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of the authors.006

Abstract

In this paper, we aim to provide marginal-007
ized communities in societies where the domi-008
nant language is low-resource with a privacy-009
preserving tool to protect themselves from on-010
line hate speech by filtering offensive content011
in their native languages. Our contributions are012
twofold: 1) we release REACT (REsponsive013
hate speech datasets Across ConTexts), a col-014
lection of high-quality, culture-specific hate015
speech detection datasets comprising multiple016
target groups and low-resource languages, cu-017
rated by experienced data collectors; 2) we pro-018
pose a few-shot hate speech detection approach019
based on federated learning (FL), a privacy-020
preserving method for collaboratively training021
a central model that exhibits robustness when022
tackling different target groups and languages.023
By keeping training local to user devices, we024
ensure data privacy while leveraging the collec-025
tive learning benefits of FL. Furthermore, we026
explore personalized client models tailored to027
specific target groups and evaluate their perfor-028
mance. Our findings indicate the overall effec-029
tiveness of FL across different target groups,030
and point to personalization as a promising di-031
rection.032

1 Introduction033

Combating online hate is a crucial aspect of con-034

tent moderation, with prevailing solutions often035

relying on machine learning models trained on036

large-scale datasets (Pitenis et al., 2020; Röttger037

et al., 2021; Nozza, 2021). However, these efforts038

and the resources required are largely limited to a039

few high-resource languages, such as English and040

German. While multilingual hate speech datasets041

have been developed (Röttger et al., 2022; Das 042

et al., 2022), a significant portion of the world’s 043

low-resource languages and their users remain un- 044

protected from online abuse. A key challenge in 045

hate speech detection lies in its inherently subjec- 046

tive and context-dependent nature, which varies 047

not only at the individual level but also across cul- 048

tures and regions. The issue is exacerbated by a 049

lack of diversity among annotators, often leading 050

to a disconnect between those labeling the data and 051

those directly affected by hate speech (Davidson 052

et al., 2019; Sap et al., 2019). Additionally, both 053

language and hate speech constantly evolve, with 054

new expressions and terminology regularly emerg- 055

ing. 056

To address these challenges, we develop high- 057

quality, culturally relevant datasets that reflect the 058

experiences of marginalized communities. This 059

is achieved through a prompt-based data collec- 060

tion procedure, carried out by data collectors pro- 061

ficient in the target languages and familiar with 062

the nuances of hate speech directed at marginal- 063

ized groups within their respective contexts. The 064

result is REACT, a set of localized, context-aware 065

datasets containing positive, neutral, and hateful 066

sentences across various low-resource languages. 067

We release REACT under the Creative Commons 068

ShareAlike license (CC BY-SA 4.0). 069

One key limitation of current hate speech fil- 070

tering solutions is their reliance on centralized, 071

server-side processing. In such setups, user data 072

must be transmitted to remote servers for analysis, 073

restricting individual control over the content be- 074

ing filtered. Moreover, centralized models are less 075

adaptable to highly specific targets, particularly in 076

low-resource language settings. 077

To overcome this, we propose the use of fed- 078

erated learning (FL) (McMahan et al., 2017), a 079

decentralized machine learning paradigm where 080

multiple users collaboratively train a central model 081

without sharing raw data. FL operates in two itera- 082
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tive stages: first, client devices receive the current083

server model and train it locally on private data;084

then, updates are sent back to the server, aggre-085

gated, and used to improve the server model. This086

decentralized approach not only preserves user pri-087

vacy but also enables rapid adaptation to culturally088

specific hate speech patterns.089

Our work aims to tackle the following research090

questions. RQ1: Can zero-shot or few-shot learn-091

ing effectively detect hate speech in low-resourse092

languages? RQ2: If not, can FL bridge this per-093

formance gap? RQ3: Given the specificity of hate094

speech, does client personalization improve over095

zero- or few-shot learning in low-resource settings?096

2 Related Work097

2.1 Toxic and offensive language datasets098

Earlier efforts in the detection of toxic and offen-099

sive language, including hate speech, have con-100

tributed to the curation of diverse datasets, predom-101

inantly in English (Waseem and Hovy, 2016; Wul-102

czyn et al., 2017; Zhang et al., 2018) and to a lesser103

extent in other high-resource languages, like Ger-104

man and Arabic (Mandl et al., 2019; Mulki et al.,105

2019). More recent work has developed datasets106

with more fine-grained details, such as different107

types of abuse (Sap et al., 2020; Guest et al., 2021)108

and target groups (Grimminger and Klinger, 2021;109

Maronikolakis et al., 2022). In a related manner,110

Dixon et al. (2018) and Röttger et al. (2021) adopt111

a template-based data generation process to con-112

struct hate speech datasets categorized by targeted113

subgroups. Recognizing the need for broader lin-114

guistic coverage, recent initiatives have expanded115

data collection to include multiple languages, in-116

cluding low-resource ones (Röttger et al., 2022;117

Das et al., 2022; Dementieva et al., 2024), which is118

crucial for developing robust hate speech detection119

systems for underrepresented languages. Notably,120

Muhammad et al. (2025) introduce AfriHate, an121

offensive speech dataset covering 15 low-resource122

languages and dialects spoken in Africa.123

2.2 Hate speech detection124

In recent years, Transformer-based (Vaswani et al.,125

2017) language models have emerged as the back-126

bone of many natural language processing tasks.127

This trend extends to hate speech detection, where128

various Transformer-based models have been em-129

ployed (Mozafari et al., 2019; Ranasinghe and130

Zampieri, 2021, 2022), including some pre-trained131

specifically to identify hate and offensive content 132

(Caselli et al., 2021; Sarkar et al., 2021). 133

More recently, large language models (LLMs) 134

based on Transformer architectures have demon- 135

strated remarkable capabilities across a wide range 136

of domains (Brown et al., 2020; Ouyang et al., 137

2022; Webb et al., 2023). Despite their effective- 138

ness, training such models remains highly data- and 139

resource-intensive, requiring substantial computa- 140

tional power and centralized datasets (Gupta et al., 141

2022; Patel et al., 2023). 142

2.3 Federated learning 143

Public datasets used to train language models often 144

contain personally identifiable information (PII), 145

raising privacy concerns as models may inadver- 146

tently memorize and expose such data (Kim et al., 147

2023; Lukas et al., 2023). At the same time, the 148

rapid development of LLMs, which require increas- 149

ingly vast amounts of training data, has sparked 150

concerns over the depletion of publicly available 151

data. A recent study by Villalobos et al. (2022) sug- 152

gests that we may reach this data limit as early as 153

2026. 154

In this context, effectively leveraging privately 155

held data, such as that stored on user devices, 156

in a privacy-preserving way presents a promis- 157

ing potential. Federated learning (FL) (McMahan 158

et al., 2017) is a decentralized machine learning 159

paradigm designed to preserve data privacy. In- 160

stead of collecting user data centrally, FL enables 161

models to be trained locally on individual devices 162

(clients), ensuring that raw data never leaves the 163

device. Model update from each client are then 164

collected and aggregated on a central server us- 165

ing the FederatedAveraging (FedAvg) algorithm, 166

which computes a weighted average of received 167

local updates. One of the first applications of FL 168

was in improving next-word prediction in Gboard, 169

Google’s virtual keyboard (Hard et al., 2018). In 170

this setting, user interactions contributed to model 171

improvements without exposing any actual data 172

generated by individuals. FL has since been applied 173

to other privacy-sensitive domains such as finance 174

(Byrd and Polychroniadou, 2020) and medicine 175

(Sheller et al., 2020). Despite its potential, FL has 176

only recently begun to be explored in the context 177

of hate speech detection. Gala et al. (2023) and 178

Zampieri et al. (2024) apply FL on public offensive 179

speech datasets and benchmarks, demonstrating 180

its feasibility for content moderation. Additionally, 181
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Singh and Thakur (2024) explore FL to detect hate182

speech in various Indic languages, showing its rele-183

vance for low-resource contexts. In contrast to these184

approaches, we investigate the use of FL for few-185

shot hate speech detection in low-resource settings,186

where annotated data is extremely limited. We fur-187

ther explore personalized FL to enhance adaptabil-188

ity to specific target groups.189

2.4 Personalized FL190

The standard FL framework assumes that client191

data is independently and identically distributed192

(i.i.d.). In scenarios where client data is highly het-193

erogeneous (non-i.i.d.), traditional FL may suffer194

from degraded performance and slow convergence195

due to client drift (Karimireddy et al., 2020; Li196

et al., 2020). In the context of hate speech detection,197

clients may represent marginalized or underrepre-198

sented groups whose data characteristics differ sig-199

nificantly from the majority. Personalized FL offers200

a potential solution by allowing model customiza-201

tion at the client level, better addressing group-202

specific sociolinguistic patterns. Additionally, it203

further enhances privacy by limiting the amount204

and type of information shared with the central205

server. A straightforward approach to client per-206

sonalization is FedPer (Arivazhagan et al., 2019),207

which decouples the client model into base (shared)208

and personalized layers. This architecture enables209

clients to retain parameters tailored to their local210

data while still contributing to the server model.211

Following this approach, we apply personalized FL212

to integrate local adaptations with selective infor-213

mation sharing.214

3 REACT Dataset215

We release a localized hate speech detection dataset216

for several marginalized groups in regions where217

low-resource languages are predominantly used.218

We name this dataset REACT (REsponsive hate219

speech datasets Across ConTexts). To construct the220

dataset, we recruit data collectors who are either221

native or highly proficient in the target language222

and have deep familiarity with the sociocultural223

nuances and contexts of hate speech in the respec-224

tive countries. REACT comprises data on six tar-225

get groups–Black people, LGBTQ, Russians, Rus-226

sophone Ukrainians, Ukrainian war victims, and227

women–across four languages: Afrikaans, Korean,228

Russian, and Ukrainian.229

Each dataset is organized into six categories230

based on the sentiment polarity (positive, neutral, 231

hateful) and the presence or absence of profanity, 232

which includes vulgar or obscene language such as 233

swear words. We collect data both with and without 234

profanity within each polarity category to minimize 235

the association of profanity with hateful content. 236

For each of the six categories, data collectors 237

receive a prompt formatted as follows: 238

Provide [polarity] text in [target 239

language] about the [target group] 240

[using/without using] profanity. 241

Further details on the data collection procedure 242

are provided in §A. Table 1 shows the number of 243

sentences collected for each category across all 244

datasets. Most datasets are balanced across cate- 245

gories and contain around 1000-2000 sentences 246

related to the target groups. 247

Data source. Data is collected predominantly 248

from social media platforms like Facebook1 and X 249

(formerly Twitter)2, as well as local online forums, 250

news articles, and comment sections. Additional 251

sources include books and text corpora, such as 252

Common Crawl3. In some cases, data collectors 253

generate synthetic examples inspired by observed 254

hate speech patterns, either from scratch or based 255

on similar content from other sources. When col- 256

lecting from online sources, data collectors are in- 257

structed to remove any personally identifiable infor- 258

mation, including usernames and hashtags. Minor 259

modifications are occasionally made to enhance 260

clarity and better describe the target group. In ad- 261

dition, a portion of the data (under 20% for most 262

datasets) is generated using AI tools such as Chat- 263

GPT4 and subsequently reviewed and refined by 264

data collectors to ensure realism and consistency 265

with the category (details in §B). 266

Cross-annotation. To ensure data quality, we 267

perform cross-annotation on a subset of the data. 268

Specifically, we sample sentences from each of the 269

six categories and have them annotated by an ad- 270

ditional native speaker of the language (details in 271

§A). 272

1https://www.facebook.com
2https://x.com
3https://commoncrawl.org
4https://chatgpt.com
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language target positive neutral hateful total
P+ P- P+ P- P+ P-

Afrikaans
Black people 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 338 (16.6%) 2028
LGBTQ 197 (19.3%) 174 (17.1%) 169 (16.6%) 150 (14.8%) 174 (17.1%) 152 (14.9%) 1016

Ukrainian
Russians 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 300 (16.6%) 1800
Russophones 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 200 (16.6%) 1200

Russian
LGBTQ 90 (11.7%) 164 (21.2%) 102 (13.2%) 136 (17.6%) 137 (17.7%) 143 (18.5%) 772
War victims 158 (8.1%) 157 (8.1%) 194 (9.9%) 260 (13.3%) 542 (27.7%) 649 (33.1%) 1960

Korean Women 214 (16.5%) 210 (16.2%) 206 (15.9%) 221 (17.1%) 245 (18.9%) 198 (15.3%) 1294

Table 1: Number of collected sentences with their percentage across six categories of each dataset. P+: with profanity,
P-: without profanity. In total, the data covers seven distinct target groups in eight languages.

4 Hate speech detection experiments273

To implement federated learning (FL) using our274

collected data, we use the Flower framework5, cho-275

sen for its simplicity and flexibility. FL at scale276

typically involves a central server connected with277

multiple client nodes, each operating on a user’s278

device. Flower supports the simulation of this setup279

by enabling the creation of virtual clients on a sin-280

gle machine, allowing us to conduct controlled FL281

experiments without relying on real user devices.282

We focus on four language-target group combi-283

nations. These include: Afrikaans - Black people284

(afr-black), Afrikaans - LGBTQ (afr-lgbtq),285

Russian - LGBTQ (rus-lgbtq), and Russian - war286

victims (rus-war).287

4.1 Models288

Federated learning is commonly constrained by the289

large communication overhead between clients and290

the server, where even a small amount of trans-291

mitted data may burden the bandwidth (Bonawitz292

et al., 2019). In addition, smaller models offer293

greater flexibility, as they can be deployed on de-294

vices with varying computational capacities (Hard295

et al., 2018). This allows responsive, on-device hate296

speech classification with minimal latency, both on297

high-end devices and those with limited resources.298

Given these considerations, we focus on compact299

language models for our experiments. We evaluate300

a total of seven models, including four multilin-301

gual models: multilingual BERT (mBERT) (De-302

vlin et al., 2019), multilingual DistilBERT (Distil-303

mBERT) (Sanh et al., 2019), multilingual MiniLM304

(Wang et al., 2020), and XLM-RoBERTa (XLM-305

R) (Conneau et al., 2020). We also include three306

models without explicit multilingual pre-training:307

DistilBERT, ALBERT (Lan et al., 2020), and Tiny-308

BERT (Jiao et al., 2020).309

5https://flower.ai

Comprehensive results for all seven models 310

are provided in §C.2. Preliminary experiments re- 311

veal that models without explicit multilingual pre- 312

training perform poorly across all four language- 313

group combinations, with F1 scores below 0.50 314

in most cases. Multilingual MiniLM also un- 315

derperforms in comparison to other multilingual 316

models. In contrast, mBERT and Distil-mBERT 317

consistently achieve the highest performance (F1 318

scores of 0.70 and 0.72 respectively on the best- 319

performing client models). Being more compact 320

than XLM-R, both also offer a favorable balance 321

between performance and model size. Based on 322

these results, we select mBERT and Distil-mBERT 323

for the subsequent experiments. 324

4.2 Federated learning 325

Using Flower, we simulate one server and four 326

client instances, each representing a distinct target 327

group. To assess final performance, we construct a 328

test set for each target group based on annotations 329

agreed upon by two native-level speakers of the re- 330

spective language. Given the high target-specificity 331

of our datasets and the potential for overlapping 332

linguistic patterns across splits, we implement mea- 333

sures to reduce train-test overlap. Specifically, we 334

retain only training instances with a Levenshtein 335

ratio greater than 0.5 with test data. In cases where 336

this filtering results in an insufficient split size, we 337

relax the threshold in a controlled manner. Fur- 338

ther details are provided in §D. To address RQ1 339

and RQ2, we evaluate client models in both zero- 340

shot and few-shot settings, fine-tuning them with 341

3, 9, and 15 sentences per target group to simulate 342

extremely low-resource settings. We conduct five 343

rounds of FL, with each client trained for one local 344

epoch per round. After training, each client is eval- 345

uated independently on its corresponding test set. 346

Additionally, we assess the server model’s perfor- 347

4
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mance using the combined test data from all target348

groups. All results are reported using the macro-F1349

score, averaged over five different random seeds.350

4.3 Client personalization351

A core objective of this work is to support person-352

alized hate speech detection tailored to the specific353

needs of individual target groups. In line with this354

and to investigate RQ3, we implement two person-355

alization methods during the FL process.356

FedPer. FedPer, introduced by Arivazhagan et al.357

(2019), personalizes client models by making the358

final layers private, sharing only updates to the base359

(non-private) layers. KB and KP are introduced to360

denote the number of base and personalized layers,361

respectively. Personalization proceeds from the top362

of the model downward, such that KP = 1 cor-363

responds to personalizing only the classifier head,364

while KP = n+ 1 includes the head plus the last365

n Transformer layers.366

Following Arivazhagan et al. (2019), we test367

KP ∈ {1, 2, 3, 4} for mBERT and Distil-mBERT.368

We exclude the server model from evaluation as key369

parameters, most importantly those of the classifier370

head, are client-specific and not updated centrally,371

making server-side performance uninformative.372

Adapters. A growing body of research has ex-373

plored incorporating annotators’ demographics and374

preferences (Kanclerz et al., 2022; Fleisig et al.,375

2023; Hoeken et al., 2024), or even gaze features376

of the users (Alacam et al., 2024) into annotations377

to better capture subjectivity. Inspired by this line378

of work, we introduce a small number of trainable379

parameters in the form of adapters (Houlsby et al.,380

2019) between each pair of Transformer blocks,381

which serve as client-specific parameters. We exper-382

iment with two variants: 1) full-model fine-tuning,383

where all parameters are updated but only non-384

adapter updates are shared with the server, and 2)385

adapter-only fine-tuning, where all non-adapter pa-386

rameters are kept frozen. In the latter option, no FL387

takes place, since non-personalized parameters are388

not updated. As with FedPer, we exclude the server389

model from evaluation.390

4.4 Baseline391

To evaluate the effectiveness of FL across differ-392

ent target groups, we establish a standard few-shot393

fine-tuning baseline, where each model is trained394

individually on a single target group using the same395

data and parameters. For comparability, training is396

conducted for five epochs, matching the number of 397

FL rounds. In addition, we evaluate performance 398

using the Perspective API6, a widely used tool for 399

only toxic speech filtering. Perspective API pro- 400

duces a toxicity score reflecting the probability that 401

a given text is considered toxic. However, the classi- 402

fication outcome is highly sensitive to the selected 403

toxicity threshold, and prior studies have shown 404

that the API can exhibit biases, particularly with 405

unfamiliar or culturally specific language use (Hua 406

et al., 2020; Garg et al., 2023; Nogara et al., 2023). 407

For this reason, we report results using two toxicity 408

thresholds of 0.7 and 0.9 according to the API’s 409

recommended range. 410

5 Results 411

RQ1: Performance of Perspective API varies 412

As shown in Figure 1, Perspective API performs 413

strongly on Russian data, achieving F1s of 0.75 414

and 0.81 for rus-lgbtq and rus-war, respectively, 415

at the 0.7 threshold. At the 0.9 threshold, it contin- 416

ues to outperform both models in most low-data 417

(0-3 shot) scenarios. However, its performance on 418

Afrikaans, which it does not support, is notably 419

poor and often fall below both FL and single-target 420

fine-tuning. This indicates the limitations of cen- 421

tralized tools like Perspective API in low-resource 422

contexts. 423

RQ2: Individual clients benefit consistently 424

from FL. Figure 1 compares classification results 425

using FL (solid lines), single-target fine-tuning 426

(dashed lines), and Perspective API (horizontal dot- 427

ted lines), using both mBERT and Distil-mBERT. 428

Each plot corresponds to either a target group or 429

the server and shows F1 scores across an increas- 430

ing number of training samples. Table 2 shows the 431

F1 improvements using FL over the baselines. We 432

observe that FL consistently improves client perfor- 433

mance, particularly with 9 to 15 training samples. 434

This suggests that clients benefit from the collective 435

knowledge shared during FL. Moreover, server per- 436

formance improves steadily with additional train- 437

ing data, particularly for mBERT, indicating that 438

the server model effectively captures hate speech 439

patterns across all four target groups. 440

RQ3: Personalization works, but performance 441

varies. The degree of personalization in FedPer 442

is determined by the value of KP . We test KP ∈ 443

{1, 2, 3, 4} for both mBERT and Distil-mBERT, 444

6https://perspectiveapi.com
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Figure 1: Comparison of F1 scores using mBERT and Distil-mBERT across three training settings: FL (solid
lines), single-target training (dashed lines), and Perspective API (horizontal dotted lines). Each subplot illustrates
performance on a specific target group or the server. FL consistently improves client and server performance,
especially with more (9-15) training samples.

Training afr-black afr-lgbtq rus-lgbtq rus-war server
Samples M D M D M D M D M D

∆ No FL

0 0.04 -0.01 0.00 0.02 0.02 -0.08 -0.02 -0.01 -0.02 -0.02
3 -0.05 -0.09 0.00 -0.11 0.11 0.00 -0.03 -0.14 0.10 -0.07
9 0.02 0.06 0.03 0.01 0.04 0.03 0.05 0.06 0.05 0.13
15 0.15 0.05 0.02 -0.11 0.02 -0.04 0.04 -0.10 0.12 -0.03

0 -0.07 -0.10 -0.05 0.00 -0.37 -0.38 -0.42 -0.44 -0.23 -0.22
∆ Perspective 3 0.11 0.03 0.08 -0.08 -0.23 -0.35 -0.24 -0.36 -0.09 -0.21

API (0.7) 9 0.08 0.22 0.03 0.22 -0.17 -0.02 -0.20 -0.10 0.00 0.10
15 0.17 0.06 0.09 0.03 -0.08 -0.05 -0.11 -0.17 0.02 -0.07

0 -0.03 -0.05 0.05 0.10 -0.18 -0.19 -0.20 -0.21 -0.07 -0.06
∆ Perspective 3 0.15 0.07 0.18 0.01 -0.04 -0.16 -0.02 -0.13 0.07 -0.05

API (0.9) 9 0.12 0.26 0.13 0.31 0.02 0.17 0.03 0.12 0.16 0.26
15 0.22 0.10 0.19 0.12 0.11 0.14 0.11 0.05 0.18 0.09

Table 2: F1 differences between the three baseline settings and FL. Bold: FL improves the client performance.
Underlined: highest improvement for each setting and target group. M: mBERT, D: Distil-mBERT. mBERT benefits
from FL with more data (15), whereas Distil-mBERT benefits the most with less data (9).
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Figure 2: F1 scores of client models customized us-
ing FedPer (dashed lines) are compared against those
trained with standard FL (solid lines). Results are
presented for the optimal KP value, which is 4 for
both models. While FedPer occasionally yields mod-
est improvements, its overall advantages are target- and
language-specific.
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Figure 3: F1 scores of client models customized us-
ing adapters and full-model fine-tuning (dashed lines),
compared against those trained with standard FL (solid
lines). Although a few clients see gains from adapter-
based personalization, the overall improvement is un-
clear.

and report results using the best-performing KP 445

for each model in Figure 2. Full results for all KP 446

values are provided in §E. For simplicity, we define 447

the optimal KP as the one that yields the highest 448

average F1 improvement per client across the four 449

training sizes. The results indicate that the impact 450

of FedPer is rather client- and language-dependent, 451

where performance improves for some clients but 452

drops for others. For example, with mBERT and 15 453

training samples, afr-black suffers a sharp drop 454

of 0.14 in F1, whereas rus-lgbtq improves by 455

0.06. Similar variability is observed with Distil- 456

mBERT. At 3-shot, all clients show performance 457

declines (up to -0.16), yet all demonstrate improve- 458

ments at 9-shot (up to 0.18). 459

For adapter-based personalization, we find that 460

full-model fine-tuning consistently outperforms 461

adapter-only fine-tuning. Figure 3 presents full- 462

model FL results with adapter personalization, and 463

full results are shown in §F. While certain clients, 464

such as rus-lgbtq and rus-war, benefit from 465

adapters (with mBERT gains of up to 0.13 and 466

0.09, respectively), overall improvements are in- 467

consistent across clients. 468

Smaller models benefit slightly more from per- 469

sonalization. A comparison between standard 470

FL (Figure 1) and personalized FL results (Figures 471

2 and 3) reveals that the smaller Distil-mBERT 472

model benefits slightly more from FedPer than 473

mBERT (an average F1 improvement of 0.02 per 474

client with the best-performing KP ). In contrast, 475

adapter-based personalization yields comparable 476

results for both models, with no consistent improve- 477

ment observed. 478

6 Analysis 479

Perspective API Since our data includes sam- 480

ples both with and without profanity, we expect the 481

two chosen thresholds to influence the classifica- 482

tion behavior of Perspective API. We observe per- 483

formance drops across all target groups when the 484

threshold is raised from 0.7 to 0.9. The difference 485

is particularly pronounced in Russian, where the 486

API otherwiese performs relatively well. Increasing 487

the threshold to 0.9 makes the API more conserva- 488

tive, reducing its sensitivity to hate. While hateful 489

sentences containing repeated profanity or highly 490

offensive language are correctly identified under 491

both thresholds, more subtle ones with little or no 492

profanity are often missed at the higher threshold. 493

Simultaneously, the API is more reliant on pro- 494
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fanity, more frequently correlating it with hate, as495

shown in §G. Conversely, due to increased insen-496

sitivity to profanity, slightly profane yet positive497

sentences toward target groups, which are previ-498

ously misclassified as hate, are correctly identified499

as non-hateful at the 0.9 threshold.500

In addition to its threshold sensitivity, we find501

that Perspective API fails to detect culturally sensi-502

tive expressions, regardless of the threshold used.503

For instance, ethnic slurs such as хохлы (Khokhols)504

and укры (Ukry), which are derogatory terms for505

Ukrainians, as well as homophobic slurs like Moffie506

and skeef, which are offensive references to effemi-507

nate or gay men, are not consistently flagged. This508

is an indication that while Perspective API is ef-509

fective for general-purpose hate speech detection,510

it lacks the cultural and linguistic nuance neces-511

sary for adaptation to specific cultural or ethnic512

contexts.513

Effectiveness of personalization As shown by514

Figures 2 and 3, both FedPer and adapters have515

variable effects on client models and are highly516

sensitive to the target group. To assess their overall517

effectiveness, we compute the average F1 improve-518

ment per client across all four training sizes. While519

FedPer yields gains in specific cases, such as for520

rus-war using Distil-mBERT, Table 3 shows that it521

does not consistently outperform non-personalized522

FL. Similarly, adapter-based personalization offers523

limited performance gain overall.524

Importantly, while personalization does not yield525

consistent performance gains, it also does not sig-526

nificantly degrade client performance. In both meth-527

ods, client models maintain comparable effective-528

ness to their non-personalized counterparts while529

gaining the additional benefit of enhanced privacy.530

In FedPer, for instance, increasing KP reduces the531

number of parameters shared during FL, retaining532

sensitive decision-making components on the client533

side.534

These results suggest that while the performance535

benefits of personalization are nuanced and context-536

dependent, its privacy-preserving nature–without537

noticeable performance loss–may justify its use,538

particularly in sensitive domains like hate speech539

detection. Moreover, the limited number of target540

groups in our study may constrain the utility of541

personalization. Its potential may become more ap-542

parent in settings with a broader and more diverse543

set of clients, where individual needs and linguistic544

characteristics vary more significantly.545

mBERT Distil-mBERT

KP = 1 -0.05 -0.03
KP = 2 -0.03 -0.01
KP = 3 -0.04 -0.01
KP = 4 -0.01 0.00

adapter-only -0.13 -0.10
full-model 0.01 0.00

Table 3: Average F1 improvement per client using Fed-
Per with KP ∈ {1, 2, 3, 4} (top four rows) and two
modes of adapter-based personalization (bottom two
rows).

7 Conclusion 546

This work makes two key contributions. First, we 547

release REACT, a collection of localized and 548

context-specific hate speech detection datasets. RE- 549

ACT comprises data in four low-resource lan- 550

guages, covering six distinct target groups. The 551

datasets are curated by data collectors who are 552

not only proficient in the target languages but also 553

deeply familiar with the cultural nuances and con- 554

texts of hate speech in the respective countries. 555

Second, we evaluate the effectiveness of federated 556

learning (FL), a privacy-preserving machine learn- 557

ing paradigm that keeps private data on user de- 558

vices, in enabling few-shot hate speech detection 559

using two lightweight multilingual models. These 560

models are suitable for deployment even on de- 561

vices with limited computational resources. We 562

believe our findings will support future applica- 563

tions of privacy-aware hate speech filtering on user 564

devices, such as a browser extension. 565

In addressing our research questions: (RQ1) We 566

find that both the Perspective API and zero-/few- 567

shot learning with multilingual models perform rea- 568

sonably well for detecting hate speech in the two 569

tested low-resource languages. (RQ2) Our results 570

show modest but consistent improvements with 571

FL under zero- and few-shot conditions (Figure 572

1), highlighting its promise as a viable approach 573

for privacy-preserving learning in low-resource set- 574

tings, potentially applicable to other tasks. (RQ3) 575

Our investigation of two personalization methods 576

reveals that their effectiveness is highly language- 577

and target-dependent. However, personalization of- 578

fers a clear privacy advantage without significant 579

performance loss. We therefore see personaliza- 580

tion as a promising direction, particularly in more 581

resource-rich or heterogeneous environments. 582

8



Limitations583

Despite the comprehensive experimentation and584

valuable insights on federated hate speech detec-585

tion presented in this study, several limitations re-586

main, which we aim to address in future work. First,587

while we strive to include as many low-resource588

languages as possible, the selection was restricted589

by the limited availability of native speakers and590

budgetary constraints. This, in turn, limited the591

diversity and number of clients we could test. Sec-592

ond, due to the depth and complexity of the ex-593

perimental setup, we did not conduct an extensive594

hyperparameter search, which may have impacted595

model optimization. Third, our choice of models596

was restricted to lightweight multilingual models597

suitable for deployment on resource-constrained598

client devices. Finally, experiments in this study599

were conducted in a simulated federated learning600

environment; our future work will involve imple-601

menting and evaluating the approach in real-world602

scenarios.603

Ethics Statement604

In this work, we develop and utilize several hate605

speech detection datasets, the nature of which ne-606

cessitates careful measures to protect data collec-607

tors from potential harm. We ensure that data col-608

lectors are fully aware of the context of the tar-609

get groups involved and obtain their consent for610

handling such data. To minimize exposure to poten-611

tially harmful content, we randomly sample a small612

portion of the collected data for cross-annotation.613

Additionally, data collectors are instructed to col-614

lect data exclusively from open domains to avoid615

copyright infringement and to remove any person-616

ally identifiable information, thereby maintaining617

the anonymity of the datasets.618

While federated learning presents a promising619

approach to preserving user data privacy, it does620

not guarantee complete anonymity in the face of621

adversarial threats. In certain circumstances, a ma-622

licious actor could potentially carry out attacks to623

infer personal information from data transmitted624

by individual clients, thus compromising the se-625

curity of federated learning. Therefore, additional626

precautions are recommended when implementing627

FL for sensitive data, with potential solutions in-628

cluding the application of differential privacy and629

the personalization of client models.630
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language target #sentences

Afrikaans
Black people 92
LGBTQ 352

Ukrainian
Russians 987
Russophones 1200

Russian
LGBTQ 115
War victims 193

Korean Women 120

Table 4: The number of sentences in each cross-
annotated dataset.

A Annotation details1027

A.1 Data collectors1028

We recruit international students at universities in1029

the country of our research team who are famil-1030

iar with hate speech in the target countries as data1031

collectors. These students are hired as student assis-1032

tants under regular employment contracts, and are1033

compensated with an amount which is considered1034

adequate for their place of residence.1035

A.2 Instructions1036

Prior to receiving the data collection prompt (§3),1037

data collectors familiarize themselves with the six-1038

category scheme using “minimal pair” examples1039

with the same sentence differing only in polarity or1040

the presence of profanity. These examples provide1041

a concrete understanding of subtle differences, such1042

as the distinction between profane and non-profane1043

expressions. While these initial instructions offer1044

a reference point, data collectors are free to inter-1045

pret and define profanity based on the norms and1046

nuances of their specific cultural contexts.1047

A.3 Cross-annotation1048

To ensure data quality, a subset of the data from1049

all six categories is annotated by another native1050

speaker of the language. Details of the cross-1051

annotated datasets are presented in Table 4.1052

A.4 Inter-annotator agreement1053

We measure inter-annotator agreement using Co-1054

hen’s kappa (κ) and Krippendorff’s alpha (α). Both1055

metrics are calculated for two scenarios: 1) three1056

classes (considering all three polarities: positive,1057

neutral, and hateful), and 2) two classes (non-1058

hateful and hateful), where positive and neutral1059

data are merged into the non-hateful class. Table 51060

language target 3 classes 2 classes
κ α κ α

Afrikaans
Black people 0.48 0.65 0.82 0.82
LGBTQ 0.57 0.71 0.58 0.57

Ukrainian
Russians 0.66 0.73 0.85 0.85
Russophones 0.47 0.70 0.86 0.86

Russian
LGBTQ 0.87 0.92 0.93 0.93
War victims 0.67 0.77 0.74 0.74

Korean Women 0.66 0.80 0.60 0.60

Table 5: Cohen’s kappa (κ) and Krippendorff’s alpha (α)
for the cross-annotated datasets. Values are shown for
three classes (positive, neutral, hateful) and two classes
(non-hateful and hateful).

shows agreement scores for both metrics on each 1061

cross-annotated dataset. The results show substan- 1062

tial to almost perfect agreement for the majority 1063

of datasets, with the Afrikaans datasets exhibiting 1064

moderate to substantial agreement. 1065

A.5 Corpus statistics 1066

We report corpus statistics for each REACT dataset 1067

in Table 6. These include the total number of sen- 1068

tences and tokens, the vocabulary size (unique to- 1069

kens count), average, maximum, and minimum sen- 1070

tence lengths in tokens, standard deviation of sen- 1071

tence lengths, average word length in characters, 1072

type-token ratio, and the hapax legomena ratio. 1073

B AI-generated data 1074

B.1 Proportion of AI-generated data 1075

AI tools such as ChatGPT are employed to supple- 1076

ment data collection in cases where it is challenging 1077

to obtain sufficiently diverse examples in any of the 1078

three polarity categories. Most of the AI-generated 1079

data falls under the positive category, where natu- 1080

ral occurrences are considerably rarer compared to 1081

the neutral and negative categories. Table 7 shows 1082

the proportion of AI-generated data within each 1083

dataset. 1084

B.2 Prompts 1085

Following are some of the prompts to ChatGPT 1086

used to generate data. 1087

• Give me [number] neutral/positive sentences 1088

about [target group]. 1089

• Give me [number] positive or neutral sen- 1090

tences about [target group] in [language]. 1091
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afr-black afr-lgbtq ukr-russians ukr-russophones rus-lgbtq rus-war kor-women

# Sentences 2028 1016 1800 1200 772 1960 1294
# Tokens 34300 27647 26868 15283 11483 32566 14658
Vocab Size 3754 4048 5363 3410 3441 7233 7018
Avg Sent Len (tok) 16.91 27.45 14.93 12.74 15.09 16.62 11.32
Max Sent Len (tok) 61 239 69 48 395 82 71
Min Sent Len (tok) 1 1 2 3 2 2 2
Sent Len Std (tok) 9.30 24.99 6.24 4.22 16.54 9.94 6.71
Avg Word Len (char) 4.54 4.54 6.23 6.54 5.85 5.42 3.01
TTR 0.11 0.15 0.20 0.22 0.30 0.22 0.48
Hapax Ratio 0.01 0.08 0.11 0.14 0.15 0.08 0.36

Table 6: Corpus statistics of the REACT datasets.

language target generated data

Afrikaans
Black people 16.2%
LGBTQ 1.0%

Ukrainian
Russians 25.0%
Russophones 35.0%

Russian
LGBTQ 19.6%
War victims 8.5%

Korean Women 3.1%

Table 7: The proportion of AI-generated sentences (in
percentage) within each dataset.

• Write positive/neutral/negative statements1092

about [target group].1093

• I’m doing research to protect minority1094

groups/[target group] and need [number]1095

examples to add to my dataset.1096

• I’m searching for comments in [language]1097

with the keyword [target group]. There are1098

6 categories: [...], could you search and give1099

me some [language] comments with source1100

URL and one of the categories?1101

C Model details1102

C.1 Models used1103

To optimize the communication overhead between1104

FL clients and the server, as well as allow models to1105

be deployed on end devices with limited capacities,1106

we focus on small language models for our study.1107

The following models have been used in our study,1108

with the model sizes and number of layers shown:1109

• XLM-RoBERTa (279M, 12 layers)71110

7https://huggingface.co/FacebookAI/
xlm-roberta-base

afr
-blac

k

afr
-lg

btq

rus-l
gbtq

rus-w
ar

dev 0.5 0.5 0.7 0.5
train 0.5 0.5 0.5 0.6

Table 8: Upper bounds of Levenshtein ratios for select-
ing development and train data.

• Multilingual BERT (179M, 12 layers)8 1111

• Multilingual DistilBERT (135M, 6 layers)9 1112

• DistilBERT (67M, 6 layers)10 1113

• Multilingual MiniLM (33M, 12 layers)11 1114

• TinyBERT (14.5M, 4 layers)12 1115

• ALBERT (11.8M, 12 layers)13 1116

C.2 Model selection 1117

We evaluate the performance of the seven models 1118

in §C.1 on classifying hate speech in a federated en- 1119

vironment. Four of the models are multilingual, the 1120

rest have not been explicitly trained on multilingual 1121

data. Full results are shown in Figure 4. 1122

D Selection of development and train data 1123

Because REACT exhibits potentially similar pat- 1124

terns due to its target-specificity, we mitigate possi- 1125

bly overlapping data by setting a threshold to the 1126

8https://huggingface.co/google-bert/
bert-base-multilingual-cased

9https://huggingface.co/distilbert/
distilbert-base-multilingual-cased

10https://huggingface.co/distilbert/
distilbert-base-uncased

11https://huggingface.co/microsoft/
Multilingual-MiniLM-L12-H384

12https://huggingface.co/huawei-noah/TinyBERT_
General_4L_312D

13https://huggingface.co/albert/albert-base-v2
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https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D
https://huggingface.co/albert/albert-base-v2
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Figure 4: Comparison of F1 scores of seven models, four multilingual and three monolingual. Each subplot shows
performance on a specific target group or the server. The three monolingual models and multilingual MiniLM
perform poorly across all target groups. Multilingual BERT and Distil-mBERT have the highest performance in
most cases.
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afr-black afr-lgbtq rus-lgbtq rus-war

train 0-15 0-15 0-15 0-15
dev 300 120 120 300
test 87 225 111 154

Table 9: Number of sentences in the train, development,
and test sets of each target group. We use 0, 3, 9, and 15
sentences per target group for training.

maximum Levenshtein ratio to accept a sentence1127

when selecting development and train data. By de-1128

fault, a Levenshtein ratio of <0.5 is used, meaning1129

any sentence in the development set should have a1130

Levenshtein similarity of less than 0.5 with any test1131

data, and any sentence in the train set should have1132

the same with any test or development data. This1133

ratio is slightly loosened in the case of rus-lgbtq1134

and rus-war because the resulting datasets are too1135

small. In both cases, to ensure we do not include1136

near-identical sentences accidentally, we sample1137

sentences with a Levenshtein ratio of over 0.5 and1138

manually check them against sentences they are1139

reported to be similar with. Table 9 presents the1140

number of sentences in each split for the four target1141

groups.1142

E FedPer full results1143

We evaluate mBERT and Distil-mBERT using Fed-1144

Per. We test KP (number of personalized layers)1145

values ∈ {1, 2, 3, 4}. The complete results are1146

shown in Figures 5-6.1147

F Adapters full results1148

We personalize client models by adding adapters1149

and fine-tuning either the entire model, including1150

the adapter parameters, or exclusively the adapter1151

parameters. The complete evaluation results for1152

mBERT and Distil-mBERT are shown in Figure 7.1153

G Analysis of toxicity thresholds1154

Table 10 shows the percentages of sentences classi-1155

fied as hateful and non-hateful by Perspective API1156

with thresholds 0.7 and 0.9, alongside the distri-1157

bution in ground truth labels. At both thresholds,1158

Perspective API identifies substantially fewer hate-1159

ful sentences (13.11% and 3.44%) compared to the1160

ground truth (40.24%), while simultaneously over-1161

estimating the proportion of non-hateful sentences.1162

While the ground truth data reflects a rela-1163

tively balanced split between hateful sentences with1164

(20.38%) and without (19.86%) profanity, Perspec- 1165

tive API demonstrates a strong association between 1166

profanity and hate, shown by the higher proportions 1167

of profane sentences compared to non-profane ones 1168

among those classified as hateful. This is especially 1169

pronounced at the 0.9 threshold, where 85.71% of 1170

sentences labeled as hateful contain profanity, in- 1171

dicating a heavier reliance on profanity as a signal 1172

for hate compared to the 0.7 threshold. 1173

H Examples of collected data 1174

Table 11 shows example sentences for each of the 1175

six categories in different languages. 1176

As noted in §3, we occasionally adapt collected 1177

data to improve clarity with respect to the target 1178

group or intended polarity. In some instances, we 1179

avoid the use of subjective slurs by replacing them 1180

with more neutral terms. In the following posi- 1181

tive example, the Russian term хохлы (Khokhols), 1182

which is perceived as an ethnic slur by some, is 1183

replaced with the neutral term украинцы (Ukraini- 1184

ans): 1185

Original: Ну хохлы молодцы конеч- 1186

но блять. (Well, the Khokhols sure did 1187

a good job, f*ck.) 1188

Modified: Ну украинцы молодцы ко- 1189

нечно блять. (Well, the Ukrainians sure 1190

did a good job, f*ck.) 1191

In other cases, we remove subjective profanity to 1192

avoid introducing ambiguity in polarity, as demon- 1193

strated in the following neutral example: 1194

Original: В Европе полно украин- 1195

ских беженцев, блять. (There are tons 1196

of Ukrainian refugees in Europe, f*ck.) 1197

Modified: В Европе полно украин- 1198

ских беженцев. (There are tons of 1199

Ukrainian refugees in Europe.) 1200

We also occasionally add contextual information 1201

to clarify the intended polarity. In the following 1202

sentence, additional information is provided to em- 1203

phasize a positive stance: 1204

Original: ЛГБТ+ добивается своего 1205

нахуй. (LGBT+ are achieving what they 1206

f*cking want.) 1207

Modified: ЛГБТ+ движение актив- 1208

но топит блять за права челове- 1209

ка и добивается своего нахуй. (The 1210
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Figure 5: FedPer results for mBERT. Each plot shows F1 scores of a target group with KP (number of personalized
layers) ∈ {1, 2, 3, 4}.
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Figure 6: FedPer results for Distil-mBERT. Each plot shows F1 scores of a target group with KP (number of
personalized layers) ∈ {1, 2, 3, 4}.
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Figure 7: Adapter-based personalization results for mBERT and Distil-mBERT. Results are compared between
full-model fine-tuning (FM, solid lines) and adapter-only fine-tuning (AO, dashed lines).

API 0.7 API 0.9 Gold

P+ P- P+ P- P+ P-
Hateful 9.34 3.77 2.95 0.49 20.38 19.86

Not Hateful 40.98 45.90 47.38 49.18 27.53 32.23

Table 10: Percentages of sentences classified as “Hateful” and “Not Hateful” with (P+) and without (P-) profanity.
API 0.7 (resp. 0.9): classified using Perspective API with threshold 0.7 (resp. 0.9). Gold: ground truth labels.
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LGPT+ movement is actively pushing for1211

human rights and is achieving what it1212

f*cking want.)1213

I Computation1214

Standard FL and FedPer experiments using1215

mBERT and Distil-mBERT with four FL clients1216

can be completed in 20-30 minutes using four1217

NVIDIA GeForce RTX 2080 Ti GPUs. Adapter-1218

personalized FL experiments with the same client1219

models can be completed in about 30 minutes on1220

four NVIDIA RTX A6000 GPUs.1221
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category text target group

P P+
(afr) Swart Namibiërs is van die beste fokken mense ooit!

Black people
(eng) Black Namibians are some of the best fucking people out there!

P P-
(ukr) Росiяни хорошi i не хочуть вiйни.

Russians
(eng) Russians are good and do not want war.

N P+
(kor)여자들은대부분귀여운것을존나좋아한다.

Women
(eng) Most women are fucking fond of cute things.

N P-
(rus) Беженцы из Украины рассказывают о жизни в оккупации.

War victims
(eng) Refugees from Ukraine talk about life under occupation.

H P+
(ukr) Скiльки ви ще будете хрюкати, уроди росiйськомовнi?!

Russophones
(eng) How much longer will you grunt, you Russian-speaking freaks?!

H P-
(afr) Daar is nie plek vir homoseksuele in Namibië nie.

LGBTQ
(eng) There is no place for homosexuals in Namibia.

Table 11: Example data for each category. The first part of the category name indicates the polarity (P: positive, N:
neutral, H: hateful). The second part indicates the presence of profanity (P+: with profanity, P-: without profanity).
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