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Abstract

With the rise of the fine-tuned–pretrained paradigm, storing numerous fine-tuned
models for multi-tasking creates significant storage overhead. Delta compression
alleviates this by storing only the pretrained model and the highly compressed delta
weights (the differences between fine-tuned and pretrained model weights). How-
ever, existing methods fail to maintain both high compression and performance,
and often rely on data. To address these challenges, we propose UltraDelta, the
first data-free delta compression pipeline that achieves both ultra-high compression
and strong performance. UltraDelta is designed to minimize redundancy, maximize
information, and stabilize performance across inter-layer, intra-layer, and global
dimensions, using three key components: (1) Variance-Based Mixed Sparsity Allo-
cation assigns sparsity based on variance, giving lower sparsity to high-variance
layers to preserve inter-layer information. (2) Distribution-Aware Compression ap-
plies uniform quantization and then groups parameters by value, followed by group-
wise pruning, to better preserve intra-layer distribution. (3) Trace-Norm-Guided
Rescaling uses the trace norm of delta weights to estimate a global rescaling factor,
improving model stability under higher compression. Extensive experiments across
(a) large language models (fine-tuned on LLaMA-2 7B and 13B) with up to 50×
compression, (b) general NLP models (RoBERTa-base, T5-base) with up to 224×
compression, (c) vision models (ViT-B/32, ViT-L/14) with up to 132× compression,
and (d) multi-modal models (BEiT-3) with 18× compression, demonstrate that
UltraDelta consistently outperforms existing methods, especially under ultra-high
compression. Code is available at https://github.com/xiaohuiwang000/UltraDelta.

1 Introduction

As fine-tuning pretrained models for downstream tasks becomes increasingly popular, a growing
number of task-specific fine-tuned models have been developed across various domains. To obtain
multi-task capabilities and achieve optimal performance across tasks, deploying multiple fine-tuned
models simultaneously has become a common practice. However, multi-model deployment introduces
severe storage and computational overhead, since each fine-tuned model requires storing a full
set of parameters. Delta Compression has emerged as a promising solution to this problem by
substantially reducing storage requirements. Instead of storing multiple complete fine-tuned models,
delta compression works by storing a single pretrained model along with a set of delta weights
(i.e., the differences between each fine-tuned model and the pretrained model) and then applying
aggressive compression to these delta weights to minimize storage overhead. These delta weights
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Figure 1: Compression vs. Performance. We compare UltraDelta with baselines, showing strong
performance at ultra-high compression. DARE and Magnitude Pruning are evaluated in two settings:
with the same sparsity as UltraDelta, and using pruning alone to match a similar compression ratio as
UltraDelta. Subfigures show average performance on: (a) LLaMA-2-13B fine-tuned on 3 tasks, (b)
T5-base on 8 NLP tasks, (c) ViT-L/14 on 8 vision tasks, and (d) BEiT-3 on 3 vision-language tasks.

are often highly redundant, allowing for substantial compression with minimal impact on model
performance, thereby significantly reducing storage costs.

Currently, a number of works have been proposed for delta compression, which can be broadly
categorized into two main types: Pruning and Quantization. Pruning methods reduce model size by
removing parameters. For example, DARE [91] randomly prunes delta parameters, while Magnitude
Pruning [27, 28, 46, 45] removes low-magnitude parameters. Quantization methods work by mapping
full-precision parameters to low-bit representations. For example, BitDelta [53] uses masking and
rescaling to achieve 1-bit quantization, while Delta-CoMe [64] applies mixed-precision quantization
to matrices obtained from singular value decomposition. Other approaches, such as DeltaZip [90],
combine quantization with pruning to improve deployment efficiency. However, these methods all
struggle to balance ultra-high compression with strong performance, mainly due to: (1) Ignoring inter-
layer differences: All layers are treated equally, ignoring that different layers contribute unequally to
the model, which limits information preservation. (2) Disrupting intra-layer distributions: Intra-layer
weight distributions are crucial to performance but are often distorted by aggressive quantization or
pruning. (3) Lack of stability under ultra-high compression: Existing methods struggle to maintain
stability under ultra-high compression without relying on data, leading to severe performance drops.

To address these limitations, we propose UltraDelta, the first data-free pipeline to achieve ultra-
efficient delta compression, delivering both ultra-high compression and strong performance. Ul-
traDelta focuses on minimizing parameter redundancy, maximizing information preservation, and
enhancing model stability across three dimensions: inter-layer, intra-layer and global. It consists
of three key components: (1) Variance-Based Mixed Sparsity Allocation (MSA, inter-layer): We
theoretically show that layer-wise variance reflects the amount of information in each layer. Based on
this insight, we assign lower sparsity to layers with higher variance to better preserve critical informa-
tion. (2) Distribution-Aware Compression (DAC, intra-layer): We first apply uniform quantization,
and group parameters by their quantized value, then perform random pruning within each group to
maintain the relative proportions across different values and better preserve the original distribution.
(3) Trace-Norm-Guided Rescaling (TNGR, global): We observe that under extreme sparsity, the
standard rescaling factor 1/(1 − s) becomes insufficient to stabilize performance (where s is the
sparsity rate). We introduce a refined rescaling factor γ/(1− s), where γ is heuristically estimated
from the trace norm of each delta weight and is smaller for delta weights with larger trace norms,
enhancing robustness under ultra-high compression.

We conduct extensive experiments across models of different scales, types, and tasks to evaluate
the effectiveness and robustness of UltraDelta. The results demonstrate its exceptional performance
under ultra-high compression: (1) Large Language Models: UltraDelta compresses LLaMA-2 series
models [78, 56, 57] to 32× compression for 7B and 50× for 13B, consistently outperforming all
baselines and even surpassing the average performance of fine-tuned models. To further demonstrate
generality, we also evaluate on more recent architectures, including LLaMA-3.1 [43], Qwen2.5 [89],
and Qwen3 [77]. (2) General NLP Models: UltraDelta achieves 224× compression on T5-base [67]
and 32× on RoBERTa-base [54] across 8 NLP tasks, even exceeding the average performance
of fine-tuned models on T5-base. (3) Vision Models: UltraDelta achieves 50× compression on
ViT-B/32 and 132× on ViT-L/14 [66] across 8 image classification tasks, achieving completely
lossless performance on ViT-L/14 compared with fine-tuned models. (4) Multi-modal Models: On
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BEiT-3 [82], we achieve 18× compression on 3 vision-language tasks, outperforming all baselines
across all tasks. As illustrated in Fig. 1, we present compression–performance trade-off for all four
model types. UltraDelta consistently achieves the best trade-off, outperforming all baselines, and in
some cases, even surpassing the performance of fine-tuned models under ultra-high compression.

The main contributions of this paper can be summarized as follows:

• To break the compression ceiling of delta weights, we analyze the limitations of existing methods
in information preservation and model stability, and propose UltraDelta, the first data-free pipeline
enabling ultra-efficient delta compression, achieving both ultra-high compression ratios and strong
performance without relying on any data.

• To enhance information preservation and model stability, we introduce three novel techniques:
Variance-Based Mixed Sparsity Allocation to prioritize critical layers, Distribution-Aware Compres-
sion to preserve the original weight distribution, and Trace-Norm-Guided Rescaling to stabilize
model performance under extreme sparsity.

• Extensive experiments across large language models, general NLP models, vision models, and
multi-modal models demonstrate that UltraDelta consistently outperforms all baselines and even
surpasses fine-tuned models in several settings, showcasing its effectiveness and robustness in
achieving ultra-efficient delta compression.

2 Related Work

Delta Compression is a technique that compresses the delta weights. It is especially beneficial
in multi-model deployment scenarios, where many task-specific models are fine-tuned from the
same pretrained model. By storing only the highly compressed delta weights alongside the shared
pretrained model, delta compression significantly eliminates redundant storage. Existing methods for
delta compression primarily fall into two categories: pruning and quantization.

Delta Weight Pruning reduces model size by removing parameters from the delta weights. Magni-
tude Pruning (MP)[27, 28, 45, 46] removes weights with the smallest magnitudes but fails to preserve
information and causes significant performance drops under high sparsity, as it disrupts the original
weight distribution. DARE[91] applies random pruning combined with global rescaling based on
sparsity to improve robustness, but suffers from instability under high sparsity. DAREx [20] refines
DARE’s rescaling using activation statistics, and DeltaDQ [38] performs group-wise pruning and
selects the optimal group size based on attention error. However, both methods require data for tuning,
limiting their use in data-free scenarios. Some methods also adopt layer-wise pruning [47, 55], but
the metrics are often computationally expensive and usually require data. Overall, pruning effectively
reduces parameter redundancy but suffers from several drawbacks, such as insufficient information
preservation, instability under high sparsity, and reliance on additional data.

Delta Weight Quantization compresses delta weights by mapping them to low-bit representations.
GPT-Zip[35] extends GPTQ[22] and quantizes delta parameters to 2-bit. Delta-DCT [33] leverages
the discrete cosine transform and compresses delta weights in the frequency domain. BitDelta [53]
uses binary masks and scaling factors for 1-bit quantization, but requires calibration data and also
distorts the original weight distribution due to the binary masks. Delta-CoMe [64] applies singular
value decomposition and mixed-precision quantization on the decomposed matrices to achieve 1-bit
compression. Overall, although quantization effectively reduces parameter bit-width, it is often
limited to 1-bit precision, which prevents further minimization of parameter redundancy.

Hybrid Approach combines delta weight pruning and delta weight quantization to leverage the
advantages of both. DeltaZip [90] employs structured pruning and quantization, primarily aiming
to improve deployment efficiency and hardware acceleration, but it falls short in preserving critical
information, limiting its effectiveness under ultra-high compression. ComPEFT [88], on the other
hand, applies magnitude pruning and then quantizes the remaining weights with a fixed shared value.
However, it requires validation data and, due to the reliance on magnitude pruning, disrupts structural
integrity and fails to preserve critical information under high sparsity.

In contrast, UltraDelta is a data-free hybrid compression method that explicitly focuses on minimizing
parameter redundancy, maximizing information preservation, and enhancing model stability under
ultra-high compression ratios, all without requiring any data.
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Figure 2: (a) Overview of the UltraDelta pipeline. It first assigns layer-wise sparsity based on
variance, and performs uniform quantization followed by group-wise pruning, and finally applies
trace-norm-guided rescaling. (b) Variance-Based Mixed Sparsity Allocation allocates lower sparsity
to high-variance layers to preserve information. (c) Distribution-Aware Compression groups quantized
parameters by value and prunes within each group to retain distribution. (d) Trace-Norm-Guided
Rescaling estimates a rescaling factor using the trace norm of each delta weight to enhance robustness.

3 Method

3.1 Preliminaries

Consider a set of T fine-tuned models that are fine-tuned from the same pretrained model. Let the
weights of these models be denoted as {θ1, θ2, . . . , θT }, and the shared pretrained model weight as
θpre. For each fine-tuned model t ∈ {1, 2, . . . , T}, we define the delta weight as:

∆θt = θt − θpre (1)

3.2 UltraDelta: A Data-Free Pipeline for Ultra-Efficient Delta Compression

To address the limitations of existing delta compression methods, UltraDelta introduces a hybrid
compression framework that minimizes parameter redundancy while maximizing information preser-
vation and enhancing model stability across three dimensions: inter-layer, intra-layer, and global,
enabling robustness under ultra-high compression. An overview of the overall pipeline is illustrated
in Fig. 2. We detail the core design of UltraDelta in Sec.3.2, and provide analysis in Sec.3.3.

(1) Variance-Based Mixed Sparsity Allocation (MSA). Existing pruning methods often adopt
uniform sparsity across layers, treating all parts of the model equally and overlooking their varying
importance. However, different layers exhibit different sensitivities to pruning. We observe that
layers with higher variance tend to carry more critical information and are more sensitive to pruning
(see Sec. 3.3). Motivated by this, we propose MSA that categorizes all layers into three groups based
on their variances (low, medium, high), each containing an equal number of parameters:

Groups = {Glow,Gmid,Ghigh} (2)

Each group Gv is assigned a sparsity rate sv based on its variance v ∈ {low,mid, high}, with lower-
variance groups assigned higher sparsity and higher-variance groups assigned lower sparsity, in order
to preserve inter-layer information better:

sv = smid + δv, δv ∈ {+sstep, 0,−sstep} (3)

where smid is the average sparsity of the overall delta weight, and sstep > 0 controls the difference in
sparsity across groups.
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(2) Distribution-Aware Compression (DAC). Prior work has shown that preserving the shape of the
weight distribution after compression helps maintain model performance [33]. To better preserve
the intra-layer distribution shape under ultra-high compression, we propose DAC. Specifically, as
delta weight exhibits a distribution well-suited to uniform quantization [38], we first apply uniform
quantization with a lower bit width b (typically b = 4) to the delta weight. This quantization process
consists of two steps: (a) mapping each value in ∆θt to a discrete integer within [0, 2b − 1]; (b)
mapping the quantized values back to the original value range. Let min = min(∆θt), max =
max(∆θt), and ∆ be the quantization step size:

∆̂θt = round

(
∆θt −min

∆

)
·∆+min, where ∆ =

max−min

2b − 1
(4)

After quantization, we group the parameters by their values and perform random pruning within
each group. Let {u1, u2, . . . , un} represent the unique values in the quantized delta weight ∆̂θt. We
denote (j, k) as the row and column indices of elements in ∆̂θt. For each unique quantized value ui,
we define a mask Mui whose elements are independently sampled from a Bernoulli distribution with
success probability 1− sl, where sl is the sparsity rate of the layer. Specifically:

M (j,k)
ui

∼

{
Bernoulli(1− sl), if ∆̂θt

(j,k)
= ui

0, otherwise
(5)

The pruned delta weight ∆̂θt
∗

is obtained by applying the group-wise Bernoulli masks to the
quantized delta weights:

∆̂θt
∗
=

n∑
i=1

ui ·Mui (6)

DAC preserves the relative proportions of delta values, maintaining the intra-layer distribution shape.
It minimizes distortion under high sparsity and ensures more stable performance. Moreover, DAC
can be applied in non-quantized settings with minimal modification, making it suitable for scenarios
where aggressive compression is not required. Instead of grouping by discrete values, we partition the
weight range into several intervals, and assign parameters whose values fall within the same interval
to the same group. Details are provided in App. A.

(3) Trace-Norm-Guided Rescaling (TNGR). As derived in Sec. 3.3, the variance of activation
errors between compressed and original delta weights correlates with s/(1− s), causing instability
at high sparsity. To address this, we introduce an additional rescaling factor γt for task t, and redefine
rescaling as γt/(1− st), where st is the overall sparsity of the delta weight for task t. We find that
delta weights with larger trace norms (i.e., the sum of their singular values) tend to require smaller γt
to maintain stable performance. Motivated by this observation, we set γt inversely proportional to the
trace norm of the delta weights:

γt ∝
1

||∆θt||tr
(7)

where ∥ · ∥tr denotes the trace norm. This trace-norm-guided rescaling offers a simple yet effective
way to adaptively stabilize pruning under extreme sparsity. In practice, γt typically falls within the
range of [0.5, 1.0]. During the inference stage, the final model weight is reconstructed as:

θfinalt = θpre +
γt

1− st
· ∆̂θt

∗
(8)

3.3 Reason for Effectiveness

3.3.1 Theoretical Analysis of MSA

In lossless compression, the entropy represents the lower bound on the achievable average bit rate.
A larger entropy means that a layer carries more information and therefore should be more carefully
preserved. We show that the variance of a layer is closely related to its entropy, serving as the
theoretical motivation for MSA. Following [50], we model the distribution of a layer as a Gaussian
Distribution L ∼ N (µ, σ2). The probability density function of L is given by:

p(l) =
1√
2πσ2

exp

(
− (l − µ)2

2σ2

)
(9)
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Figure 3: Relationship between Trace Norm and Additional Rescaling Factor on 8 ViT-B/32. (a)
Average performance under 90% sparsity with different additional rescaling factors. (b) Same as (a),
under 99% sparsity. (c) Trace norm of delta weights across tasks.

The entropy of this distribution is (detailed derivation in App. B.1):

H(L) = −E[log p(l)] = log(σ) +
1

2
log(2π) +

1

2
(10)

This demonstrates the link between variance and entropy: layers with larger variance have higher
entropy, implying greater information content and thus requiring smaller sparsity to preserve it.

In lossy compression, entropy alone is not sufficient. When distortion is allowed, we employ
rate–distortion theory [6, 17], which establishes the limit on how much information must be retained
to achieve a given distortion level. Let L̂ denote the compressed version of L. With mean squared
error (MSE) distortion, we define:

D = E
[
(L− L̂)2

]
, (11)

According to rate–distortion theory, the rate–distortion function of a Gaussian source under MSE
distortion (which is independent of the mean µ) is given by:

R(D) =

{
1
2 log

(
σ2

D

)
, 0 < D < σ2,

0, D ≥ σ2,
(12)

This shows that, for a fixed distortion D, a larger variance σ2 leads to a higher rate R(D), meaning
that more information must be retained. In other words, layers with larger variance require a smaller
sparsity in order to preserve their information under lossy compression.

3.3.2 Theoretical Analysis of the Rescaling Factor.

For a given delta weight ∆θ, let the activation be defined as a = ∆θ⊙ x, where x is the input feature.
We introduce a Bernoulli mask B ∼ Bernoulli(1− s), with sparsity rate s, and apply an additional
scaling factor γ ∈ [0, 1]. Following [20], the activation error introduced by compression is:

ε = ∆θ ⊙ x− γ

1− s
· (B ⊙∆θ ⊙ x) = a⊙

(
1−B · γ

1− s

)
(13)

We further derive the variance of this error (detailed derivation in App. B.2):

Var(ε) =
γ2s

1− s
⊙ a2 (14)

As sparsity becomes higher, the variance grows rapidly and causes instability. This underscores the
importance of using smaller rescaling factors to stabilize the model under high sparsity.

3.3.3 Empirical Analysis of TNGR.

We investigate how the additional rescaling factor γ for each delta weight correlates with its intrinsic
characteristics, as shown in Fig. 3. At 90% sparsity, we observe that delta weights with larger
trace norms tend to require smaller values of γ to maintain stable performance. Moreover, their
performance is more sensitive to changes in γ. This phenomenon becomes even more pronounced at
99% sparsity, where the need for smaller γ is more substantial for delta weights with large trace norms,
and the performance drop-off becomes steeper when γ is not well matched. These empirical trends
support our trace-norm-guided heuristic estimation, which sets γ ∈ [0.5, 1.0] inversely proportional
to the trace norm for adaptive and data-free rescaling.
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3.3.4 Ability to Preserve Information.

Figure 4: Cosine Similarity Analysis. (a) Layer-wise simi-
larity of each layer’s embeddings. (b) Distribution of cosine
similarity for the final-layer embeddings. Compression ratios
for each method are indicated in parentheses.

To explain why UltraDelta achieves
strong performance under ultra-high
compression ratios, we analyze how
well it preserves the original model’s
internal representations. Specifically,
we compare the cosine similarity
between the embeddings from the
compressed and fine-tuned RoBERTa-
base [54] models on the CoLA [83]
dataset. We extract the layer-wise em-
beddings of each input token and re-
port the average cosine similarities.
As shown in Fig. 4, our method consis-
tently maintains high similarity across
all layers, especially in the deeper ones that are more critical to performance. The distribution of
cosine similarities in the final layer further confirms that UltraDelta retains essential information,
indicating its effectiveness in preserving critical information despite ultra-high compression.

4 Experiment

Baseline Methods. We compare UltraDelta with the following baselines: (1) Fine-tuned Models;
(2) Multi-task Learning (MTL) [8], which trains a single model on all tasks; (3) BitDelta [53];
(4) Delta-CoMe [64]; (5) DARE [91] with either the same sparsity or similar compression ratio
as UltraDelta, using pruning alone to achieve a similar compression ratio; (6) Magnitude Pruning
(MP) [27], also matched by sparsity or compression ratio. Since BitDelta and Delta-CoMe target only
linear layers in Transformer blocks, we restrict all methods to compress only linear layers for fairness.
All original models are stored in FP16 format. Experiments are conducted on a NVIDIA A800 GPU.

Compression Ratio. Unlike quantization, where compression is directly determined by bit-width,
pruning methods require storing the indices of non-zero values. To ensure a unified and fair evaluation,
following [70, 74, 88], we adopt Golomb coding [25] to store the compressed delta weights for
methods involving pruning, which is well-suited for encoding the zero-run lengths that approximately
follow a geometric distribution. Detailed derivation and calculations are in App. B.3, with results
summarized in Tab. 8. Furthermore, for a complete evaluation, we present the ideal upper bound of
compression ratio and practical results under different storage schemes in Sec. 4.5(storage scheme).

4.1 Performance on Large Language Models (LLMs)

Settings. We primarily evaluate UltraDelta on the LLaMA-2 series with sizes of 7B and 13B across
three types of models: math (WizardMath [56]), code (WizardCoder [57]), and chat (LLAMA-2-
Chat [78]). The models are evaluated using GSM8K [15] for math (accuracy), HumanEval [11] for
code (pass@1), and TruthfulQA [49] for chat (accuracy). We also incorporate more recent LLMs and
more challenging tasks: LLaMA-3.1-Tulu-8B [43] evaluated on MBPP+ [3] and HumanEval+ [11],
Qwen2.5-7B-Instruct [89] evaluated on MATH [31] and GPQA [69], and Qwen3Guard-8B [77]
evaluated on MMLU [30] and BBQ [63]. Details for the LLM IDs are presented in App. C.1.

Results. We first report results on the LLaMA-2 series (see Tab. 1). For the 7B model, we apply 4-bit
quantization and prune 95% of parameters, achieving an 32.9× compression ratio; for the 13B model,
we prune 97% to reach 50.9× compression. Despite these ultra-high compression ratios, UltraDelta
achieves average scores of 45.57 (7B) and 52.05 (13B), exceeding the fine-tuned models (45.37
and 50.94, respectively). This improvement suggests that UltraDelta may introduce a regularization
benefit. Compared to BitDelta [53] and Delta-CoMe [64], which are limited to 16× compression,
UltraDelta delivers both higher compression and better performance. Other approaches such as
DARE [91] and MP [27] fall short even at lower compression ratios, and when matched to the similar
compression ratio as UltraDelta, their performance drops sharply. For newer LLMs (see Tab. 2),
UltraDelta achieves the best overall compression–performance trade-off across baselines. In summary,
UltraDelta consistently outperforms all baselines across various tasks and model sizes, demonstrating
its remarkable robustness and effectiveness under ultra-high compression.
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Table 1: Performance comparison on large language models across 3 tasks. Ratio denotes the
compression ratio (original model size / compressed size). Methods marked with “(Sparsity)” use the
same sparsity rate as ours, while those marked with “(Compression)” use a higher sparsity rate to
match a similar overall compression ratio as our method. Best results are highlighted in bold.

Method Ratio WizardMath-V1.0 WizardCoder-V1.0 LLAMA-2-Chat Avg
7B 13B 7B 13B 7B 13B 7B 13B 7B 13B

Individual 1× 1× 41.55 47.31 49.40 58.50 45.17 47 45.37 50.94

BitDelta [53] 16× 16× 36.54 46.12 46.30 54.30 42.84 44.85 41.89 48.42
Delta-CoMe [64] 16× 16× 37.25 46.87 45.30 53.70 45.02 45.57 42.52 48.71

DARE [91] (Sparsity) 14.7× 23.7× 36.62 46.70 46.20 53.90 33.54 36.29 38.79 45.63
MP [27] (Sparsity) 14.7× 23.7× 23.65 3.11 45.70 47.60 40.02 38.25 36.46 29.65
DARE [91] (Compression) 31.7× 50.1× 29.49 35.63 43.30 51.80 29.13 33.25 33.97 40.23
MP [27] (Compression) 31.7× 50.1× 16.22 8.42 32.90 16.50 31.95 21.15 27.02 15.36

UltraDelta (Ours) 32.9× 50.9× 38.76 48.45 51.80 59.10 46.14 48.59 45.57 52.05

Table 2: Performance comparison on recent large language models.

Method Ratio Llama-3.1-Tulu-3-8B Qwen2.5-7B-Instruct Qwen3Guard-Gen-8B AvgHumanEval+ MBPP+ MATH GPQA MMLU BBQ

Individual 1× 57.30 56.60 36.20 36.87 72.80 50.34 51.69

BitDelta [53] 16× 55.50 52.90 38.10 37.37 73.05 49.60 51.09
Delta-CoMe [64] 16× 53.80 53.10 29.45 31.43 71.46 44.61 47.31

DARE [91] (Sparsity) 14.7× 50.60 50.00 37.76 34.85 72.18 49.69 49.18
MP [27] (Sparsity) 14.7× 45.10 40.20 11.84 31.82 70.91 50.18 41.68

UltraDelta (Ours) 32.9× 56.10 54.50 40.14 38.38 73.44 49.74 52.05

4.2 Performance on general NLP models

Settings. Following [76, 91], we evaluate both T5-base [67] and RoBERTa-base [54] models on
the GLUE [81] benchmark, covering CoLA [83], SST-2 [71], MRPC [21], STS-B [10], QQP [36],
MNLI [84], QNLI [68], and RTE [24]. For T5-base, we report Spearman’s ρ on STS-B and accuracy
on the other tasks. Settings and results of RoBERTa-base are provided in App. C.3.

Results. The results for T5-base models are presented in Tab. 3. Using 4-bit quantization combined
with 99.5% pruning, UltraDelta achieves an impressive 224.6× compression ratio. Despite this
extreme compression, UltraDelta attains an average accuracy of 86.74, outperforming all existing
compression baselines and even slightly exceeding the full fine-tuned model’s accuracy of 86.37.
Compared to BitDelta [53] and Delta-CoMe [64], UltraDelta achieves a much higher compression
ratio while still maintaining superior performance. This demonstrates that UltraDelta successfully
pushes the compression limits of delta weights while preserving model performance, highlighting its
effectiveness and strong generalization ability.

Table 3: Performance comparison on T5-base models across 8 tasks.

Methods Ratio CoLA SST2 MRPC STSB QQP MNLI QNLI RTE Avg
Individual 1× 74.98 93.58 87.50 88.70 85.37 83.41 91.49 85.92 86.37

BitDelta [53] 16× 70.09 93.46 84.06 86.20 85.26 83.64 90.94 83.75 84.68
Delta-CoMe [64] 16× 74.26 93.58 87.01 87.94 85.44 83.51 91.54 84.36 85.95

DARE [91] (Sparsity) 127.6× 74.16 93.34 87.83 87.86 85.22 83.19 91.52 84.11 85.90
MP [27] (Sparsity) 127.6× 37.87 88.76 70.59 0 80.4 68.55 82.88 82.67 63.97
DARE [91] (Compression) 220.5× 71.57 92.25 85.03 86.77 84.26 81.16 90.50 82.81 84.30
MP [27] (Compression) 220.5× 30.87 87.84 70.83 0 79.16 56.36 76.31 82.17 60.44

UltraDelta (Ours) 224.6× 76.51 93.81 88.48 88.82 85.41 83.17 91.76 85.92 86.74

4.3 Performance on Vision Models

Settings. Following [34], we evaluate ViT-B/32 and ViT-L/14 [66] models on eight image classi-
fication datasets: SUN397 [87], Stanford Cars [40], RESISC45 [12], EuroSAT [29], SVHN [60],
GTSRB [73], MNIST [44], and DTD [13]. Accuracy is used as the evaluation metric for all datasets.
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Results. The results of ViT-L/14 models are shown in Tab. 4, while ViT-B/32 results are provided in
App. C.2. With 4-bit quantization and 99% sparsity, UltraDelta achieves a 132.5× compression ratio
while maintaining an average accuracy of 94.4, matching the full fine-tuned model and significantly
outperforming all compressed baselines, demonstrating its effectiveness on vision models.

Table 4: Performance comparison on ViT-L/14 models across 8 tasks.

Methods Ratio SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg
Individual 1× 84.8 92.3 97.4 99.7 98.1 99.2 99.7 84.1 94.4
Traditional MTL [8] 8× 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.1

BitDelta [53] 16× 84.0 92.1 97.2 99.7 97.9 99.0 99.7 83.0 94.1
Delta-CoMe [64] 16× 84.3 92.1 97.2 99.6 98.0 99.1 99.7 83.6 94.2

DARE [91] (Sparsity) 66.5× 82.2 90.0 97.0 99.7 98.0 99.1 99.7 83.1 93.6
MP [27] (Sparsity) 66.5× 26.7 43.9 83.4 92.8 24.4 62.9 77.7 66.1 59.7
DARE [91] (Compression) 127.6× 65.2 78.4 94.2 99.6 97.7 99.2 99.7 79.1 89.1
MP [27] (Compression) 127.6× 4.9 4.2 42.6 83.2 6.4 16.7 27.2 50.7 29.5

UltraDelta (Ours) 132.5× 84.1 92.2 97.4 99.8 98.1 99.2 99.8 84.3 94.4

4.4 Performance on multi-modal models

Settings. We compress delta weights on BEiT-3 [82] models fine-tuned on three datasets: VQA [26]
(Visual Question Answering), NLVR2 [75] (Visual Reasoning), and COCO Captioning [51] (Image
Captioning). The COCO Captioning task is evaluated using BLEU4 [61], CIDEr [79], METEOR [4],
and ROUGE-L [48], while the other two tasks are evaluated based on accuracy.

Results. The results of BEiT-3 models are shown in Tab. 5. With 4-bit quantization and 90% sparsity,
UltraDelta achieves a 18.4× compression ratio maintaining high accuracy and quality, outperforming
all baselines across all tasks, demonstrating its effectiveness on multi-modal models.

Table 5: Performance comparison on multi-modal BEiT-3 models across 3 vision-language tasks.

Methods Task Ratio COCO-Captioning NLVR2 VQAv2
Metric α(↑) BLEU4(↑) CIDEr(↑) METEOR(↑) ROUGE-L(↑) Accuracy(↑) Accuracy(↑)

Individual 1× 0.394 1.337 0.331 0.601 84.269 83.49

BitDelta [53] 16× 0.367 1.250 0.294 0.581 82.317 74.59
Delta-CoMe [64] 16× 0.224 0.846 0.251 0.488 60.098 38.64

DARE [91] (Sparsity) 7.7× 0.333 1.15 0.285 0.564 80.652 73.29
MP [27] (Sparsity) 7.7× 0 0 0.006 0.014 49.263 0
DARE [91] (Compression) 18.1× 0.178 0.589 0.196 0.441 69.470 58.89
MP [27] (Compression) 18.1× 0 0 0.006 0.013 48.931 0.01

UltraDelta (Ours) 18.4× 0.372 1.270 0.296 0.583 83.163 75.66

4.5 Ablation Study

Figure 5: Average Performance of
DAC and DARE on 30 ViT-B/16.

Effectiveness of Each Component. We evaluate the contri-
bution of each component on 8 ViT-B/32 in Tab. 6. DAC
substantially improves compression ratio from 23.7× to 50.9×,
all while preserving model accuracy. MSA yields the largest
accuracy improvement, highlighting the effectiveness of mixed
sparsity allocation. Together, they enable ultra-high compres-
sion with strong performance.

Effectiveness of DAC. To further validate the robustness of
DAC, we evaluate it on a large-scale benchmark [32] of 30
ViT-B/16 models across 4-bit, 8-bit, and non-quantized config-
urations. For fair comparison, we apply uniform quantization
to both methods in quantized cases. As shown in Fig. 5 (de-
tailed results are in App. C.4.1), DAC consistently outperforms
DARE [91] across all configurations. Notably, under 90% sparsity and 4-bit quantization, DAC still
exceeds DARE’s non-quantized performance, confirming its robustness across diverse tasks.
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Table 6: Ablation study on the effectiveness of each component.

Methods SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Ratio Avg
DARE [91] (97% Sparsity) 76.0 73.3 95.1 99.7 97.0 98.5 99.6 78.1 23.7× 89.7

+ DAC 75.6 73.3 95.3 99.5 97.1 98.5 99.6 78.5 50.9× (↑ 27.2×) 89.7
+ DAC + MSA 76.9 75.9 95.5 99.2 97.0 98.8 99.7 79.2 50.9× 90.3 (↑ 0.6)
+ DAC + MSA + TNGR 78.6 77.4 95.7 99.4 97.0 98.7 99.7 79.0 50.9× 90.7 (↑ 0.4)

Table 7: Compression ratios across storage formats and models.

Format LLaMA-2-7B LLaMA-2-13B ViT-B/32 ViT-L/14 T5-base RoBERTa-base BEiT-3
Index-Free Storage 80.0× 133.0× 133.0× 400.0× 800.0× 80.0× 40.0×
Golomb Coding 32.9× 50.9× 50.9× 132.5× 224.6× 32.9× 18.4×
CSR 19.5× 30.7× 35.4× 105.2× 188.3× 21.4× 10.8×
BCSR 12.7× 19.8× 21.7× 63.7× 121.4× 13.4× 7.3×

Figure 6: Impact of hyper-parameter on 8 ViT-B/32. (a)
Impact of quantization bits; (b) Impact of sparsity steps.

Impact of Hyper-Parameters. We
evaluate key hyper-parameters in
DAC and MSA on 8 ViT-B/32 mod-
els, as shown in Fig. 6 (detailed re-
sults are in App. C.4.2). For bit-width
in quantization (see Eq. 4), accuracy
improves notably from 2-bit to 4-bit,
with marginal gains beyond, suggest-
ing 4-bit as an optimal balance. For
sparsity step sstep in MSA (see Eq. 3),
we evaluate it under a fixed 97% tar-
get sparsity and 4-bit quantization. A moderate step size (within [0.01, 0.02]) yields the best average
performance. Performance remains stable as long as extremely large or small step sizes are avoided.
This indicates that precise tuning of sstep is generally unnecessary.

Storage Scheme. We report compression ratios of UltraDelta under different storage schemes. Index-
Free Storage denotes the ideal upper bound where only non-zero values are stored without indices
(the ideal compression ratios of other pruning baselines are in Tab. 8). We also evaluate practical
schemes, including Golomb coding, Compressed Sparse Row (CSR), and Block Compressed Sparse
Row (BCSR). As shown in Tab. 7, BCSR performs poorly, as it only works when zeros are densely
clustered and thus is not suitable for our setting.

5 Discussion and Conclusion

Regularization Effect. By controlling the fitting degree of models, we examine that UltraDelta
particularly benefits underfitted models (see App. D.1 for detailed results and analysis). Since LLMs
are typically evaluated in the zero-shot or few-shot settings, where underfitting is common, this
explains why UltraDelta often yields not only strong compression but also performance gains.

Overhead. UltraDelta introduces only modest computational overhead during compression and is
efficient at inference compared with baselines. The main cost arises from computing trace norms.
Since only their relative magnitudes are required, fast approximation such as randomized SVD can be
employed to reduce the overhead. In the inference stage, delta weights only need to be dequantized
and added back to the base model, which can be done on CPU efficiently. In contrast, methods such
as Delta-CoMe [64] require additional matrix multiplications, making them less efficient.

Limitations and Future Work. We acknowledge that our method employs a heuristic rescaling
strategy and does not explicitly target deployment efficiency; detailed discussion is in App. D.3.

Conclusion. In this paper, we present UltraDelta, the first data-free pipeline for ultra-efficient
delta compression, capable of achieving both ultra-high compression ratios and strong performance.
UltraDelta is a hybrid compression method with a focus on preserving information across inter-
layer, intra-layer, and global dimensions through three novel components. Extensive experiments on
language, vision, and multi-modal models, along with theoretical analysis, validate the effectiveness,
robustness, and generality of UltraDelta across diverse settings.
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Appendix for UltraDelta

A Non-quantized Variant of Distribution-Aware Compression

While our main Distribution-Aware Compression operates on quantized delta weights, it can also be
adapted to a non-quantized variant for scenarios where quantization is not applied or not desired. In
this version, we replace the discrete grouping based on quantized values with continuous interval-
based grouping over the full-precision delta weights.

Specifically, for a given delta weight ∆θt, we first compute its minimum and maximum values,
denoted as min(∆θt) and max(∆θt). We then divide the range [min(∆θt),max(∆θt)] into I
equally spaced intervals. The width of each interval is given by:

δinterval =
max(∆θt)−min(∆θt)

I
(15)

The i-th interval is then defined as:

Ii = [min(∆θt) + (i− 1) · δinterval,min(∆θt) + i · δinterval)], for i = 1, . . . , I (16)

To perform group-wise pruning, we define a binary mask for each interval Ii, where pruning decisions
are sampled from a Bernoulli distribution with success probability 1− sl, and sl is the sparsity rate
of the layer. Specifically:

M
(j,k)
Ii

∼

{
Bernoulli(1− sl), if ∆θt

(j,k) ∈ Ii
0, otherwise

(17)

The pruned delta weight ∆θt
∗ is obtained by applying the group-wise Bernoulli masks to the

quantized delta weights:

∆θ∗t =

I∑
i=1

MIi
⊙∆θt (18)

B Detailed Derivation

B.1 Derivation of the Variance-Entropy Relationship

We aim to derive the relationship between the variance and the entropy of a layer. First, we define the
entropy of a random variable L with probability density function p(l) as:

H(L) = −E[log p(l)] (19)

Assuming L follows a Gaussian distribution N (µ, σ2), its probability density function is:

p(l) =
1√
2πσ2

exp

(
− (l − µ)2

2σ2

)
(20)

Taking the logarithm of the density function, we obtain:

log p(l) = log

(
1√
2πσ2

exp

(
− (l − µ)2

2σ2

))
= −1

2
log(2πσ2)− (l − µ)2

2σ2
(21)

Substituting this into the definition of entropy, we have:

H(L) = −
∫ ∞

−∞
p(l)

(
−1

2
log(2πσ2)− (l − µ)2

2σ2

)
dl

=
1

2
log(2πσ2)

∫
p(l)dl +

1

2σ2

∫
p(l)(l − µ)2dl (22)
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Next, we use known properties of the Gaussian distribution:∫
p(l)dl = 1 and

∫
p(l)(l − µ)2dl = Var(L) = σ2 (23)

Substituting these into the expression for entropy yields:

H(L) =
1

2
log(2πσ2) +

1

2

=
1

2
log(2π) + log(σ) +

1

2
(24)

Therefore, we can conclude that the entropy H(L) increases logarithmically with the standard
deviation σ of the distribution. Since the variance is σ2, entropy is monotonically increasing
with variance. This derivation shows that the entropy of a layer is positively correlated with its
variance. Since entropy represents the amount of information, layers with larger variance contain
more information. As a result, such layers should be assigned a smaller sparsity rate to preserve more
information.

B.2 Derivation of the Variance of Activation Error

According to Eq. 13, the activation error ϵ is defined as:

ε = a⊙
(
1− γ

1− s
B

)
, where a = ∆θ ⊙ x (25)

Here, B is a Bernoulli random variable, where the probability of success is 1− s. For a Bernoulli
distribution, we know that the expectation and second moment are E[B] = 1− s and E[B2] = 1− s.
We first calculate the expectation of ϵ. Using the linearity of expectation:

E[ε] = a⊙ E
[
1− γ

1− s
B

]
= a⊙

(
1− γ

1− s
E[B]

)
= a⊙

(
1− γ

1− s
(1− s)

)
= a⊙ (1− γ)

(26)

Next, we calculate the expectation of ϵ2:

E[ε2] = a2 ⊙ E

[
1− 2

γ

1− s
B +

(
γ

1− s
B

)2
]

= a2 ⊙

[
1− 2

γ

1− s
E[B] +

(
γ

1− s

)2

E[B]

]

= a2 ⊙

[
1− 2

γ

1− s
(1− s) +

(
γ

1− s

)2

(1− s)

]

= a2 ⊙
(
1− 2γ +

γ2

1− s

)
(27)

Now, we can calculate the variance of ϵ. The variance is given by:
Var(ε) = E[ε2]− (E[ε])2

= a2 ⊙
(
1− 2γ +

γ2

1− s

)
− a2 ⊙ (1− γ)2

= a2 ⊙
[(

1− 2γ +
γ2

1− s

)
− (1− 2γ + γ2)

]
= a2 ⊙

(
γ2s

1− s

)
(28)
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From the derived variance expression, we can observe that when the sparsity s is high, the variance
will become very large, leading to unstable performance. To mitigate this, we can choose a value for
γ in the range [0, 1] to reduce the impact of the original rescaling factor. However, γ cannot be chosen
too small. This is because the expectation of the activation error is a⊙ (1− γ), and if γ is too small,
the expectation of the activation error increases, which may lead to undesirable effects. Therefore, γ
is typically set in the range [0.5, 1.0] under high sparsity, which balances both the variance and the
expectation of the activation error.

B.3 Detailed Derivation of Compression Ratio

Golomb Coding. Golomb coding [25] is a run-length entropy coding scheme particularly well-suited
for a geometric distribution, where it encodes the distances between successive non-zero entries (i.e.,
run-lengths of zeros). Unlike conventional formats such as Compressed Sparse Row (CSR), which
store explicit indices or pointers for non-zero values, run-length coding represents zero runs instead
of storing indices, which can yield a more compact representation than CSR when sparsity is high.

Compression Ratio Derivation. In our setting, after pruning, most entries in the delta weight are
zeros, and the positions of non-zeros can be modeled as a Bernoulli process with success probability
equal to the density 1− s, where s is the sparsity. Consequently, the run-lengths of zeros follow a
geometric distribution, for which Golomb coding achieves an average code length close to the entropy
of the underlying geometric distribution. The entropy of a geometric distribution is:

Hgeo = −(1− s) log2(1− s)− s log2 s (29)

When each non-zero entry can take m discrete values, the maximum entropy contribution of its
symbol is log2 m, which corresponds to the case where all m values are equally likely. In practice,
the values of our non-zero entries follow a truncated Gaussian distribution, so the actual entropy is
smaller than log2 m, implying that the achievable compression ratio is higher.

For simplicity of analysis, we approximate this term by log2 m, which serves as an upper bound, and
the per-parameter entropy of the compressed model is:

Hcomp ≈ −
[
s log2 s+ (1− s) log2

(1−s)
m

]
(30)

By contrast, the original uncompressed model stored in FP16 format requires Horig = 16 bits per
parameter. Therefore, the theoretical compression ratio is:

CR =
Horig

Hcomp
≈ 16

−
[
s log2 s+ (1− s) log2

(1−s)
m

] (31)

Note that the rescaling factor is represented by a single 16-bit value, which is negligible compared to
the overall storage and is therefore ignored when reporting the compression ratio.

Detailed Compression Ratios. We also report the compression ratios and corresponding sparsity
rates of DARE [91], MP [27], and UltraDelta under each setting. Practical compression ratios with
Golomb coding are computed following Eq. 31, using m = 16 for DARE and MP (16-bit precision)
and m = 4 for UltraDelta (4-bit quantization). For completeness, we also include Index-Free
compression ratios, which denote the ideal upper bound where only non-zero values are stored. The
results are shown in Tab. 8.

C Additional Experimental Settings and Results

C.1 HuggingFace IDs for LLM Checkpoints

We provide the Hugging Face IDs of the LLMs used in our experiments, as shown in Tab. 9. All
models are evaluated using the lm-evaluation-harness [23] framework for general language tasks and
EvalPlus [52] framework for code generation tasks.
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Table 8: Compression ratios, average performance, and corresponding sparsity rates across different
models. “Practical” denotes the practical compression ratio using Golomb coding, “Ideal” the ideal
upper bound, and “Avg” the average performance.

Method LLaMA-2-7B (Tab. 1) LLaMA-2-13B (Tab. 1)
Practical Ideal Avg Sparsity Practical Ideal Avg Sparsity

DARE [91] (Sparsity) 14.7× 20× 38.79 95.0% 23.7× 33.3× 45.63 97.0%
MP [27] (Sparsity) 14.7× 20× 36.46 95.0% 23.7× 33.3× 29.65 97.0%

DARE [91] (Compression) 31.7× 45.5× 33.97 97.8% 50.1× 74.1× 40.23 98.65%
MP [27] (Compression) 31.7× 45.5× 27.02 97.8% 50.1× 74.1× 15.36 98.65%

UltraDelta (Ours) 32.9× 80.0× 45.57 95.0% 50.9× 133.0× 52.05 97.0%

Method Recent LLMs (Tab. 2) ViT-B/32 (Tab. 10)
Practical Ideal Avg Sparsity Practical Ideal Avg Sparsity

DARE [91] (Sparsity) 14.7× 20× 49.18 95.0% 23.7× 33.3× 89.7 97.0%
MP [27] (Sparsity) 14.7× 20× 41.68 95.0% 23.7× 33.3× 77.4 97.0%

DARE [91] (Compression) – – – – 50.1× 74.1× 83.5 98.65%
MP [27] (Compression) – – – – 50.1× 74.1× 53.1 98.65%

UltraDelta (Ours) 32.9× 80.0× 52.05 95.0% 50.9× 133.0× 90.7 97.0%

Method ViT-L/14 (Tab. 4) T5-base (Tab. 3)
Practical Ideal Avg Sparsity Practical Ideal Avg Sparsity

DARE [91] (Sparsity) 66.5× 100.0× 93.6 99.0% 127.6× 200.0× 85.90 99.5%
MP [27] (Sparsity) 66.5× 100.0× 59.7 99.0% 127.6× 200.0× 63.97 99.5%

DARE [91] (Compression) 127.6× 200.0× 89.1 99.5% 220.5× 357.0× 84.30 99.72%
MP [27] (Compression) 127.6× 200.0× 29.5 99.5% 220.5× 357.0× 60.44 99.72%

UltraDelta (Ours) 132.5× 400.0× 94.4 99.0% 224.6× 800.0× 86.74 99.5%

Method RoBERTa-base (Tab. 11) BEiT-3 (Tab. 5)
Practical Ideal Avg Sparsity Practical Ideal Avg Sparsity

DARE [91] (Sparsity) 14.7× 20.0× 83.23 95.0% 7.7× 10.0× 70.74 90.0%
MP [27] (Sparsity) 14.7× 20.0× 80.06 95.0% 7.7× 10.0× 16.59 90.0%

DARE [91] (Compression) 31.7× 45.5× 73.12 97.8% 18.1× 25.0× 54.49 96.0%
MP [27] (Compression) 31.7× 45.5× 69.87 97.8% 18.1× 25.0× 16.47 96.0%

UltraDelta (Ours) 32.9× 80.0× 84.46 95.0% 18.4× 40.0× 73.95 90.0%

C.2 Experiments on eight ViT-B/32 models

Results. The results of ViT-B/32 models are shown in Tab. 10. With 4-bit quantization and 97%
sparsity, UltraDelta achieves 50.9× compression ratio on ViT-B/32. UltraDelta achieves an average
accuracy of 90.7 across 8 diverse vision tasks, nearly matching the performance of individually
fine-tuned models (91.0). Compared to all baselines, UltraDelta achieves both higher compression
and better accuracy.

C.3 Experiments on eight RoBERTa-base models

Settings. For RoBERTa-base, we report Matthews correlation on CoLA, the average of Pearson and
Spearman correlations on STS-B, and accuracy on the other tasks.

Results. The results of RoBERTa-base models are shown in Tab. 11. For RoBERTa, we apply 4-bit
quantization and prune 95% of parameters, achieving an overall 32.9× compression ratio. Despite the
high compression, UltraDelta achieves an average score of 84.46, closely matching the uncompressed
individually fine-tuned model (85.56) and outperforming all baselines by a notable margin.
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Table 9: LLM checkpoint IDs.
Models Pre-trained Fine-tuned

Model Size 7B (Llama-2 Series)

Chat meta-llama/Llama-2-7b-hf meta-llama/Llama-2-7b-chat-hf
Code codellama/CodeLlama-7b-Python-hf vanillaOVO/WizardCoder-Python-7B-V1.0
Math meta-llama/Llama-2-7b-hf WizardLMTeam/WizardMath-7B-V1.0

Model Size 13B (Llama-2 Series)

Chat meta-llama/Llama-2-13b-hf meta-llama/Llama-2-13b-chat-hf
Code codellama/CodeLlama-13b-Python-hf WizardLMTeam/WizardCoder-Python-13B-V1.0
Math meta-llama/Llama-2-13b-hf vanillaOVO/WizardMath-13B-V1.0

Recent Models

Llama-3.1 meta-llama/Llama-3.1-8B allenai/Llama-3.1-Tulu-3-8B-SFT
Qwen2.5 Qwen/Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
Qwen3 Qwen/Qwen3-8B Qwen/Qwen3Guard-Gen-8B

Table 10: Performance comparison on ViT-B/32 models across 8 tasks.

Methods Ratio SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg
Individual 1× 79.2 77.7 96.1 99.8 97.4 98.7 99.7 79.4 91.0
Traditional MTL [8] 8× 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 89.1

BitDelta [53] 16× 78.3 75.9 95.4 99.3 96.4 98.2 99.2 78.4 90.1
Delta-CoMe [64] 16× 78.5 72.3 95.6 99.6 97.3 98.6 99.5 78.3 90.0

DARE [91] (Sparsity) 23.7× 76.0 73.3 95.1 99.7 97.0 98.5 99.6 78.1 89.7
MP [27] (Sparsity) 23.7× 58.1 44.2 91.2 96.1 91.3 73.5 98.3 66.7 77.4
DARE [91] (Compression) 50.1× 57.2 55.2 91.3 99.4 96.4 98.2 99.6 71.1 83.5
MP [27] (Compression) 50.1× 18.8 16.4 81.8 88.3 70.3 28.5 77.8 42.7 53.1

UltraDelta (Ours) 50.9× 78.6 77.4 95.7 99.4 97.0 98.7 99.7 79.0 90.7

C.4 Detailed Results of Ablation Study

C.4.1 Ablation on Distribution-Aware Compression

We present the detailed numerical results of the ablation study conducted on DAC. For brevity, we
report only the results under 90% sparsity, as summarized in Tab. 12. Following [32, 93], we use
ViT-B/16 as the pre-trained backbone model and evaluate its performance across 30 diverse image
classification datasets. Specifically, the datasets are: MNIST [44], CIFAR-10 [41], CIFAR-100 [41],
Cars [40], Fashion-MNIST [85], EMNIST [16], STL10 [14], GTSRB [73], SHVN [92], Oxford-IIIT
Pet [62], Cats and Dogs [18], Dogs [39], Beans [42], Food-101 [7], Fruits-360 [59], Vegetables [1],
MangoLeafBD [2], Flowers Recognition [58], Landscape Recognition [19], Weather [86], DTD [13],
EuroSAT [29], RESISC45 [12], SUN397 [87], KenyanFood13 [37], Intel Images [5], Garbage
Classification [9], Animal-10N [72], CUB-200-2011 [80], and Kvasir-v2 [65]. These datasets are
chosen to comprehensively evaluate generalization across various data distributions and classification
challenges. Accuracy is used as the evaluation metric for all datasets.

Table 11: Performance comparison on RoBERTa-base models across 8 tasks.

Methods Ratio CoLA SST2 MRPC STSB QQP MNLI QNLI RTE Avg
Individual 1× 60.18 94.04 89.22 90.63 91.41 87.20 92.71 79.06 85.56

BitDelta [53] 16× 36.83 93.12 88.73 84.82 90.00 85.57 91.73 70.40 80.15
Delta-CoMe [64] 16× 57.67 92.48 87.99 90.53 89.17 82.66 92.57 76.9 83.74

DARE [91] (Sparsity) 14.7× 59.30 93.92 88.97 90.53 86.55 77.84 92.13 76.53 83.23
MP [27] (Sparsity) 14.7× 57.69 92.43 84.31 88.18 86.26 74.40 86.80 70.40 80.06
DARE [91] (Compression) 31.7× 58.22 93.69 87.50 90.27 53.47 36.48 89.51 75.81 73.12
MP [27] (Compression) 31.7× 51.89 91.63 78.68 86.44 65.77 53.49 65.64 65.43 69.87

UltraDelta (Ours) 32.9× 62.64 94.38 89.22 90.60 85.79 82.92 92.15 77.98 84.46
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Table 12: Performance of DAC and DARE on ViT-B/16 models across 30 tasks. “(w/ b-bit)” denotes
the quantized setting using b-bit precision, while “(w/o q.)” refers to the non-quantized setting.

Methods Animal-10N Beans Cats and Dogs Cifar-10 Cifar-100 CUB-200-2011 Dogs DTD EMNIST EuroSAT

Individual 92.46 97.70 99.05 97.88 89.85 84.78 89.91 81.1 94.67 99.07

DARE [53] (w/ 4-bit) 92.26 34.87 98.17 33.39 53.37 84.28 89.55 81.08 94.69 99.07
UltraDelta (w/ 4-bit) (Ours) 92.42 97.32 98.98 58.33 72.14 83.98 89.74 80.82 94.51 99.04

DARE [53] (w/ 8-bit) 92.26 34.87 98.17 33.39 53.37 84.28 89.55 81.08 94.69 99.07
UltraDelta (w/ 8-bit) (Ours) 92.68 98.47 98.66 80.06 78.12 84.54 90.18 81.13 94.61 99.00

DARE [53] (w/o q.) 92.28 97.70 98.04 57.90 56.07 84.19 89.91 81.15 94.58 99.15
UltraDelta (w/o q.) (Ours) 92.30 98.08 98.99 96.77 80.83 84.28 90.00 81.08 94.62 99.07

Fashion Flowers KenyanFood13 Food-101 Fruits-360 Garbage GTSRB Intel-Images Kvasir-v2 LandScape

Individual 93.26 98.19 82.58 87.87 99.64 98.58 95.74 94.87 93.91 94.00

DARE [53] (w/ 4-bit) 84.09 98.19 82.70 38.00 99.64 98.61 7.57 93.33 74.81 92.40
UltraDelta (w/ 4-bit) (Ours) 79.58 98.17 82.21 29.14 99.58 98.54 87.16 90.93 56.47 93.80

DARE [53] (w/ 8-bit) 84.09 98.19 82.70 38.00 99.64 98.61 75.70 93.33 74.81 92.40
UltraDelta (w/ 8-bit) (Ours) 83.85 98.19 82.45 47.03 99.59 98.50 91.96 93.93 89.94 73.80

DARE [53] (w/o q.) 73.69 98.17 82.45 43.93 99.64 98.61 62.49 92.13 77.62 93.40
UltraDelta (w/o q.) (Ours) 90.10 98.12 82.82 61.87 99.63 98.50 95.36 94.13 92.22 94.20

MangoLeafBD MNIST Pet RESISC45 Cars STL10 SUN397 SVHN Vegetables Weather

Individual 100.00 99.22 92.20 99.00 85.29 99.08 87.50 96.22 100.00 98.19

DARE [53] (w/ 4-bit) 98.47 78.59 91.88 98.90 79.78 99.09 85.24 96.22 91.67 97.62
UltraDelta (w/ 4-bit) (Ours) 85.95 98.93 92.56 98.95 79.74 99.21 85.82 96.21 91.30 80.46

DARE [53] (w/ 8-bit) 98.47 78.59 91.88 98.90 79.78 99.09 85.24 96.22 91.67 97.62
UltraDelta (w/ 8-bit) (Ours) 100.00 98.68 92.37 99.10 80.11 99.16 85.74 96.33 99.67 97.51

DARE [53] (w/o q.) 100.00 64.62 92.26 98.79 79.77 99.09 85.55 96.30 99.83 87.03
UltraDelta (w/o q.) (Ours) 100.00 98.97 92.64 99.13 80.55 99.22 85.90 96.32 99.97 97.90

Average Acc Individual DARE (w/ 4-bit) UltraDelta (w/ 4-bit) (Ours) DARE (w/ 8-bit) UltraDelta (w/ 8-bit) (Ours) DARE (w/o q.) UltraDelta (w/o q.) (Ours)
Acc 94.06 81.58 86.40 83.85 90.18 85.88 92.45

C.4.2 Ablation on Hyper-Parameters

We present the detailed numerical results of our hyper-parameter ablation studies in Tab. 13. The
results complement the analysis provided in the main text and offer full visibility into the performance
under different settings.

Table 13: Performance of different hyperparameter settings applied to ViT-B/32.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.
Distribution-Aware Compression (quantization bit)
2-bit 73.4 70.1 94.4 99.1 96.9 98.2 99.7 74.3 88.3
4-bit 78.6 77.4 95.7 99.4 97.0 98.7 99.7 79.0 90.7
6-bit 78.7 77.5 95.7 99.5 97.1 98.8 99.7 78.6 90.7
8-bit 78.8 77.7 95.7 99.7 97.0 98.7 99.7 79.0 90.8

Variance-Based Mixed Sparsity Allocation (sparsity step size)
Step = 0.000 77.3 75.1 95.5 99.7 97.1 98.8 99.6 77.6 90.1
Step = 0.005 77.9 75.7 95.4 99.7 97.0 98.8 99.7 78.9 90.4
Step = 0.010 78.4 76.7 95.6 99.4 97.0 98.9 99.6 78.9 90.6
Step = 0.020 78.6 77.4 95.7 99.4 97.0 98.7 99.7 79.0 90.7
Step = 0.025 78.3 76.4 95.1 98.1 96.6 98.6 99.7 79.2 90.3
Step = 0.030 78.5 75.3 94.5 96.5 96.7 98.2 99.7 78.7 89.8

D Discussion

D.1 Regularization Effect

We observe in experiments that UltraDelta sometimes even outperforms fine-tuned models, especially
in the LLM setting. This can be attributed to overfitting or underfitting during fine-tuning.

To verify this, we conducted controlled experiments on two datasets, SUN397 [87] and Cars [40],
using a pretrained ViT-B/32 model. By varying the number of fine-tuning steps, we controlled the
degree of model fitting. The results are shown in Tab. 14, and we find that underfitted models (early
training steps, higher loss) consistently benefit from UltraDelta, while well-trained models (later
steps, lower loss) show some or no improvement. These results indicate that UltraDelta mainly
benefits underfitted models, while well-trained models already capture most task-specific information
and thus leave little room for further improvement.
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This also explains why improvements are more common in LLMs, which are typically evaluated
in zero-shot or few-shot settings. In such scenarios, these models are not explicitly fine-tuned on
the target tasks, which often leads to weaker generalization. As a result, they can be regarded as
underfitted to the evaluation benchmarks. In this context, UltraDelta provides a regularization effect,
enabling underfitted models to benefit more from compression.

Table 14: Controlled experiments on ViT-B/32 with varying training steps. “UltraDelta Accuracy”
denotes the test accuracy after applying UltraDelta.

Training Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Cars [40]
Training Loss 0.1404 0.0834 0.0206 0.0069 0.0059 0.0059 0.0034 0.0077 0.0048 0.0036
Test Accuracy 72.86 68.90 75.22 78.78 77.74 78.37 78.01 75.21 77.60 77.34
UltraDelta Accuracy 74.02 73.27 75.82 75.56 75.62 75.66 76.13 72.80 74.74 74.06

SUN397 [87]
Training Loss 0.5475 0.1432 0.0426 0.1125 0.0526 0.0040 0.0018 0.0009 0.0006 0.0004
Test Accuracy 73.63 75.94 75.40 74.63 74.07 76.94 76.87 77.03 77.06 77.07
UltraDelta Accuracy 76.02 76.92 77.21 76.20 76.19 76.66 76.94 77.11 77.19 77.31

D.2 Compression Ratio Differences Across Models

We observe that different models can be compressed to different extents without losing performance.
This variation mainly comes from the amount of redundancy in their delta weights. For instance, T5-
base has relatively high redundancy, making it possible to compress it up to 224× while maintaining
or even improving performance. In contrast, models like BEiT-3 have delta weights with larger
magnitudes and lower redundancy, leaving less room for aggressive compression. This suggests that
the achievable compression ratio depends not only on the compression method itself, but also on the
model architecture, its training process, and the nature of the fine-tuned tasks.

D.3 Limitations and Future Work

Heuristic Rescaling Factor. One limitation of our method lies in the heuristic nature of the additional
rescaling factor γ. We set γ according to the trace norm of each delta weight, which serves as a
lightweight proxy for activation instability under the data-free setting. While this simple strategy
helps mitigate instability at high sparsity, it remains a heuristic and may not be optimal. Exploring
more principled or adaptive approaches for determining γ under data-free constraints remains an
important direction for future work.

Deployment Efficiency. Another limitation is that our method is not designed to directly optimize
deployment efficiency, such as inference acceleration. Achieving real speedup typically requires
specialized GPU kernels or structured sparsity to better exploit hardware parallelism. Future work
may combine our approach with optimized kernels or structured pruning to realize both strong
compression–performance trade-offs and practical deployment gains.
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paper’s contributions and scope?
Answer: [Yes]
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2. Limitations
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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3. Theory Assumptions and Proofs
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Justification: The code has been released at https://github.com/xiaohuiwang000/UltraDelta.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings, including model types, datasets, hyper-parameters,
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or other statistical significance measures.
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• The answer NA means that the paper does not include experiments.
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dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type of GPU in the paper. All experiments are conducted on a
single NVIDIA A800.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Answer: [Yes]

Justification: We ensure compliance with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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societal impacts of the work performed?

Answer: [NA]
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tion to real-world scenarios. Thus, it may not have societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve pretrained generative models or other high-risk
assets. Therefore, safeguards are not necessary.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with
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safety filters.
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should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
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properly respected?
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• The answer NA means that the paper does not use existing assets.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New Assets
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Answer: [NA]
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• The answer NA means that the paper does not release new assets.
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Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: Our study does not involve human subjects.
Guidelines:
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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