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Abstract

Track reconstruction is a crucial task in particle
experiments and is traditionally very computa-
tionally expensive due to its combinatorial nature.
Recently, graph neural networks (GNNs) have
emerged as a promising approach that can im-
prove scalability. Most of these GNN-based meth-
ods, including the edge classification (EC) and the
object condensation (OC) approach, require an in-
put graph that needs to be constructed beforehand.
In this work, we consider a one-shot OC approach
that reconstructs particle tracks directly from a
set of hits (point cloud) by recursively applying
graph attention networks with an evolving graph
structure. This approach iteratively updates the
graphs and can better facilitate the message pass-
ing across each graph. Preliminary studies on the
TrackML dataset show better track performance
compared to the methods that require a fixed input
graph.

1. Introduction

Track reconstruction is an essential task in particle experi-
ments. For each particle collision event!, the goal of track
reconstruction is to associate a list of 2D or 3D position mea-
surements from a tracking detectors (referred to as “hits”)
to a list of particle track candidates. A track candidate is
formed by a list of hits that are determined by the tracking
algorithm. Ideally, the hits in each track candidate should
originate from the same particle, and the tracking algorithm
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'A particle collision event is typically a bunch crossing of two
particle beams with opposite directions, resulting in numerous
particles emerging from the collision point.

should identify all of the particles emerging from the colli-
sions (i.e. 100% efficiency).

The traditional tracking algorithm, the Combinatorial
Kalman Filter (Strandlie & Friihwirth, 2010; Aaboud et al.,
2017; Chatrchyan et al., 2014), starts with a track seed of
two (doublet) or three (triplet) hits, each of which provides
an initial track direction. The next possible hits are then
added by iteratively looking for the hits that match the ex-
trapolated trajectory. Despite robust track performance, this
method is computationally expensive and the computational
cost does not scale well with the number of hits (referred to
as “event size”). Performing such tracking algorithm thus
becomes much more challenging in the future experiments
(such as HL-LHC), where the event size is significantly
increased.

In order to address the computational challenge of the tra-
ditional algorithm, recent developments have focused on
applying graph neural networks (GNNs) to the tracking
procedure (Ju et al., 2021; Biscarat et al., 2021; Caillou
et al., 2022; Lieret et al., 2023) and demonstrated that the
GNN-based tracking algorithms can achieve linear scal-
ing with the event size (Ju et al., 2021; Lazar et al., 2023).
These GNN-based tracking algorithms can be classified into
two approaches: edge classification (EC) (Ju et al., 2021;
Biscarat et al., 2021; Caillou et al., 2022) and object con-
densation (OC) (Lieret et al., 2023). In the EC approach,
the GNN is trained to remove edges (based on the learned
edge scores) that connect hits belonging to different parti-
cles. This will then be followed by a graph segmentation
algorithm, which assigns each connected component as a
track candidate. In the OC approach, the goal of the GNN is
to learn the node representation in a latent space, where hits
belonging to the same particles are attracted to one another.
One can then perform a clustering for the hits in the learned
latent space and assign each cluster as a track candidate.

While effective, most of these methods require a graph con-
struction step before performing GNN. Since it is unrealistic
to construct a fully connected graph (Neqges ~ Ngodes ),
multiple methods, such as metric learning (Ju et al., 2021)
and module map (Biscarat et al., 2021) have been developed
to construct a graph connecting the hits that are likely to

belong to the same particles. In metric learning, embedding
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for each node is learned by a multi-layer perception (MLP).
Edges are then constructed, connecting the nearest neigh-
bors in the embedding space. Here, the embedding for each
node is purely based on the features of that node and does
not depend on how the node interacts with others. Due to the
lack of awareness of other nodes, the metric-learning-based
graph construction tends to produce a graph that contains
many fake edges (low edge purity). One often needs to
use another network that takes edge features as inputs and
further reduces the graph size by removing edges (Ju et al.,
2021). In the module map approach, one constructs the
graph based on all possible connections between detector
modules. This is currently resource-intensive and also tends
to produce low-purity graphs.

It is important to note that graph construction efficiency
plays a crucial role in the performance of later stages for
both EC and OC approaches. In the EC approach, any
graph construction inefficiency (the missing true edges in
the constructed graph) is directly propagated to the graph
segmentation stage. In the OC approach, it is possible to
recover missing true edges after the clustering. However,
graph construction inefficiency still leads to information loss
during the GNN message passing step. Furthermore, low
purity (due to fake edges) results in noisy information during
the message passing. Both cases affect the effectiveness of
the message passing step.

In this work, we propose an OC-based method that embeds
the graph construction into an Evolving Graph-based Graph
Attention Network (EggNet) architecture, which takes point
clouds as inputs and iteratively constructs the graphs based
on the updated embedding. The message passing in the
EggNet is then based on the updated graph in each iteration.
This method allows to gradually enhance the constructed
graph efficiency in each iteration and thus can improve the
effectiveness of the message passing. We test the method
with the TrackML dataset?> (Amrouche et al., 2019; 2023)
and obtain better track performance compared to the existing
GNN-based methods that require a pre-constructed input
graph.

2. Method

The proposed end-to-end tracking pipeline consists of an
EggNet step and a clustering step. As shown in Figure 1,
the EggNet takes a set of hits (a point cloud) as inputs and
outputs the node embedding for each node. We adopt a
similar approach to GravNet (Qasim et al., 2019), where
the graph attention acts on dynamically built KNN graphs.
In comparison with (Qasim et al., 2019; Velickovi¢ et al.,

>TrackML dataset is a dataset commonly used for benchmark-
ing the performance of a tracking algorithm. It contains collision
events simulated with a general particle detector. The event size in
the TrackML dataset is comparable to HL-LHC.

2018), our attention weight is learned from a dedicated edge
network, and the aggregation is based on the learned edge
representation rather than the neighboring node representa-
tion. The nodes are then clustered in the node embedding
space and assigned to different track candidates. In our
study, we adopt Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN) (Ester et al., 1996) as the
clustering algorithm.

2.1. EggNet

The EggNet architecture is illustrated in Figure 2. The d-
dimensional input node features v € R? are first encoded:

z € R = fane (v), (1)

where fgnc is the MLP node encoder. The encoded node
features are then taken as inputs by a number of iterations
where we first update the graph node embeddings and then
the edges by connecting the K-Nearest Neighbors (KNN) in
the node embedding space. In the first iteration (¢ = 0), each
node is projected into a latent space (denoted as hg-space)
by an MLP node network:

ho € R%* = fo (z). )

A MLP node decoder fpgc then acts on hg and outputs a
node embedding in pg-space:

po € R% = fprc (ho) - 3)

This is then followed by a KNN in pg which constructs the
first graph Gy.

In each of the next iterations (¢ > 1), multiple graph-
attention-based (Velickovi¢ et al., 2018) message passing
steps are performed to obtain the updated node representa-
tion h; € R% . The same node decoder fprc is then used
to obtain the updated node embedding in p;-space:

pi € R = fppe (hi), i > 1, 4

which is followed by a KNN that updates the graph p; —
G;.

In each message passing step, we first learn an edge repre-
sentation (e;; € R%, where i denotes the current EggNet
iteration and j denotes the current message passing step),
and an edge weight w;; € R from the two connecting nodes
for each edge:

€ij = fg:(ws’xT)v 121,5=0 )
1 (W ks eig-n) s iz 121
and
wyy = 4 o (#527), P2LI=0
T A (B b eigey) s 121,521
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Figure 1. The proposed end-to-end tracking pipeline. Starting with a point cloud, where each point corresponds to a hit, we run an EggNet
model that iteratively constructs a graph and performs message passing. EggNet outputs the embedding for each node, and the track
candidates are extracted from the DBSCAN clusters that are obtained in the node embedding space.

where S and T denote the source and target nodes of an
edge, respectively. h;; is the current representation of a
given node. Note that for j > 1, in addition to the two
connecting nodes, the edge networks f7 and fJ also take
the previous edge representation e;(;_1) as inputs.

The node representation hj is updated by a node network
f7 in each message passing step, which takes as the inputs
the weighting sum of all connecting edges for each node:

a1y = 3 softmax () "
eEER
J s U0 2 1’ =0
hij = f”. (2, ai0) Z S ] ’ ®
Il (higi-ays aig) 21,521

where E corresponds to all connecting edges for a given
node. The h;; from the last message passing step (f;(—1))
is then taken as h; that enters Equation (4).

2.2. Loss Function

The EggNet model is optimized to minimize the loss L:

L= IEeetrue edges (le)+Ee€random edges (le)'HEeGKNN edges (le) )

©))
where [, is the individual loss term for a given representative
edge connection:

le = yed? + (1 — ye) max® (0,m —de),  (10)

where the first term is an attractive loss that brings together
nodes belonging to the same particles, and the latter is a re-
pulsive hinge loss that separates nodes belonging to different
particles. y. is the truth label for each edge, which is 1 for
an edge connecting hits coming from the same particle (true
edge), and 0 otherwise (fake edge). d. is the Euclidean dis-
tance between two nodes in the p;-space in the last EggNet
iteration (p_1), and m is a constant value, which is set to
1 in our study. The representative edges are pooled from

all true edges, randomly selected edges and all KNN edges,
corresponding to the three terms in Equation (9). Since the
majority of randomly selected edges are fake edges, the
combination of true and randomly selected edges ensure
that we optimize the model based on both true and fake
edges. KNN edges represent the most true-like edges (edges
connecting the nodes that are the nearest). Sampling from
these edges allow us to emphasize the fake edges that look
like true edges.

2.3. DBSCAN

p—1 is taken as inputs of DBSCAN, which then outputs a
track label A for each node:

A} =DBSCAN({phlveV, (1

where V represents all nodes in a graph, i.e., all hits in a
collision event. All meaningful track labels are positive
integers, and all nodes that share the same meaningful track
label form a track candidate. For DBSCAN, it is possible
that a node does not belong to any cluster. In this case, the
A is assigned as 0 and the node is considered as a noise hit.

2.4. Models and Implementation

All MLPs in the EggNet model consist of 3 hidden layers,
each with a width of 128 neurons. Each intermediate layer in
these networks uses a SiLU (Elfwing et al., 2018) activation
function and layer normalization (Ba et al., 2016). The last
layer of fpgc uses a Tanh activation function, and the output
is further normalized p’ = ﬁ. For the following studies, we
set d., dp, and d. to 128, while d,, is set to 24. The EggNet
model consists of up to 5 EggNet iterations (i < 4), and
each graph attention block consists of 8§ message passing
steps (j < 7). We consider k£ = 10 for all KNN steps in the
training.

All neural networks are implemented using PyTorch (Paszke
et al., 2019) and PyTorch Lightning (Falcon & The PyTorch
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Figure 2. The EggNet architecture. ¢ corresponds to each EggNet iteration, and j corresponds to each message passing step. An EggNet
iteration generally consists of a graph attention block and a KNN. The first iteration does not perform graph attention and the last iteration

does not perform KNN.

Lightning team, 2019) in the ACORN framework (Atkinson
et al.) and simultaneously optimized with Adam (Kingma
& Ba, 2014) with a learning rate of 2 x 10~%. The training
uses a batch size of 1 event and is performed for 200 epochs.

DBSCAN is implemented using Rapids cuML (Team,
2023).

3. Experimental Setup and Evaluation

In the following, we test our tracking pipeline with the
TrackML dataset, which is a simulation of a generic tracking
detector under the HL-LHC pileup condition. For simplicity,
we consider only particles with transverse momentum pp >
1 GeV. This means hits coming from particles with pr < 1
GeV and noise hits are removed from our simulated datasets,
reducing the number of hits by a factor of ~ 10. Note
that applying such a selection on the transverse momentum
significantly reduces the event size, making the task of track
reconstruction much easier. It is therefore important to study
the performance with the full events (no hits are removed).
We leave the study with full events for future work.

We train the EggNet model with 12 input node features
v € R'? (described in (Ju et al., 2021)). We first evaluate
the EggNet edge-wise performance on the KNN graphs built
in the p_1-space. We define two metrics for the KNN edge-
wise performance, including “edge-wise efficiency” Effxnn

and “edge-wise purity” 3 Purgnn:

y=1
Effgknn = Nililf’ (12)
Nixn  NY
PUI"KNN —_ KNN _ KNN (13)

NenN Nhigs - &

where NY=! is the number of all true edges, Nxny is the
number of edges counted from all KNN graphs, which is
equal to NVy;s - k, and NI%E%\I is the number of true KNN
edges. The EggNet performance is the best when Effknn
and Purkny are closest to 1 (they cannot be larger than 1).
Note that N;é;}\] cannot exceed k per node or the number of
true edges for each source node:

NA < Y min (B, NZE'). (14)

vS

This thus determines the upper bounds of Effxnn and
Purknn. As shown in Figure 3, we plot Effxnn and
Purknn as a function of k. Effxnn increases and ap-
proaches 1 as k increases, while Purgxnn decreases as k

*Efficiency” and “purity” are also commonly known as “recall”
and “precision”.
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increases. Upper bounds of Effxny and Purkny are also
shown in the figure. We observe that both Effxny and
Purkny are very close to the upper bounds for any %, which
indicates that the EggNet performance is close to optimal.
Note that the KNN graphs are only used as the inputs for
the message passing and training loss, and they do not corre-
spond to the final track candidates which are obtained using
DBSCAN. Thus, the performance on the KNN graphs does
not directly translate to the track performance. However, it
allows us to evaluate the EggNet model performance with
effects decoupled from the later stage of DBSCAN.
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Figure 3. Edge-wise efficiency and purity in the KNN graphs as
a function of k. The EggNet here consists of 5 iterations (¢ < 4).
The upper bound for each metric is also shown in the plot.

The track performance is then evaluated on all track candi-
dates extracted from the DBSCAN clusters. A track candi-
date is matched to a particle if more than 50% of the track
hits come from that particle. Three metrics are then defined
as follows:

« Efficiency: The fraction of particles to which at least 1
track candidate is matched.

* Duplication rate: The fraction of track candidates that
are matched to the same particles.

¢ Fake rate: The fraction of track candidates that are not
matched to any particle.

Figure 4 shows the three metrics as a function of €, which
is a parameter of DBSCAN. In particular, when ¢ = 0.1,
we obtain a track efficiency of 0.9956, duplication rate of
0.0129 and fake rate of 0.0006. Note that the choice of
€ = 0.1 here is made to maximize the track efficiency with
the trade off of slightly higher duplication and fake rates.

For comparison, we also perform track reconstruction with
both the EC and OC approaches where a pre-constructed
graph is required as an input for the graph attention net-
work. For these pre-constructed graph-based approaches,
we adopt the metric learning method (Ju et al., 2021) for
graph construction. We simply take the same architecture
as in the first EggNet iteratioin (¢ = 0), which is an MLP,
as the neural network used in metric learning and perform
KNN with & = 10. The graph attention network has the
same architecture as the graph attention block in the EggNet
model for both EC and OC approaches. For each scenario,
we estimate the uncertainty by training 5 independent mod-
els and taking the standard deviation. The median is taken
as the nominal result. A comparison with different num-
ber of EggNet iterations, and with methods that require a
pre-constructed input graph, is shown in Table 1. We ob-
serve that EggNet starts outperforming the pre-constructed
graph-based methods when the number of EggNet iterations
is greater than 3 (¢ < 2).
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Figure 4. Track efficiency, duplication rate and fake rate with track
candidates obtained from the DBSCAN clusters as a function of e.
The EggNet here consists of 5 iterations (¢ < 4).

Finally, Figure 5 shows the inference time when running on
an NVIDIA A100 Graphical Processing Unit (GPU) versus
the total number of hits for each event. The averaged total
computing time per event is around 0.26 seconds. The total
computing time is also broken down into different compo-
nents, including Graph Attention, KNN and DBSCAN. The
majority of the computing time comes from graph attention
and KNN.

4. Conclusions

In this paper, we proposed a new object condensation-based
approach to particle track reconstruction, termed EggNet.
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Table 1. Track performance with EggNet with various number of EggNet iterations (). € = 0.1 is used for the DBSCAN in all scenarios.
The performance is compared with methods that require pre-constructed input graphs, including the edge classification approach (EC)
and the object condensation approach (OC). The uncertainty in each scenario is estimated with the standard deviation of 5 independent

models, and the median is taken as the nominal result.

METHOD EFFICIENCY DuUP. RATE FAKE RATE
EC 0.9898 + 0.0009 0.0421 £ 0.0011 0.0012 £ 0.0000
oC 0.9902 £ 0.0007 0.0328 £ 0.0007 0.0015 £ 0.0001

EGGNET (1 £ 1)
EGGNET (i < 2)
EGGNET (7 < 3)
EGGNET (i < 4)

0.7454 £ 0.0027

0.9905 £ 0.0005

0.9940 + 0.0002
0.9956 + 0.0003

0.2202 £ 0.0024 0.0099 + 0.0004
0.0179 £ 0.0006 0.0011 £ 0.0000
0.0117 +0.0003 0.0005 £ 0.0000
0.0129 £ 0.0002 0.0006 + 0.0000
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Figure 5. Inference time for each event versus the number of hits.
The inference time is also broken down different components,
including Graph Attention, KNN and DBSCAN. The EggNet here
consists of 5 iterations (7 < 4).

EggNet takes point clouds as inputs and builds graphs on the
fly for each EggNet iteration. The constructed graphs are it-
eratively updated, improving message-passing efficacy. We
demonstrated this approach with the TrackML dataset and
obtained excellent track performance in both KNN graphs
and reconstructed track candidates. EggNet also outper-
forms the pre-constructed graph-based tracking methods
when sufficient EggNet iterations are performed. The re-
sult is encouraging and motivates future work to improve
the computational performance. In particular, KNN has a
significant contribution to the computing time. It will be
beneficial to reduce the time consumption with an alterna-
tive method, such as approximate nearest neighbors and
radius nearest neighbors. Furthermore, the performance
with the full events where no hits are removed needs to be
studied, and, if necessary, improved.

Impact Statement

The development of machine learning-based and in partic-
ular GNN-based particle track reconstruction algorithms
provides significant potential for positive broader impacts
in both the field of particle physics and society at large. By
utilizing GNN as part of the track reconstruction pipeline, it
is possible for the computational cost to scale linearly with
the event size, which accelerates the discovery potential of
future particle experiments such as HL-LHC. The method’s
potential benefits include enhancing our understanding of
fundamental particles and their interactions, thereby advanc-
ing scientific knowledge and contributing to the develop-
ment of more precise experimental techniques in particle
physics research. Furthermore, EggNet has the potential to
extend beyond particle physics, with applications in various
domains that involve pattern recognition and representation
learning. For instance, it could find applications in medical
imaging, where accurate reconstruction of complex image
structures from noisy data is crucial.
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