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ABSTRACT

The class imbalance problem poses a critical challenge in high-stakes applica-
tions such as fraud detection, where the minority class often represents rare but
consequential cases. In such settings, misclassifying minority instances can lead
to substantial financial loss, underscoring the need for learning algorithms that re-
main reliable under severe imbalance. While deep learning methods have achieved
remarkable success across various domains, their effectiveness often depends on
large-scale datasets, and their black-box nature limits their interpretability, which
is a critical requirement in high-stakes scenarios. To address this gap, we propose
Error-Driven Ensemble Learning (EDEL), an adaptive machine learning algorithm
that dynamically introduces misclassified instances during training, thereby plac-
ing greater emphasis on hard-to-classify samples. Through theoretical analysis
and extensive experiments on multiple real-world datasets, EDEL demonstrates
strong effectiveness, particularly under challenging imbalanced conditions.

1 INTRODUCTION

Real-world classification tasks are often affected by class imbalance, where the distribution of
classes is highly skewed, as in fraud detection, credit risk assessment, and medical diagnosis. In
these scenarios, the minority class typically corresponds to rare but critical instances (Gabidolla
et al., 2024; Shahana et al., 2023). The inherent imbalance in such tasks biases machine learn-
ing models toward the majority class, leading them to overlook minority instances (Loffredo et al.,
2024). This bias significantly degrades the model’s performance on the minority class and under-
mines the reliability of decision-making in these systems (Sun et al., 2006). For instance, in fraud
detection, fraudulent transactions occur infrequently but may cause substantial financial losses if
overlooked, while in credit risk assessment and medical diagnosis, minority errors can result in
severe financial or health-related consequences.

Traditional learning algorithms are inherently biased toward the majority class, yielding superficially
high accuracy while neglecting minority samples. This results in degraded recall, a critical indicator
of the reliability and trustworthiness of deployed models. To address this, researchers have proposed
various techniques, including resampling methods (Maldonado et al., 2022; Sağlam & Cengiz, 2022;
Abedin et al., 2022; Dixit & Mani, 2023; Yan et al., 2023) cost-sensitive learning (Elkan, 2001;
Zhou & Liu, 2006; Ling & Sheng, 2010; Zhang & Hu, 2013; Cao et al., 2021), and advanced
ensemble approaches(Freund & Schapire, 1997b; Chawla et al., 2003; Sağlam & Cengiz, 2022;
Abedin et al., 2022; Zhao et al., 2025). Despite these advancements, accurately identifying minority
instances remains a central challenge in imbalanced learning. In this work, we emphasize two
key considerations: the need to effectively address hard-to-classify samples and the importance of
ensuring interpretability in model decisions.

C1. Requirement of attention on hard-to-classify samples. A key concern in imbalanced learn-
ing is the presence of hard-to-classify samples that remain difficult to predict accurately, whether
they belong to the minority or majority class. Such cases often arise from feature overlap, noise, or
atypical patterns. Neglecting these samples undermines model robustness, as errors tend to concen-
trate on precisely those instances that are most informative for improving generalization. Figure 1
illustrates how class imbalance skews classification performance and error distribution. While the
majority class is generally well recognized, a nontrivial portion of samples are misclassified as mi-
nority, placing erroneous signals into the minority space. These misclassified majorities increase
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Majority Class Samples Minority Class Samples All Samples

Majority class (correctly classified) Majority class (misclassified as minority) Minority class (correctly classified) Minority class (misclassified as majority)

Figure 1: Impact of class imbalance on classification accuracy and error distribution.

overlap between classes, making the minority region appear less distinct, and further skew the deci-
sion boundary against the true minority. As a result, the classifier not only struggles with minority
recognition but also inherits bias from misleading majority instances. We conjecture that these mis-
classifications occur because minority samples can closely resemble majority patterns, while some
majority outliers deviate from typical distributions. Such concentration of errors is problematic:
both minority instances misclassified as majority and majority outliers misclassified as minority
contribute to the degradation of performance (especially the recall) and the erosion of applications’
trustworthiness.

C2. Requirement of attention to interpretability. Another concern that should receive attention in
imbalanced learning is interpretability, which is particularly critical in high-stakes real-world appli-
cations. Complex models, such as models based on Deep Learning algorithms, may achieve strong
predictive performance but often operate as black boxes, making it difficult to understand why cer-
tain minority instances are misclassified or how decision boundaries are shaped by skewed data
distributions. The lack of transparency hinders trust, complicates regulatory compliance, and pre-
vents practitioners from diagnosing whether errors stem from data imbalance, noise, or just model
bias. Therefore, beyond improving the predictive accuracy, methods for imbalanced classification
should provide interpretable mechanisms for explaining decisions, especially for minority predic-
tions where mistakes carry disproportionate costs, particularly in these real-world applications.

With these challenges in mind, we propose Error-Driven Ensemble Learning (EDEL), a novel ma-
chine learning approach that progressively focuses on misclassified samples, a.k.a., hard-to-classify
samples, into the learning process. By iteratively emphasizing them, EDEL refines its understanding
and decision boundaries, improving recognition of the minority class while correcting misleading
majority errors. Moreover, EDEL operates by partitioning the training data into multiple subsets,
training weak classifiers, reinjecting misclassified samples, and aggregating predictions through
probability averaging to ensure robust performance. This error-driven design naturally enhances
interpretability by revealing where classifiers fail and how corrections are applied. Overall, the main
contributions of EDEL are as follows:

• We highlight two critical concerns in imbalanced learning: the prevalence of hard-to-
classify samples and the lack of interpretability.

• We introduce EDEL, a novel machine learning approach that progressively focuses on mis-
classified samples during training, significantly improving the performance on hard-to-
classify samples. Experimental results on seven real-world datasets within imbalance ratios
ranging from 1.54 to 577.88 demonstrate EDEL’s superiority over baselines.

• We provide a theoretical foundation for EDEL, showing via McDiarmid’s inequality and
Bayes’ theorem that dynamically incorporating hard-to-classify instances reduces empiri-
cal error, refines decision boundaries, and ensures asymptotic consistency with robust gen-
eralization under extreme imbalance. This theoretical guarantee contributes to the broader
task of imbalanced classification by establishing a principled basis for designing reliable
and interpretable learning algorithms.
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2 PRELIMINARY

Problem Definition. For a K-class classification task, we have a training dataset with imbalanced
distribution, consisting of m samples: D = {(X ,Y)} = {(x1,y1), . . . , (xm,ym)}, where xi ∈ Rd

represents the d-dimensional features and yi is the corresponding ground truth. Without loss of
generality, we assume the class sample sizes are sorted in descending order, i.e., n1 ≥ n2 ≥ · · · ≥
nK , where nk denotes the number of samples in class k. Our objective is to conduct a scheme
π(X ; θ) that accurately infers the label for X under the class-balanced setting, i.e., π(X ; θ) 7→ Y .

Within this setup, we further introduce the hard-to-classify and easy-to-classify samples in this work.
Let (x,y) be an instance, let F = {f1, · · · , f|F|} denote a set of classifiers.

DEFINITION 1: Easy-to-classify samples correspond to data points that are well-aligned with their
class distribution and consistently captured by different classifiers. That means,

fi(x) = y, ∀fi ∈ F . (1)

DEFINITION 2: Hard-to-classify samples lie in regions of feature overlap, noise, or atypical struc-
ture, where even a subset of classifiers fail. In this work, an instance (x,y) is Hard-to-classify if it
is misclassified by at least one classifier in F , namely,

∃fi ∈ F such thatfi(x) ̸= y. (2)

3 METHODOLOGIES

3.1 PIPELINE

Initially, we randomly form N -subsets from original dataset, i.e., D → {Di}Ni=1, where∑N
i=1 |Di| = |D|. Herein, subset Di can be viewed as a partial observation drawn from the true

data distribution. By partitioning the data into multiple subsets, EDEL generates diverse local views
of the distribution, while each subset has its opportunity to emphasize certain characteristics or pat-
terns. Whereafter, weak classifiers π̂ are conducted on corresponding subset as,

ŷ = π̂i(x), x ∈ Di, i ∈ [1, N ], (3)

and hard-to-classify samples can be formed via these weak classifiers π̂ by,

Dh
i ← {(x,y) | π̂i(x) ̸= y, (x,y) ∈ D\Di}. (4)

Therefore, we update Di by incorporating Dh
i as,

Di ← Di ∪ Dh
i . (5)

Notably, we have
∑N

i=1 |Di| > |D| after this operation.

Once the weak classifiers are well-trained, EDEL integrates parameters from each π̂(·) to form the
final classifier π(·) by employing a probability-averaging scheme, namely,

Θ =
1

N

N∑
i=1

Θ̂i, where Θ̂i ← π̂i(Di). (6)

Algorithm 1 outlines the training process of the proposed EDEL. To ensure generality, we denote
the training cost of a weak classifier as Tπ , and divide EDEL’s overall complexity into 5 stages:

(1) Data Partitioning. Using stratified sampling to preserve class distribution on a dataset D
of size m, this step has time complexity O(m).

(2) Weak Classifier Training. Training N weak classifiers π̂ on each subset Di cost, giving a
total complexity of O(N × Tπ).

(3) Subset Update. Each πi conducts prediction on remaining N − 1 subsets, for a total of
O((N − 1)×m).
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Algorithm 1: Training Process of EDEL.
Input: D, N, π̂

1 Initially partition D → {Di}Ni=1
2 while not done do
3 for i = 1 to N do
4 for (x,y) ∈ Di do
5 ŷ = π̂i(x)
6 end
7 Θi ← π̂i(Di)

8 Dh
i ← {∅}

9 for (x,y) ∈ D\Di do
10 ŷ = π̂i(x)
11 if ŷ ̸= y then
12 Dh

i ← Dh
i ∪ {(x,y)}

13 (D\Di)\{(x,y)}
14 end
15 end
16 Di ← Di ∪ Dh

i

17 end
18 end
19 Θ← 1

N

∑N
i=1 Θ̂i

Output: πΘ

(4) Training Cycle. Retraining each π̂i on updated subset Di costs Tπ , totaling O(N × Tπ).

(5) Ensemble Strategy: Forming the final classifier by averaging outputs costs O(N) per
sample, totaling O(N ×m).

Thus, the overall time complexity can be summed up by the 5 stages as:

O(m) +O(N × Tπ) +O((N − 1)×m) +O(N × Tπ) +O(N ×m) = O(N × (Tπ +m)).

In summary, the time complexity of the EDEL algorithm is linear with respect to both the weak
classifier training time Tπ and the dataset size m, and it scales proportionally with the number of
weak classifiers N . Through data partitioning and parallel computation, EDEL effectively scales
to large datasets. In highly imbalanced scenarios, adjusting the number of classifiers allows EDEL
to balance high performance with computational efficiency, making it a versatile solution for large-
scale and imbalanced data.

3.2 THEORETICAL FOUNDATION

Data Aspect. EDEL employs stratified sampling to split training dataset D into N non-overlapping
subsets {Di}Ni=1 initially. Following the definition on Sec. 2, the class proportion for class k is given
by pk = nk

m . Stratified sampling allocates nk

N samples of class k to each subset Di, resulting in a
subset size of m

N (assuming m is divisible by N for simplicity). The proportion of class k in Di can
be described as,

pi,k =
nk

N
m
N

=
nk

m
= pk. (7)

Ideally, pi,k = pk, ensuring that each subsetDi mirrors the overall class distribution ofD. However,
due to finite sampling, random allocation may introduce deviations. The number of class k samples
ni,k in Di follows a hypergeometric distribution, with expectation E[ni,k] =

nk

N and variance:

Var(ni,k) =
nk

N

(
1− 1

N

)
m− nk

m− 1
. (8)
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The deviation of the proportion is defined as ∆pi,k = |pi,k − pk|. Using the Chebyshev inequality,
the probability that this deviation exceeds δ is bounded by:

P (|∆pi,k| ≥ δ) ≤ Var(ni,k)

n2δ2
, (9)

where n = m
N . As the total sample size m → ∞, the variance term Var(ni,k)

n2 → 0, implying that
∆pi,k → 0. This confirms that pi,k ≈ pk with high probability for large m, thus establishing the rep-
resentativeness of Di with respect to D. This representativeness supports the dynamic enhancement
of minority class samples, as detailed in Appendix B.

Classifier Aspect. Weak classifiers π̂(t+1)
i are trained on the dynamically enhanced subset D(t)

i =

D(t−1)
i ∪ D(t−1),h

i , with its training error rate:

ϵ̂
(t+1)
i =

1

|D(t)
i |

∑
(x,y)∈D(t)

i

I
(
π̂

(t+1)
i (x) ̸= y

)
, (10)

where I(·) is the indicator function.

Assume D(t)
i contains n

(t)
i samples, with n

(t)
i,0 samples from the majority class (class 0) and n

(t)
i,1

samples from the minority class (class 1), such that n(t)
i = n

(t)
i,0 + n

(t)
i,1. For a simple weak clas-

sifier, such as a decision tree stump (which performs a single split), the optimal classification rule
minimizes the training error rate by selecting a feature and threshold that partitions the data into two
regions, assigning the majority class label to each region. In the degenerate case without any split
(equivalent to a constant classifier predicting the majority class), the minimum training error rate is
the minority class proportion:

ϵ̂
(t+1)
i =

n
(t)
i,1

n
(t)
i

. (11)

However, with splitting enabled, the actual training error rate is strictly lower than this baseline, as
the split allows the classifier to capture more nuanced patterns in the data. Dynamic enhancement
increases the number of minority class samples n(t)

i,1 (due to the higher proportion of minority class

instances in Dh
i ), making the subset D(t)

i more balanced. This balance enables the classifier to
identify better decision boundaries, reducing the actual ϵ̂(t+1)

i compared to the previous iteration
or to random guessing (where ϵ = 0.5 for a balanced dataset). Since ρ′ > ρ (where ρ and ρ′

are the minority class proportions in D(t−1)
i and D(t)

i , respectively), n(t)
i,1 grows relative to n

(t)
i,0,

ensuring the actual ϵ < 0.5 and improving performance on minority class instances. This minority
class enrichment is rigorously derived using Bayes’ theorem in Appendix B, with further analysis
of extreme imbalance scenarios.

To assess the generalization performance of weak classifiers within EDEL, we employ Rademacher
complexity (Bartlett & Mendelson, 2003)R

n
(t)
i
(H), which measures the capacity of the hypothesis

spaceH (e.g., decision stumps) over the training set D(t)
i . It is defined as:

R̂
n
(t)
i
(H) = Eσ

sup
h∈H

∣∣∣∣∣∣ 2

n
(t)
i

n
(t)
i∑

j=1

σjh(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣ D(t)

i

 , (12)

where σj ∈ {−1,+1} are independent Rademacher random variables, and the expectation is
taken over their distribution conditional on the D(t)

i . The unconditional Rademacher complexity is

R
n
(t)
i
(H) = E[R̂

n
(t)
i
(H)]. For a decision tree with d features, R

n
(t)
i
(H) = O(

√
d/n

(t)
i ), based on

the empirical VC-dimension bound (where the VC-dimension of decision stumps is O(d)). Thereby,
the true generalization error ϵ(t+1)

i (i.e., the expected error over the data distribution) is bounded us-
ing Rademacher complexity, with probability at least 1− δ:

ϵ
(t+1)
i ≤ ϵ̂

(t+1)
i +

R
n
(t)
i
(H)

2
+

√
ln(1/δ)

2n
(t)
i

, (13)
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where δ > 0 is a confidence parameter. As n(t)
i increases, R

n
(t)
i
(H) = O(

√
d/n

(t)
i ) and

√
ln(1/δ)

2n
(t)
i

both decrease, ensuring that the empirical error ϵ̂
(t+1)
i is a good approximation of the true error

ϵ
(t+1)
i . This confirms that the weak classifier generalizes well from the enhanced training subset
D(t)

i .

Convergence Aspect. Building on the stratified sampling and dynamic enhancement mechanisms
outlined in the Data Aspect and Classifier Aspect, we analyze the convergence of the empirical
error ϵ̂(t+1)

i to the true error ϵ(t+1)
i for the proposed EDEL. The empirical error is defined in Equa-

tion equation 10 as:

ϵ̂
(t+1)
i =

1

|D(t)
i |

∑
(x,y)∈D(t)

i

Zi(x,y), (14)

where Zi(x,y) = I(π̂(t+1)
i (x) ̸= y) is the indicator function for misclassification, and ϵ

(t+1)
i =

E(x,y)∼D[Zi(x,y)] is the true error under the data distribution D. The initial stratified sam-
pling ensures approximate i.i.d. conditions (Equation equation 7), with class proportion deviations
∆pi,k → 0 as m→∞ (Sec. 3.2). However, the dynamic incorporation of misclassified samplesDh

i

into D(t)
i introduces dependencies and shifts the subset distribution toward minority class instances

(Appendix B).

Under approximate i.i.d. conditions, the expected empirical error is approximately unbiased:

E[ϵ̂(t+1)
i ] = E

 1

|D(t)
i |

∑
(x,y)∈D(t)

i

Zi(x,y)

 ≈ 1

|D(t)
i |

∑
(x,y)∈D(t)

i

E[Zi(x,y)] ≈ ϵ
(t+1)
i , (15)

The linearity of expectation ensures the first equality holds regardless of independence, but potential
distribution shifts from dynamic enhancement may cause E[Zi(x,y)] to vary across samples, intro-

ducing a bias
∣∣∣E[ϵ̂(t+1)

i ]− ϵ
(t+1)
i

∣∣∣ ≤ O(√d/|D(t)
i |), as controlled by the Rademacher complexity

of the loss function (Bartlett & Mendelson, 2003).

To address dependencies introduced by the enhancement process, we employ the McDiarmid’s in-
equality (McDiarmid, 1989), which requires only bounded differences rather than strict indepen-
dence. Consider ϵ̂(t+1)

i as a function of the training samples in D(t)
i . Changing one sample (xj ,yj)

to (x′
j ,y

′
j) affects Zj , altering ϵ̂

(t+1)
i by at most 1

|D(t)
i |

, as Zj ∈ [0, 1]. Thus, the bounded difference

constant is cj = 1

|D(t)
i |

, and the sum of squared differences is
∑|D(t)

i |
j=1 c2j = 1

|D(t)
i |

. The McDiarmid’s

inequality yields:
P
(∣∣∣ϵ̂(t+1)

i − E[ϵ̂(t+1)
i ]

∣∣∣ ≥ δ
)
≤ 2 exp

(
−2δ2|D(t)

i |
)
. (16)

This ensures that ϵ̂(t+1)
i concentrates around its expectation with high probability as the subset size

|D(t)
i | increases.

To bridge E[ϵ̂(t+1)
i ] to ϵ

(t+1)
i , we leverage the Rademacher complexity bound (Equation equa-

tion 13) (Bartlett & Mendelson, 2003). For the hypothesis spaceH of weak classifiers (e.g., decision
stumps), the true error is bounded with probability at least 1− δ:

ϵ
(t+1)
i ≤ ϵ̂

(t+1)
i +

R|D(t)
i |(H)
2

+

√
ln(1/δ)

2|D(t)
i |

, (17)

where R|D(t)
i |(H) = O(

√
d/|D(t)

i |) for decision stumps with d features. The bias∣∣∣E[ϵ̂(t+1)
i ]− ϵ

(t+1)
i

∣∣∣ is thus bounded by O(
√
d/|D(t)

i |), mitigating the impact of non-identical dis-
tributions caused by dynamic enhancement.

Combining the McDiarmid’s inequality and Rademacher bounds, we establish that ϵ̂(t+1)
i converges

to ϵ
(t+1)
i with high probability, at least 1− 2 exp(−2δ2|D(t)

i |)− δ, where |D(t)
i | = |D

(t−1)
i |+ |Dh

i |

6
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reflects the growth from dynamic enhancement. This convergence is robust to the dependencies and
distribution shifts introduced by (Dh

i and the ensemble averaging further mitigates subset-specific
biases, ensuring robust performance. Further analysis of minority class enrichment and integrated
classifier performance is provided in Appendix B and Appendix B.3.

4 EXPERIMENTS

Dataset.We conduct experiments on seven publicly available, real-world datasets that span diverse
domains, detailed in Table 1. They exhibit a wide range of imbalance ratios (IR), from moderate
(e.g., SBD with IR=1.54) to extreme (e.g., CCFD with IR=577.88), making them ideal for evaluating
the robustness of our method across varying degrees of class imbalance. Each dataset has been
preprocessed to handle missing values and eliminate redundant features. More details of datasets
and metrics are described in Appendix C.1.

Table 1: Summary of the datasets used in the experiments.
Dataset Samples Pos Neg Features IR
SBD 4,601 1,813 2,788 57 1.54
AID 48,842 11,687 37,155 13 3.18
TCD 30,000 6,636 23,364 23 3.52
CDH 253,680 35,346 218,334 21 6.18
BMD 41,188 4,640 36,548 20 7.88
GMSC 150,000 10,026 139,974 10 13.96
CCFD 284,807 492 284,315 29 577.88

Baseline. We evaluate EDEL against five baselines, including (1) basic method, the Original in-
stances with no imbalance handling applied; (2) data-level methods, SMOTE (Chawla et al., 2002),
RandomUnderSampler (RUS) (He & Garcia, 2009) and SMOTE-TLNN-DEPSO (S-T-D) (Dixit &
Mani, 2023); (3) ensemble learning methods, MESA (Liu et al., 2020) and CHRE (Zhao et al.,
2025). All methods, including EDEL and the baselines, are evaluated using four classifiers: De-
cision Tree (DT), Random Forest (RF), XGBoost (XGB), and LightGBM (LGBM). Experimental
results are reported by 5-fold stratified cross-validation, with each fold allocating 80% for training
and 20% for testing. More details of classifier parameters are described in Appendix C.2.

Table 2: Results in terms of AUC.
Clf Mth SBD AID TCD CDH BMD GMSC CCFD

DT

Orig 0.9030 ± 0.0075 0.7717 ± 0.0041 0.6143 ± 0.0074 0.5979 ± 0.0031 0.7294 ± 0.0066 0.6120 ± 0.0047 0.8921 ± 0.0041
RUS 0.9062 ± 0.0139 0.7824 ± 0.0036 0.6214 ± 0.0041 0.6514 ± 0.0031 0.8367 ± 0.0044 0.7017 ± 0.0033 0.9012 ± 0.0137
SMOTE 0.9126 ± 0.0112 0.7780 ± 0.0060 0.6131 ± 0.0073 0.5979 ± 0.0054 0.7451 ± 0.0085 0.6358 ± 0.0055 0.8953 ± 0.0164
MESA 0.9655 ± 0.0134 0.8721 ± 0.0052 0.7366 ± 0.0074 0.7734 ± 0.0056 0.9322 ± 0.0036 0.8145 ± 0.0128 0.9609 ± 0.0177
S-T-D 0.8893 ± 0.0085 0.7765 ± 0.0030 0.6165 ± 0.0073 0.6210 ± 0.0046 0.7935 ± 0.0098 0.6648 ± 0.0096 0.9085 ± 0.0180
CHRE 0.8993 ± 0.0128 0.7840 ± 0.0025 0.6383 ± 0.0104 0.6633 ± 0.0052 0.8226 ± 0.0038 0.6932 ± 0.0038 0.9123 ± 0.0054
EDEL 0.9911 ± 0.0182 0.9519 ± 0.0724 0.9187 ± 0.1536 0.9241 ± 0.1381 0.9745 ± 0.0475 0.9457 ± 0.1107 0.9827 ± 0.0387

RF

Orig 0.9860 ± 0.0041 0.8954 ± 0.0036 0.7639 ± 0.0046 0.7974 ± 0.0025 0.9444 ± 0.0024 0.8387 ± 0.0055 0.9497 ± 0.0108
RUS 0.9859 ± 0.0044 0.8973 ± 0.0020 0.7684 ± 0.0063 0.8077 ± 0.0023 0.9430 ± 0.0027 0.8519 ± 0.0038 0.9777 ± 0.0077
SMOTE 0.9857 ± 0.0040 0.8902 ± 0.0027 0.7506 ± 0.0039 0.7942 ± 0.0032 0.9415 ± 0.0027 0.8207 ± 0.0055 0.9691 ± 0.0103
MESA 0.9858 ± 0.0040 0.9015 ± 0.0044 0.7729 ± 0.0048 0.8168 ± 0.0024 0.9464 ± 0.0022 0.8450 ± 0.0052 0.9829 ± 0.0074
S-T-D 0.9750 ± 0.0072 0.8942 ± 0.0025 0.7530 ± 0.0072 0.7970 ± 0.0029 0.9428 ± 0.0017 0.8381 ± 0.0041 0.9793 ± 0.0108
CHRE 0.9428 ± 0.0074 0.8207 ± 0.0021 0.7112 ± 0.0089 0.7139 ± 0.0055 0.8782 ± 0.0045 0.7283 ± 0.0066 0.9104 ± 0.0107
EDEL 0.9972 ± 0.0058 0.9656 ± 0.0448 0.9461 ± 0.1117 0.9506 ± 0.0841 0.9795 ± 0.0306 0.9583 ± 0.0641 0.9923 ± 0.0172

XGB

Orig 0.9872 ± 0.0031 0.9285 ± 0.0025 0.7661 ± 0.0059 0.8269 ± 0.0025 0.9458 ± 0.0018 0.8573 ± 0.0043 0.9789 ± 0.0062
RUS 0.9869 ± 0.0030 0.9258 ± 0.0030 0.7579 ± 0.0073 0.8223 ± 0.0024 0.9411 ± 0.0029 0.8515 ± 0.0034 0.9780 ± 0.0086
SMOTE 0.9871 ± 0.0027 0.9239 ± 0.0030 0.7378 ± 0.0084 0.8262 ± 0.0029 0.9398 ± 0.0025 0.8174 ± 0.0034 0.9763 ± 0.0110
MESA 0.9872 ± 0.0024 0.9273 ± 0.0031 0.7715 ± 0.0043 0.8259 ± 0.0032 0.9463 ± 0.0018 0.8566 ± 0.0053 0.9727 ± 0.0132
S-T-D 0.9782 ± 0.0047 0.9213 ± 0.0030 0.7370 ± 0.0084 0.8196 ± 0.0032 0.9431 ± 0.0027 0.8360 ± 0.0048 0.9784 ± 0.0077
CHRE 0.9454 ± 0.0064 0.8235 ± 0.0037 0.6829 ± 0.0094 0.7402 ± 0.0034 0.8873 ± 0.0042 0.7704 ± 0.0075 0.9196 ± 0.0153
EDEL 0.9968 ± 0.0065 0.9424 ± 0.0127 0.9039 ± 0.0897 0.8365 ± 0.0125 0.9708 ± 0.0244 0.8963 ± 0.0270 0.9968 ± 0.0071

LGBM

Orig 0.9882 ± 0.0035 0.9287 ± 0.0029 0.7805 ± 0.0052 0.8302 ± 0.0030 0.9508 ± 0.0019 0.8649 ± 0.0039 0.7549 ± 0.0368
RUS 0.9880 ± 0.0029 0.9278 ± 0.0029 0.7765 ± 0.0051 0.8290 ± 0.0030 0.9456 ± 0.0029 0.8623 ± 0.0035 0.9812 ± 0.0104
SMOTE 0.9881 ± 0.0032 0.9250 ± 0.0030 0.7544 ± 0.0083 0.8266 ± 0.0031 0.9437 ± 0.0031 0.8313 ± 0.0038 0.9682 ± 0.0166
MESA 0.9880 ± 0.0028 0.9281 ± 0.0030 0.7818 ± 0.0066 0.8301 ± 0.0030 0.9496 ± 0.0022 0.8634 ± 0.0049 0.9682 ± 0.0143
S-T-D 0.9796 ± 0.0050 0.9229 ± 0.0029 0.7522 ± 0.0105 0.8258 ± 0.0034 0.9459 ± 0.0026 0.8455 ± 0.0040 0.9745 ± 0.0109
CHRE 0.9536 ± 0.0046 0.8209 ± 0.0066 0.6748 ± 0.0068 0.7483 ± 0.0038 0.8914 ± 0.0055 0.7749 ± 0.0101 0.9152 ± 0.0158
EDEL 0.9969 ± 0.0065 0.9366 ± 0.0079 0.8429 ± 0.0474 0.8352 ± 0.0024 0.9679 ± 0.0152 0.8726 ± 0.0121 0.9965 ± 0.0079

Performance. Tables 2 and 3 report the results in terms of AUC and F1-measure. The best gain is
highlighted in bold while the second best is underlined. Generally, across all settings, EDEL demon-
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Table 3: Results in terms of F1-measure.
Clf Mth SBD AID TCD CDH BMD GMSC CCFD

DT

Orig 0.8819 ± 0.0088 0.6171 ± 0.0043 0.3999 ± 0.0104 0.3072 ± 0.0047 0.5155 ± 0.0119 0.2679 ± 0.0082 0.7741 ± 0.0272
RUS 0.8834 ± 0.0171 0.6173 ± 0.0056 0.4208 ± 0.0043 0.3436 ± 0.0023 0.5402 ± 0.0071 0.2386 ± 0.0028 0.0312 ± 0.0043
SMOTE 0.8914 ± 0.0140 0.6242 ± 0.0061 0.4048 ± 0.0097 0.3074 ± 0.0088 0.5233 ± 0.0151 0.2482 ± 0.0062 0.5405 ± 0.0289
MESA 0.9047 ± 0.0262 0.6516 ± 0.0099 0.4949 ± 0.0099 0.4029 ± 0.0034 0.6109 ± 0.0078 0.3237 ± 0.0111 0.5625 ± 0.0375
S-T-D 0.8673 ± 0.0102 0.6451 ± 0.0030 0.4070 ± 0.0100 0.3373 ± 0.0065 0.5686 ± 0.0125 0.2780 ± 0.0095 0.3996 ± 0.0295
CHRE 0.8712 ± 0.0152 0.6292 ± 0.0028 0.4384 ± 0.0110 0.3650 ± 0.0043 0.5761 ± 0.0075 0.3140 ± 0.0051 0.7419 ± 0.0210
EDEL 0.9709 ± 0.0412 0.8215 ± 0.1339 0.8096 ± 0.2554 0.7584 ± 0.2778 0.8375 ± 0.2023 0.7690 ± 0.2987 0.9182 ± 0.1289

RF

Orig 0.9406 ± 0.0095 0.6669 ± 0.0045 0.4711 ± 0.0086 0.2561 ± 0.0046 0.5781 ± 0.0086 0.2796 ± 0.0085 0.8588 ± 0.0186
RUS 0.9425 ± 0.0078 0.6725 ± 0.0028 0.5212 ± 0.0073 0.4249 ± 0.0013 0.5934 ± 0.0065 0.3241 ± 0.0026 0.1157 ± 0.0190
SMOTE 0.9415 ± 0.0055 0.6736 ± 0.0040 0.4959 ± 0.0092 0.2733 ± 0.0050 0.6120 ± 0.0139 0.3524 ± 0.0059 0.8565 ± 0.0272
MESA 0.9380 ± 0.0060 0.6843 ± 0.0095 0.5353 ± 0.0118 0.4156 ± 0.0115 0.6440 ± 0.0074 0.3629 ± 0.0160 0.8243 ± 0.0311
S-T-D 0.9189 ± 0.0101 0.6864 ± 0.0025 0.4886 ± 0.0116 0.3775 ± 0.0035 0.6381 ± 0.0076 0.3883 ± 0.0072 0.8405 ± 0.0273
CHRE 0.9244 ± 0.0084 0.6720 ± 0.0029 0.5361 ± 0.0130 0.4501 ± 0.0032 0.6379 ± 0.0116 0.4296 ± 0.0112 0.8414 ± 0.0344
EDEL 0.9824 ± 0.0209 0.8192 ± 0.1143 0.7448 ± 0.2229 0.6829 ± 0.1925 0.7145 ± 0.1194 0.5929 ± 0.1588 0.9370 ± 0.0780

XGB

Orig 0.9379 ± 0.0094 0.7122 ± 0.0066 0.4673 ± 0.0157 0.2610 ± 0.0030 0.5904 ± 0.0159 0.2884 ± 0.0128 0.8749 ± 0.0298
RUS 0.9396 ± 0.0080 0.7056 ± 0.0043 0.5047 ± 0.0096 0.4362 ± 0.0025 0.5944 ± 0.0051 0.3217 ± 0.0030 0.0798 ± 0.0090
SMOTE 0.9388 ± 0.0112 0.7158 ± 0.0052 0.4747 ± 0.0090 0.2832 ± 0.0041 0.6112 ± 0.0123 0.3448 ± 0.0026 0.8364 ± 0.0267
MESA 0.9428 ± 0.0063 0.7201 ± 0.0082 0.5194 ± 0.0118 0.4378 ± 0.0150 0.6420 ± 0.0078 0.3273 ± 0.0293 0.8145 ± 0.0488
S-T-D 0.9197 ± 0.0089 0.7169 ± 0.0037 0.4605 ± 0.0117 0.3686 ± 0.0053 0.6323 ± 0.0097 0.3874 ± 0.0045 0.7803 ± 0.0286
CHRE 0.9293 ± 0.0103 0.6524 ± 0.0047 0.4819 ± 0.0093 0.4079 ± 0.0039 0.6020 ± 0.0073 0.3661 ± 0.0053 0.8295 ± 0.0275
EDEL 0.9796 ± 0.0282 0.7378 ± 0.0316 0.6855 ± 0.1595 0.4508 ± 0.0296 0.7333 ± 0.1409 0.4821 ± 0.0827 0.9446 ± 0.0628

LGBM

Orig 0.9447 ± 0.0081 0.7124 ± 0.0049 0.4770 ± 0.0088 0.2506 ± 0.0029 0.6074 ± 0.0096 0.2895 ± 0.0138 0.3834 ± 0.1507
RUS 0.9417 ± 0.0062 0.7110 ± 0.0049 0.5265 ± 0.0117 0.4412 ± 0.0026 0.5990 ± 0.0058 0.3323 ± 0.0060 0.0897 ± 0.0116
SMOTE 0.9441 ± 0.0064 0.7162 ± 0.0053 0.5031 ± 0.0077 0.2977 ± 0.0035 0.6322 ± 0.0131 0.3613 ± 0.0015 0.7310 ± 0.0321
MESA 0.9427 ± 0.0057 0.7211 ± 0.0086 0.5236 ± 0.0116 0.4371 ± 0.0096 0.6420 ± 0.0290 0.3515 ± 0.0214 0.8360 ± 0.0396
S-T-D 0.9212 ± 0.0113 0.7206 ± 0.0052 0.4789 ± 0.0091 0.3820 ± 0.0051 0.6391 ± 0.0038 0.4019 ± 0.0048 0.7117 ± 0.0342
CHRE 0.9390 ± 0.0055 0.6477 ± 0.0102 0.4720 ± 0.0064 0.4340 ± 0.0076 0.6028 ± 0.0132 0.3646 ± 0.0071 0.1877 ± 0.0964
EDEL 0.9799 ± 0.0280 0.7282 ± 0.0201 0.5627 ± 0.0769 0.4039 ± 0.0181 0.6904 ± 0.1018 0.3988 ± 0.0228 0.9366 ± 0.0753

strates consistent and often substantial improvements in both AUC and F1-measure, highlighting its
robustness in imbalanced scenarios. Specifically, we have the following observations.

(O1). On low to moderate imbalance datasets such as SBD (IR=1.54) and AID (IR=3.18),
EDEL achieves near-perfect performance with RF that AUC up to 0.9972, F1=0.9824 on SBD, and
consistently outperforms all baselines across both RF and DT classifiers.

(O2). For medium imbalance datasets including TCD (IR=3.52) and CDH (IR=6.18), EDEL delivers
significant gains. Notably, on CDH, EDEL achieves an AUC of 0.9506 and 0.6829 F1 score with
RF, substantially higher than Orig (AUC=0.7974, F1=0.2561).

(O3). On high imbalance datasets, BMD (IR=7.88) and GMSC (IR=13.96), EDEL exhibits strong
resilience. For instance, on GMSC, DT with EDEL achieves 0.7690 F1 score compared to 0.2679
with the basic method (orig), evidencing its ability to recover minority information effectively.

(O4). The CCFD, with IR=577.88, is an extremely imbalanced scenario. EDEL remains robust and
yields the superior performance on both AUC and F1 score across all classifier-dataset combinations.

Overall, the above observations confirm that EDEL consistently performs superiorly across varying
imbalance ratios and classifier backbones, with notable improvements in terms of F1, validating its
effectiveness in capturing minority-class signals without sacrificing overall discrimination power.

Theoretical Consistency Validation. The experimental results further validate the theoretical foun-
dation of EDEL in addressing imbalanced classification tasks. On the extremely imbalanced CCFD
dataset (IR=577.88), EDEL’s error-driven update mechanism exhibits strong adaptability by dynami-
cally re-injecting misclassified instances, which enables the model to continuously refine its decision
boundary and improve minority class recognition as the number of weak classifiers increases. This
progressive refinement directly reflects the convergence properties established in Section 3, where
McDiarmid’s inequality guarantees iterative error reduction with high probability. In practice, we
observe that EDEL steadily improves performance up to a certain ensemble size, after which the
gains diminish. For example, the marginal improvements between 4 and 5 weak classifiers confirm
the theoretical prediction of diminishing returns, as the empirical error approaches its asymptotic
bound and convergence stabilizes (details in Appendix B.3 and Appendix D.1). Importantly, these
observations not only highlight EDEL’s robustness on highly skewed data distributions but also
demonstrate its alignment with the theoretical analysis, reinforcing confidence in its broad applica-
bility to real-world imbalanced learning problems.

Feature Distribution Analysis. We present Table 4 to analyze the distribution shifts of features
V1–V10 in GMSC, i.e., features change inD(t−1)

i ) and (D(t)
i . The stratified sampling in Section 3.2
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Table 4: Feature distribution shifts in EDEL’s training subsets by class (GMSC, 5-fold CV).
Feature D(t−1),1

i Mean Dt,1
i Mean % Change (minority) D(t−1),0

i Mean Dt,0
i Mean % Change (majority) KS Statistic (p-value)

V1 4.37 3.82 -12.4 6.17 7.42 20.2 0.106 (< 10−236)
V2 45.93 46.34 0.9 52.75 51.65 -2.1 0.049 (< 10−46)
V3 2.39 1.81 -24.3 0.28 0.48 70.8 0.075 (< 10−120)
V4 295.12 296.13 0.3 357.15 359.26 0.6 0.017 (< 10−5)
V5 5525.81 5621.75 1.7 6397.43 6362.33 -0.5 0.028 (< 10−13)
V6 7.88 8.11 2.9 8.49 8.49 0.0 0.020 (< 10−8)
V7 2.09 1.48 -29.4 0.14 0.29 116.8 0.052 (< 10−53)
V8 0.99 1.01 2.6 1.02 1.03 0.8 0.020 (< 10−8)
V9 1.83 1.30 -29.1 0.13 0.26 107.0 0.041 (< 10−36)
V10 0.93 0.91 -2.1 0.72 0.77 6.1 0.022 (< 10−7)

Table 5: Analysis of five representative samples from the GMSC dataset.
ID label DT RF XGB LGB EDEL V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Type
12057 0 0 0 0 0 0 0.0018 77 0 0.0000 5000 4 0 0 0 0 Easy
26462 1 1 1 1 1 1 0.9797 43 2 0.5431 2700 4 1 2 3 0 Easy

29011 1 0 0 0 0 1 0.3842 49 1 0.7734 1760 8 0 1 0 4 Hard
68219 1 0 0 0 0 1 0.9910 23 0 0.2045 1500 2 0 0 0 0 Hard
35849 0 1 1 1 1 0 1.0180 46 4 0.4021 5500 6 0 1 1 0 Hard

ensures representative subsets (pi,k ≈ pk). For minority, dynamic enhancement reduces V1 (-12.4%,
from high to moderate utilization), V3 (-24.3%, fewer 30–59 day overdue), V7 (-29.4%, fewer 90+
day overdue), and V9 (-29.1%, fewer 60–89 day overdue), while increasing V6 (+2.9%, more open
loans), enhancing minority class signals. For majority, V1 increases (+20.2%, higher utilization),
V3 (+70.8%), and V7 (+116.8%) increase, reflecting inclusion of hard-to-classify majority samples.
The average KS statistic (0.043, all p < 10−5) confirms significant distribution shifts, validating the
Bayes’ theorem prediction of minority class enrichment in Dh

i . (See Appendix B.1).

Case Study. To investigate the impact of class imbalance on classification performance and to
further validate the interpretability of EDEL, we provide case-level analyses in Table 5, covering both
easy-to-classify and hard-to-classify instances from GMSC (IR=13.96). The corresponding feature
details (v1-v10) are shown in Table 6, which lists each variable, its description, and its preferences
with respect to delinquency risk. A downward arrow (↓) indicates that lower values are preferable, an
upward arrow (↑) indicates that higher values are preferable, and a dash (–) denotes neutral influence.
These financial indicators, such as delinquency counts (V3, V7, V9), credit utilization (V1), and
income level (V5), are critical for understanding classification challenges in imbalanced settings.
The results in Table 5 illustrate the capacity of EDEL on addressing hard-to-classify samples. For
ambiguous minority cases (29011, 68219), baselines misclassify them as majority due to weak or
absent minority-indicative features (lower v3, v7, v9). In contrast, EDEL leverages the reinjection of
misclassified instances (a.k.a Dh), allowing minority cases (35849) that other models misclassify as
minority. Overall, EDEL corrects almost 75.39% of baseline minority hard errors, yielding a 2.87×
improvement in F1 (0.7690 vs. 0.2679, cf. Table 3), aligning with our theoretical foundations.

Table 6: Feature descriptions for the GMSC dataset.
Feature ID Feature Description Preference
– SeriousDlqin2yrs (label) Borrower experienced 90+ days past due delinquency –
V1 RevolvingUtilizationOfUnsecuredLines Balance on credit cards and personal lines of credit (excluding real es-

tate and installment debt) divided by credit limits
↓

V2 Age Borrower’s age in years –
V3 NumberOfTime30-59DaysPastDueNotWorse Times borrower was 30–59 days past due in the last 2 years ↓
V4 DebtRatio Monthly debt payments, alimony, and living costs divided by monthly

gross income
↓

V5 MonthlyIncome Monthly income ↑
V6 NumberOfOpenCreditLinesAndLoans Number of open loans and lines of credit –
V7 NumberOfTimes90DaysLate Times borrower was 90+ days past due ↓
V8 NumberRealEstateLoansOrLines Number of mortgage and real estate loans –
V9 NumberOfTime60-89DaysPastDueNotWorse Times borrower was 60–89 days past due in the last 2 years ↓
V10 NumberOfDependents Number of dependents, excluding the borrower ↓

Visualization Figure 2 visualizes the original training set D with corresponding five subsets pro-
duced after one EDEL update under stratified sampling (size=1000) on GMSC. In subfigure (a),
positive samples are sparse and dispersed and heavily intermixed with dense negative clusters, echo-
ing the imbalance-induced boundary bias we discussed in Section 1. In contrast, subfigures (b)–(f)
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show clear minority enrichment: positives become denser and more coherent, and boundary overlap
is reduced, which matches our theoretical analysis in Section 3 and Appendix B.1. Moreover, the
five subsets illustrate subtle distributional differences, reflecting the multi-view partitioning strat-
egy and contributing to ensemble diversity, further enabling inspection of iterative refinements on
hard-to-classify samples to foster trust in high-stakes applications.

Positive
Negative

(a) Original (all Di follow)

Positive
Negative

(b) EDEL Subset D1

Positive
Negative

(c) EDEL Subset D2

Positive
Negative

(d) EDEL Subset D3

Positive
Negative

(e) EDEL Subset D4

Positive
Negative

(f) EDEL Subset D5

Figure 2: Visualization of data reinjection in EDEL.

Due to space limitation, additional discussions and related works are listed in Appendix D and E.

5 CONCLUSION

This work introduces EDEL, a novel algorithm developed to address the challenge of class imbal-
ance in machine learning. By dynamically adjusting the learning process using misclassified sam-
ples and incorporating a multi-perspective learning approach, EDEL enhances the model’s ability
to recognize minority class instances. Extensive experiments on seven real-world datasets, includ-
ing domains such as financial fraud detection and credit risk assessment, demonstrate that EDEL
significantly improves key metrics, such as AUC and F1-measure, particularly under extreme class
imbalance. These findings validate the robustness and adaptability of EDEL in managing both mod-
erate and severe imbalances. Moreover, EDEL’s adaptive nature makes it effective across a range of
classifiers, consistently improving performance.

However, while EDEL significantly improves minority class recognition, particularly in high-risk
domains, it introduces higher computational complexity, posing challenges for large-scale datasets.
To address this, parallel and distributed computing methods could be considered. Overall, EDEL
provides a robust and adaptable solution to the class imbalance problem, with considerable potential
for future enhancements and broader real-world applications, particularly in fields where minority
class recognition is critical.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the complete implementation of the
EDEL algorithm and all experimental details. The source code is publicly available at https:
//anonymous.4open.science/r/EDEL-1A3E/Readme.md, including data preprocess-
ing pipelines, algorithm codes, and experimental scripts. All experiments are conducted on seven
publicly available benchmark datasets, with detailed URLs provided in Appendix C. We use 5-fold
stratified cross-validation with fixed random seeds 42 and report detailed hyperparameters for all
baseline methods and classifiers.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, large language models (LLMs) were utilized to assist with
language polishing and grammar checking. Specifically, an LLM was employed to refine the text
for improved clarity, coherence, and grammatical accuracy. This ensured that the final version of the
article maintains high linguistic standards while preserving the original ideas and content generated
by the authors. The use of LLMs was limited to these supportive tasks, and no substantial content
was generated by the models themselves.

B THEORETICAL ANALYSIS

This section extends the data representativeness and classifier performance analysis in Section 3.2,
providing detailed derivations for minority class enrichment using Bayes’ theorem.

Misclassified Sample Aspect. Weak classifiers trained on imbalanced data are prone to exhibit-
ing biases toward the majority class, resulting in a higher misclassification rate for minority class
samples. To quantify the proportion of minority class samples within Dh

i (cf Eq.( 4)), we derive the
conditional probability using Bayes’ theorem:

P (y = 1 | (x,y) ∈ Dh
i ) =

P ((x,y) ∈ Dh
i | y = 1)P (y = 1)

P ((x,y) ∈ Dh
i )

. (18)

Herein, the numerator represents misclassification samples, i.e., ϵi = P (πi(x) ̸= y). Using the law
of total probability, ϵi can be expressed as:

ϵi = P (πi(x) ̸= y | y = 0)P (y = 0) + P (πi(x) ̸= y | y = 1)P (y = 1), (19)

where P (y = 0) = 1−ρ and P (y = 1) = ρ (with ρ≪ 0.5 indicating class imbalance). Substituting
the misclassification rates ϵi,0 = P (πi(x) ̸= 0 | y = 0) and ϵi,1, we obtain:

ϵi = ϵi,0(1− ρ) + ϵi,1ρ. (20)

Combining the numerator and denominator, the proportion of minority class samples in Dh
i is:

P (y = 1 | (x, y) ∈ Dh
i ) =

ϵi,1ρ

ϵi,0(1− ρ) + ϵi,1ρ
. (21)

To establish that the minority class is overrepresented in the misclassified set compared to the origi-
nal dataset (i.e., P (y = 1 | (x, y) ∈ Dh

i ) > ρ), we proceed with the following inequality:
ϵi,1ρ

ϵi,0(1− ρ) + ϵi,1ρ
> ρ. (22)

Inequality Transformation. Multiply both sides by the positive denominator ϵi,0(1− ρ) + ϵi,1ρ:

ϵi,1ρ > ρ [ϵi,0(1− ρ) + ϵi,1ρ] . (23)

Division by ρ: Since ρ > 0 (as it is a probability), divide both sides by ρ:

ϵi,1 > ϵi,0(1− ρ) + ϵi,1ρ. (24)

Rearrangement: Move terms involving ϵi,1 to one side:

ϵi,1 − ϵi,1ρ > ϵi,0(1− ρ). (25)

Factorization: Factor out ϵi,1 on the left-hand side:

ϵi,1(1− ρ) > ϵi,0(1− ρ). (26)

Division by 1− ρ: Since 1− ρ > 0 (as ρ < 0.5), divide both sides by 1− ρ:

ϵi,1 > ϵi,0. (27)
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This inequality holds because, in imbalanced datasets where ρ ≪ 0.5, weak classifiers π
(t+1)
i

trained on D(t)
i are biased toward the majority class due to the scarcity of minority class samples.

This bias results in a higher misclassification rate for the minority class ϵi,1 compared to the majority
class ϵi,0. Thus, P (y = 1 | (x, y) ∈ Dh

i ) > ρ, confirming that the misclassified sample set
Dh

i contains a disproportionately high number of minority class instances compared to the original
dataset.

B.1 ENHANCED MECHANISM EFFICACY

The dynamic enhancement mechanism augments the training subset D(t)
i with the misclassified

sample setDh
i , forming the updated training subsetD(t)

i = D(t−1)
i ∪Dh

i . To rigorously demonstrate
the efficacy of this mechanism, we analyze the change in the minority class proportion within the
training subset.

Initial Setup: Let the size of the original training subset be |D(t−1)
i | = n, with the number of

minority class samples given by n · ρ, where ρ = P (y = 1) is the minority class proportion in
D(t−1)

i . The size of the misclassified sample set is |Dh
i | = nh, and the number of minority class

samples in Dh
i is nh · P (y = 1 | (x, y) ∈ Dh

i ).

New Minority Class Proportion: The updated minority class proportion ρ′ in D(t)
i is:

ρ′ =
n · ρ+ nh · P (y = 1 | (x, y) ∈ Dh

i )

n+ nh
. (28)

Inequality Derivation: From the previous subsection, we established that P (y = 1 | (x, y) ∈ Dh
i ) >

ρ. Let P (y = 1 | (x, y) ∈ Dh
i ) = ρ+ δ, where δ > 0 represents the excess proportion of minority

class samples in Dh
i . Substitute this into the expression for ρ′:

ρ′ =
n · ρ+ nh · (ρ+ δ)

n+ nh
. (29)

Numerator Expansion: Expand the numerator:

n · ρ+ nh · (ρ+ δ) = n · ρ+ nh · ρ+ nh · δ = (n+ nh) · ρ+ nh · δ. (30)

Division by Denominator: Divide each term by the denominator n+ nh:

ρ′ =
(n+ nh) · ρ

n+ nh
+

nh · δ
n+ nh

= ρ+
nh · δ
n+ nh

. (31)

Conclusion of Inequality: Since nh > 0 (as Dh
i contains misclassified samples) and δ > 0 (due to

the higher minority class proportion in Dh
i ), the term nh·δ

n+nh
> 0. Therefore:

ρ′ > ρ. (32)

This increase in the minority class proportion ρ′ indicates that the updated training subset D(t)
i is

more balanced than the original D(t−1)
i .

Error Rate Improvement: The retrained classifier h′
i on D(t)

i benefits from the increased representa-
tion of minority class samples. The training error rate for the minority class, ϵ′i,1 = P (π

(t+1)
i (x) ̸=

1 | y = 1), is influenced by the loss function, which now assigns greater weight to minority class
misclassifications due to their higher proportion. According to statistical learning theory, an increase
in the number of training samples for a given class reduces the variance of the classifier’s predictions
for that class. Let the empirical risk for h′

i be:

R̂(h′
i) =

1

|D(t)
i |

∑
(x,y)∈D(t)

i

I(πt+1
i (x) ̸= y). (33)
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The generalization error bound, based on the increased sample size and balanced distribution, is:

ϵ′i,1 ≤ ϵ̂′i,1 +O

(√
ln(1/δ)

|D(t)
i |

)
, (34)

where ϵ̂′i,1 is the empirical error rate for the minority class. As |D(t)
i | increases and ρ′ approaches a

more balanced value, ϵ̂′i,1 decreases, leading to ϵ′i,1 < ϵi,1.

B.2 SPECIAL SCENARIO SUPERIORITY

In scenarios of extreme class imbalance (e.g., ρ ≪ 0.01), the decision boundary of a classifier
trained onD(t−1)

i tends to shift toward the minority class to minimize the overall error rate, which is
dominated by the majority class. This shift causes even ”easy” minority class samples—those with
distinct features and far from the decision boundary in a balanced setting—to be misclassified as
majority class samples. These misclassified samples are identified as ”hard-to-classify” due to the
imbalance-induced bias.

The dynamic enhancement mechanism addresses this issue by incorporatingDh
i intoD(t)

i . SinceDh
i

is enriched with minority class samples (as P (y = 1 | (x, y) ∈ Dh
i ) > ρ), the retrained classifier h′

i

on D(t)
i experiences an improved minority class representation. This adjustment allows h′

i to better
capture the minority class’s feature distribution. Mathematically, the decision boundary shift can be
modeled in a linear classifier context, where the decision function is f(x) = wTx + b. In extreme
imbalance, w and b are adjusted to minimize:

1

M

M∑
i=1

I(f(xi)yi < 0), (35)

favoring the majority class. The inclusion of Dh
i increases the penalty for misclassifying minority

samples, shifting the boundary back. Consequently, the minority class error rate ϵ′i,1 decreases,
and the misclassification of ”easy” minority samples is mitigated, demonstrating the superiority of
EDEL in extreme imbalance scenarios.

B.3 INTEGRATED LEARNING AND OVERALL PERFORMANCE ENHANCEMENT

Building on the convergence analysis of individual weak classifiers in Section 3.2, this section ana-
lyzes the integrated classifier’s performance and overall error reduction.

This section demonstrates how the EDEL algorithm integrates multiple weak classifiers to enhance
overall performance, leveraging classical ensemble learning theories. The integration process com-
bines the outputs of dynamically enhanced weak classifiers to form a robust final classifier, while
the iterative refinement of average empirical error ensures convergence to an optimal performance
level.

B.3.1 INTEGRATED MECHANISM FOR PERFORMANCE BOOST

The final classifier in the EDEL algorithm is defined as H(x) = sign
(∑N

i=1 αih
′
i(x)

)
, where each

h′
i is a weak classifier trained on the dynamically enhanced subsetD(t)

i = D(t−1)
i ∪Dh

i (as specified
in the pipeline), and αi represents the weight assigned to the i-th weak classifier. The weight αi

is determined based on the classifier’s performance, specifically using the formula αi =
1
2 ln

1−ϵi
ϵi

,
where ϵi = P (h′

i(x) ̸= y) is the error rate of h′
i over the true distribution D. The error rate ϵi

is ensured to be less than 0.5 due to the dynamic enhancement mechanism, which increases the
minority class proportion in D(t)

i , thereby improving the classifier’s ability to handle imbalanced
data.

To quantify the performance boost, we derive the upper bound on the final classifier’s error rate
ϵfinal = P (H(x) ̸= y) using classical AdaBoost theory (Freund & Schapire, 1997a). The error rate
of the integrated classifier can be bounded as follows:
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ϵfinal = P

(
sign

(
N∑
i=1

αih
′
i(x)

)
̸= y

)
. (36)

Consider the weighted margin S(x) =
∑N

i=1 αih
′
i(x). The classification error occurs when y ·

S(x) ≤ 0. The expected error can be analyzed using the exponential loss framework, where the
upper bound is given by:

ϵfinal ≤
N∏
i=1

√
4ϵi(1− ϵi). (37)

To derive this bound, note that for each weak classifier h′
i, the weighted contribution to the margin

is influenced by its error rate ϵi. The probability of correct classification by h′
i is 1 − ϵi, and the

AdaBoost weighting scheme ensures that the margin grows with the number of classifiers. The
term

√
4ϵi(1− ϵi) arises from the analysis of the exponential loss exp(−y · S(x)), where the error

probability is bounded by the product of individual classifier contributions. Since ϵi < 0.5, the
maximum value of 4ϵi(1 − ϵi) occurs at ϵi = 0.5, yielding 1, and for ϵi < 0.5, 4ϵi(1 − ϵi) < 1.
Thus:

√
4ϵi(1− ϵi) < 1. (38)

As N increases, the product
∏N

i=1

√
4ϵi(1− ϵi) decreases exponentially because each factor is less

than 1. This exponential decay demonstrates that the error rate ϵfinal diminishes with the number of
weak classifiers, proving a significant performance boost through integration.

The diversity among weak classifiers h′
i further enhances this improvement. This diversity stems

from the stratified sampling of D(t−1)
i and the dynamic enhancement with Dh

i , which introduces
variations in the training data across different classifiers. The reduced correlation among h′

i ensures
that their errors are not perfectly aligned, leading to a more robust ensemble. This diversity ef-
fect lowers the overall ϵfinal beyond the theoretical bound, reinforcing the efficacy of the integrated
mechanism.

B.3.2 CONVERGENCE OF AVERAGE EMPIRICAL ERROR VIA MCDIARMID INEQUALITY

To ensure the iterative optimization process of EDEL converges to an optimal performance level, we
analyze the convergence of the average empirical error using the McDiarmid inequality (McDiarmid,
1989). The average empirical error at iteration t is defined as:

Êt =
1

n

n∑
i=1

ϵ̂
(t)
i , (39)

where n is the number of weak classifiers, and the empirical error for the i-th weak classifier is:

ϵ̂
(t+1)
i =

1

|D(t)
i |

∑
(x,y)∈D(t)

i

I(π(t+1)
i (x) ̸= y), (40)

with |D(t)
i | denoting the size of the training set D(t)

i at iteration t. Our goal is to prove that the
average empirical error in the next iteration Êt+1 is likely to decrease by at least ∆E > 0, with a
probability bound given by:

P (Êt+1 ≤ Êt −∆E) ≥ 1− 2 exp(−2∆E2n). (41)

Bounded Difference Condition: We treat Êt+1 as a function of the training sets for all weak clas-
sifiers, defined as f(D(t+1)

1 , . . . ,D(t+1)
n ) = Êt+1. To apply the McDiarmid inequality, we need to

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

verify the bounded difference condition. Consider changing the training set D(t+1)
i to D′(t+1)

i for a
fixed i. This change affects only the empirical error ϵ̂(t+1)

i of the i-th weak classifier, while ϵ̂
(t+1)
j

(for j ̸= i) remains unchanged. The difference in the function value is:

|f(D(t+1)
1 , . . . ,D(t+1)

i , . . . ,D(t+1)
n )− f(D(t+1)

1 , . . . ,D′(t+1)
i , . . . ,D(t+1)

n )| = 1

n
|ϵ̂(t+1)
i − ϵ̂

′(t+1)
i |.

(42)

Since ϵ̂
(t+1)
i is a misclassification rate ranging from 0 to 1, the maximum possible change when

altering the entire training set D(t+1)
i is from 0 to 1 (or vice versa). Thus:

|ϵ̂(t+1)
i − ϵ̂

′(t+1)
i | ≤ 1, (43)

This establishes the bounded difference constant ci = 1
n for each i. The sum of squared bounded

differences is:

n∑
i=1

c2i =

n∑
i=1

(
1

n

)2

= n · 1

n2
=

1

n
. (44)

McDiarmid Inequality Application: The McDiarmid inequality (McDiarmid, 1989) states that for
a function Y = f(X1, . . . , Xn) satisfying the bounded difference condition, the probability of
deviating from its expectation is bounded by:

P (|Y − E[Y ]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
. (45)

Substituting the sum of squared bounded differences:

P (|Êt+1 − E[Êt+1]| ≥ t) ≤ 2 exp

(
−2t2

1
n

)
= 2 exp(−2t2n). (46)

Error Reduction Analysis: To prove Êt+1 ≤ Êt − ∆E, we assume that the expected average em-
pirical error after the update satisfies E[Êt+1] ≤ Êt −∆E, where ∆E > 0 represents the expected
reduction in error due to the inclusion of misclassified samples Dh

i . This assumption is based on the
intuition that focusing on hard-to-classify samples improves the classifier’s performance. We need
to bound the probability that Êt+1 exceeds Êt −∆E.

Set t = ∆E in the inequality:

P (Êt+1 − E[Êt+1] ≥ ∆E) ≤ exp(−2∆E2n). (47)

This represents the probability that Êt+1 is ∆E above its expectation. Since E[Êt+1] ≤ Êt −∆E,
the event Êt+1 > Êt −∆E occurs if Êt+1 − E[Êt+1] > Êt −∆E − E[Êt+1]. Given Êt −∆E −
E[Êt+1] ≥ 0, the maximum deviation is bounded by ∆E. Thus:

P (Êt+1 > Êt −∆E) ≤ exp(−2∆E2n). (48)

For a conservative estimate, considering both tails of the distribution (as Êt+1 could deviate in either
direction), the double-sided bound is:

P (|Êt+1 − E[Êt+1]| ≥ ∆E) ≤ 2 exp(−2∆E2n). (49)

Therefore, the probability that Êt+1 does not exceed Êt −∆E is:
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P (Êt+1 ≤ Êt −∆E) ≥ 1− 2 exp(−2∆E2n). (50)

Convergence Property: As the number of weak classifiers n increases, the exponent −2∆E2n be-
comes more negative, causing the probability bound 2 exp(−2∆E2n) to approach 0. This implies
that Êt+1 ≤ Êt −∆E holds with probability approaching 1. Over multiple iterations, the average
empirical error Êt converges to a limiting value E∞, which represents the optimal average error
achievable given the data distribution and the capacity of the weak classifiers.

This convergence is driven by the iterative process of EDEL, where the inclusion of Dh
i refines the

training sets D(t+1)
i , allowing the weak classifiers to better capture the underlying patterns, partic-

ularly for minority class instances. The McDiarmid inequality thus provides a statistical guarantee
that the algorithm’s performance improves iteratively, enhancing the overall efficacy of the ensem-
ble.

C EXPERIMENTAL DETAILS

C.1 DATASET AND METRIC

Dataset. These datasets were chosen because they represent real-world scenarios where class im-
balance is prevalent and poses significant challenges for traditional machine learning models. By
evaluating our method on these diverse datasets, we ensure its generalizability and effectiveness in
handling various imbalance scenarios. Below are the details of each dataset:

• Spambase Dataset (SBD) 1: This dataset contains 4,601 samples used to classify emails as spam
(positive class) or non-spam. With an IR of 1.54, it represents a moderately imbalanced sce-
nario. Spam detection is critical in email filtering systems to reduce user inconvenience caused by
unwanted messages.

• Adult Income Dataset (AID) 2: This dataset includes 48,842 samples to predict whether an in-
dividual’s income exceeds 50K per year (positive class). The IR is 3.18, indicating a moderate
imbalance. This dataset is often used to study socioeconomic factors influencing income levels,
where accurately identifying high-income individuals is key.

• Taiwan Credit Card Default (TCD) 3: This dataset has 30,000 samples to predict whether a
credit card holder will default on payments (positive class). With an IR of 3.52, it reflects a
typical credit risk assessment scenario where identifying potential defaulters is crucial for financial
institutions.

• CDC Diabetes Health Indicators (CDH) 4: This dataset consists of 253,680 samples used to
predict whether an individual has diabetes (positive class) based on health indicators. The IR is
6.18, highlighting the challenge of diagnosing rare diseases in large populations.

• Bank Marketing Dataset (BMD) 5: This dataset includes 41,188 samples for predicting whether
a client will subscribe to a term deposit (positive class). With an IR of 7.88, it represents a
marketing campaign scenario where successful subscriptions are relatively rare.

• Give Me Some Credit Dataset (GMSC) 6: This dataset consists of 150,000 samples to predict
whether an individual will experience financial distress in the next two years (positive class). The
IR is 13.96, emphasizing the difficulty of predicting rare but high-impact events in credit risk
modeling.

• Credit Card Fraud Detection (CCFD) 7: This dataset includes 284,807 samples for detecting
whether a transaction is fraudulent (positive class). With an extreme IR of 577.88, it poses signif-

1https://archive.ics.uci.edu/ml/datasets/spambase
2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
4https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset/

data
5https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
6https://www.kaggle.com/c/GiveMeSomeCredit
7https://www.kaggle.com/mlg-ulb/creditcardfraud
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icant challenges for fraud detection systems, where missing a fraudulent transaction can lead to
substantial losses.

Evaluation Metrics. We employ AUC and F-measure as evaluation metrics to assess the perfor-
mance of the EDEL algorithm in imbalanced classification tasks. These metrics are particularly
suitable for high-stakes applications such as fraud detection and credit risk assessment, where class
imbalance poses significant challenges.

AUC is the area under the Receiver Operating Characteristic (ROC) curve, which effectively reflects
the overall accuracy of the classifier in distinguishing between positive and negative classes across all
possible thresholds. It ranges from 0 to 1, with 1 indicating perfect classification and 0.5 representing
random guessing. The AUC is calculated based on the True Positive Rate (TPR) and False Positive
Rate (FPR), defined as:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

,

where TP (True Positives) is the number of correctly predicted positive instances, FN (False Neg-
atives) is the number of positive instances incorrectly predicted as negative, FP (False Positives) is
the number of negative instances incorrectly predicted as positive, and TN (True Negatives) is the
number of correctly predicted negative instances.

F-measure is obtained using the formula:

F -measure =
(1 + β2) · Recall · Precision
β2 · Precision + Recall

,

where Recall = TP
TP+FN , Precision = TP

TP+FP , and β is a factor used to balance and weight the
importance of Recall and Precision. When β > 1, Recall has a greater impact; when β < 1,
Precision has a greater impact. In this study, we use the F1-measure, where β is set to 1, giving equal
weight to Precision and Recall. The F1-measure ranges from 0 to 1, with higher values indicating
better balance between identifying positive instances and avoiding false positives.

C.2 EXPERIMENTAL SETTING

Baselines. We evaluate EDEL against five baselines, including:

(1) basic method, the Original instances with no imbalance handling applied;

(2) data-level methods:

• SMOTE (Chawla et al., 2002), which generates synthetic minority samples via interpola-
tion between existing minority instances.

• RandomUnderSampler (RUS) (He & Garcia, 2009), which randomly selects majority class
instances to match the minority class size.

• SMOTE-TLNN-DEPSO (Dixit & Mani, 2023), which integrates Two-Layer Nearest
Neighbor and Differential Evolution Particle Swarm Optimization to handle noisy data.

(3) ensemble learning methods:

• MESA (Liu et al., 2020), which employs a meta-sampler trained via soft actor-critic re-
inforcement learning to learn an adaptive under-sampling strategy; it iteratively com-
putes error distributions on training and validation sets to form a meta-state, uses the
meta-sampler to output a parameter µ for a Gaussian function that assigns sampling
weights based on classification errors, and builds a cascade ensemble of classifiers on
balanced subsets, optimizing for generalization performance; configured in our experi-
ments with random state = 42, while keeping hyperparameters (e.g., metric = aucprc,
max estimators = 10, num bins = 5, σ = 0.2, train ir = 1, update steps = 1000,
start steps = 500, hidden size = 50) at their default values.
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• CHRE (Zhao et al., 2025), a hybrid resampling method, synthesizes new minority samples
based on sample contribution using Euclidean distance to balance information and noise
levels, configured in our experiments with hyperparameters λ1 = 0.8, λ2 = 0.5, K = 5,
and a maximum of 10 iterations.

All methods, including EDEL and the baselines, are evaluated using four classifiers: Decision Tree,
Random Forest, XGBoost, and LightGBM. Experimental results are reported by 5-fold stratified
cross-validation, with each fold allocating 80% for training and 20% for testing.

Classifier parameters Detailed. Classifier parameters are set as follows: Decision-
TreeClassifier with criterion=′gini′, max depth=None, min samples split=2, min samples leaf=1,
and max features=None; RandomForestClassifier with n estimators=100, criterion=′gini′,
max depth=None, min samples split=2, min samples leaf=1, and max features=′sqrt′; XGBClas-
sifier with n estimators=100, max depth=6, learning rate=0.3, and objective=′binary : logistic′;
and LightGBM with boosting type=′gbdt′, num leaves=31, max depth=−1, learning rate=0.1, and
n estimators=100. These settings ensure reproducibility of experimental results.

D DISCUSSION

D.1 SENSITIVITY ANALYSIS

To evaluate the impact of the number of weak classifiers N on the performance of Error-Driven En-
semble Learning (EDEL), we conduct a sensitivity analysis across seven real-world datasets: Spam-
base (SBD, IR=1.54), Adult Income (AID, IR=3.18), Taiwan Credit Card Default (TCD, IR=3.52),
CDC Diabetes Health Indicators (CDH, IR=6.18), Bank Marketing (BMD, IR=7.88), Give Me Some
Credit (GMSC, IR=13.96), and Credit Card Fraud Detection (CCFD, IR=577.88). We vary N from
1 to 5, where EDEL (1) represents the baseline without EDEL’s dynamic augmentation. Four clas-
sifiers are evaluated: Decision Tree (DT), Random Forest (RF), XGBoost (XGB), and LightGBM
(LGBM), using AUC and F1-measure as metrics (Section C.1).
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Figure 3: Sensitivity analysis of EDEL performance with varying number of weak classifiers (N )
across seven datasets. Top row: AUC for DT, RF, XGB, and LGBM. Bottom row: F1-measure.

Figure 3 illustrates EDEL’s performance trends across datasets and classifiers(detailed data in Table 7
and Table 8). On CCFD (IR=577.88), EDEL with LGBM achieves an AUC of 0.9948 and F1-
measure of 0.8993 at N = 3, compared to 0.7549 and 0.3834 at N = 1, reflecting a 31.7% AUC
increase and 135% F1 improvement. Similarly, on GMSC (IR=13.96) with DT, F1 rises from 0.2679
(N = 1) to 0.7690 (N = 5), a 187% gain. For moderate imbalance, such as SBD (IR=1.54) with
RF, AUC improves from 0.9860 (N = 1) to 0.9972 (N = 3). Performance typically peaks at
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N = 3, with diminishing returns beyond this point, likely due to overlapping misclassified instances
reducing subset diversity (Section B.3).

Table 7: AUC sensitivity analysis results for EDEL across datasets with varying number of weak
classifiers (N ). EDEL (1) represents the baseline (N = 1, no EDEL).

Clf N SBD AID TCD CDH BMD GMSC CCFD

DT

EDEL (1) 0.9030 ± 0.0075 0.7717 ± 0.0041 0.6143 ± 0.0074 0.5979 ± 0.0031 0.7294 ± 0.0066 0.6120 ± 0.0047 0.8921 ± 0.0041
EDEL (2) 0.9896 ± 0.0211 0.9506 ± 0.0796 0.9158 ± 0.1578 0.9186 ± 0.1488 0.9594 ± 0.0822 0.9283 ± 0.1476 0.9767 ± 0.0521
EDEL (3) 0.9911 ± 0.0182 0.9519 ± 0.0724 0.9187 ± 0.1536 0.9241 ± 0.1381 0.9641 ± 0.0705 0.9369 ± 0.1300 0.9797 ± 0.0454
EDEL (4) 0.9918 ± 0.0162 0.9531 ± 0.0661 0.9181 ± 0.1546 0.9275 ± 0.1312 0.9740 ± 0.0500 0.9425 ± 0.1184 0.9827 ± 0.0386
EDEL (5) 0.9923 ± 0.0148 0.9514 ± 0.0644 0.9210 ± 0.1509 0.9284 ± 0.1292 0.9745 ± 0.0475 0.9457 ± 0.1107 0.9827 ± 0.0387

RF

EDEL (1) 0.9860 ± 0.0041 0.8954 ± 0.0036 0.7639 ± 0.0046 0.7974 ± 0.0025 0.9444 ± 0.0024 0.8387 ± 0.0055 0.9497 ± 0.0108
EDEL (2) 0.9971 ± 0.0062 0.9688 ± 0.0431 0.9521 ± 0.1020 0.9549 ± 0.0833 0.9881 ± 0.0246 0.9669 ± 0.0679 0.9900 ± 0.0224
EDEL (3) 0.9972 ± 0.0058 0.9656 ± 0.0448 0.9461 ± 0.1117 0.9506 ± 0.0841 0.9865 ± 0.0271 0.9656 ± 0.0657 0.9939 ± 0.0137
EDEL (4) 0.9971 ± 0.0060 0.9598 ± 0.0454 0.9305 ± 0.1280 0.9447 ± 0.0840 0.9842 ± 0.0287 0.9625 ± 0.0653 0.9925 ± 0.0167
EDEL (5) 0.9970 ± 0.0057 0.9516 ± 0.0463 0.9075 ± 0.1364 0.9365 ± 0.0839 0.9795 ± 0.0306 0.9583 ± 0.0641 0.9923 ± 0.0172

XGB

EDEL (1) 0.9872 ± 0.0031 0.9285 ± 0.0025 0.7661 ± 0.0059 0.8269 ± 0.0025 0.9458 ± 0.0018 0.8573 ± 0.0043 0.9789 ± 0.0062
EDEL (2) 0.9971 ± 0.0060 0.9424 ± 0.0127 0.9004 ± 0.0795 0.8462 ± 0.0113 0.9756 ± 0.0193 0.8992 ± 0.0258 0.9966 ± 0.0076
EDEL (3) 0.9968 ± 0.0065 0.9343 ± 0.0160 0.9039 ± 0.0897 0.8365 ± 0.0125 0.9761 ± 0.0206 0.8999 ± 0.0270 0.9965 ± 0.0077
EDEL (4) 0.9968 ± 0.0063 0.9179 ± 0.0164 0.8931 ± 0.1001 0.8231 ± 0.0131 0.9745 ± 0.0227 0.8973 ± 0.0276 0.9964 ± 0.0079
EDEL (5) 0.9960 ± 0.0072 0.9025 ± 0.0166 0.8739 ± 0.1096 0.8100 ± 0.0141 0.9708 ± 0.0244 0.8963 ± 0.0270 0.9968 ± 0.0071

LGBM

EDEL (1) 0.9882 ± 0.0035 0.9287 ± 0.0029 0.7805 ± 0.0052 0.8302 ± 0.0030 0.9508 ± 0.0019 0.8649 ± 0.0039 0.7549 ± 0.0368
EDEL (2) 0.9973 ± 0.0056 0.9366 ± 0.0079 0.8516 ± 0.0399 0.8352 ± 0.0024 0.9687 ± 0.0123 0.8849 ± 0.0138 0.9774 ± 0.0388
EDEL (3) 0.9969 ± 0.0065 0.9243 ± 0.0100 0.8429 ± 0.0474 0.8209 ± 0.0021 0.9679 ± 0.0152 0.8821 ± 0.0130 0.9948 ± 0.0116
EDEL (4) 0.9969 ± 0.0062 0.9023 ± 0.0098 0.8165 ± 0.0584 0.8070 ± 0.0021 0.9632 ± 0.0155 0.8768 ± 0.0125 0.9944 ± 0.0126
EDEL (5) 0.9965 ± 0.0069 0.8836 ± 0.0090 0.7731 ± 0.0609 0.7946 ± 0.0027 0.9550 ± 0.0166 0.8726 ± 0.0121 0.9965 ± 0.0079

Table 8: F1-measure sensitivity analysis results for EDEL across datasets with varying number of
weak classifiers (N ). EDEL (1) represents the baseline (N = 1, no EDEL).

Clf N SBD AID TCD CDH BMD GMSC CCFD

DT

EDEL (1) 0.8819 ± 0.0088 0.6171 ± 0.0043 0.3999 ± 0.0104 0.3072 ± 0.0047 0.5155 ± 0.0119 0.2679 ± 0.0082 0.7741 ± 0.0272
EDEL (2) 0.9676 ± 0.0465 0.8194 ± 0.1449 0.7765 ± 0.2973 0.7262 ± 0.3202 0.8194 ± 0.2467 0.7267 ± 0.3502 0.9283 ± 0.1116
EDEL (3) 0.9709 ± 0.0412 0.8215 ± 0.1339 0.8096 ± 0.2554 0.7584 ± 0.2778 0.8349 ± 0.2103 0.7562 ± 0.3172 0.9279 ± 0.1106
EDEL (4) 0.9675 ± 0.0403 0.8110 ± 0.1411 0.7952 ± 0.2864 0.7526 ± 0.3005 0.8282 ± 0.2249 0.7594 ± 0.3263 0.9345 ± 0.0882
EDEL (5) 0.9663 ± 0.0425 0.8087 ± 0.1333 0.8161 ± 0.2472 0.7622 ± 0.2714 0.8375 ± 0.2023 0.7690 ± 0.2987 0.9182 ± 0.1289

RF

EDEL (1) 0.9406 ± 0.0095 0.6669 ± 0.0045 0.4711 ± 0.0086 0.2561 ± 0.0046 0.5781 ± 0.0086 0.2796 ± 0.0085 0.8588 ± 0.0186
EDEL (2) 0.9840 ± 0.0232 0.8349 ± 0.1250 0.7754 ± 0.2866 0.7280 ± 0.3236 0.8344 ± 0.2153 0.7229 ± 0.3618 0.9453 ± 0.0744
EDEL (3) 0.9824 ± 0.0209 0.8192 ± 0.1143 0.7448 ± 0.2229 0.6829 ± 0.1925 0.8185 ± 0.1752 0.7135 ± 0.2748 0.9475 ± 0.0768
EDEL (4) 0.9779 ± 0.0222 0.7893 ± 0.1118 0.6574 ± 0.2060 0.6057 ± 0.1285 0.7656 ± 0.1626 0.6520 ± 0.2271 0.9420 ± 0.0746
EDEL (5) 0.9711 ± 0.0154 0.7562 ± 0.0917 0.5901 ± 0.1350 0.5433 ± 0.0827 0.7145 ± 0.1194 0.5929 ± 0.1588 0.9370 ± 0.0780

XGB

EDEL (1) 0.9379 ± 0.0094 0.7122 ± 0.0066 0.4673 ± 0.0157 0.2610 ± 0.0030 0.5904 ± 0.0159 0.2884 ± 0.0128 0.8749 ± 0.0298
EDEL (2) 0.9792 ± 0.0280 0.7378 ± 0.0316 0.6230 ± 0.1620 0.3749 ± 0.0658 0.7330 ± 0.1578 0.3972 ± 0.1052 0.9506 ± 0.0722
EDEL (3) 0.9796 ± 0.0282 0.7116 ± 0.0345 0.6855 ± 0.1595 0.4508 ± 0.0296 0.7679 ± 0.1386 0.4732 ± 0.1067 0.9493 ± 0.0708
EDEL (4) 0.9762 ± 0.0301 0.6587 ± 0.0407 0.6667 ± 0.1806 0.4390 ± 0.0290 0.7419 ± 0.1638 0.4670 ± 0.1136 0.9502 ± 0.0621
EDEL (5) 0.9707 ± 0.0291 0.6361 ± 0.0356 0.6380 ± 0.1492 0.4296 ± 0.0176 0.7333 ± 0.1409 0.4821 ± 0.0827 0.9446 ± 0.0628

LGBM

EDEL (1) 0.9447 ± 0.0081 0.7124 ± 0.0049 0.4770 ± 0.0088 0.2506 ± 0.0029 0.6074 ± 0.0096 0.2895 ± 0.0138 0.3834 ± 0.1507
EDEL (2) 0.9804 ± 0.0300 0.7282 ± 0.0201 0.5360 ± 0.0821 0.4039 ± 0.0181 0.6569 ± 0.1117 0.3534 ± 0.0572 0.7791 ± 0.1265
EDEL (3) 0.9799 ± 0.0280 0.6891 ± 0.0180 0.5627 ± 0.0769 0.4258 ± 0.0058 0.6904 ± 0.1018 0.3972 ± 0.0495 0.8993 ± 0.1237
EDEL (4) 0.9780 ± 0.0275 0.6217 ± 0.0234 0.5169 ± 0.0961 0.4209 ± 0.0037 0.6541 ± 0.1079 0.3884 ± 0.0386 0.9241 ± 0.0944
EDEL (5) 0.9747 ± 0.0266 0.5840 ± 0.0146 0.4876 ± 0.0688 0.4121 ± 0.0047 0.6403 ± 0.0782 0.3988 ± 0.0228 0.9366 ± 0.0753

These results highlight EDEL’s effectiveness in enhancing minority class detection, particularly in
extreme imbalance scenarios like CCFD, where dynamic incorporation of hard-to-classify instances
(Section 2) refines decision boundaries. The performance saturation at N = 3 aligns with the the-
oretical convergence of average empirical error (Section B.3), balancing computational complexity
and classification accuracy, making EDEL practical for real-world applications.

D.2 DIFFERENCES BETWEEN EDEL AND ADABOOST

Although EDEL draws inspiration from AdaBoost (Freund & Schapire, 1997b) in its iterative, error-
driven refinement, the two algorithms differ fundamentally in their design, mechanisms, and han-
dling of class imbalance. These distinctions arise from EDEL’s focus on explicit data augmentation
for imbalanced learning, contrasted with AdaBoost’s weight-based boosting for general classifica-
tion. Below, we outline key differences, incorporating perspectives on ensemble integration and
local iterative processes.

1. Core Mechanism: Sample Handling and Update Strategy.

• AdaBoost operates on the entire dataset per iteration, multiplicatively updating sam-
ple weights to emphasize misclassified instances. For a sample (xi, yi), the update is
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w
(t+1)
i = w

(t)
i · exp(−αt · yi · ht(xi)), where αt = 1

2 ln
1−ϵt
ϵt

and ϵt is the weighted er-
ror. This forms a sequential process where each weak learner ht is trained on a reweighted
distribution, implicitly focusing on hard samples via probabilistic resampling.

• EDEL, however, partitions the dataset into N subsets {Di}Ni=1 and explicitly augments each
with misclassified samples Dh

i from the complement (D \ Di): D(t)
i = D(t−1)

i ∪ Dh
i . This

additive augmentation creates parallel, diverse views without global reweighting. From an
additional perspective, within each subset’s iteration, EDEL can be viewed as a 0/1 selection
process over the remaining samples—selecting (1) misclassified ones for inclusion and
discarding (0) correctly classified ones—forming a localized, binary decision mini-process
akin to a simplified expert allocation, but tailored for imbalance correction.

2. Focus on Class Imbalance and Sample Difficulty.

• AdaBoost is geared toward general boosting, converting weak learners (accuracy slightly
>0.5) into strong ones without explicit imbalance handling. It amplifies misclassified sam-
ples globally, which may indirectly benefit minorities if they are frequently erred, but lacks
guarantees for disproportionate minority focus in extreme imbalance (e.g., IR >100).

• EDEL explicitly addresses imbalance by proving (via Bayes’ theorem) that Dh
i enriches

minorities (P (y = 1 | (x, y) ∈ Dh
i ) > ρ), leading to iterative balancing (ρ′ > ρ). It targets

”hard-to-classify” samples (Definition 2), which are often minorities, making it superior
for high-IR scenarios (e.g., CCFD with IR=577.88), as validated empirically.

3. Ensemble Integration and Extensibility.

• AdaBoost integrates sequentially via weighted voting: H(x) = sign(
∑

t αtht(x)), with
αt reflecting weak learner strength. This sequential nature limits parallelism.

• EDEL employs uniform probability averaging over parallel weak classifiers: Θ =
1
N

∑
i Θ̂i, supporting efficient computation. From an extended perspective, this uniform

averaging can be generalized to weighted averaging (e.g., Θ =
∑

i αiΘ̂i, where αi could
be derived from subset-specific errors), allowing flexibility for future adaptations while
maintaining focus on imbalance.

4. Theoretical Foundations and Convergence.

• AdaBoost’s bounds emphasize exponential error decay: training error ≤ exp(−2
∑

t γ
2
t ),

with γt =
1
2 − ϵt, rooted in exponential loss and VC-dimension for generalization.

• EDEL uses stratified sampling (Chebyshev for representativeness), Rademacher complexity
for generalization, and McDiarmid’s inequality for convergence (P (|ϵ̂ − E[ϵ̂]| ≥ δ) ≤
2 exp(−2δ2n)). Its proofs target imbalance-specific properties, like minority enrichment,
differing from AdaBoost’s margin-based analysis.

In essence, AdaBoost is a general booster via sequential weighting, while EDEL is an imbalance-
specialized ensemble through parallel augmentation and selective inclusion. These differences en-
able EDEL’s superior performance in imbalanced domains, as shown in experiments, without requir-
ing prior knowledge of weak learner accuracies.

E RELETED WORKS

Existing approaches to address class imbalance are categorized into three groups: data-level meth-
ods, algorithm-level methods, and ensemble learning methods, each offering distinct strategies to
address this issue.

Data-Level Methods Data-level methods seek to rebalance class distributions through dataset mod-
ification, providing classifier-agnostic solutions that enhance generalizability across models. The
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) generates synthetic
minority samples via interpolation, inspiring variants that address its over-generalization tenden-
cies. For instance, Borderline-SMOTE (Han et al., 2005) targets samples near decision boundaries,
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while ADASYN (He et al., 2008) adaptively generates samples based on local density. Safe-Level-
SMOTE (Bunkhumpornpat et al., 2009) ensures synthetic samples remain within safe minority class
regions, and FW-SMOTE (Maldonado et al., 2022) incorporates feature weighting to improve sam-
ple relevance. RCSMOTE (Soltanzadeh & Hashemzadeh, 2021) refines SMOTE by constraining
synthetic sample ranges using distances to majority class samples, reducing noise and class overlap,
particularly effective for moderately imbalanced datasets. Similarly, MLBOITE (Teng et al., 2024)
extends SMOTE to multi-label datasets with a three-phase framework (seed set construction, border-
line sample resampling, and internal sample resampling), optimizing label assignment for complex
multi-label scenarios. ConvGeN (Schultz et al., 2024) leverages a deep-generative model to learn
convex combinations of minority class samples, producing high-quality samples for small tabular
datasets while reducing over-generalization compared to SMOTE and GAN-based methods (Good-
fellow et al., 2014; Xu et al., 2019). SMOTE-TLNN-DEPSO (Dixit & Mani, 2023) integrates
SMOTE with Tomek Links, neural networks, and differential evolution optimization to generate
and filter high-quality synthetic samples, enhancing robustness against noisy data. In contrast, un-
dersampling methods reduce majority class samples to balance datasets. Spatial Distribution-based
Undersampling (SDUS) (Yan et al., 2023) exploits spatial relationships, while Metaheuristic-based
Under-Sampling (MHUS) (Soltanzadeh et al., 2023) employs a genetic algorithm to select represen-
tative majority samples, minimizing information loss compared to random undersampling (Kubat
& Matwin, 1997). Despite their versatility, data-level methods face significant challenges. Over-
sampling techniques, such as SMOTE and its variants, may introduce synthetic noise, especially in
high-dimensional or overlapping datasets, potentially degrading classifier performance. GAN-based
methods often produce inconsistent sample quality, particularly for non-tabular data like images.
Undersampling risks discarding critical information, which can be detrimental in datasets with com-
plex distributions or extreme imbalance ratios.

Algorithm-Level Methods Algorithm-level methods enhance minority class performance by mod-
ifying the learning process, offering fine-grained control over model optimization. Cost-sensitive
learning assigns higher penalties to misclassifications of minority class samples, prioritizing their
correct classification (Elkan, 2001; Zhou & Liu, 2006; Ling & Sheng, 2010). Recent advance-
ments address the challenge of specifying fixed cost matrices. Cost-Free Learning (CFL) (Zhang
& Hu, 2013) eliminates the need for explicit cost definitions, while Adaptive Threshold Error Costs
(ATEC) (Cao et al., 2021) dynamically adjusts error thresholds to adapt to class distributions. Cu-
mulative Cost-Sensitive Boosting (AdaCC) (Iosifidis et al., 2022) further advances this paradigm
by dynamically adjusting sample weights based on cumulative misclassification costs (false positive
and false negative rates), using two variants (AdaCC1 and AdaCC2) to incorporate costs into the
weight update formula, achieving superior performance without requiring a predefined cost matrix.
Modified loss functions provide an alternative approach. Focal Loss (Lin et al., 2017) reduces the
influence of easily classified samples, emphasizing hard-to-classify instances, while Class-Balanced
Loss (Cui et al., 2019) reweights losses based on class frequency to balance contributions. Tech-
niques such as adaptive learning rates and distribution-aware optimization further refine training
parameters to enhance minority class representation (He & Garcia, 2009; Kingma & Ba, 2014; Cao
et al., 2019). Algorithm-level methods excel in tailoring model behavior to specific class imbalance
scenarios, particularly when domain knowledge is limited. However, their reliance on hyperparam-
eter tuning, as seen in Focal Loss and ATEC, can complicate deployment across diverse datasets.
Additionally, these methods may struggle to generalize across datasets with extreme imbalance or
noisy boundaries, necessitating ensemble strategies to improve robustness.

Ensemble Learning Methods Ensemble learning methods combine multiple classifiers to enhance
robustness, leveraging diverse models to mitigate class imbalance. Bagging (Breiman, 1996) gener-
ates varied subsets via bootstrap sampling, but often underrepresents minority classes in imbalanced
datasets, leading to biased models (Sun et al., 2007). Balanced Random Forests (Chen & Breiman,
2004) address this by undersampling the majority class in each subset, improving minority class rep-
resentation. Boosting methods, such as AdaBoost (Freund & Schapire, 1997b), iteratively increase
weights of hard-to-classify samples, enhancing their classification accuracy. SMOTEBoost (Chawla
et al., 2003) integrates SMOTE with Boosting, generating synthetic minority samples in each it-
eration to enrich minority class representation. RUSBoost (Seiffert et al., 2010) pairs random un-
dersampling with Boosting, offering a computationally efficient alternative. SMOTEWB (Sağlam
& Cengiz, 2022) enhances SMOTE with noise detection, dynamically adjusting parameters during
Boosting to reduce synthetic noise. MESA (Liu et al., 2020) enhances ensemble learning by em-
ploying a meta-sampler to adaptively learn sampling strategies, improving performance on extreme
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imbalance scenarios. WSMOTE-ensemble (Abedin et al., 2022) employs Weighted SMOTE with
Bagging to generate diverse synthetic samples, improving model diversity. The Contribution-Based
Hybrid Resampling Ensemble (CHRE) (Zhao et al., 2025) uses a Globally Unified Data Evaluation
(GUDE) algorithm to assess sample contributions based on information and noise levels, guiding
oversampling and undersampling within a serial ensemble framework to balance data distribution.
Ensemble methods are particularly effective in handling moderately imbalanced datasets by leverag-
ing multiple classifiers to capture diverse patterns. However, they face challenges with extreme class
imbalances, where minority class underrepresentation persists, as seen in Bagging and AdaBoost.
Methods like SMOTEBoost and CHRE mitigate this by integrating resampling, but their reliance on
synthetic samples can introduce noise, particularly in complex or high-dimensional datasets. Fur-
thermore, ensemble methods often incur significant computational costs due to multiple classifier
training and hyperparameter tuning, limiting their scalability in large-scale applications.
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