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User interaction

Input Image

Generated 3D scene

Prompt: “A yellow bird is standing on the windowsill”

Prompt: “A lizard is clinging to the wall.”

Prompt: “The SUV has a shiny chrome bumper.” : camera movement : camera zoom-in

Figure 1: Multi-scale 3D world generation from a single image. WonderZoom enables interactive exploration
across spatial scales. Users can zoom into any region and specify prompts to generate new fine-scale content
while maintaining cross-scale consistency. Here we show three zoom-in sequences.

ABSTRACT

We present WonderZoom, a novel approach to generating 3D scenes with contents
across multiple spatial scales from a single image. Existing 3D world generation
models remain limited to single-scale synthesis and cannot produce coherent
scene contents at varying granularities. The fundamental challenge is the lack
of a scale-aware 3D representation capable of generating and rendering content
with largely different spatial sizes. WonderZoom addresses this through two
key innovations: (1) scale-adaptive Gaussian surfels for generating and real-time
rendering of multi-scale 3D scenes, and (2) a progressive detail synthesizer that
iteratively generates finer-scale 3D contents. Our approach enables users to “zoom
into” a 3D region and auto-regressively synthesize previously non-existent fine
details from landscapes to microscopic features. Experiments demonstrate that
WonderZoom significantly outperforms state-of-the-art video and 3D models in
both quality and alignment, enabling multi-scale 3D world creation from a single
image. We show video results and an interactive viewer of generated multi-scale
3D worlds in https://wonderzoom.github.io/.

1 INTRODUCTION

3D world generation has emerged as a transformative capability in computer vision, enabling the
synthesis of immersive environments from minimal input (Yu et al., 2024; 2025; Chung et al., 2023;
Höllein et al., 2023; Fridman et al., 2023; Liu et al., 2021). However, despite the inherently multi-scale
nature of real-world scenes, existing approaches remain fundamentally constrained to single-scale
generation. They can produce landscape-level environments and room-scale scenes, but fail to
synthesize coherent content across multiple spatial scales, e.g., a tiny ladybug lying on a sunflower in
a vast field. This limitation prevents existing approaches from generating rich, detailed worlds that
span from panoramic vistas down to microscopic surface details, restricting their applicability for
interactive exploration and content creation.
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The fundamental challenge underlying this limitation is the absence of a scale-adaptive 3D represen-
tation suitable for scene generation. Traditional Level-of-Detail (LoD) representations (Luebke et al.,
2002) were designed for efficiently rendering pre-existing graphics content, where all geometric
details are known in advance. Recent hierarchical representations like Hierarchical 3D Gaussian
Splatting (Kerbl et al., 2024) and Mip-NeRF (Barron et al., 2021) extend these principles to neural
reconstruction, efficiently encoding scenes at multiple scales. But critically, they still assume access
to complete multi-scale image data upfront for one-pass optimization. Both paradigms, rendering
and reconstruction, fundamentally conflict with generation, where images do not exist a priori and
must be synthesized progressively. In generation, we must create coarse-scale content first, then
iteratively synthesize finer details conditioned on both the coarser structure and user-specified prompt
and regions of interest. This requires representations that can grow dynamically as new fine-scale
content is generated, not static hierarchies optimized with complete supervision. Current generation
methods (Yu et al., 2024; 2025) sidestep this challenge entirely by restricting themselves to single
scales, while naive application of existing hierarchical representations would demand generating
all scales simultaneously, which is a computationally intractable approach that violates the inherent
coarse-to-fine nature of multi-scale synthesis.

To address this challenge, we propose WonderZoom, a novel framework for multi-scale 3D world
generation from a single image. Our approach introduces two key technical innovations: (1) scale-
adaptive Gaussian surfels, a dynamically updatable hierarchical representation that, unlike existing
multi-scale methods, supports incremental refinement as new content is generated. It allows adding
arbitrary levels of detail without re-optimization, and (2) a progressive detail synthesizer that iter-
atively generates fine-grained 3D structures conditioned on both coarser scales and user-specified
regions and viewpoints. These components work synergistically: the scale-adaptive representation
provides a persistent 3D canvas that grows in detail over time, while the synthesizer produces coherent
multi-scale content through a controlled coarse-to-fine generation process. By enabling dynamic
updates to the 3D representation as new scales are synthesized, WonderZoom fundamentally shifts
from the reconstruction paradigm to multi-scale generation, overcoming the computational and
architectural barriers that constrain existing methods to single scales.

Our approach enables users to interactively “zoom into” any region of the generated 3D scene,
triggering autoregressive synthesis of previously non-existent details, e.g., from an entire landscape
down to microscopic surface features. Unlike traditional multi-resolution rendering that simply
reveals pre-existing details, WonderZoom generates new content on-demand, creating coherent
structures that were never part of the original input or coarse generation. This capability allows
infinite exploration of generated worlds at arbitrary levels of detail. In summary, our contributions
are threefold:

• We propose WonderZoom, the first approach to enable multi-scale 3D world generation
from a single image, supporting seamless transitions from macro to micro scales.

• We introduce scale-adaptive Gaussian surfels, a dynamically updatable representation that
grows incrementally with newly generated finer-scale content, while maintaining real-time
rendering performance.

• We demonstrate and evaluate multi-scale 3D generation across diverse scenarios including
natural environments, villages, and urban scenes, achieving consistent quality across scale
transitions while significantly outperforming state-of-the-art video and 3D generation models
in both perceptual quality and prompt alignment.

2 RELATED WORK

3D World Generation. Early 3D scene generation methods focused on novel view synthesis from a
single image, constructing renderable representations like layered depth images (Tulsiani et al., 2018;
Shih et al., 2020), radiance fields (Yu et al., 2020; Trevithick & Yang, 2020; Szymanowicz et al.,
2024), multi-plane images (Tucker & Snavely, 2020; Zhou et al., 2018), and point features (Niklaus
et al., 2019; Wiles et al., 2020), though these only supported small viewpoint changes from the input.
Later works explored generating more significant viewpoint changes and multiple connected scenes.
Infinite Nature (Liu et al., 2021) and its follow-ups (Li et al., 2022; Chai et al., 2023; Cai et al., 2023)
pioneered perpetual view generation for natural scenes with a neural renderer. Recent methods (Liang
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et al., 2025; Yang et al., 2025; Team et al., 2025; Zhou et al., 2024; Li et al., 2024) expanded this
capability to explicit 3D, e.g., SceneScape (Fridman et al., 2023) and Text2Room (Höllein et al.,
2023) generate meshes from text prompts, WonderJourney (Yu et al., 2024) and WonderWorld (Yu
et al., 2025) creates diverse connected 3D scenes using LLMs and point-based representations,
LucidDreamer (Chung et al., 2023) and CAT3D (Gao et al., 2024) focus on room-scale environments
with 3D Gaussian splatting. Another line of work specializes in city-scale generation (Lin et al., 2023;
Xie et al., 2024a;b; Engstler et al., 2025), producing large-scale 3D Gaussian splatting representations
of urban environments. However, these methods operate at a single spatial scale aligned with their
input—–generating either landscapes, rooms, or cities, but not content across scales. In contrast, we
enable multi-scale 3D generation where users can progressively zoom into any region to synthesize
entirely new content at finer scales, creating details that were never visible or implied in the original
input image.

Multi-scale 3D Representations. Classical computer graphics has long addressed multi-scale render-
ing through Level-of-Detail (LoD) techniques (Luebke et al., 2002), which adaptively select geometric
complexity based on viewing distance, and mipmapping, which precomputes texture pyramids for
efficient anti-aliased rendering. These traditional methods assume all geometric and texture details
exist upfront, making them suitable only for rendering pre-authored content, not for progressive
generation. Recent neural 3D reconstruction methods have incorporated similar multi-scale principles,
e.g., Mip-NeRF (Barron et al., 2021) introduces integrated positional encoding to handle scale ambi-
guity, with extensions like Mip-NeRF 360 (Barron et al., 2022) and Zip-NeRF (Barron et al., 2023)
improving unbounded scene representation. In the Gaussian splatting (Kerbl et al., 2023) domain,
Mip-Splatting (Yu et al., 2023) addresses aliasing through 3D smoothing filters, while Hierarchical
3D Gaussian Splatting (Kerbl et al., 2024) builds explicit LoD hierarchies for efficient rendering.
Octree-GS (Ren et al., 2024a) and Scaffold-GS (Lu et al., 2024) use spatial hierarchies to manage
primitives across scales. However, both traditional LoD and these neural hierarchical representations
share a critical limitation: they are fundamentally designed for scenarios where content at all scales
is known: either pre-authored (traditional LoD) or reconstructed from complete multi-scale image
supervision (neural methods). This paradigm is incompatible with generation, where fine-scale
content must be synthesized progressively without pre-existing data. Our approach addresses this
gap by organically integrating a scale-adaptive representation that can be dynamically refined with a
progressive generation pipeline.

Controllable Content Synthesis. Controllable video generation methods have made significant
strides in conditional synthesis, accepting camera trajectories (He et al., 2024; Ren et al., 2025),
depth maps (Zhang et al., 2023), or semantic masks as inputs to guide generation. However, these
approaches cannot perform multi-scale generation due to the absence of training data that captures
coherent content across vastly different spatial scales. Super-resolution techniques have evolved from
2D image enhancement to 3D domains, including mesh refinement, point cloud upsampling (Zhang
et al., 2022), and neural field super-resolution (Wang et al., 2022). Yet these methods focus on
sharpening and refining pre-existing content rather than generating entirely new cross-scale structures.
A recent work, Generative Powers of Ten (Wang et al., 2024b), demonstrates infinite zoom generation
by jointly sampling multiple scales through coordinated diffusion processes, though this remains
limited to 2D images. Hierarchical generation approaches like Progressive GANs (Karras et al.,
2021) and cascaded diffusion models (Ho et al., 2022) synthesize content at increasing resolutions
through staged refinement. Our approach uniquely extends these capabilities to 3D, combining
controllable generation with true multi-scale synthesis—enabling users to interactively zoom into any
region and generate coherent new content across vastly different spatial scales, from environmental
to microscopic levels that never existed in the original input.

3 APPROACH

Formulation. We target multi-scale 3D world generation from a single image. Given an input image
I0 and a sequence of user-specified prompts {U1, . . . ,Un} with corresponding camera viewpoints
{C0, . . . ,Cn},Ci ∈ R4×4 that progressively zoom into regions of interest, our goal is to generate
a sequence of 3D scenes {E0, E1, . . . , En} at increasing spatial granularities. Here, E0 represents
the initial 3D scene reconstructed from the input image I0, while each subsequent scene Ei (i > 0)
represents finer-scale content that is spatially contained within the previous scene Ei−1, creating a
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Figure 2: WonderZoom overview. From an input image, we first reconstruct an initial 3D scene. Users specify
prompts and camera viewpoints to generate finer-scale content. Our progressive detail synthesizer creates new-
scale images, registers depth to maintain geometric consistency, and synthesizes auxiliary views for complete 3D
scene creation. Our scale-adaptive Gaussian surfels enable dynamic updates without re-optimization, seamlessly
integrating new content while preserving real-time rendering.

nested hierarchy where zooming reveals newly synthesized details rather than pre-existing geometry.
This process can be repeated multiple times from the same initial image I0 with different camera
sequences and prompt sequences. Figure 1 illustrates this capability, where we demonstrate three
distinct zoom sequences from a single input.

Challenges. The major technical bottleneck preventing multi-scale generation is the lack of scale-
adaptive 3D representations suitable for generation. Existing multi-scale representations, from
classical Level-of-Detail techniques to recent hierarchical methods like Hierarchical 3D Gaussian
Splatting (Kerbl et al., 2024), are designed for either rendering pre-existing graphics content or
reconstruction with complete multi-scale image supervision available upfront. However, generation
imposes fundamentally different requirements: we need to create coarse-scale content Ei−1 first, then
iteratively synthesize finer details Ei conditioned on both the coarser structure Ei−1 and user-specified
prompts Ui and regions of interest defined by Ci. This demands representations that can grow
dynamically as new scales are generated while maintaining real-time rendering capability, a capability
absent in existing methods that assume static, pre-optimized hierarchies. Another challenge lies
in synthesizing semantically meaningful content that follows user prompts Ui while maintaining
geometric and appearance consistency with previous scales Ei−1. Unlike simple super-resolution that
merely enhances existing details, we may need to generate entirely new structures (e.g., a bird or a
lizard as in Figure 1) that were not implied in the coarser representation.

Overview. We propose WonderZoom to enable multi-scale 3D world generation through two key
technical innovations. To address the first challenge, we introduce scale-adaptive Gaussian surfels
(Sec. 3.1) that allow dynamic updates without re-optimization. This representation enables adding
arbitrarily many scales Ei while maintaining real-time rendering capability at any scale, as new
finer-scale surfels can be seamlessly integrated into the existing hierarchy without modifying coarser
levels. To address the second challenge, we design a progressive detail synthesizer (Sec. 3.2) that
generates new fine-grained 3D structures Ei from user prompts Ui while ensuring consistency with
the previous scale Ei−1. The synthesizer leverages the coarse geometry as spatial conditioning to
guide the generation of coherent fine-scale content, going beyond simple super-resolution to create
semantically meaningful details. We show an illustration of our framework in Figure 2. We summarize
the complete multi-scale generation control loop in Algorithm 1 in supplementary material.

3.1 SCALE-ADAPTIVE GAUSSIAN SURFELS

Definition. We introduce scale-adaptive Gaussian surfels to represent our multi-scale scenes
{E0, . . . , En}. Formally, we model the scenes as a radiance field represented by a set of Gaus-
sian surfels {gj}Nj=1. Each surfel is parameterized as g = {p,q, s, o, c, snative}, where p denotes
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the 3D spatial position, q denotes the orientation quaternion, s = [sx, sy] denotes the scales of
the x-axis and y-axis, o denotes the opacity, and c denotes the view-independent RGB color. The
Gaussian kernel follows the same formulation as in prior work (Yu et al., 2025), with covariance
matrix Σ = Qdiag(s2x, s

2
y, ϵ

2)QT where Q is the rotation matrix obtained from q and ϵ is a small
thickness parameter. The key addition is snative, the native scale at which the surfel was created, which
enables scale-aware rendering as we describe later. In WonderZoom, we sequentially generate each
scene, starting from E0 and progressively adding finer-scale content through En. This demands our
representation to satisfy two requirements: (1) capable of dynamic updates given new scale images Ii
at viewpoints Ci without re-optimizing existing surfels, and (2) supporting real-time rendering at any
observation scale.

Dynamic updating. The core idea of our dynamic representation is that we incrementally add new
surfels to represent each new scale without modifying existing ones. When we create the initial
scene E0 from the input image I0, we generate N0 surfels to represent the coarse-scale geometry
and appearance. When we subsequently generate the finer-scale scene E1 from a zoomed-in view
I1 at camera C1, we add N1 new surfels to the representation, resulting in a total of N = N0 +N1

surfels. This process continues: when generating Ei, we add Ni new surfels, bringing the total to
N =

∑i
k=0 Nk. Crucially, the surfels from previous scales remain unchanged: we only append new

surfels that capture the finer details visible at the current scale. This additive mechanism naturally
enables dynamic updates: each new scale simply extends the existing representation rather than
requiring global re-optimization, allowing the multi-scale world to grow organically as users explore
different regions at increasing levels of detail.

Scale-aware opacity modulation for real-time rendering of multi-scale scenes. Since we represent
multi-scale content with surfels across different scales, the same surface may be covered by multiple
layers of surfels from E0 through Ei. Directly rendering all surfels would cause aliasing and reduce
rendering speed. To address this, we introduce scale-aware opacity modulation based on each surfel’s
native scale:

snative =
dnative√

f native
x f native

y

(1)

where dnative is the surfel’s depth relative to Ci (the camera view where the surfel was created) and
f native
x , f native

y are the focal lengths of Ci. During rendering at camera Crender, we compute the current

rendering scale srender = drender/
√
f render
x f render

y for each surfel. For surfels at intermediate scales

(0 < i < n), we define parent and child scale bounds: sparent = dparent/
√
f parent
x f parent

y where dparent

and f parent are defined relative to Ci−1, and schild = dchild/
√

f child
x f child

y where dchild and f child are
defined relative to Ci+1. The rendered opacity is then modulated as:

õ = o · α, where α =



1 if no parent exists and srender ≥ snative

log(sparent)−log(srender)
log(sparent)−log(snative)

if sparent ≥ srender ≥ snative

log(srender)−log(schild)
log(snative)−log(schild)

if snative ≥ srender ≥ schild

1 if no child exists and srender ≤ snative

0 otherwise.

(2)

This design ensures surfels are most visible at their native scale (α = 1 when srender = snative) and
fade smoothly when viewed at different scales. Notably, surfels at the coarsest scale (i = 0) remain
fully visible when zoomed out, while surfels at the finest scale (i = n) remain fully visible when
zoomed in, ensuring complete scene coverage at all observation scales.

Proposition 1 (Seamless Scale Transition). Our scale-aware opacity modulation ensures smooth
visual transitions between adjacent scales without discontinuities. Specifically, consider two surfels gj
and gk located at the same 3D position p but created at adjacent scales Ei−1 and Ei respectively. When
the rendering scale srender transitions between their native scales, i.e., when srender ∈ [snative

k , snative
j ],

the sum of their modulated opacity weights satisfies:

αk(s
render) + αj(s

render) = 1. (3)
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This property holds because the linear interpolation in log space for gk decreasing from its native scale
matches exactly with the complementary interpolation for gj increasing toward its child scale bound.
As a result, the total contribution from overlapping surfels at different scales remains constant during
zoom operations, eliminating popping artifacts and ensuring visually continuous scale transitions.
This partition of unity is fundamental to maintaining coherent appearance as users navigate across
the multi-scale hierarchy.

Optimization. Our scale-aware opacity modulation preserves the differentiability of the rendering
pipeline, thereby we use gradient-based optimization for surfel parameters. When creating surfels
for a new scale Ei from image Ii, we generate pixel-aligned surfels following the same approach as
prior work (Yu et al., 2025), where each surfel corresponds to a pixel in Ii. We also follow the same
geometry-based initialization: each surfel’s position p is initialized using the estimated depth map
via back-projection, orientation q from the estimated surface normal, and scales s according to the
Nyquist sampling theorem to ensure appropriate coverage without excessive overlap. The color c is
initialized from the corresponding pixel RGB values, the native scale snative is computed based on the
creation viewpoint Ci, and opacity is initialized to o = 0.1 for stable optimization. We then optimize
the opacity, orientation, and scales (while keeping positions, colors, and native scales fixed) using
Adam (Kingma & Ba, 2014) with a photometric loss L = 0.8L1 + 0.2LD-SSIM (Kerbl et al., 2023)
against the input image Ii. This lightweight optimization refines the surfel geometry while preserving
the multi-scale structure.

3.2 PROGRESSIVE DETAIL SYNTHESIZER

Goal. Given the coarse-scale scene Ei−1, a target camera viewpoint Ci, and a user prompt Ui, our
goal is to generate an image Ii and its corresponding depth map Di that are geometrically consistent
with Ei−1 while incorporating the content specified in Ui. Note that Ui may describe entirely new
structures not visible or implied in Ei−1 (e.g., a ladybug on a sunflower), requiring our approach to
go beyond simple super-resolution to synthesize semantically meaningful content. Since we aim
to generate a complete 3D scene Ei that can be rendered from varying viewpoints, we additionally
generate a set of auxiliary images {Iki }Kk=1 from neighboring viewpoints to augment Ii, enabling
optimization of a more complete 3D structure that extends beyond the single input view. This
subsection describes our three-stage pipeline: new scale image generation from the coarse scene
and prompt, scale-consistent depth registration to maintain geometric coherence, and auxiliary view
synthesis for complete 3D reconstruction.

New scale image synthesis. To generate the finer-scale image Ii, we begin by rendering a coarse
observation from the previous scale: Oi = render(Ei−1,Ci), where Ci has a larger focal length than
Ci−1 to zoom into the region of interest. Since Oi is obtained through direct zoom-in rendering
and thus lacks fine details, we apply extreme super-resolution to synthesize high-frequency content.
However, extreme zoom ratios require additional semantic guidance beyond what is visible in Oi.
We therefore extract semantic context from the previous scale using a vision-language model (VLM):
S = VLM(Oi−1), where Oi−1 is the rendered image at the previous scale. The super-resolved
image is then generated as I′i = SR(Oi,S), conditioned on both the coarse observation and semantic
context. To incorporate user-specified content Ui that may include entirely new structures absent
in Ei−1, we apply a controllable image editing model: Ii = Edit(I′i,Ui). This two-stage approach—
super-resolution followed by semantic editing—enables both faithful detail enhancement of existing
structures and insertion of novel content specified by the user.

Scale-consistent depth registration. To estimate a depth map Di that maintains geometric consis-
tency with Ei−1, we employ a multi-stage registration approach. First, we render a target depth map
from the existing geometry: Dtarget

i = render depth(Ei−1,Ci), which provides sparse depth values
for regions visible in the previous scale. We then fine-tune a monocular depth estimator Dθ to align
its predictions with this target depth by minimizing:

Ldepth =

∑
u,v ∥D

target
i (u, v)−Dθ(Ii)(u, v)∥ ·m(u, v)∑

u,v m(u, v)
, (4)

where m(u, v) = 1 if Dtarget
i (u, v) is defined, and m(u, v) = 0 for undefined regions due to zoom-in

effect. This fine-tuning ensures that the estimated depth Di = Dθ(Ii) aligns with the coarse geometry
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while still predicting reasonable depths for newly visible regions. To further refine the registration,
we apply segment-wise depth alignment using SAM-generated masks to correct for local depth
inconsistencies as in prior work (Yu et al., 2024; 2025), and for any newly added structures from the
editing stage (e.g., the ladybug in Figure 2), we use Grounded SAM (Ren et al., 2024b) to isolate
these regions and estimate their depth while maintaining consistency with surrounding geometry.

Auxiliary view synthesis. While Ii provides detailed content at the target viewpoint Ci, a single
image is insufficient to reconstruct a complete 3D scene that can be rendered from arbitrary viewpoints.
To address this, we synthesize auxiliary views {Iki }Kk=1 from neighboring camera positions using
a camera-controlled video diffusion model. We first render conditioning frames from the current
partial scene: {Ok

i } = {render(Epartial
i ,Ck

i )}Kk=1, where Epartial
i is the initial scene constructed

from Ii alone, and {Ck
i } are camera viewpoints sampled around Ci. Along with these frames,

we generate corresponding masks {Mk
i } indicating regions requiring synthesis (e.g., occluded

areas not visible in Ii). The video diffusion model then generates temporally consistent frames:
{Iki } = VideoDiff({Ok

i }, {Mk
i }), conditioned on the partial observations and masks. We then

leverage a video depth model to estimated depth {Dk
i } for these generated frames, and the resulting

image-depth pairs are used to optimize a more complete 3D scene following the same optimization
procedural as described in Sec. 3.1. This auxiliary view synthesis enables us to construct complete 3D
scenes Ei that extend beyond the single input view while maintaining coherence with the generated
content. In practice, we also apply it to help generate the coarsest-scale scene E0.

4 EXPERIMENTS

In our experiments, we evaluate WonderZoom on multi-scale world generation and compare it to
existing methods. We also perform ablation studies to analyze WonderZoom.

Baselines. We are not aware of any prior method that allows multi-scale 3D scene generation.
Therefore, we consider state-of-the-art methods in general-purpose 3D scene generation including
WonderWorld (Yu et al., 2025) and HunyuanWorld (Team et al., 2025). Besides 3D-based approaches,
we further include state-of-the-art camera-controlled video generation models, including Gen3C (Ren
et al., 2025) and Voyager (Huang et al., 2025). We use these baselines’ official codes for comparison.

Test examples. For comparison with the baselines, we collect publicly available real images and
generate synthetic images as our testing examples, and we also use examples from Wang et al.
(2024b). We use 6 test examples spanning diverse scene types such as a field, a city, a forest, and
underwater. Among them, a sunflower image and a coral image are synthetic, and all others are
real images. For each test example, we generate 4 scenes besides the input scene, i.e., we generate
{E0, · · · , E4}. For a fair comparison, we use fixed camera paths and the same text prompts for all
methods.

Metrics. For quantitative comparison, we adopt the following evaluation metrics: (1) To evaluate
the alignment of generated scenes w.r.t. text prompts, we render 9 sudoku-like novel views around
each generated scene Ei, 1 ≤ i ≤ 4, and compute the CLIP (Radford et al., 2021) scores of the
prompt versus the rendered images. (2) We evaluate rendered novel view image quality with CLIP-
IQA+ (Wang et al., 2023), Q-align IQA (Wu et al., 2024), and NIQE (Mittal et al., 2013). (4) We also
measure the aesthetics of novel views by the Q-align IAA (Wu et al., 2024). We leave more details in
the supplementary material.

Implementation details. In our implementation, we use Chain-of-Zoom (Kim et al., 2025) as our
super-resolution model. We use Gen3C (Ren et al., 2025) as the camera-controlled video diffusion
model in auxiliary view synthesis. We estimate image depth by MoGe (Wang et al., 2024a) and video
depth by GeometryCrafter (Xu et al., 2025). We leave more details in the supplementary material.
We will release the full code and software for reproducibility.

4.1 COMPARISON

Qualitative showcase. We show qualitative comparison in Figure 3 as well as Figures 7 and 8
in the supplementary material. We also strongly encourage the reader to see video results and to
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Prompt: A yellow bird is standing on the windowsill

Prompt: A ladybug is on the sunflower

Figure 3: Visual comparison of our WonderZoom and baselines on multi-scale 3D world generation.

Method CS↑ CIQA↑ QIQA↑ NIQE↓ QIAA↑ Time/s

WonderWorld (Yu et al., 2025) 0.2691 0.5060 1.084 21.78 1.336 9.3
HunyuanWorld (Team et al., 2025) 0.2504 0.2820 1.054 15.23 1.306 704.2
Gen3C (Ren et al., 2025) 0.3010 0.5498 2.998 4.918 2.016 306.7
Voyager (Huang et al., 2025) 0.2603 0.5754 3.152 4.919 2.934 596.6
WonderZoom (Ours) 0.3427 0.7028 3.921 3.690 2.981 62.1

Table 1: Quantitative comparison. “CS” denotes CLIP score, “CIQA” denotes CLIP-IQA+, “QIQA” denotes
Q-align IQA, “QIAA” denotes Q-align IAA. “Time” measures the time used in generating a new scale scene.

interactively view generated worlds on our website1. From the qualitative comparison, we find that
the state-of-the-art 3D scene generation methods and the controllable video generation methods are
not able to create multi-scale scenes. In particular, 3D methods always generate blurry zoom-in views
as their 3D scene representations (i.e., Gaussian surfels in WonderWorld (Yu et al., 2025) and meshes

1https://wonderzoom.github.io/

8

https://wonderzoom.github.io/


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ours w/o mod Ours
Figure 4: Ablation on the opacity modulation.

Methods
Metrics GPU Mem FPS

Ours w/o mod. 7.96G 1.4
Ours 3.40G 97.2

Table 2: Comparison of computational cost for vari-
ants about scale-adaptive opacity modulation.

Ours w/o depth registration Ours
Figure 5: Ablation study on our depth registration.

Ours w/o auxiliary view Ours
Figure 6: Ablation study on auxiliary view synthesis.

in HunyuanWorld (Team et al., 2025)) do not support dynamic updating when new scale images
are generated. Camera-controlled video models are able to zoom in, yet their control is imprecise
compared to explicit 3D methods, and their generated views are not aligned with the prompts. In
contrast, WonderZoom allows creating new scale structures that are closely aligned with the prompts,
and generates high-quality novel views at any new scale.

Quantitative comparison. We show the quantitative metrics in Table 1. WonderZoom outperforms
all baseline methods in terms of alignment, novel view quality, as well as aesthetics metrics. This
further validates our observations through visual comparison.

4.2 ABLATION STUDY

We evaluate how the key technical components affect the multi-scale generation performances. We
focus on the scale-aware opacity modulation, depth registration, and auxiliary view synthesis.

Scale-aware opacity modulation. We consider a variant “Ours w/o mod.” which removes our
scale-aware opacity modulation. We show a visual comparison in Figure 4 and a quantitative
comparison on computational cost in Table 2. From the table, we can see that without our scale-aware
opacity modulation, the computational burden makes it intractable for multi-scale real-time rendering.
Furthermore, we observe from the visual result that it creates blurry renderings due to the lack of an
appropriate mechanism for rendering multi-scale surfels. In contrast, ours maintains a high-quality
rendering while requiring lower GPU memory and providing much faster rendering speed.

Depth registration. We consider a variant “Ours w/o depth registration” that removes the scale-
consistent depth registration from WonderZoom. We show a visual comparison in Figure 5. As we
can see in the comparison, removing our depth registration creates significant shape distortion on the
new detail depth estimation, i.e., the newly generated beetle is distorted when observed from novel
views. Our depth registration significantly alleviates this artifact.

Auxiliary view synthesis. We compare our model with “Ours w/o auxiliary view”. As shown in
Figure 6, our auxiliary view synthesis is critical in generating a complete 3D scene, while removing
it leads to missing regions as revealed by the grey areas.

5 CONCLUSION

We presented WonderZoom which allows multi-scale 3D world generation from a single image.
Through the scale-adaptive Gaussian surfels and a progressive detail synthesizer, we enable users
to interactively zoom into any region and synthesize entirely new details while maintaining cross-
scale consistency and real-time rendering. Our experiments demonstrate significant improvements
over existing 3D-based and video-based methods in both visual quality and prompt alignment.
WonderZoom opens new possibilities for interactive content creation and virtual world exploration
across multiple orders of magnitude in scale.

9
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made significant efforts to provide comprehensive
implementation details and will release all necessary resources. We will release the full source code
and interactive demo software upon publication, enabling researchers to reproduce our multi-scale 3D
world generation results and build upon our framework. The complete algorithmic procedure for our
approach is detailed in Algorithm 1, which provides a step-by-step description of both the real-time
rendering thread and the progressive detail synthesis pipeline. Our scale-adaptive Gaussian surfel
representation is mathematically formulated in Section 3.1 and the explanation of seamless scale
transition (Proposition 1). Optimization hyperparameters are specified in the main text, including
the photometric loss function, the Adam optimizer settings, and the surfel initialization parameters.
The specific external models used in our pipeline (VLM for semantic extraction, super-resolution
model, controlled image editing model, monocular depth estimator, SAM for segmentation, and video
diffusion model) are identified in the implementation details section. We will release test examples
with corresponding input images, camera trajectories, and user prompts.
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A APPENDIX

In the appendix, we provide an algorithm of WonderZoom in Alg. 1, additional visual comparison
results in Figure 7 and Figure 8, additional implementation details, and LLM usage statement.

Additional implementation details. All images are processed at a resolution of 720× 1088. We
use GPT-4V as our VLM for semantic context extraction and editing prompt generation. The initial
camera focal length is set to fx = fy = 1024, with progressive zoom-in operations increasing the
focal length for finer scales, typically we multiply the current focal length by 8 for a new scale. We
use INR-Harmonization (Chen et al., 2023) after image editing for improved shading consistency.

LLM usage statement. In the preparation of this manuscript, we used large language models
(LLMs) solely as a writing assistance tool for grammatical error correction and language refinement.
Specifically, LLMs were employed only to improve the clarity and fluency of our existing text,
correct grammatical mistakes, and enhance the readability of technical descriptions. All scientific
contributions, including the core ideas, technical innovations, experimental design, analysis, and
insights presented in this paper, were conceived and developed entirely by the authors without any
LLM assistance. The LLMs did not generate any significant new text, contribute to the ideation
process, or influence the scientific content or conclusions of our work. The conceptualization of scale-
adaptive Gaussian surfels, the progressive detail synthesizer, the multi-scale generation framework,
and all experimental analyses represent original work by the authors. We take full responsibility for
the accuracy and integrity of all content presented in this paper.
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Algorithm 1 Multi-Scale 3D World Generation Control Loop

Input: Initial image I0, initial camera C0 ∈ R4×4

Output: Multi-scale scene hierarchy {E0, E1, . . . , En}
Runtime output: Real-time rendered observation Orender
Runtime user control: Camera viewpoint Crender, zoom region Ci+1, (optional) edit prompt
Ui+1

1: Initialize: E0 ← ReconstructScene(I0,C0) ▷ Initial 3D scene from input image
2: Crender ← C0 ▷ Initialize rendering camera
3: i← 0 ▷ Current scale index

4: Thread 1: Real-time Scale-Adaptive Rendering ▷ Continuous rendering loop
5: while true do
6: srender ← drender/

√
f render
x f render

y ▷ Compute rendering scale

7: Orender ← RenderWithOpacityModulation(
⋃i

k=0 Ek,Crender) ▷ Sec. 3.1
8: Crender ← UserCameraControl() ▷ Interactive camera update
9: end while

10: Thread 2: Progressive Detail Synthesis ▷ Triggered by user zooming into region of interest
with prompt Ui+1 at camera Ci+1

11: // Stage 1: New Scale Image Synthesis
12: Oi+1 ← Render(Ei,Ci+1) ▷ Coarse observation at zoomed view
13: S ← VLM(Render(Ei,Ci)) ▷ Extract semantic context
14: I′i+1 ← SuperResolution(Oi+1,S) ▷ Extreme super-resolution
15: if Ui+1 ̸= ∅ then
16: Ii+1 ← ControlledEdit(I′i+1,Ui+1) ▷ Insert user-specified content
17: else
18: Ii+1 ← I′i+1
19: end if
20: // Stage 2: Scale-Consistent Depth Registration
21: Dtarget

i+1 ← RenderDepth(Ei,Ci+1) ▷ Target depth from coarse scale
22: Di+1 ← DepthRegistration(Ii+1,D

target
i+1 ) ▷ Fine-tune depth estimator

23: // Stage 3: Scale-Adaptive Surfel Generation
24: Epartial

i+1 ← InitializeSurfels(Ii+1,Di+1,Ci+1)

25: ▷ Create surfels with snative = dnative/
√

f native
x f native

y

26: // Stage 4: Auxiliary View Synthesis
27: {Ck

i+1}Kk=1 ← SampleNeighboringViews(Ci+1)

28: {Iki+1,D
k
i+1} ← AuxiliaryViewSynthesis(Epartial

i+1 , {Ck
i+1})

29: // Stage 5: Optimization
30: Ei+1 ← OptimizeSurfels(Epartial

i+1 , {Ii+1, I
1
i+1, . . . , I

K
i+1})

31: ▷ Optimize {q, s, o} with L = 0.8L1 + 0.2LD-SSIM
32: i← i+ 1 ▷ Increment scale index
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Prompt: A beetle is on the tree bark
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Figure 7: Visual comparison of multi-scale 3D world generation results.
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Prompt: A clownfish is swimming among the coral

Prompt: A butterfly is on the leaf

: camera movement : camera zoom-in

Figure 8: Visual comparison of multi-scale 3D world generation results.
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