetaWorld). We only notice significant difference in
performance between PaliGemma and Llama 3.2-V, which also present quite different architectures
and pre-training regimes.

A.12 REWARD AS CONTEXT FOR LLM POLICY

In Figure 15, we verify whether providing the LLM-based reward as additional context to the LLM
Policy can improve its performance.

A.13 LLM FINE-TUNING EXPERIMENTS

In this section, we investigate how we could fine-tune an LLM for direct policy modeling in the
environments we have studied. During this process, we control the amount of samples seen during

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

MiniWob-Hard Wordle NetHack MetaWorld
0

20

40

60

80

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

LLM Policy LLM Policy with Reward Information

Figure 15: Comparison between the LLM Policy described in Section 2.2 and a variation, LLM
Policy with Reward Information, in which we provide the LLM outputting actions in the environment
with the reward defined from the AI Feedback method.

Environment Samples Direct Policy (only RL) Direct Policy (only SFT) Direct Policy (RL after SFT) AI Feedback

Success Rate

0 0.00 0.00 0.92 0.00
128k 0.01 0.10 0.80 0.22
256k 0.05 0.13 0.63 0.48
1M 0.09 0.87 0.65 0.72

Floating Point Operations (FLOPS)

0 0 0 3.65× 1017 6.9× 1012

128k 7.36× 1016 4.38× 1017 4.38× 1017 4.09× 1014

256k 1.46× 1017 5.11× 1017 5.11× 1017 8.109× 1014

1M 7.12× 1017 1.09× 1018 1.09× 1018 3.145× 1015

Table 3: FLOPS for Different Policies and Environment Samples.

optimization and the amount of FLOPS used to fine-tune the LLM. Specifically, we fine-tune the
direct policy method under three settings: only with online RL, only with SFT, and online RL
training on an SFT-pretrained model. We compare these to the performance of the AI feedback
method, which has shown to be the best performing reward modeling method. For AI feedback, we
calculate the FLOPS used by the RL algorithm, as well as any computation spent on the LLM for
inference or fine-tuning.

Results in Table 3 indicates that indirect policy modeling achieves comparable performance
to direct policy modeling trained with SFT at a fraction of the computational cost, i.e. two orders of
magnitude lower. Policy modeling achieves a higher success rate with 1 million training samples,
but is otherwise significantly less efficient than indirect policy modeling. Importantly, direct policy
modeling with SFT relies on a large expert dataset to achieve good performance. On the other
hand, direct policy modeling trained only with RL shows poor performance with 1M samples and
high sensitivity to hyperparameters. This is in line with Anonymous (2024) reporting low sample
efficiency when training LLMs with online RL, without SFT, for sequential decision-making.

31

	Introduction
	Using Language Models to Solve RL Tasks
	Prompting
	Policy Modeling Using LLMs
	Indirectly Modeling Policies through Reward Models

	Performance of Indirect and Direct Policy Models
	Analysis of AI Feedback for RL
	Credit Assignment
	Exploration

	Beyond Zero-Shot Reward Modeling
	Related Works
	Discussion
	Appendix
	Environment Details
	Details on Indirect Policy Modeling Through LLM-based Rewards
	Details on Direct Policy Modeling
	Additional Indirect Policy Modeling Methods
	Ablating Reward as Code
	Learning from Environment Rewards
	AI feedback and heuristic functions
	Additional Considerations for Preference-based Reward Modeling
	In-Context Learning for Reward Modeling
	LLMs as novelty detectors
	Investigating a larger set of LLMs
	Reward as Context for LLM Policy
	LLM Fine-tuning Experiments

