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Abstract— In recent years, the rapid adoption of electric
vehicles (EVs) in the taxi industry has transformed traditional
taxi-hailing systems into electric taxi (E-taxi) hailing systems. As a
result, it is crucial to develop effective strategies for optimizing
E-taxi management by considering both passenger-taxi matching
and charging planning. In this paper, we first formalize the
E-taxi management optimization problem as a Markov decision
problem with dynamic state and heterogeneous action. We then
propose a dual-stage heuristic coordinated reinforcement learn-
ing (RL) approach that incorporates advanced feature selection
and heuristic allocation strategies. Our approach consists of two
main stages. In the first stage, we introduce the feature-guided
state dimensionality stabilization proximal policy optimization
(PPO) method to address dynamic state dimensions by a feature
selection method, and enabling E-taxis to decide whether to
charge or pick up passengers. In the second stage, we propose
a heuristic coordinated assignment method to further allocate
charging stations and passengers for the E-taxis, and provide the
RL network in the first stage with rewards based on the results.
This approach effectively tackles the challenge of RL processing
of heterogeneous action spaces (charge and pick up). We evaluate
our proposed method in a real-world E-taxi environment and find
that it significantly enhances the experience for both E-taxis and
passengers. Specifically, due to our method’s rational planning
for passenger pick-up and charging, E-taxis can increase their
revenue by 20% compared to traditional RL methods or random
scheduling approaches. As for passengers, since the taxis have
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more efficiently planned their charging behavior, the probability
of their orders being answered increases by 15%, while their
waiting time is reduced by 55%. These achievements contribute
to the advancement of E-taxi management strategies and promote
the widespread adoption of electric vehicles, ultimately support-
ing the transition to a more sustainable transportation system.

Note to Practitioners—The increasing adoption of electric
vehicles in the taxi industry has led to the need for effective
E-taxi management strategies that consider both passenger-taxi
matching and charging planning. In this study, we introduce a
dual-stage heuristic coordinated reinforcement learning approach
that addresses these challenges by integrating a feature-guided
state dimensionality stabilization proximal policy optimization
method and a heuristic coordinated assignment method. Our
approach offers several practical benefits for E-taxi service
providers, drivers, and passengers. For E-taxi service providers,
the proposed method improves E-taxi dispatch efficiency, result-
ing in a more effective use of available resources and potentially
increasing overall revenue. For E-taxi drivers, our approach leads
to better planning of charging and passenger pick-up decisions,
increasing their earnings by 20% compared to traditional meth-
ods, and reducing the average occurrence of low battery status
from more than 4 times every 10 hours to less than 1 time. Pas-
sengers, on the other hand, experience improved service quality
due to the more efficient E-taxi management. The probability of
their orders being answered increases by 15%, and their waiting
time is reduced by 100%. These improvements contribute to an
enhanced user experience and may encourage further adoption
of E-taxis as a sustainable transportation solution. The proposed
method can be integrated into existing E-taxi hailing platforms,
such as DiDi and Uber, to enhance their dispatch and charging
management capabilities. As the global trend towards sustainable
transportation continues to grow, our approach provides valuable
insights and a practical solution for the efficient management of
E-taxi fleets in modern urban environments.

Index Terms— E-taxi, resource allocation, reinforcement learn-
ing, proximal policy optimization, feature selection.

I. INTRODUCTION

A. Motivations

THE swift advancements in intelligent terminals, real-
time communication and positioning technologies have

significantly enhanced people’s daily life patterns [1], [2]. One
of the most prominent manifestations of these advancements
is in the online resource allocation system [3], which includes
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Fig. 1. Taxi reservation App (From DiDi Chuxing).

services such as medical appointments [4], taxi hailing [5], and
charging reservations [6], [7]. These applications have revolu-
tionized the traditional “first-come, first-served” service model
into a reservation-based bidding service model, leading to a
remarkable improvement in service efficiency and customer
satisfaction.

In recent times, the online taxi-hailing system serves as
an exemplary model of an online reservation system, inte-
grating positioning and communication technologies [8]. This
transportation mode has been widely adopted by numerous
taxi-hailing companies, including Uber and DiDi Chuxing,
extending its reach to over 60 countries worldwide [9]. Fig. 1
shows the operating interfaces of DiDi Chuxing. The system
is responsible for assigning the most suitable taxi to pas-
sengers. It has become the primary mode of transportation
in China [10]. The online taxi-hailing system facilitates the
aggregation of data regarding taxis and passengers, with
the primary goal of enabling efficient matching strategies.
In recent years, researchers have focused on developing
real-time matching algorithms that improve matching efficacy
and profitability for both vehicle owners and passengers [11],
[12].

Concurrently, the growing awareness of environmental pro-
tection has prompted a shift towards sustainable modes of
transportation [13], [14]. EVs have emerged as a prominent
solution in this regard and have gained significant traction
in the taxi industry, where they now constitute a majority
of the market share [15], [16], [17]. This has led to the
transformation of the traditional taxi-hailing system into an
E-taxi hailing system. However, the process of recharging EVs
is significantly slower and less efficient compared to traditional
refueling methods, posing a challenge for the efficient opera-
tion of the E-taxi hailing system [18]. If drivers are given the

freedom to decide when to charge based on their individual
experiences, there is a high probability that they will opt for
charging only when the power level is extremely low or when
the charging station is in close proximity. This tendency could
lead to a surge in the number of E-taxis seeking charging
within a brief timeframe, causing undue strain on the charg-
ing stations and a shortage of available E-taxis. Conversely,
frequent recharging of an E-taxi not only occupies charging
resources but also diminishes the driver’s income, posing a
long-term risk to the battery’s safety. Therefore, in addition
to passenger and taxi matching, the E-taxi hailing system
must also incorporate charging behavior planning to ensure
optimal operational efficiency. Currently, numerous studies
focus on taxi matching and EV charging planning. However,
it is unfortunate that only a few works have considered these
aspects simultaneously and conducted preliminary research on
their integration. For example, a request-vehicle assignment
scheme for taxi matching is presented based on the learning
value attained from vehicle routing in [19] but it does not
consider the situation of charging. And regarding to E-taxis,
an optimal assignment and scheduling approach is designed
in [20] but it is only for E-taxis’ charging planning problem
not E-taxi hailing problem. In addition, many researchers also
study the siting and size selection of charging stations from the
perspectives of power grid or platform, but they fail to consider
the charging planning from the user side and the service
side [21], [22], [23]. Strategically planning the charging and
picking up behavior of E-taxis not only aids in controlling the
number of vacant E-taxis but also enhances drivers’ income.
Simultaneously, it alleviates pressure on charging stations,
aligning with the demand for high-quality transportation.
Therefore, in order to fill the gap between charging assignment
and order assignment, it is essential to investigate E-taxi
dispatch strategies that incorporate a combination of charging
and passenger pick-up decisions.

The E-taxi hailing dispatch problem, as mentioned earlier,
can indeed be formalized as a dynamic programming problem.
However, identifying an effective solution method remains
a crucial problem. Traditional optimization methods have
achieved satisfactory results when applied to simple envi-
ronments but perform poorly in large-scale dynamic settings.
To address such complex and dynamic optimization decision-
making problems, Deep Reinforcement Learning (DRL) has
demonstrated impressive results [24]. DRL technology iter-
atively improves the agent’s strategy through continuous
interaction between the agent and the environment, enabling
the agent to make decisions that maximize rewards in the face
of uncertain future environments [25]. The most successful
application of DRL is in the recommendation system [26],
such as electric vehicle charging recommendation [27], [28]
and taxi matching recommendation [29], [30], [31] related
to this study. For instance, in [28], a DRL-based method,
charging control deep deterministic policy gradient (DDPG),
is proposed to learn the optimal charging control strategy. DiDi
had also revealed some of the RL algorithms they employ in
their taxi-hailing service [29].

It is evident that DRL serves as an effective method
for addressing large-scale dynamic optimization problems.
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However, when applying DRL to the E-taxi hailing scenario’s
optimization problem, certain challenges still need to be
overcome. First of all, the large and heterogeneous action
space poses great difficulties for conventional RL algorithms to
make decisions. Specifically, the agent is generally designed
to make decisions for the charging behavior of E-taxis and
the matching behavior of passengers within the platform.
However, there are conflicts in the action selection of taxis
themselves, that is, charging cannot pick up passengers. This
implies that two mutually exclusive behaviors of the agent,
interacting with its environment, will also receive rewards in
entirely different forms. Comparing these two rewards using
the same standard type is challenging, making it difficult
to evaluate both behaviors effectively. There are also certain
conflicts in the actions between each taxi, that is, each charging
station can accommodate only the specified number of E-taxis
simultaneously, and two E-taxis cannot accept the same order
from passengers at the same time. Conventional RL algorithms
such as Deep-Q Network (DQN), DDPG [32], and PPO [33]
cannot constrain these conflicts in the action space, which will
bring great challenges to RL training. Currently, there are few
works that aim to solve this type of action space, especially
when it is constrained by punishment or other methods, the
efficiency of the RL algorithm will become very poor. This
arises because it influences not only a single behavior of the
agent entity but also multiple behaviors of the agent entity
over time, which greatly prolongs the learning time of the
agent. Additionally, this method does not entirely eliminate
the occurrence of similar situations. Secondly, the uncertain
state space dimension also poses great challenges for the
training of RL. Specifically, the information of passengers in
the E-taxi hailing system is input as state information, but
the number of passengers is uncertain. Considering that the
input dimension of neural networks in RL is fixed, in order to
deal with the problem of dynamic changes in the state space
dimension, the state space dimension is generally fixed, and
padding or pooling methods are adopted. However, this is
not a fundamental solution to the problem, and it may lead
to a model that is too large or ignore some important state
information, which may result in a decrease in the performance
of the RL algorithm. In summary, how to solve the conflict
action space and dynamic state space is a key issue for RL in
the E-taxi hailing system.

B. Contributions

In this paper, we propose a dual-state integrated RL
approach for E-taxi management, which effectively addresses
the challenges of uncertain state dimensions and heteroge-
neous action spaces. Our contributions can be summarized as
follows:

• We present a novel E-taxi hailing model that seamlessly
integrates passenger-taxi matching and charging planning,
providing a comprehensive framework for optimizing
E-taxi management. Specifically, we first formulate the
E-taxi hailing management problem as a multi-objective
optimization problem. Subsequently, a Markov Deci-
sion Process (MDP) with dynamic state space and

heterogeneous action space is employed to model the
decision-making process within the E-taxi hailing man-
agement system.

• We develop a dual-stage heuristic coordinated reinforce-
ment learning approach for the E-taxi hailing manage-
ment system addressing the problems of dynamic state
and heterogeneous action. In the first stage, we propose
a feature-guided state dimension stabilization method,
which filters out redundant passengers by scoring their
states, thereby fixing the input to the state dimension
of the RL network. In the second stage, we introduce
a heuristic coordinated assignment method to further
refine the actions generated in the first stage and match
E-taxis with passengers and charging stations. The reward
generated by the final action serves as the reward for the
RL network in the first stage and is used in the network
update process.

• We evaluate our proposed dual-stage heuristic coordinated
RL approach using a real-world E-taxi hailing environ-
ment. Results show a 20% increase in E-taxi profits per
10 hours. Passenger order acceptance ratio improves by
15%, and waiting time decreases by 55%. Our method
outperforms existing techniques across multiple perfor-
mance indicators, while ablation experiments and a time
cost analysis demonstrate its effectiveness in addressing
dynamic state dimensions and heterogeneous actions with
consistent time consumption.

The organization of this paper is as follows: First, the related
work is given in Section II. And the models of the E-taxi
hailing system are described in Section III. In Section IV,
our proposed dual-stage heuristic coordinated reinforcement
learning approach is described. In Section V, the performance
evaluations are given. Finally, in Section VI, we conclude and
discuss this paper.

II. RELATED WORK

Extensive research has been conducted on devising optimal
scheduling strategies for EV charging and taxi matching [34],
[35], [36], [37], [38]. For example, Shen et al. [34] proposed
a two-stage integrated scheduling strategy to determine the
optimal charging load profile for various EVs. Park et al. [35]
introduced an EV scheduling algorithm employing fuzzy logic
control in a smart charging network to enhance charging
performance. Considering customer engagement and satisfac-
tion, Ma [36] proposed a multi-objective optimal approach
for scheduling large-scale electric vehicles based on customer
behavior prediction. Ding et al. [38] proposed a hierarchi-
cal and cooperative macroscopic and microscopic dynamic
dispatching approach for real-time urban network taxis in
a connected taxi information environment. Abid et al. [39]
modeled the taxi dispatch system as a multicriteria decision-
making problem, incorporating user preferences in finalizing
a taxi for a given passenger travel request. The performance
results demonstrate that the method reduces passenger com-
plaints. These methods exhibit good performance in relatively
stable environments, but their effectiveness diminishes when
the environment undergoes rapid state changes.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2025 at 06:27:01 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

In recent years, DRL has garnered increasing interest for
addressing EV charging and taxi matching scheduling prob-
lems [40], [41], [42], [43]. Wang et al. [40], for example,
formulated the ride dispatching problem as a MDP and
employed DQN with action search to optimize the dispatching
policy for drivers on ride-sharing platforms. Zhao et al. [41]
proposed an RL-based algorithm to optimize operation strate-
gies for different types of EVs. Silva et al. [42] developed an
intelligent E-taxi ride-hailing service controller that maximizes
passenger satisfaction while ensuring reliable charging for
each E-taxi. Haliem et al. [43] presented a dynamic, demand-
aware, and pricing-based vehicle-passenger matching and
route planning framework using DRL that generates optimal
routes for each vehicle and predicts demand allocation based
on online demand. For DRL, it is important to adopt strategies
to avoid unnecessary trials. Du et al. [44] designed a DDPG
with external knowledge algorithm to improve ride com-
fort, significantly increasing computational efficiency. Under
a multi-agent DRL framework, Zhang et al. [45] designed a
modified exploration strategy to direct agent training and avoid
unnecessary trials. These research efforts have contributed to
the development of effective and efficient scheduling strategies
for taxis. However, the aforementioned works confirm the
effectiveness of traditional optimization-based methods and
DRL-based intelligent methods for single tasks but do not
combine multi assignments, such as EV charging and taxi-
matching tasks.

In fact, some researchers have recognized the demand
for E-taxis in charging and matching, and have explored
methods that can simultaneously study charging behavior
and taxi matching. For instance, Lin et al. [46] proposed
a management architecture combining the charging network
and the car-hailing operating network of E-taxis while con-
sidering both passenger pickup and charging processes. The
results indicate that the architecture effectively lowers E-taxi
charging costs by reducing charging queue times at charging
stations. Wang et al. [47] approached the scheduling prob-
lem from the perspective of E-taxi drivers and formulated
their decision-making as a multi-agent reinforcement learning
(MARL) problem, proposing a novel multi-agent mean field
hierarchical RL framework to provide charging and relocation
recommendations for E-taxi drivers. However, the aforemen-
tioned literature oversimplifies the process of picking up
passengers by treating it as a mere subprocess of the charging
action, which deviates significantly from real-life scenarios.
Simultaneously, the RL networks presented in these studies
fail to address the heterogeneous actions and dynamic states
inherent in the E-taxi hailing problem, as proposed in the
introduction of this paper.

In summary, efficient charging and matching algorithms
within the E-taxi hailing system are of paramount impor-
tance. Although some previous studies have tackled individual
challenges of charging or matching, few have addressed the
coordination of these tasks, resulting in limitations in com-
putation speed and matching accuracy. To bridge this gap,
this paper proposes to investigate novel taxi recommendation
approaches for the e-taxi hailing system, focusing on the
integration of both charging and passenger matching tasks.

Fig. 2. System model.

This approach aims to enhance the overall performance of the
system while maintaining high levels of customer satisfaction
and operational efficiency.

III. MODELS IN E-TAXI HAILING SYSTEM

In this section, we first present the system models of the
E-taxi hailing system, followed by an introduction to the key
notations. Subsequently, we formalize the E-taxi scheduling
problem and provide a detailed explanation of the optimization
objective utilized in this paper.

A. System Model

Fig. 2 illustrates the system model proposed in our paper,
which consists of four key components: Scheduling Center
(SC), E-taxis, passengers/orders (One order may include many
passengers), and charging stations. Within this E-taxi hail-
ing framework, the SC, managed by service providers like
DiDi and Uber, handles requests from both passengers and
E-taxis and makes decisions utilizing the dual-stage heuristic
coordinated reinforcement learning approach introduced in our
paper. E-taxis act as service providers, responding to passenger
requests and submitting information about their current status
and charging requirements to the SC. Passengers, on the other
hand, act as service consumers who request E-taxi rides and
provide their preferences and pick-up locations. Charging sta-
tions are the infrastructure component of the system, providing
charging services to E-taxis as needed. They communicate
with the SC to share information about their availability
and capacity, enabling the center to make informed decisions
on charging allocations. Overall, the proposed system model
effectively captures the interactions between the main com-
ponents of an E-taxi hailing system, providing a foundation
for the development and evaluation of the dual-stage heuristic
coordinated reinforcement learning approach presented in this
paper.

B. Preliminaries

Then we will introduce the notations in our paper, which
can be concluded in Table I.
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TABLE I
NOTATIONS

The time horizon of each day is divided into T time slots.
Three integer sets, V , P , and C S, are used to represent E-taxis,
passengers, and charging stations, respectively, while m, n, and
q represent the number of E-taxis, orders from passengers, and
charging stations, respectively. To distinguish between taxis,
passengers, and charging stations, subscripts i , j , and k are
used to represent their respective numbers. a1t

i, j and a2t
i,k

indicate the matching status at time slot t between E-taxi i
and order j , and E-taxi i and charging station k, respectively.
(xvt

i , yvt
i ) represents the location coordinates of E-taxi i at

time slot t , and (xcsk, ycsk) represents the location coordinates
of charging station k. (xps t

j , yps t
j ) and (xpd t

j , ypd t
j ) represent

the location coordinates for the starting and ending points of
order j at time slot t , the total travelling distance of order
j is expressed as D j , and Q j denotes the quoted price of
order j’s order. Further, DV P t

i, j denotes the distance between
E-taxi i and order j , while DV C St

i,k denotes the distance
between E-taxi i and charging station k. T V P t

i, j denotes the
waiting time of order j after being accepted by E-taxi i , while
T V C St

i,k denotes the waiting time of E-taxi after arriving at
charging station k. E t

i denotes the remaining battery energy
of E-taxi i , while Em and En indicate the max battery energy
and punishment battery energy of an E-taxi. N t

k represents the
number of waiting taxis in charging station k. Cin denotes the
charging speed of charging stations.

C. Optimization Formalization

In previous research, the picking up behavior of E-taxis
was commonly influenced by factors like passengers’ waiting
time, and travelling distance [19]. Charging behavior, often
correlated with factors such as SoC, distance to charging
stations, and the operational status of charging stations [34].
Influenced by the above factors, we introduce two indicators
to evaluate the quality of charging and picking up, which are

referred to Charging Trend (CT) and Picking up Trend (PT) in
this paper. CT reflects a driver’s willingness to go to a charging
station, primarily influenced by SoC, distance to the charging
station, and waiting time at the charging station. Similarly,
PT reflects a willingness to accept an order at the current
moment, primarily determined by the profit and distance to
passengers. Therefore, the E-taxi hailing management problem
can be formalized as solving the CT and PT maximization
problem.

1) Charging Trend (CT): When the E-taxi i charges at
charging station k, the CT is mainly influenced by three
indicators: remaining battery energy E t

i , charging distance
DV C St

i,k , and waiting time T V C St
i,k .

Specifically, remaining battery energy E t
i indicates the

E-taxi i’s state of charge (SoC). E-taxis are expected to be
able to charge at a lower SoC, which would give them more
pickup revenue.

Charging distance DV C St
i,k represents the travelled distance

between E-taxi i and charging station k. Considering the city
roads are criss-crossed, the absolute distance more approxi-
mates the actual journey than Euclidean distance, which could
be calculated as follows:

DV C St
i,k =

∣∣xvt
i − xcsk

∣∣ +
∣∣yvt

i − ycsk
∣∣ (1)

T V C St
i,k represents the waiting time when E-taxi i charges

at charging station k, which can be calculated as:

T V C St
i,k =

λN t
k

Cin
(2)

where λ represents the average charging volume.
To obtain better optimization performance, the above three

indicators need to be normalized. After that, the Charging
Trend CT t

i,k when E-taxi i charge in charging station k at
time slot t can be expressed as:

CT t
i,k = −(µ1 E t

i + µ2 DV C St
i,k + µ3T t

i,k) (3)

where µ1, µ2, µ3 represent the weights.
As introduced before, obviously, E-taxis prefer lower

remaining battery, lower charging distance, and lower waiting
time. Therefore, a larger CT t

i,k indicates that the E-taxi i is
more satisfactory when charging in charging station k at time
slot t .

2) Picking Up Trend (PT): When the E-taxi i picks up
passengers j , the PT is mainly influenced by two indicators:
quoted price Q j and picking distance DV P t

i, j .
Quoted price Q j represents the total revenue from order j’s

trip. Note that it relates only to passengers j , not to the taxi
that picks up it. In reality, Q j is a piecewise function about
travelling distance D j of passengers j , which can be expressed
as:

Q j =

{
pb, D j ≤ Dmin

pb + p · (D j − Dmin), D j > Dmin
(4)

where D j can be calculated by the starting and ending loca-
tions (xps t

j , yps t
j ), (xpd t

j , ypd t
j ). pb represents the starting

price, Dmin denotes the starting distance, and p denotes the
price per unit distance.
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Picking distance DV P t
i, j refers to the travelled distance

between E-taxi i and order j , which can be calculated as:

DV P t
i, j =

∣∣xvt
i − xps t

j

∣∣ +
∣∣yvt

i − yps t
j

∣∣ (5)

Also after normalization, the Picking up Trend PT t
i, j when

E-taxi i picks up passengers j can be expressed as:

PT t
i, j = µ4 Q j − µ5 DV P t

i, j (6)

where µ4, µ5 represent the weights.
Similarly, E-taxis prefer lower picking distance and higher

quoted price. Therefore, a larger PT t
i, j indicates that E-taxi i

is more satisfactory when picking up passengers j .
3) Optimization Model: As introduced above, E-taxis prefer

higher CT and PT, therefore the E-taxi management problem
can be constructed as the following multi-objective optimiza-
tion problem:

max
a1,a2

T∑
t=1

[

∑
i∈V

∑
k∈C S

a1t
i,kCT t

i,k +

∑
i∈V

∑
j∈P

a2t
i, j PT t

i, j ] (7)

subject to a1t
i,k, a2t

i, j = {0, 1}, ∀i ∈ V, j ∈ P, k ∈ C S

(8)∑
k∈C S

a1t
i,k +

∑
j∈P

a2t
i, j ≤ 1, ∀i ∈ V, ∀t ∈ T (9)∑

i∈V

a2t
i, j ≤ 1, ∀ j ∈ P, ∀t ∈ T (10)

where a1t
i,k , a2t

i, j are the optimization parameters, and rep-
resent the matching status at time slot t between E-taxi i
and charging station k, E-taxi i and order j respectively. i ,
j , k represent the ID of E-taxi, order, and charging station
respectively.

The first and second terms of the objective function
(Equation (7)) represent the Charging and Picking up Trends,
respectively, of all E-taxis in the taxi-hailing system across the
total T time slots. The first constraint (Equation (8)) denotes
that the optimization parameter value is either 0 or 1, where
0 indicates no match and 1 indicates successful match. The
second constraint (Equation (9)) stipulates that E-taxi i can
choose at most one action (either picking up passengers or
charging) at a given time t . The third constraint (Equation (10)
specifies that order j can only be matched with one E-taxi
at time slot t . Just to mention, a charging station could be
matched with not only one E-taxi, but the extra E-taxis must
wait for charging.

IV. DUAL-STAGE HEURISTIC COORDINATED
REINFORCEMENT LEARNING APPROACH

FOR E-TAXI MANAGEMENT

In this section, we will introduce the proposed dual-stage
heuristic coordinated reinforcement learning approach.

A. Markov Decision Process With Dynamic State and
Heterogeneous Action Space

Regarding to the above optimization problem, RL is more
suitable due to the dynamic and uncertain nature of the
taxi-hailing environment comparing with solving it directly.

In real-world scenarios, the state of the system continuously
changes as passengers request rides, E-taxis become available
or occupied, and charging stations experience varying levels
of utilization. Moreover, the preferences of passengers and
the operational decisions of E-taxis are also subject to change
over time. Traditional optimization techniques often struggle
to cope with such highly dynamic and uncertain systems,
as they rely on fixed parameters and assumptions. In contrast,
RL can adapt to these changes in real-time by learning from
interactions with the environment and continuously updating
its decision-making strategy. This adaptive behavior enables
RL to better capture the complex, evolving relationships
between the various components in the E-taxi hailing system,
ultimately leading to more effective and efficient management
solutions.

In the E-taxi hailing system, the MDP is employed to model
the decision-making process and capture the intricate inter-
actions between various components of the system, including
passengers, E-taxis, and charging stations. Specifically, the SC
acts as an agent responsible for making decisions on behalf
of the E-taxis. The agent first observes the environment as the
MDP state, which includes passenger information (numbers,
location, destination, etc.), charging station information (loca-
tion, occupancy, charging speed, etc.), and E-taxi information
(location, status, etc.). The number of E-taxis and charging
stations is fixed, leading to a determined number of states
for them. While the number of order from passengers in
the environment at each moment cannot be predetermined,
resulting in an uncertain state space dimension for passengers
and a dynamic state space overall.

The agent then provides actions for the E-taxis, determining
whether they should charge or pick up passengers. Subse-
quently, a reward is calculated to evaluate the quality of the
action. The two actions, charging and picking up passengers,
are distinct and conflicting types of actions with entirely
different reward calculation methods and state transition meth-
ods, constituting a heterogeneous action space. Finally, as the
environment changes, the agent transitions to the next state.
The agent repeats this process, ultimately obtaining the optimal
policy. Thus, the E-taxi hailing management system can be
formulated as an MDP with dynamic state and heterogeneous
action space.

B. Design Rational and Overview

As previously discussed, we have formulated the E-taxi
hailing management system as an MDP to address the limita-
tions of traditional optimization algorithms when dealing with
dynamic environments. However, the dynamic state space and
heterogeneous action space pose challenges for the application
of existing RL techniques. Conventional RL algorithms, such
as Q-learning, SARSA, and Actor-Critic, are well-suited for
small-scale systems with well-defined state and action spaces
but struggle to handle uncertain state dimensions and hetero-
geneous action spaces. PPO is an on-policy RL method, which
performs well in solving dynamic and complex problems.
Compared to value-based networks like DQN, the clipping
mechanism utilized by the PPO method allows for the reuse of
sample data multiple times, resulting in a higher utilization of
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Fig. 3. Overall algorithm framework.

playback samples than the empirical pools used by DQN. PPO
exhibits broader applicability compared to other Actor-Critic
networks such as DDPG, as it can handle not only continuous
problems but also discrete types of problems. Moreover, PPO
employs the clipping mechanism to directly optimize the
policy while constraining the magnitude of policy updates,
thereby eliminating the need for designing and training the
value function, which simplifies the operation and improves
stability of system. The E-taxi scheduling problem addressed
in this paper is a discrete dynamic decision-making problem,
challenging to accurately design its value function due to
the complexity and variability of the environment. However,
the discrete PPO method can directly optimize the charging
quantity strategy of E-taxis and subsequently optimize their
charging behavior and pick-up behavior. This approach is the-
oretically feasible and efficient. Similar to other RL methods,
PPO fails to train on dimensionally varying data. For instance,
an E-taxi at a charging station cannot simultaneously pick
up passengers, resulting in action selection conflicts for the
taxis themselves. Moreover, two taxis cannot charge at the
same charging station in the meantime or pick up the same
passengers simultaneously, leading to conflicts between the
actions of different taxis. Traditional PPO algorithms can-
not efficiently resolve these conflicts, resulting in suboptimal
resource utilization and extended passenger wait times.

To address these challenges, we propose a dual-stage heuris-
tic coordinated reinforcement learning approach. The overall
algorithm framework is depicted in Fig. 3. In general, we con-
struct a DRL algorithm based on PPO, which is well-suited
for complex and dynamic environments. We then enhance
the standard PPO mechanism with a dual-stage decision
process to address the challenges posed by dynamic state
space and heterogeneous action space. Specifically, in the
first stage, we introduce a feature-guided state dimensionality

stabilization method that filters passenger feature scores to fix
the input state dimension for the RL network. This approach
addresses the uncertainty stemming from the variable number
of passengers. Upon receiving the state, the agent’s preliminary
action only decides the number of E-taxis will charge. Based
on that, the agent could obtain whether each E-taxi should
charge or pick up passengers and send the results to the
second stage. In the second stage, we propose a heuristic
coordinated assignment method to help the agent refine the
actions generated by the PPO network in the first stage.
We formulate the matching problem between E-taxis and
passengers, as well as between E-taxis and charging stations,
as two static optimization problems, and the final actions are
obtained through a heuristic algorithm. Ultimately, the PPO
reward is based on the actions derived from the heuristic
algorithm. As the action obtained by PPO can acquire the
optimal action through the heuristic algorithm, we believe
that the reward generated by the final action can judge the
action directly output by PPO. Consequently, the second
stage addresses the challenge of RL algorithms not directly
generating heterogeneous actions.

In comparison to traditional RL methods, our approach not
only broadens the application scope of RL by stabilizing the
dimensionality of the environment state but also integrates
heuristic algorithms to enhance the optimization of individ-
ual E-taxi strategies, thereby accelerating training speed and
reducing training costs. Compared to the two-stage RL-RL
method, this approach significantly reduces training costs and
avoids issues such as oscillation and non-convergence. Con-
trasted with direct heuristic method, our approach simplifies
the model construction process significantly by incorporating
PPO method, leading to a considerable reduction in the final
solution space and hastening computation. In the first stage,
the feature-guided state dimensionality stabilization method
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efficiently identifies high-value orders for drivers, contributing
to increased drivers’ profit and reduced passengers’ waiting
time. Subsequently, based on the RL-derived suggestion for
the number of charging E-taxis, the system classifies E-taxis,
enabling the selection of appropriate behaviors for each E-taxi
to coordinate traffic. In the second stage, the application of the
heuristic optimization method facilitates the pairing of E-taxis
with suitable charging stations or orders, thereby enhancing
the utilization of charging stations and further improving
driver income. Therefore, the approach presented in this paper
showcases remarkable efficiency and effectiveness from a
theoretical perspective.

C. Stage 1: Feature-Guided State Dimensionality
Stabilization PPO Method

1) State: The overall environment state at time slot t
includes three parts: E-taxi state, passenger state and charging
station state, which can be expressed as:

st =
{

SV t
1 , . . . , SV t

m, S P t
1 , . . . , S P t

n , SC St
1, . . . , SC St

q

}
(11)

where SV t
i represents the state of E-taxi i , including the loca-

tion coordinates (xvt
i , yvt

i ), remaining battery energy E t
i , and

statuses K V t
i and K T ARt

i , thus its expression is formulated
as

{
xvt

i , yvt
i , E t

i , K V t
i , K T ARt

i

}
. S P t

j represents the state of
order j , including the starting and ending location coordinates
(xps t

j , yps t
j ), (xpd t

j , ypd t
j ), and status K P t

j , thus its formal-

ization is designed as
{

xps t
j , yps t

j , xpd t
j , ypd t

j , K P t
j

}
. SC St

k
represents the state of charging station k, which is designed
as

{
K C St

k1, K C St
k2, . . . , K C St

kgk

}
. gk denotes the number of

E-taxis that can be serviced simultaneously by charging station
k.

Next, we introduce the concept of statuses. As time pro-
gresses to the next time slot, some E-taxis may haven’t
completed their previous assignments, which can include not
arriving at the destinations of their orders and having unsat-
isfactory remaining battery energy. To address this issue, four
statuses are introduced. The value of K V t

i is contained within
the set {−1, 0, 1, 2}. -1 denotes that the E-taxi is charging at
a charging station. 0 indicates that the E-taxi is idle. If the E-
taxi accepts an order, the process of picking up passengers can
be divided into two parts. The first part represents the period
from accepting an order to arriving at the order’s starting
location, and the second part represents the period from the
starting location to the order’s destination. 1 and 2 denote that
the E-taxi is in the first and second processes after accepting
an order, respectively. To record the matching relationship,
K T ARt

i is introduced to store order’s index associated with
K V t

i . The value of K T ARt
i denotes the target of E-taxi i

and is contained within the set {0, 1, 2, · · · , q)}. For example,
if K V t

i = 1 and K T ARt
i = 1, it represents that E-taxi i is

in the first process of picking up the first order. The value
of K P t

j is contained in the set {0, 1}, where 0 denotes that
the order is unaccepted and 1 denotes that the order has been
accepted. This prevents two E-taxis from accepting the same
order. The value of K C St

k is contained in the set {0, 1, · · · , m},
indicating the index of the E-taxi charging at charging station
k. This prevents too many E-taxis for charging at charging

station k in the meantime, with 0 denoting that no E-taxi is
charging.

The status changes of E-taxis, orders, and charging stations
during interaction with the environment proceed as follows: at
any given moment, for E-taxis, only the E-taxis with K V t

i =

0 can take an action. On the one hand, when an E-taxi is
matched with a charging station and successfully enters the
charging status, its status K V t

i transitions from 0 to -1. Upon
completion of the charging process, K V t

i changes back from
−1 to 0, during which the E-taxi cannot take any action. On the
other hand, when an E-taxi i is matched with an order j ,
its status K V t

i changes from 0 to 1, and K T ARt
i transitions

from 0 to j at once. As the E-taxi arrives at the passengers’
location and prepares to travel to the destination, K V t

i changes
from 1 to 2. Once the E-taxi successfully delivers the passen-
ger to the destination, its status K V t

i changes from 2 back to 0,
and K T ARt

i transitions from j to 0, allowing it to undertake
a new task as it interacts with the environment. For orders
and passengers, only orders with a status of K P t

j = 0 can be
accepted by an E-taxi. Newly generated orders and those not
previously accepted by an E-taxi have a status of K P t

j = 0.
Once an order is accepted, the order’s status K P t

j changes
from 0 to 1, preventing it from being matched with other
E-taxis. The order remains in the environment state until the
E-taxi successfully delivers its passengers to the destination,
at which point the order is deleted immediately. For charging
stations, only charging stations with elements in SC St

k that
are not all 0 can provide charging services for E-taxis. For
instance, if K C St

k1 and K C St
k2 are both 0 at time step t , and

there are two E-taxis i1 and i2 (assuming E-taxi i1 arrives
first) matched with charging station k, then K C St

k1 changes
to i1 immediately after E-taxi i1 arrives, and similarly, K C St

k2
changes to i2 after E-taxi i2 reaches. Until E-taxi i1 finishes
charging and leaves, K C St

k1 changes from i1 to 0. The same
occurs when E-taxi i2 leaves, and K C St

k2 changes from i2 to 0.
When elements in SC St

k are all 0, although charging station
k could be matched with E-taxis, it cannot provide immediate
charging service to the E-taxis because its charging ports are
all occupied.

2) Feature-Guided State Dimensionality Stabilization: In
our model, the number of new orders generated from the last
time step to current time step is uncertain, which results in
a variable state dimension and heterogeneous action spaces.
To maintain a fixed state input dimension for the RL network,
we have designed a feature-guided state dimensionality stabi-
lization method. In our method, the order data must undergo
a pretreatment before utilizing by the PPO algorithm in the
first stage. When the number of all orders is more than m,
the SC will score all new orders and add a certain number of
order data with high scores to environment state. And when
the number of all orders is less than m, the SC will also add
some meaningless order data to environment state to maintain
state dimension, which does not match with E-taxis in the
second stage. The detailed operation of feature-guided state
dimensionality stabilization method consists of the following
two steps:

Step 1. AT of Orders. In this paper, we employ a filter
method to handle the original data. The principle of the filter
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method is to evaluate certain features and retain those with
high scores. AT is considered as an evaluation factor in this
paper. First, a sufficiently large set is defined to store the
data information of all new orders, which can be represented
as P N = {P N1, P N2, · · · , P Nnt

p
}, where nt

p denotes the
number of new orders. Considering the inherent randomness
and uncertainty associated with the number of new orders in
real-world scenarios, this paper stipulates that the generation
of new orders adheres to a random distribution. Specifically,
nt

p follows

nt
p ∼ U (N L t

p, N H t
p) (12)

where N L t
p, N H t

p indicate the lower and upper bounds of the
uniform distribution, respectively. Orders are often accepted
by near available E-taxis, which helps reduce waiting time
of passengers and improve efficiency of E-taxis. Therefore,
we consider the total distance from the nearest m0 available
E-taxis except the quoted price. Considering that there may
not be m0 spare E-taxis, whose number is m t

s at some times,
the number m t

0 of spare E-taxis chosen is as follows:

m t
0 = min

{
m0, m t

s

}
(13)

A large quoted price and a short total distance both con-
tribute to the attractiveness of an original order. The set of
the nearest m t

0 available E-taxis from the order P N j can be
represented as V N j =

{
V 1

j , V 2
j , · · · , V mt

0
j

}
. The AT of the

order P N j is defined as:

AT j = µ4m t
0 · Q j − µ5 ·

mt
0∑

i=1

DV P N t
i, j (14)

where DV P N t
i, j represents the distance between E-taxi V i

j
and order P N j , which can be calculated by Equation (5).

Step 2. Choosing AT. It is assumed that there are nt
0

uncompleted orders from the last time step at step t , then
the number 1n of new orders needed by environment can be
formulated as:

1n = m − nt
0 (15)

Considering the number of new orders is random which
may be less than 1n, the number nt

t of new orders can be
transferred from set P N to P , is formulated as:

nt
t = min

{
1n, nt

p

}
(16)

If nt
t = 1n, the SC will choose the largest 1n values from

all AT j and extracts the data of corresponding orders into
environment state. If nt

t = nt
p, the SC will extract data of all

new orders and add meaningless information into environment
state to keep dimensions. Finally, the orders which is taken
as passenger state can be divided into three parts: old orders
from the last time step, new generated orders, and meaningless
orders. The optimization objective of feature-guided state
dimensionality stabilization can be formulated as follows:

max
a j

(

nt
p∑

j=1

a j AT j ) (17)

Algorithm 1 Feature-Guided State Dimensionality Stabi-
lization
Input: old order set P O , new order set P N , E-taxi set V
Output: order set P

1 a, b=len(P O),len(P N );
2 Initialize the set AT V ;
3 if b ≤ m − a then
4 P = P O + P N ;
5 Add meaningless data to P
6 else
7 for j = 0 to b do
8 Obtain a set V N j ;
9 Calculate AT j using Equation (14);

10 Record AT j in AT V ;
11 end
12 for I ndex = 0 to (m − a) do
13 Obtain the maximum AT j in AT V ;
14 Obtain the order P N j corresponding to AT j ;
15 Add P N j to P;
16 Delete AT j in AT V ;
17 end
18

19 end
20 return The order set P

subject to:

a j = {0, 1} (18)
n∑

j=1

a j = nt
t (19)

where a j is the optimization parameter with j ∈ P N
and indicates whether the order P N j passes pretreatment.
The objective function (Equation (17)) represents the total
AT of orders passing pretreatment. The first constraint
(Equation (18)) denotes the value of a j is either 0 or 1, where
0 indicates not pass and 1 indicates pass. The second constraint
(Equation (19)) denotes the number of orders transported from
P N must be nt

t . The algorithm process of feature-guided state
dimensionality stabilization is shown in Algorithm 1.

3) Preliminary Action: After pretreatment, the SC takes the
best action according to the environment state at each time slot.

at ∈ A denotes the action that the agent takes at time step t .
In the first stage, we treat the SC as the agent and model the
decision-making process of selecting the number of E-taxis to
be charged as a MDP. Therefore, the action at represents the
number of E-taxis that will charge in the time slot advised by
SC. Since the number of E-taxis is m, the action space A in
this paper is designed as:

A = {0, 1, 2, · · · , m} (20)

4) E-Taxis to Charge: After obtaining an action at ,
SC needs to decide which E-taxis should charge or pick up
passengers. The filter method is utilized again to choose at

E-taxis to charge. Considering that E-taxi drivers prefer to
charge their vehicles in a near charging station, the total CT
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between an spare E-taxi and its nearest nc charging stations
is considered as the evaluation factor to choose E-taxis. The
total CTi of spare E-taxi i can be formulated as

CTi =

nc∑
k=1

CT t
i,ik

(21)

where ik denotes the index of a charging station, which is one
of charging stations nearest to the E-taxi i . Then SC chooses
largest at values from all CTi and arranges them from the
largest value. The corresponding E-taxis will be advised to
charge in the second stage. To express clearly, all spare E-taxis
are classified into two categories: the E-taxis to match with
charging stations which are set as V C , and the E-taxis to match
with passengers which are set as V P . m t

c and m t
p represent the

number of E-taxis in V C and V P in time step t , respectively.

D. Stage 2: Heuristic Coordinated Assignment Method

In this paper, the best matching strategy is hard to obtain
directly using solvers or existing assignment algorithms due
to the dynamic and comprehensive environment. Fortunately,
the heuristic optimization method can generate an optimized
matching strategy through adaptive spatial search and compar-
ison, while also permitting some deviation from the optimal
solution. Compared to solvers and existing assignment algo-
rithms, the heuristic optimization method does not ensure
the discovery of the globally optimal solution. However,
it typically yields a relatively effective solution within a short
timeframe, which can achieve the benefits of simple design and
computational efficiency. The features designed are CT and PT
mentioned in Section III. Correspondingly, there are two main
optimization objectives in this section: one is maximizing the
total CT, and the other is maximizing the total PT. The specific
optimization matching strategy is as follows:

1) Optimization Assignment Between E-Taxi and Charging
Stations: The first optimization strategy is between the E-taxis
V C and charging stations. Considering E-taxis can wait in a
busy charging station, we match the charging station from the
largest CTi for each E-taxi in V C in turn. First, the E-taxi with
the largest CTi is matched with each charging station and all
CT can be obtained. If CT t

i,k is the largest CT, the SC will
match the E-taxi i with charging station k. At the same time,
N t

k increases by 1 with the matching times of the charging
station k. Then the SC will match the E-taxi with the second
largest CTi like the process above, which continues until all
E-taxis in V C are matched. The total matching time is m t

c.
The first optimization objective can be formulated as:

max
ai,k

(
∑

i∈V C

q∑
k=1

ai,kCT t
i,k) (22)

subject to: ai,k = {0, 1} (23)
q∑

k=1

ai,k = 1 (24)

where ai,k is the optimization parameters with i ∈ V C, k ∈

C S and represents whether an E-taxi is matched with a
charging station. The objective function (Equation (22)) rep-
resents the total CT of E-taxis in V C . The first constraint

Algorithm 2 Matching Strategy Between E-Taxis and
Charging Stations
Input: E-taxi set Vc, charging station set C S

1 c = len(C S);
2 for Vci ∈ Vc do
3 Initialize the set CTv;
4 for k = 0 to c do
5 Calculate CT t

ci ,k using Equation (3);
6 Add CT t

ci ,k to CTv;
7 end
8 Obtain the maximum CT t

ci ,k in CTv;
9 Match the ci th with the kth CS;

10 Update assignment state of the CS k;
11 end
12 return match result

(Equation (23)) denotes ai,k is either 0 or 1, where 0 denotes no
match and 1 denotes successful match. The second constraint
(Equation (24)) denotes an E-taxi could be only matched
with one charging station. The algorithm process of matching
strategy between E-taxis and charging stations is shown in
Algorithm 2.

2) Optimization Assignment Between E-Taxis and Pas-
sengers: There is an obvious difference between two
optimizations: a charging station can be matched with multi
E-taxis while an order can’t. So not each E-taxi or order
can be matched if the other is less. First, all meaningful and
unaccepted orders in P are extracted and set as PU , where
nt

u is introduced to represent the number of orders in PU .
To maximize the total profit of drivers and minimize the total
waiting time of passengers as much as possible, the matching
begins from the order with the largest AT j . Next, the order
with the largest AT j is matched with each E-taxi in V P and
all PT can be obtained. If PT t

i, j is the largest PT, the SC
will match E-taxi i with order j . Then the SC will match
the order with the second largest AT j like the process above,
which continues until all E-taxis in V C or all orders in Pu are
matched. All matching times Mvp can be formulated as:

Mvp = min
{
m t

p, nt
u

}
(25)

The second optimization objective can be expressed as

max
ai, j

(

Mvp∑
j=1

∑
i∈V P

ai, j PT t
i, j ) (26)

subject to: ai, j = {0, 1} (27)
mt

p∑
i=1

ai, j = 1 (28)

nt
u∑

j=1

ai, j ≤ 1 (29)

where ai, j is the optimization parameter with i ∈ V P, j ∈ PU
and indicates whether an E-taxi is matched with an order. The
objective function (Equation (26)) represents the total PT of
E-taxis in V P . The first constraint (Equation (27)) denotes ai, j
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Algorithm 3 Matching Strategy Between E-Taxis and
Orders
Input: E-taxi set Vp, order set Pu

1 a, b = len(Vp),len(Pu);
2 l = min(a, b);
3 for j = 1 to l do
4 Initialize the set PTv;
5 for Vpi ∈ Vp do
6 Calculate PT t

pi , j using Equation (6);
7 Add PT t

pi , j to PTv;
8 end
9 Match the pi th with the j th order;

10 Update assignment state of the pi th E-taxi;
11 Update assignment state of the j th order;
12 end
13 return match result

is either 0 or 1, where 0 indicates no match and 1 indicates
successful match. The second constraint and third constraints
(Equation (28) and (29)) denote an order in PU can be only
matched with one E-taxi and an E-taxi in V P can be only
matched with one order at most. The algorithm process of
matching strategy between E-taxis and orders is shown in
Algorithm 3.

3) Final Action: The behaviors of all E-taxis are clear
after two optimization assignments by utilizing the heuristic
method. a′

t is defined to represent the actions of all E-taxis,
which is a set with m dimensions. The transfer process from
the action at of the SC to the actions a′

t of E-taxis can be
formulated as:

at → a′

t (30)

where the formulation of a′
t is designed as follows:

a′

t =
{
a1

t , a2
t , · · · , am

t

}
(31)

where ai
t denotes the action of E-taxi i at the time step t ,

determining the charging station or order with which taxi i
will be matched. The constriction of ai

t is as follows:

ai
t ∈ {−q, · · · , −2, −1, 0, 1, 2, · · · , n} (32)

It’s assumed that ai
t = l (l ∈ Z). If l < 0, it represents

that the E-taxi i is matched with the charging station −l to
charge at the time step t . If l > 0, it represents that the
E-taxi i is matched with the order l at the time step t . There
are three situations when an E-taxi chooses the action 0: the
E-taxi is charging in a charging station, the E-taxi is on the
way to compete the last order, and the E-taxi does nothing at
the time step t .

4) Reward: r i
t denotes the reward that the E-taxi i gets after

taking an action at the time step t . In this paper, we establish
that when the E-taxi i is paired with the charging station k,
it receives a reward CT t

i,k . When the E-taxi i is matched with
the order j , it receives a reward PT t

i, j , and when it neither
picks up passengers nor opts to charge, it receives a reward
of 0. Therefore, the reward of each E-taxi in this paper can

be formulated as follows:

r i
t =


µ1(Em − E i

v) − µ2 DV C St
i,−l − µ3T V C St

i,−l , l < 0
0, l = 0
µ4 Q j − µ5 DV P t

i,l , l > 0

(33)

We hope that the E-taxis can keep working in the envi-
ronment. But the remaining battery energy of some E-taxis
is almost zero in certain situations. To avoid this situation,
a punishment is designed when an E-taxi’ energy falls below
En , and is formulated as:

r i
t = PU N (34)

where PU N denotes the value of punishment when E-taxi i’s
energy is lower than En .

rt denotes the reward that the agent gets after an action at
the time step t . rt is the sum of the all E-taxis’ reward, which
indicates the quality of the action taken by agent under the
environment state. rt is formulated as:

rt =

m∑
i=0

r i
t (35)

Then the cumulative reward of one day can be formulated
as follows:

r =

T∑
t=0

rt =

T∑
t=0

m∑
i=0

r i
t (36)

The expression of r is consistent with the optimization
objective as shown in Equation (7). Therefore, the optimization
objective in this paper can be expressed as the maximum
cumulative reward in one day.

5) State Transfer: According to state st and E-taxis’ action
a′

t , each E-taxi interacts with environment, and environ-
ment state will change with time. For E-taxis, the location
(xvt

i , yvt
i ), remaining battery energy E t

i , statuses K V t
i and

K T ARt
i will be updated respectively to (xvt+1

i , yvt+1
i ), E t+1

i ,
K V t+1

i and K T ARt+1
i . For charging stations, the status K C St

k
will be updated to K C St+1

k due to the departure and arrival of
E-taxis. For passengers, some old orders are completed while
others not. The later will be ranked again and reserved for
the next step t + 1. The uncompleted orders’ starting location
(xps t

j , yps t
j ), ending location (xpd t

j , ypd t
j ), status K P t

j will
be updated respectively to (xps t+1

j∗ , yps t+1
j∗ ), (xpd t+1

j∗ , ypd t+1
j∗ )

and K P t+1
j∗ , where j∗ may not equal to j due ranking again.

Then, the whole environment state st will be updated to st+1
after pretreatment.

6) Training Process of Proximal Policy Optimization: Fig. 4
shows the overall structure of PPO algorithm in this paper.
The PPO algorithm is an on-policy gradient algorithm, which
includes an actor network and a critic network. At each time
slot, according to current policy and environment state st ,
the actor network outputs an action distributed probability
pt and an action at , which determines an action array a′

t by
using a heuristic coordinated assignment method. Then, the
SC reaches next state st+1 by interacting with environment,
which must experience a pretreatment for utilizing, and obtains
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Fig. 4. PPO structure.

a reward rt . Correspondingly, the critic network makes an
evaluation vt for st and at . Next, an array {st , at , pt , vt , rt }

is stored in a buffer. When updating, a certain number of
arrays are sampled from the buffer and transported to the actor
network and the critic network to calculate actor loss and critic
loss. Then the parameters of the actor network and the critic
network will be updated by minimizing total loss, which is
determined by actor loss and critic loss.

There are two policies: new policy πθ (at |st ) and old policy
πθold (at |st ), where θ denotes the policy parameter vector. Then
the probability ratio rt (θ) can be expressed as:

rt (θ) =
πθ (at |st )

πθold (at |st )
(37)

One of the main characteristics of PPO is that the advantage
function Ât is introduced, which can be expressed as:

Ât = δt + (γ λ)δt+1 + · · · + (γ λ)T −t+1δT −1 (38)
δt = Q(st ) − V (st ) = rt + γ V (st+1) − V (st ) (39)

where Q(st ) denotes the Q-value of state st , γ denotes
discount factor, γ is a constant, V (st ) denotes the state-value
function of state st . Different from trust region policy opti-
mization (TRPO) algorithm using KL divergence to calculate
the policy gradient, PPO introduces a clip operation based on
TRPO to calculate the policy gradient, which can be expressed
as:

Lclip
π (θ) = Ê t [min(rt (θ) Ât , cliprt (θ), 1 − ε, 1 + ε] (40)

where ε is a hyper parameter which is used to clip the value of
rt (θ). This approach could remove the incentive for the rt (θ),
which is not in interval [1 − ε, 1 + ε]. The whole MDP of
E-taxis scheduling based on dual-stage heuristic coordinated
reinforcement learning approach is shown in Algorithm 4.

V. PERFORMANCE EVALUATION

In this section, we assess the performance of our pro-
posed dual-stage heuristic coordinated reinforcement learning
approach using a real-world E-taxi hailing dataset. To validate
the effectiveness and efficiency of our method, we compare
it against existing common methods in the field. Additionally,
we conduct a series of ablation experiments to demonstrate the
impact of each component within our approach. Furthermore,
a time cost analysis is performed to evaluate the scalability of
our method as the size of the E-taxi hailing system increases.
The evaluation metrics employed in this section include
rewards, total profits of E-taxis, low-energy occurrences times,
pickup count for E-taxis, passenger acceptance ratio, and the
number of active charging stations.

A. Settings

In this paper, our experiments were conducted on a desktop
computer equipped with an Intel Core i7-12700 processor.
We used Python 3.9 as the programming language and Pytorch
1.12.1 as the deep learning framework. All experiments
were conducted under the OptiPlex 7000 operating system.
We apply a city-level real world taxi-hailing environment
in Xi’an, China. We selected an area of 10km × 10km
including 5 charging stations in Xi ’an, which is shown in
Fig. 5. To mitigate an excessively large environmental state
dimension, we opted for a representation of 20 E-taxis in
the environment, a number lower than the actual count in the
region. Accordingly, to maintain a balanced ratio of E-taxis to
charging stations, as well as to accurately depict the authentic
charging pressure on E-taxis, each charging station is equipped
to accommodate only one E-taxi for charging at a time.
To express location information clearly, the area is divide
into a multi small areas of 100 × 100, where a unit length
represents 100m. In the experiment, E-taxis work 10 hours
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Algorithm 4 MDP of Dual-Stages Management Strategy
Based on Heuristic Coordinated Reinforcement Learning
Approach
Input: Episode number e, time slot number T for each

episode, E-taxi number m
1 Load the parameters of trained actor network;
2 for episode = 0 to e do
3 Initialize environment state s0;
4 Initialize total reward r of each episode;
5 for t = 0 to T do
6 Pretreat order state as shown in Algorithm 1;
7 Obtain environment state st ;
8 Obtain an action at , a probability pro, a value

val from agent;
9 Match optimally between E-taxis and charging

stations;
10 Match optimally between E-taxis and orders;
11 Obtain actions set a′

t of all E-taxis;
12 for i = 0 to m do
13 Interact with environment and get a reward r ′

t ;
14 end
15 Calculate total reward rt of all E-taxis;
16 Update environment state and obtain st+1;
17 Store transition {st , at , prob, val, rt };
18 st = st+1;
19 r = r + rt ;
20 end
21 Update the actor network;
22 Update the critic network;
23 end
24 return Scheduling result

Fig. 5. A real environment in Xi’an (From Google map).

every day, that represents T = 60, and the environment state
updates every 10 minutes. The speed of all E-taxis follows
a normal distribution N (60, 52) km/h. At beginning of each
day, the location of each E-taxi is set as a random coordinate

(xv, yv) where xv and yv are both integers from 0 to 100.
The initial remaining battery energy of each E-taxi is set as
a random integer from 50 to 100. Em and En are set to
100 and 5, respectively. In the majority of cases, (N L t

p, N H t
p)

are assumed to (0, 30), and during peak hours, i.e.,
8:00 ∼ 9:00, 11:00 ∼ 13:00, 18:00 ∼ 20:00, (N L t

p, N H t
p) are

set to (10, 60). When environment state updates, the starting
location (xps, yps) and ending location (xpd, ypd) of each
order are both random coordinates, where xps, yps, xpd and
ypd are all integers from 0 to 100. If the total distance D j of
any order is lower than 500m, the order is meaningless and
will be deleted. The relationship between quoted price Q j and
travelling distance D j of passengers can be formulated as

Q j =


7.67, 5 ≤ D j ≤ 30
7.67 + 0.160 · (D j − 30), 30 < D j ≤ 80
15.67 + 0.255 · (D j − 80), 80 < D j ≤ 150
33.52 + 0.265 · (D j − 150), D j > 150

(41)

The profit of an E-taxi can obtain is Q j Yuan when picking
up passengers and −2 Yuan every 10 minutes when charging.
Similar to real distribution in Xi’an, the detail locations of
5 charging piles are respectively as [45, 80], [35, 55], [15, 35],
[65, 25] and [95, 60]. The charging speed Cin of all charging
piles is set to 60 every hour. λ follows a normal distribution
N (50, 52). m0 and nc are both set to 3. We consider an E-taxi
is in a bad situation when its SoC falls below 5, and the
punishment PU N is set to −100.

PPO algorithm is utilized to train data which includes an
actor network and a critic network. Two hidden layers are
designed in each network. There are respectively 205 neurons,
128 neurons and 1 neuron in the input layer, hidden layer
and output layer of each network. The number of training
episodes e is set to 1000. There are 60 time steps in one day.
The learning rate and discount factor are respectively set to
0.01 and 0.98. The memory size and batch size are respectively
set to 10000 and 64. When training, the parameters of actor
and critic are updated every 10 episodes.

A series of experiments is designed to explore the influence
of parameters in Equation (3) and Equation (6). Considering
E t

i counts more than other two factors, we set that µ1 + µ2 +

µ3 = 1 and µ2 = µ3. Similarly, µ4 + µ5 = 1. The overall
convergence reward with µ1 and µ4 are respectively shown
in Fig. 6-(a) and Fig. 6-(b). It is important to emphasize that
our goal is to obtain a suitable set of parameters to fix the
weights of the rewards, not necessarily the optimal ones. This
is because the final performance of the system is determined
by the mark in front of the parameters, with the size of
the parameters having a relatively minor effect. To guarantee
simultaneously that the final reward and all parameters are not
too small, µ1, µ2, µ3, µ4 and µ5 are respectively set to 0.6,
0.2, 0.2, 0.7 and 0.3 in this paper.

B. Reinforcement Learning Training Performance

In this section, we evaluate the training performance of
our proposed dual-stage heuristic coordinated reinforcement
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Fig. 6. Parameter sensitivity.

Fig. 7. Reward.

learning approach in comparison to typical RL method
(DQN-H and DQN) and typical optimization method (Ran-
dom). ‘DQN-H’ indicates that the platform employs the DQN
method during the first stage and maintains the heuristic
approach in the second stage. ‘DQN’ signifies that the platform
directly applies the joint DQN method consisting of 20 value
networks and 20 target networks, wherein the goal of each
value network is to maximum overall cumulative rewards.
At each time step, the value networks produce 20 actions
concurrently to determine the behavior of all E-taxis. ‘Ran-
dom’ denotes that the platform generates a random action
between -5 and 20 for each E-taxi at each time slot. To avoid
the randomness, the average of training results from 19 runs
is used as the final data presented in this paper. The results
corresponding to each of the six indicators are illustrated in
Fig. 7, Fig. 8-(a) to (b), Fig. 9-(a) to (b) and Fig. 10.

Overall performance: (i) Reward (Fig. 7): Our proposed
approach consistently achieves the highest rewards during
training, indicating that the method is capable of learning an
efficient policy for E-taxi scheduling. The upward trend in the
graph demonstrates the effectiveness of the dual-stage heuristic
coordinated reinforcement learning approach in optimizing the
overall system performance. This phenomenon arises because
each value network aims to maximize the overall cumulative
reward by focusing solely on the behavior of an individual
E-taxi, disregarding the impact of other value networks and
the collective behavior of the E-taxis. Consequently, the agent
lacks a holistic understanding of the environment, hindering
the acquisition of an effective and comprehensive optimization
strategy. The weak interconnections among the value networks
result in the inability of the joint DQN method to adapt to
complex and dynamic environments, leading to performance
even lower than the ‘Random’ strategy.

Fig. 8. E-taxis performance.

Fig. 9. Passengers performance.

E-taxis’ perspective: (ii) Total profits of E-taxis
(Fig. 8-(a)): The total profits generated by E-taxis using
our method (about 7500) are considerably higher than
those achieved by the other three methods (about 6000),
illustrating the substantial economic benefits of our approach.
(iii) Low-energy occurrences times (Fig. 8-(b)): Low-energy
occurrences times refers to the times that the SoC falls below
the set minimum limit during the operation of all the E-taxis.
Regarding to this figure, the low-energy occurrences times
obtained by our method after training stabilization were
about 17 times, slightly higher than DQN-H (10 times), but
much lower than DQN (70 times) and ‘Random’ method
(37 times). The lowest convergence rewards for the DQN
strategy can be attributed to the increased frequency of
low-energy occurrences. From the above, it can be seen that
the algorithm proposed in this paper can effectively improve
the performance of E-taxis. Compared with other methods,
it can maximize E-taxis’ profits while substantially reducing
the low-energy occurrences times, so the algorithm proposed
in this paper can improve the satisfaction of E-taxis.

Passengers’ perspective: (iv) Waiting times of passengers
(Fig. 9-(a)): it indicates the pickup time after the passenger
order is received by the taxi, and this indicator is related to
the matching distance. As shown in the figure, compared with
other methods, the results of our method show a minimum
value in waiting time, with our method being able to achieve
approximately 1/2 of DQN and ‘Random’. (v) Passenger
acceptance ratio (Fig. 9-(b)): Passenger acceptance ratio repre-
sents the probability that a passenger’s order will be accepted
when they first enter the market. The results obtained in this
paper are significantly higher (0.72) than other three methods,
reflecting an increase of 16.7% compared to DQN-H and
‘Random’ strategy, as illustrated in the figure. The above
waiting times index and passenger acceptance ratio index
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Fig. 10. Charging stations utilization ratio.

judge the performance of the algorithm from the passenger’s
point of view, and it can be seen that our method also takes
into account the passenger’s satisfaction.

Charging stations’ perspective: (vi) Charging stations uti-
lization ratio (Fig. 10): Our method optimizes the use of
charging stations, ensuring an appreciable utilization ratio,
slightly lower than DQN-H, higher than DQN and ‘Random’
strategy, as illustrated in the figure. This result confirms the
ability of our approach to efficiently manage the charging
infrastructure and support the growing E-taxi ecosystem.
Presumably, the DQN-H method’s low profitability and low
passenger acceptance ratio for E-taxis is attributed to the
exceptionally high utilization of charging stations, which,
in turn, results in a low occurrences times of low-energy.

In conclusion, the performance evaluation of our pro-
posed dual-stage heuristic coordinated reinforcement learning
approach, as shown in Figs. 7, Fig. 8-(a) to (b), Fig. 9-(a)
to (b) and Fig. 10, achieves commendable results across all
indicators compared to the DQN-H method, DQN method
and ‘Random’ matching. It is worth noting that the per-
formance of some indicators for DQN is even lower than
‘Random’ matching. The reason for this is that the scene
is highly complex, with dynamic states and heterogeneous
actions, making conventional RL algorithms unable to function
effectively. Despite DQN-H exhibiting the lowest number
of low-energy occurrences and the highest charging stations
utilization, its profitability and passenger acceptance fall short
of expectations. Overall, our approach effectively addresses
the challenges of E-taxi scheduling, and optimizes rewards,
profits, energy management, and customer satisfaction while
efficiently utilizing charging stations.

C. E-Taxi Hailing System Performance

In the previous section, we analyzed the performance
of each indicator during the training of the RL algorithm.
In this section, we will focus on the performance of the pro-
posed dual-stage heuristic coordinated reinforcement learning
approach after convergence. We will examine specific aspects
such as E-taxi charging and pickup patterns within a particular
E-taxi hailing system, passenger satisfaction, and charging
station occupancy. The data presented in this subsection has
been averaged for each indicator after convergence. Given the
poor performance of the ‘DQN’ method, we have chosen not
to present its results in this context.

Fig. 11. Profits and low-energy occurrences times of five specific E-taxis.

Table. II displays the states of various participants across
some specific time periods in the taxi-hailing system when
using our proposed dual-stage heuristic coordinated reinforce-
ment learning approach, where LET, EwO, EiC, AR, WT,
OR indicates ‘Low-energy times’, ‘E-taxis with order’, ‘E-
taxis in charging’, ‘Acceptance ratio’, ‘Waiting time’ and
‘Occupancy ratio’, respectively. Overall, our proposed mech-
anism delivers superior performance compared to the DQN-H
method and ‘Random’ matching method.

For E-taxis, our approach ensures that no more than
3 vehicles per hour have a battery level below the minimum
threshold, while maintaining a higher SoC. This substantially
reduces the operating time of E-taxis and enhances efficiency.
During the 8-9 am peak period, our mechanism results in
an average of 16 E-taxis picking up passengers, 4 E-taxis
charging, and less than 1 E-taxi remaining idle. In contrast,
the other two methods have a significant number of idle
vehicles. This demonstrates that our mechanism prioritizes
keeping E-taxis in active states, either picking up passengers
or charging, to increase operational efficiency.

For passengers, our approach offers an order acceptance rate
close to 70% during peak demand periods and as high as 75%
during off-peak hours. In comparison, the other mechanisms
exhibit acceptance rates of around 60% for both time periods.
Our mechanism achieves these results by scheduling E-taxis
for charging when passenger demand is low and making
more E-taxis available when demand is high. This differs
from other mechanisms that DQN-H prefers E-taxis to choose
charging, whereas ‘Random’ tend to let E-taxis charge when
they run out of power, resulting in insufficient service during
peak periods. Furthermore, our mechanism keeps passengers’
waiting times within 5 minutes, indicating effective matching
between passengers and E-taxis based on their locations.

From the charging station’s perspective, our mechanism
maintains a stable utilization rate by preventing E-taxis from
becoming idle. In conclusion, our proposed mechanism opti-
mizes the use of charging stations at all times, significantly
reduces low-energy occurrences times in E-taxis, and enhances
both the operational profits of E-taxis and the acceptance rate
of passengers’ orders.

In the following analysis, we validate the advantages of
our proposed algorithm in terms of E-taxi profits and the
low-energy occurrences times from the perspectives of several
specific E-taxis. Fig. 11-(a) and (b) respectively display the
total daily profits (over 10 hours) and the total low-energy
occurrences times for E-taxis 1, 5, 8, 15, and 20 when using
our method, DQN, and the random method.
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TABLE II
E-TAIX HAILING SYSTEM PERFORMANCE IN SPECIFIC TIME PERIOD

Fig. 12. E-taxis and charging stations’ actions.

Firstly, it is evident from Fig. 11-(a) that each E-taxi
can achieve higher profits using our mechanism, averaging
360 per day. Moreover, the profits for each E-taxi are evenly

distributed, avoiding situations where some taxis earn signifi-
cantly more or less than others. In contrast, both DQN-H and
the ‘Random’ matching method yield lower profits, averaging
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TABLE III
PASSENGERS’ ACTIONS

around 280. Similarly, as seen in Fig. 11-(b), the low-energy
occurrences are extremely rare for E-taxis, with only E-taxi
0.7 times on average per day, slightly more than DQN-H
(0.3) but much less than ‘Random’ strategy. This demonstrates
that our mechanism can effectively schedule charging and
passenger pick-up behaviors for E-taxis, avoiding low battery
energy situations, increasing passenger pick-up efficiency, and
subsequently enhancing E-taxi profits. Additionally, our mech-
anism considers all participants in the E-taxi hailing system as
a whole, resulting in relatively small differences in profits and
low-energy occurrences times for each E-taxi. This approach
can effectively prevent malicious competition between E-taxis,
leading to better service for passengers.

Fig. 12 further employs a Gantt chart to illustrate the
actions (picking up passengers, idle, charging) of 5 E-taxis and
3 charging stations throughout an entire day (10 hours). Con-
sistent with the previously obtained results, our mechanism
consistently avoids keeping E-taxis in an idle state. In other
words, when E-taxis are not engaged in picking up passengers,
they opt for charging to prevent being in a low-energy state
and unable to provide services when the number of passengers
increases in the future.

Next, we also explore the specific waiting time of 10 orders
and how many time slots they experience before being
accepted. As shown in Table III, with our proposed method,
most of the orders are responded in the first time slot, and
only two orders are answered in the second scheduling (after
10 minutes). Meanwhile, the waiting time of passengers all
falls below 6 minutes. While in the other two methods,
approximately half of orders are accepted in the second time
slot, even in the third times, and the maximum waiting time
of passengers reach nearly 10 minutes. The cause is that both
E-taxis’ profits and passengers’ satisfaction are considered in
our approach to increase participation.

D. Ablation Experiment

To investigate the performance of our proposed dual-stage
heuristic coordinated reinforcement learning approach in han-
dling dynamic states and heterogeneous actions, we conduct
ablation experiments for the first stage’s feature-guided state

dimensionality stabilization method and the second stage’s
heuristic coordinated assignment method. In Fig. 13-(a) to (c),
“Without Stage 1” means that the feature preprocessing no
longer uses our proposed feature-guided state dimensionality
stabilization method, but adopts a random feature selection
method, while “Without Stage 2” means that the matching
between E-taxis, passengers, and charging stations no longer
takes the proposed heuristic coordinated assignment method,
but does random matching. Similar to Section V-B, the data
represents the average of the results from 19 training sessions.

First, Fig. 13-(a) to (c) shows the convergence of rewards in
our proposed method, as well as in cases without stage 1 and
without stage 2. From the figure, it is evident that our method
converges the fastest and achieves the highest final reward. For
the case without stage 1, its convergence speed is similar to
that of our proposed method, but the final reward is not as high,
and the fluctuations after convergence are relatively larger.
The reason for this is that without stage 1’s feature selection,
when there are too many passengers, some passengers may
be randomly discarded to satisfy the input dimension of the
RL state, and these discarded passengers could potentially
bring higher profits. Regarding the case without stage 2, its
performance in terms of convergence speed and final reward
is the worst. The reason is that, as mentioned earlier, the
actions in the E-taxi system have mutual interference. If the
output actions of RL are not processed, this interference will
severely affect the training process of the RL network, leading
to slow convergence or even non-convergence. The smaller
rewards observed here are also due to the fact that basic
RL algorithms cannot learn feasible policies under such a
high-load environment. Additionally, both stages contribute to
the overall profitability of E-taxis. However, the second stage
notably reduces passenger waiting time, while the impact of
the first stage is minimal.

E. Comparisons

This section compares the results of the two-stage rein-
forcement learning heuristic algorithm proposed in this paper
with existing algorithms, including (i) rewards: which intu-
itively reflect the overall advantages and disadvantages of the
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Fig. 13. Ablation experiment.

TABLE IV
OVERALL STATISTICAL RESULT

methods, (ii) taxi revenue: reflecting the satisfaction level of
the taxis in picking up passengers, (iii) passenger waiting
time: reflecting the satisfaction level of the passengers, (iv)
low battery occurrences: reflecting the satisfaction level of
the taxis in terms of charging, (v) passenger acceptance
rate: reflecting the satisfaction level of the passengers, and
charging station utilization rate: reflecting the utilization of the
charging stations. There are several comparison algorithms as
follows, all of which are modified on the basis of the original
algorithm to adapt to the complex scenarios studied in this
paper: (i) Traditional optimization scheduling method: Using
online optimization scheduling methods to directly solve the
optimization equations. (ii) End-to-end RL (DQN): Directly
using the DQN algorithm to match taxis with passengers
and charging stations. (iii) Two-stage reinforcement learning
(DQN+Heuristic): The first stage uses DQN to decide the
number of taxis and passengers, and the second stage uses
heuristic algorithms for solving. (iv) Our method without
feature preprocessing: The first stage does not perform feature
processing. (v) Our method without heuristic: After obtaining
the number of taxis and passengers from the first stage RL,
random matching is performed in the second stage. The results
are shown in Table IV, where all results are averaged over
10 simulations.

From the results, it can be observed that the method
proposed in this paper has certain advantages in all aspects,
while the End-to-end RL method shows the worst results.
This is because the E-taxi hailing system is a highly
dynamic scenario, bringing about a dynamic state space and
action space. Directly using reinforcement learning to match
taxis, passengers, and charging stations is difficult to train

effectively, with specific reasons discussed in Section IV-B.
The traditional optimization scheduling method, due to its
inability to obtain future states, also yields results inferior
to the method proposed in this paper. The DQN+Heuristic
and our method without Feature preprocessing have the same
architecture as the method in this paper, but the performance
gap in the algorithms used in the first stage leads to a certain
gap in the final results compared to the results of this paper.
Finally, our method without heuristic, which performs random
matching in the second stage, also yields better results than
the End-to-end RL method, demonstrating the advantage of
the two-stage algorithm in the E-taxi hailing system.

In conclusion, our approach optimizes all aspects of the
system in a systematic manner through its rational and well-
designed dual-stage structure. In the first stage, the PPO
method effectively increases the profitability of E-taxis. In the
second stage, the heuristic method further improves the
profitability of E-taxis and reduces passenger waiting time.
Compared to other methods, our approach not only enhances
the profitability of E-taxis, passenger acceptance ratio, and
charging station utilization but also significantly reduces the
number of low-energy occurrences and passenger waiting time,
thereby achieving a high level of satisfaction for E-taxi drivers,
passengers, and charging stations. Overall, following the initial
exploration process using the RL method, the agent gradually
learns the optimal number of E-taxis needed to charge in
certain state. Once the E-taxis are assigned to charge or
pick up passengers, the heuristic method is then employed
to effectively match the E-taxis with orders and charging
stations. RL and heuristic method work together to optimize
the scheduling of E-taxis, guiding them to appropriate charging
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stations when their battery levels are low and enabling them to
serve high-value orders when their battery levels are sufficient.

VI. CONCLUSION AND DISCUSSION

A. Conclusion

In conclusion, this paper presents a novel approach to
address the challenges of E-taxi management in the context
of the rapidly growing adoption of EVs. By formalizing
the E-taxi hailing management problem as a MDP with
dynamic state and heterogeneous action, we provide a solid
foundation for the development of advanced optimization
algorithms. Our proposed dual-stage heuristic coordinated
reinforcement learning approach consists of the feature-guided
state dimensionality stabilization PPO method and a heuris-
tic coordinated assignment method, effectively tackling the
challenges of uncertain state dimensions and heterogeneous
action spaces. The evaluation of our approach on a real-world
E-taxi hailing environment demonstrates its effectiveness in
significantly improving satisfaction of E-taxis, passengers and
charging stations. Compared to traditional RL approach and
random strategy, our approach has augmented daily E-taxi
profits by nearly 20%, boosted order acceptance rates by
approximately 15%, and slashed passenger waiting time by
almost 55%, all while substantially enhancing charging station
utilization. Consequently, our approach efficiently optimizes
E-taxi scheduling, making it suitable for real-world E-taxi
hailing applications.

B. Discussion and Future Works

Constraints execution: In operational research optimiza-
tion systems, constraints are often imposed to mitigate the
adverse effects of certain actions on the system. Traditional
optimization solutions typically employ constraints to limit
these actions. In reinforcement learning systems, scholars
have designed various methods to avoid such adverse effects,
such as the penalty-based soft constraint approach and the
action masking strong constraint approach. This paper adopts
a penalty-based method, which does not forcibly prohibit
the agent from performing certain actions but instead makes
judgments in conjunction with future rewards. For instance,
during rush hours, to reduce passenger wait times and increase
taxi revenue, taxis are encouraged to operate in low-energy
consumption areas. The use of penalties can minimize the
occurrence of low-energy operation for electric taxis while
providing them with greater decision-making flexibility. The
agent coordinates the remaining battery life, profitability, and
passenger wait times of electric taxis through continuous
interaction with the environment to make optimal decisions.
On the other hand, action masking is also a common method
for handling constraints. Unlike penalties, this method forcibly
prohibits certain actions by assigning a probability of zero,
which is also feasible in the scenarios considered in this paper.
By forcibly prohibiting taxis from operating at low battery
levels, the action space is simplified, reducing the instability
of the training process and aiding in faster convergence.
Both mainstream methods have their advantages; the penalty
method is more flexible but cannot ensure that constraints are

met, while the action masking method fundamentally satisfies
constraints but cannot find optimal results. Future work in
similar areas could combine the two approaches to leverage
their respective strengths. For example, setting stricter action
masking rules (forcing charging when battery levels are below
5%, currently at 10%) and imposing penalties between 5%
and 10% could reduce the probability of action errors while
maintaining a certain level of strategy flexibility. For instance,
maintaining a penalty mechanism to restrict actions during the
training phase ensures the agent’s strategic flexibility, while
increasing action masking during the usage phase prohibits
the agent from making erroneous actions, ensuring system
constraints are met.

End-to-end reinforcement learning is an algorithm capable
of taking input states and directly outputting the final policy.
In other words, the input consists of status information such as
taxis and passengers, and the output is the matching informa-
tion between taxis and passengers. However, in e-taxi hailing
system, the number of taxis and passengers is constantly
changing. This scenario, where the number of agents leads
to a dynamic state and action space, presents a significant
challenge in the field of reinforcement learning. Addressing
such dynamic environments with varying agent populations
is an area that requires further research and development
in the domain of end-to-end RL algorithms. The primary
methodologies we have contemplated include: Single-Agent
Reinforcement Learning System: Here, the RL agent assumes
the role of a dispatch center, facilitating real-time alloca-
tion and decision-making processes for taxis and passengers.
To accommodate the variability in the quantity of taxis and
passengers, it is imperative to configure the action and state
spaces to be expansive, utilizing padding techniques to address
any deficiencies. A significant challenge with this approach
is the unpredictability of the number of taxis and passengers
in future system iterations. Consequently, despite an exten-
sive action space, it remains infeasible to make decisions
for scenarios beyond the training environment. Multi-Agent
Reinforcement Learning System: In this framework, RL agents
embody taxis, making autonomous real-time decisions. Given
the dynamic nature of the environment, the number of agents
within the system is also subject to change. To surmount
this, pre-training of the agents’ strategy networks is essential,
followed by retraining through the addition or subtraction of
agents as the environment evolves. This method can markedly
affect the stability of the training process. While both end-
to-end RL methodologies possess some capacity to manage
dynamic environments, they are not without significant chal-
lenges. To counteract this, our paper introduces a two-stage RL
approach tailored for such settings: Stage 1: The RL system
exclusively receives data concerning the quantity of taxis and
passengers and their respective states, without differentiating
between individuals, thereby mitigating the impact of quantity
fluctuations on the matching process. Stage 2: A heuristic
algorithm takes into account the number of charging taxis and
taxis ready for passengers as determined by the RL, along with
the current states of taxis and passengers, to formulate the opti-
mal matching strategy. This dual-stage approach capitalizes on
the advantages of RL in achieving long-term rewards while
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circumventing its limitations in adapting to environmental
shifts. Prospectively, end-to-end RL is poised to become a piv-
otal method for optimizing the scheduling within dynamic and
intricate systems. For example, the application of multi-agent
RL techniques to dynamically adjust the agent population
could lead to a more generalized response to environmental
variations. Alternatively, the deployment of large-scale RL
models could diminish the model’s environmental sensitivity
and enhance its generalizability by augmenting its scale.
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