
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFERENTIALLY PRIVATE LEWIS WEIGHT COMPUTA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Lewis weight is a row leverage score for data matrices. It allows selecting a
small number of important rows to approximate the original matrix with prov-
ably small error. Computing Lewis weights has long been a key problem in opti-
mization, machine learning, and large-scale data analysis. Despite the significant
advancement in the computational efficiency of Lewis Weights, privacy concerns
regarding the weight computation are naturally rising. In this work, we propose
a privacy-preserving Lewis weight computation with high efficiency and a dif-
ferential privacy (DP) guarantee. Our theoretical results clearly demonstrate the
proposed algorithm’s convergence and privacy assurances, providing an effective
solution to the trade-off between utility and privacy in Lewis weight computation.

1 INTRODUCTION

The Lewis weight is a row leverage score for data matrices. It allows selecting a small number
of important rows to approximate the original matrix with provably small error. Computing Lewis
weights has long been a key problem in optimization, machine learning, and large-scale data anal-
ysis. The Lewis weight has a broad range of real-world applications, covering linear program-
ming (Lee & Sidford, 2014), robotics and control (Dabbene et al., 2017; Tang et al., 2024), collision
detection (Rimon & Boyd, 1997), bandit learning (Bubeck et al., 2012a; Hazan & Karnin, 2016),
Markov Chain Monte Carlo sampling (Chen et al., 2018), and portfolio optimization costs (Shen &
Wang, 2015). Specifically, computing the Lewis weight involves finding a fixed point of the leverage
score mapping for an arbitrary non-degenerate1 matrix A ∈ Rm×n, which is defined as follows:
Definition 1.1 (Leverage score). For an arbitrary non-degenerate matrix A ∈ Rm×n, its leverage
score σ(A) ∈ Rm

>0 is defined by

σ(A) := Diag(A(A⊤A)−1A⊤).

Definition 1.2 (Lewis weights). Let p > 0 and let A ∈ Rm×n be a non-degenerate matrix. The ℓp
Lewis weights of A are the unique positive vector wp(A) ∈ Rm

>0 satisfying the fixed-point equation

wp(A) := σ(W 1/2−1/pA),

where W := diag(wp(A)), and σ(·) denotes the vector of leverage scores in Definition 1.1.

Recently, Lee & Sidford (2019) introduced an efficient method to compute Lewis weights by running
projected gradient descent in a carefully scaled space and using a homotopy scheme to obtain a good
initialization. As a result, Lewis weights can now be computed in practical time.

Despite the significant advancement in the computational efficiency of Lewis Weights, privacy con-
cerns regarding the weight computation are naturally rising. It is specifically crucial to determine
the value of the Lewis weights with a specific matrix A, keeping useful statistical information while
not revealing sensitive information. For instance, in bandit learning scenarios, our goal is to ensure
the privacy of sensitive pay-off values in each round while still maintaining a policy that results in
minimal regret. Therefore, in this work, we aim to answer this fundamental research question:

1In numerical linear algebra, it is common to assume A is non-degenerate (Brand et al., 2020; 2021; Fazel
et al., 2022), avoiding pseudo-inverses. This standard simplification does not restrict our results: any degenerate
A can be reduced to a non-degenerate subproblem and the solution then mapped back.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Can we preserve the privacy of individual data points in fast Lewis weight computation?

We provide an affirmative answer to this question by employing privacy-preserving Lewis weight
computation from a Differential Privacy (DP) perspective. Specifically, by integrating DP into the
framework, our method achieves an optimal balance between Lewis weight utility and data privacy,
allowing downstream applications to extract meaningful insights from data while ensuring that no
individual data points can be distinguished from the computed weights. Moreover, the strong privacy
guarantees provided by DP enhance compliance with various data protection regulations, including
but not limited to GDPR and CCPA, fostering trust among data-centric technologies, users, and
regulatory agencies.

1.1 OUR CONTRIBUTIONS

We commence by introducing some fundamental concepts in differential privacy (DP). Consider the
case where the Lewis weight wp(A) is computed for a given matrix A. Replacing a single row of the
matrix can lead to significant variations in the computed weights. Consequently, the standard defini-
tion of neighboring data points in DP may not hold, motivating us to introduce a new formulation–
the ϵ0-closed neighborhood of matrices/datasets. Specifically, we define two matrices/datasets as
neighboring if they are ϵ0-close.
Definition 1.3 (Neighboring matrices). Let A,A′ ∈ Rm×n be two matrices. We say that A and A′

are ϵ0-close if there exists exact one i ∈ [m] such that ∥Ai,∗ − A′
i,∗∥2 ≤ ϵ0 and Aj,∗ = A′

j,∗holds
for all j ∈ [m] \ {i}.

Thus, the formal definition of differential privacy is given as follows:
Definition 1.4 (Differential Privacy). A randomized algorithm A : D → R with domain D and
range R satisfies (ϵ, δ)-differential privacy if for any two neighboring datasets D,D′ ∈ D and for
any subset of outputs S ∈ R it holds that

Pr[M(D) ∈ S] = eϵ Pr[M(D′) ∈ S] + δ.

In this work, we present the first algorithm for efficiently computing Lewis weights with a differen-
tial privacy guarantee. Our theoretical results clearly demonstrate the algorithm’s convergence and
privacy assurances, providing an effective solution to the trade-off between utility and privacy in
Lewis weight computation.
Theorem 1.5 (Main Result, Informal Version of Theorem 4.7). Under some mild conditions, there
exists a differentially private algorithm that approximately compute the ℓp-Lewis weight for any
p ∈ (0, 4).

Our contributions can be summarized as follows:

• Differentially Private Optimization: We establish the final differential privacy (DP) guar-
antee of the Lewis weight computation algorithm, leveraging a novel DP-optimization an-
alytical framework specifically designed for truncated Gaussian noise.

• Fast DP-LW Convergence: We conduct a convergence analysis of our optimized DP-LW
algorithm (Algorithm 1), demonstrating its DP guarantee under truncated Gaussian noise
perturbation.

• Generalizable Perturbation Analysis: We present a comprehensive study of weighted
leverage score perturbation, highlighting its applicability to a range of fundamental prob-
lems in machine learning, including kernel regression.

Roadmap. In Section 2, we extensively review the relevant prior works for this paper. In Section 3,
we present the basic notations and background of DP. In Section 4, we show our main algorithm and
its corresponding DP guarantee. In Section 5, we conclude our paper.

2 RELATED WORK

John Ellipsoid Algorithm and Its Applications. The John Ellipsoid Algorithm, initially pro-
posed by John (1948), provides a powerful method for approximating any convex polytope by its

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

maximum volume inscribed ellipsoid. This foundational work has spurred extensive research into
optimization techniques for solving the John Ellipsoid problem within polynomial time constraints.
Among the seminal contributions, Khachiyan (1996); Kumar & Yildirim (2005) introduced first-
order methods, which significantly improved computational efficiency. Furthermore, Nesterov &
Nemirovskii (1994); Khachiyan & Todd (1990); Sun & Freund (2004) developed approaches utiliz-
ing interior point methods to enhance the precision and speed of solving the John Ellipsoid problem.
Recent advancements have continued to push the boundaries of this algorithm. Cohen et al. (2019)
employed fixed point iteration techniques, leading to the derivation of a more robust solution to the
John Ellipsoid. Moreover, they introduced innovative sketching techniques that accelerated com-
putational processes. Building on this, Song et al. (2022c) integrated leverage score sampling into
these sketching techniques, further optimizing the algorithm’s performance, and Li et al. (2024b)
used quantum techniques to further speed up the computation of John Ellipsoids. The implications
of the John Ellipsoid Algorithm extend far beyond theoretical mathematics, impacting various fields.
In the realm of linear bandit problems, research by Bubeck et al. (2012b); Hazan & Karnin (2016)
has shown significant advancements. Experimental design methods have also seen improvements
due to contributions from Atwood (1969); Allen-Zhu et al. (2017). In linear programming, the algo-
rithm has provided enhanced solutions, with notable work by Lee & Sidford (2013a). Control theory
applications have been advanced through research by Tang et al. (2024), and cutting plane methods
have been refined as demonstrated by Tarasov (1988). The algorithm’s influence in statistics is also
noteworthy; for instance, it plays a critical role in Markov chain techniques for sampling convex
bodies, as explored by Huang (2018) and developed for random walk sampling by Vempala (2005);
Chen et al. (2018).

Differential Privacy Analysis and Applications. Differential privacy has become one of the most
essential standards for data security and privacy protection since it was proposed in Dwork et al.
(2006). There are plenty of related work focusing on providing a guarantee for existing algorithms,
data structures, and machine learning by satisfying the definition of differential privacy, such as
Esfandiari et al. (2022); Andoni et al. (2023); Cherapanamjeri et al. (2023); Cohen-Addad et al.
(2022); Dong et al. (2024); Farhadi et al. (2022); Gopi et al. (2023); Li et al. (2022); Gopi et al.
(2022); Huang & Yi (2021); Jung et al. (2019); Li & Li (2024); Epasto et al. (2024); Chen et al.
(2022); Farhadi et al. (2022); Beimel et al. (2022); Narayanan (2022; 2023); Fan & Li (2022); Fan
et al. (2024); Li & Li (2023); Eliáš et al. (2020); Yu et al. (2024); Liang et al. (2024); Gu et al. (2024);
Song et al. (2023b); Qin et al. (2022); Song et al. (2023a); Galli et al. (2024); Chen et al. (2024);
Romijnders et al. (2024); Qi et al. (2024); Ke et al. (2025); Hu et al. (2024); Liu et al. (2024). In ad-
dition, recently, there are emerging privacy mechanisms that improve traditional privacy guarantees,
such as Gaussian, Exponential, and Laplacian mechanisms (Dwork et al., 2014). For example, Geng
et al. (2020) introduced a truncated Laplace mechanism, which has been demonstrated to achieve
the tightest bounds among all (ϵ, δ)-DP distribution.

Sketching and Leverage Score. Our work improves the efficiency of the John Ellipsoid algorithm
by leveraging sketching and score sampling. Sketching, a widely used technique, has advanced nu-
merous domains, including neural network training, kernel methods (Lee et al., 2020; Song et al.,
2021), and matrix sensing (Deng et al., 2023). It has been applied to distributed problems (Woodruff
& Zhong, 2016; Boutsidis et al., 2016), low-rank approximation (Clarkson & Woodruff, 2017a;
Razenshteyn et al., 2016; Song et al., 2017), and generative adversarial networks (Xiao et al., 2018).
In addition, projected gradient descent (Xu et al., 2021), tensor-related problems (Li et al., 2017;
Diao et al., 2018), and signal interpolation (Song et al., 2022a) have benefited significantly from
sketching. Leverage scores, introduced by Drineas et al. (2006a;b), are pivotal in linear regression
and randomized linear algebra, optimizing tasks such as matrix multiplication, CUR decompositions
(Mahoney & Drineas, 2009; Song et al., 2019), and tensor decompositions (Song et al., 2019). More-
over, leverage score sampling can be used in kernel learning (Erdélyi et al., 2020). Recent research
has further extended the application of leverage score sampling. Studies by Agarwal et al. (2017);
Charalambides et al. (2024); Woodruff & Zandieh (2022); Lee et al. (2020); Rudi et al. (2018) have
demonstrated the ability to leverage score sampling to significantly enhance the efficiency of var-
ious algorithms and computational processes. These advancements underscore the versatility and
effectiveness of leverage scores in optimizing performance across diverse fields.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Linear Programming and Semidefinite Programming Linear programming is a fundamental
computer science and optimization topic. The Simplex algorithm, introduced in Dantzig (1951),
is a pivotal method in linear programming, though it has an exponential runtime. The Ellipsoid
method, which reduces runtime to polynomial time, is theoretically significant but often slower in
practice compared to the Simplex method. The interior-point method, introduced in Karmarkar
(1984), is a major advancement, offering both polynomial runtime and strong practical performance
on real-world problems. This method opened up a new avenue of research, leading to a series
of developments aimed at speeding up the interior point method for solving a variety of classical
optimization problems. John Ellipsoid has deep implication in the field of linear programming.
For example, in interior point method, John Ellipsoid is utilized to find path to solutions (Lee &
Sidford, 2014). The interior point method has a wide impact on linear programming as well as other
complex tasks, such as Vaidya (1987); Renegar (1988); Vaidya (1989); Daitch & Spielman (2008);
Lee & Sidford (2013b; 2014; 2019); Cohen et al. (2021); Lee et al. (2019); Brand (2020); Brand
et al. (2020); Jiang et al. (2021); Song & Yu (2021); Gu & Song (2022). Moreover, the interior
method and John ellipsoid are fundamental to solving semidefinite programming problems, such as
Jiang et al. (2020); Song et al. (2023c); Gu & Song (2022); Huang et al. (2022a;b).

Linear programming and semidefinite programming are widely applied in the field of machine learn-
ing theory, particularly in topics such as empirical risk minimization (Lee et al., 2019; Song et al.,
2022b; Qin et al., 2023) and support vector machines (Gu et al., 2023; Gao et al., 2023).

Privacy and Security Data privacy and security have become a critical issue in the field of ma-
chine learning, particularly with the growing use of deep neural networks. As there is an increasing
demand for training deep learning models on distributed and private datasets, privacy concerns have
come to the forefront.

To address these concerns, various methods have been proposed for privacy-preserving deep learn-
ing. These methods often involve sharing model updates (Konečnỳ et al., 2016) or hidden-layer
representations (Vepakomma et al., 2018) rather than raw data. Despite these precautions, recent
studies have shown that even if raw data remains private, sharing model updates or hidden-layer
activations can still result in the leakage of sensitive information about the input, referred to as the
victim. Such information leakage might reveal the victim’s class, specific features (Fredrikson et al.,
2015), or even reconstruct the original data record (Mahendran & Vedaldi, 2015; Dosovitskiy &
Brox, 2016; Zhu et al., 2019). This privacy leakage presents a significant threat to individuals whose
private data have been utilized in training deep neural networks. Moreover, privacy and security have
been studied in other fields in machine learning, such as attacks and defenses in federated learning
(Huang et al., 2021; Arevalo et al., 2024; Ma et al., 2024; Gao et al., 2024), deep net pruning (Huang
et al., 2020c), language understanding tasks (Huang et al., 2020a), alternating direction method of
multipliers (ADMM) (Chan et al., 2024), and distributed learning (Huang et al., 2020b).

3 PRELIMINARY

In this section, we commence by presenting the basic notations in differential privacy (DP) and
Lewis Weight computation in Section 3.1, and then show the background of DP in Section 3.2.

3.1 NOTATIONS

In this section, we introduce basic notations. For a full list of all the notations used in this paper,
please refer to Appendix C.1.

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors x, y ∈ Rn, we denote the element-wise vector product xy ∈ Rn with (xy)i = xiyi, for
i ∈ [n]. In addition, we also x ◦ y to denote the element-wise product. For any vector x ∈ Rn, the
absolute value of x is defined element-wise as |x| := (|x1|, |x2|, · · · , |xn|).

Basic Notations. We denote all the positive real numbers as R>0, and denote m-dimensional
positive real vectors as Rm

>0. We use ±δ to denote a real value with magnitude at most δ, e.g.
a = e±δb means a ∈ [e−δb, eδb].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Matrices. If a matrix A ∈ Rm×n has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B ∈ Rn×n be a symmetric matrix. B ∈ Rn×n is positive semidefinite (PSD) if
x⊤Bx ≥ 0 for all x ∈ Rn, and positive definite (PD) if x⊤Bx > 0 for all x ∈ Rn. We denote the
kernel (the null space) of the matrix A ∈ Rm×n as ker(A), i.e., ker(A) := {x ∈ Rn : Ax = 0m}.
We denote the image space (the column space) as im(A), i.e., im(A) := {y ∈ Rm : y = Ax}.

Matrix Operations. Let A,B ∈ Rn×n be two symmetric matrices. We use A ⪯ B to indicate that
x⊤Ax ≤ x⊤Bx for all x ∈ Rn. We define ≺,⪰,≻ analogously. For matrices A,B ∈ Rn×m, we
denote the Hadamard product as A◦B, i.e., for i ∈ [n], j ∈ [m], (A◦B)i,j := Ai,j ·Bi,j . We define
A◦2 := A ◦ A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A,B ∈ Rn×n with scalars 0 < c1 ≤ c2, we write A ∈ [c1, c2] ·B to mean that c1B ⪯ A ⪯ c2B.

Diagonals. Let A ∈ Rn×n be a matrix. We define Diag(A) ∈ Rn with Diag(A)i := Ai,i

for all i ∈ [n]. For a vector x ∈ Rn, we define diag(x) ∈ Rn×n as the diagonal matrix with
diag(x)i,i := xi for i ∈ [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(x) ∈ Rn×n for x ∈ Rn.

Norms. For any positive real number p > 0 and vector x ∈ Rn, we define the vector ℓp norm as
∥x∥p := (

∑n
i=1 |xi|p)1/p. We define the vector ℓ0 norm as the number of non-zero elements in x,

i.e., ∥x∥0 :=
∑n

i=1 1[xi = ̸= 0]. For a positive definite matrix A ∈ Rn×n and a vector x ∈ Rn, we
define ∥x∥A := (x⊤Ax)1/2. For a vector w ∈ Rn

>0, we define ∥x∥w := (
∑n

i=1 wix
2
i)

1/2. If we
let W := diag(w), then know that ∥x∥w = ∥x∥W . For any matrix spectral norm ∥ · ∥, we define
∥M∥ := sup∥x∥2=1 ∥Mx∥2.

3.2 DIFFERENTIAL PRIVACY

In this section, we introduce more preliminaries on differential privacy and collect some useful tools
from prior works.

We begin by defining Rényi divergence, which measures the distance between two probability dis-
tributions.
Definition 3.1 (Rényi Divergence, Definition 3 in Mironov (2017)). Let α > 1. For two probability
distributions P and Q defined overR, the Rényi divergence of order α is defined as

Dα(P∥Q) :=
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
.

Then we define the Rényi Divergence which is a generalization of the concept differential privacy.
Definition 3.2 (Rényi DP, Definition 4 in Mironov (2017)). Let α > 1 and ϵ > 0. We say that a
mechanismM is (α, ϵ)-RDP if for all neighboring datasets X,X ′,

Dα(M(X)∥M(X ′)) ≤ ϵ.

Next, we state the adaptive composition lemma of RDP.
Lemma 3.3 (Adaptive Composition of RDP, Proposition 1 in Mironov (2017)). For any input
dataset X , ifM1 is an (α, ϵ1)-RDP mechanism that takes X as input andM2 is an (α, ϵ2)-RDP
mechanism that takes both X and M1(X) as input, then the composition mechanism of M1 and
M2 is (α, ϵ1 + ϵ2)-RDP.

The following lemma can be used to convert RDP to DP.
Lemma 3.4 (RDP to DP Conversion, Proposition 3 in Mironov (2017)). Let M be a mechanism
that is (α, ϵ)-RDP. ThenM is (ϵ+ log(1/δ)

α−1 , δ)-DP for any δ > 0.

The following lemma guarantees that adding a Gaussian noise leads to RDP.
Lemma 3.5 (Gaussian Mechanism, Corollary 3 in Mironov (2017)). Let X be the input dataset and
f be a real-valued function with sensitivity L. For Gaussian random variable z ∼ N (0, σ2) and
α > 1, the Gaussian mechanism Gσf defined as Gσf(D) = f(D) + z satisfies (α, αL2

2σ2)-RDP.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Differentially Private Approximate Weight Computation

1: procedure DPCOMPUTEAPXWEIGHT(A ∈ Rm×n, p ∈ (0, 4), w(0) ∈ Rm
>0, ϵ ∈ (0, 2/p− |1−

2/p|))
2: L0 ← max{4, 8

p}, r ←
p2(4−p)

220 , δ ← (4−p)ϵ
256 .

3: T ← ⌈80(p2 + 2/p) log(pn
32ϵ)⌉.

4: ▷ T is the number of iterations
5: for j = 1, . . . , T − 1 do
6: Differentially privately compute σ(j) ∈ Rn with Lemma 4.5 such that

e−δσ(j)(W
1/2−1/p
(j) A)i ≤ σ

(j)
i ≤ eδσ(j)(W

1/2−1/p
(j) A)i for all i ∈ [m].

7: w(j+1) = MEDIAN((1− r)w(0), w(j) − 1
L0

(w(0) − w(j))σ(j), (1 + r)w(0)).
8: end for
9: return (Diag(A(A⊤W

1/2−1/p
(T))−1A⊤))2p.

10: end procedure

4 DIFFERENTIALLY PRIVATE LEWIS WEIGHT COMPUTATION

In Section 4.1, we present the fundamental perturbation lemmas for Lewis Weight computation. In
Section 4.2, we show the DP guarantee of our proposed Lewis Weight computation algorithm. In
Section 4.3, we present our main results.

4.1 PERTURBATION OF LEWIS WEIGHT COMPUTATION

We first bound the difference between the product of W 1/2−1/p and two ϵ0-neighboring polytopes.
Lemma 4.1 (Informal Version of Lemma A.8). Let A,A′ ∈ Rm×n be two non-degenerate matrices.
Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is only different in j-th row,
and ∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m]. Let
gp(γ) := max{1, γ1/2−1/p}. Then we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ gp(γ) · ϵ0.

Then we show that the perturbation of (A⊤W 1−2/pA)−1 and (A′⊤W 1−2/pA′)−1 can be bounded.
Lemma 4.2 (Informal Version of Lemma A.10). Let A,A′ ∈ Rm×n be two non-degenerate matri-
ces. Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is different in j-th row, and
∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m]. Suppose that
ϵ0 ≤ 0.1σmin(A). Let gp(γ) := max{1, γ1/2−1/p}. Let ϵ1 := gp(γ)ϵ0. Then we have

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Equipped with previous two lemmas, we can show that the perturbation of each entry of f(w,A)
can be bounded.
Lemma 4.3 (Informal Version of Lemma A.11). Let A,A′ ∈ Rm×n be two non-degenerate ma-
trices. Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is different in j-th
row, and ∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

Let f(w,A) := (f(w,A)1, . . . , f(w,A)n). Let f(w,A)i := w
1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai for
i ∈ [m]. Suppose that ϵ0 ≤ 0.1σmin(A). Let gp(γ) := max{1, γ1/2−1/p}. Let ϵ1 := gp(γ)ϵ0. Let
ϵ2 = 8γ−4|1/2−1/p|κ(A)σ−3

min(A)ϵ1. Then we have

• Part 1. For i ̸= j, we have
|f(w,A)i − f(w,A′)i| ≤ ϵ2gp(γ)σmax(A)2.

• Part 2. It holds that
|f(w,A)j − f(w,A′)j | ≤ gp(γ)ϵ2(σmax(A) + ϵ0)

2

+ ϵ1γ
−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Finally, we are ready to prove our main perturbation theorem of Lewis weight computation.

Theorem 4.4 (Informal Version of Theorem A.12). Let A,A′ ∈ Rm×n be two neighbouring
polytopes that are different in the j-th row, i.e., ∥aj − a′j∥2 ≤ ϵ0. Let f(w,A) be the Lewis
Weights in Definition E.1, where f(w,A) := σ(W 1/2−1/pA), and we assume that all lever-
age scores in satisfy σi ∈ [γ, 1] for i ∈ [m]. Thus, for ϵ0 ≤ 0.1σmin(A), there exists
L = poly(n, d, γ−|1/2−1/p|, κ(A), σmax(A)) such that

∥f(w,A)− f(w,A′)∥∞ ≤ L · ϵ0.

Proof. It directly follows from Lemma 4.3.

4.2 DIFFERENTIAL PRIVACY GUARANTEE OF LEWIS WEIGHT COMPUTATION

The following Lemma shows that in each round we can approximately compute the Lewis weight
with Rényi differential privacy guarantee.

Lemma 4.5. For i ∈ [m] , let σi := σ(W 1/2−1/pA)i denote the i-th leverage score and
σ̃i = σi(1 + zi), where zi ∼ N (0, τ2) for. If we suppose that σi ∈ [γ, 1] for i ∈ [m],
τ ≥ Lϵ0γ

−1
√
T/(ϵ− log(1/δ)), and δfail ∈ (0, 0.1), then the following statements are true:

• Part 1. For every i ∈ [m], σ̃i is (α, αL2ϵ20
2γ2τ2)-RDP.

• Part 2. With probability 1− δfail, for every i ∈ [m], we have

e−τ
√

2 log (2n/δfail)σi ≤ σ̃i ≤ eτ
√

2 log (2n/δfail)σi.

Proof. Proof of Part 1. Note that when x ∈ [1/γ, 1], we have

|d log x
dx

| = | 1
x
|

≤ 1

γ

where the first step follows from the derivative of log x, the second step follows from x ∈ [1/γ, 1].

Thus log x is 1/γ-Lipschitz over x ∈ [γ, 1].

For two ϵ0-close polytopes A,A′, by Lemma 4.3, we have

|σ(W 1/2−1/pA)i − σ(W 1/2−1/pA′)i| ≤ L · ϵ0 (1)

where L is the Lipschitz constant defined in Lemma 4.3.

By the Lipschitzness of log x over [γ, 1] and Eq. (1), we have

| log σ(W 1/2−1/pA)i − log σ(W 1/2−1/pA′)i| ≤
Lϵ0
γ

.

Let ũi := log(σi) + zi. By Lemma 3.5, ũi satisfies (α,
αL2ϵ20
2γ2τ2)-RDP. If τ ≥ Lϵ0

√
α

γ
√
2ϵ

, then it is
(α, ϵ)-RDP.

Proof of Part 2. Let σ̃i := eũi for i ∈ [m]. Now we bound the multiplicative error between σ̃i and
σi. We can show that

σ̃i = eũi

= elog(σi)+zi

= σie
zi . (2)

where the first step follows from the definition of σ̃i, the second step follows from ũi := log(σi)+zi,
and the last step is due to basic algebra.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Since zi ∼ N (0, τ2), for any t > 0, we have

Pr
zi∼N (0,τ2)

[|zi| ≥ t] ≤ 2 exp(− t2

2τ2
).

Applying a union bound over all i ∈ [m], we want with probability at least 1− δfail that

|zi| ≤ τ ·
√
2 log(2n/δfail), ∀i ∈ [m].

Thus by Eq. (2), with probability at least 1− δfail, we have:

e−τ
√

2 log(2n/δfail) · σi ≤ σ̃i ≤ eτ
√

2 log(2n/δfail) · σi.

Thus we complete the proof.

Theorem 4.6. For i ∈ [m] , let σi := σ(W 1/2−1/pA)i denote the i-th leverage score and
σ̃i = σi(1 + zi), where zi ∼ N (0, τ2) for. If we suppose that σi ∈ [γ, 1] for i ∈ [m] and
τ ≥ Lϵ0γ

−1
√

T/(ϵ− log(1/δ)), then Algorithm 1 is (ϵDP, δDP)-DP.

Proof. Let ϵα :=
αL2ϵ20
2γ2τ2 . For each round j, the weight update

w(j+1) = w(j) − 1

L0
(w(0) − w(j))σ̃(j)

is a function of (w(j), σ̃(j)).

Thus by post-processing, Lemma 4.5 and Lemma 3.3, w(T) satisfies (α, Tϵα)-RDP.

By Lemma 3.4, we can convert RDP to DP, i.e., w(T) is (Tϵα + log(1/δ)
α−1 , δ)-DP.

Let

ϵDP ≤ Tϵα +
log(1/δ)

α− 1
.

Since ϵα =
αL2ϵ20
2γ2τ2 , we have

ϵDP ≤
αTL2ϵ20
2γ2τ2

+
log(1/δ)

α− 1
.

Let α = 2 and solve the above inequality for τ , we need

τ ≥ Lϵ0γ
−1
√

T/(ϵ− log(1/δ))

to guarantee (ϵDP, δDP)-DP.

Thus we complete the proof.

4.3 MAIN RESULT

The following theorem guarantees the utility of the approximate Lewis weight computation.

Theorem 4.7 (Main Result, Formal Version of Theorem 1.5). Let A ∈ Rm×n be non-degenerate.
Let Tw and Td denote the work and depth needed to compute (A⊤DA)−1z for an arbitrary positive
diagonal matrix D and vector z. Let ϵ ∈ (0, 1). Let p ∈ (0, 4). Define r := 2−20p2(4 − p). Let
w(0) ∈ Rm

>0 with ∥w(0)−1
(wp(A) − w(0))∥∞ ≤ r. Let L be defined in Lemma 4.3. Then there is

an algorithm that satisfies the follow guarantees:

• Privacy: The algorithm is (ϵDP, δDP).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• Utility: It returns w such that with high probability in ∥wp(A)−1(wp(A) − w)∥∞ ≤ ϵ
where

ϵ = O

(
Lϵ0γ

−1

4− p

√
T log(n)

(ϵDP − log(1/δDP))

)
.

Moreover, it runs in O(p−1(4− p)−2ϵ−2 log2(n/(pϵ))) steps, each of which can be implemented in
O(nnz(A) + Tw) work and O(Td) depth.

Proof. We can set the δ as the following:

δ = τ
√
2 log(2n/δfail).

Since in Algorithm 1, we have δ = (4−p)ϵ
256 . Thus we have

ϵ =
256δ

4− p

=
256τ

4− p

√
2 log(2n/δfail)

=
256Lϵ0γ

−1
√
2T log(2n/δfail)/(ϵDP − log(1/δDP))

4− p

where the first step follows from rearranging δ = (4−p)ϵ
256 , the second step follows from that δ =

τ
√
2 log(2n/δfail), and the last step follows from that τ = Lϵ0γ

−1
√

T/(ϵ− log(1/δ)).

Next, we can set δfail as a sufficiently small constant and apply union bound to make that in every
iteration the guarantee hold successfully. Finally, combining Theorem 4.6 and Theorem E.20, we
complete the proof.

Remark 4.8 (On work and depth). The quantities Tw and Td follow standard usage in numerical lin-
ear algebra. Formally, work Tw is the total time needed to perform the computation, while depth Td
is the inherently sequential part that cannot be parallelized even with unlimited processors. For ex-
ample, matrix multiplication has O(nω) work (where ω ≈ 2.37 for the current fastest method) and
O(1) depth (Clarkson & Woodruff, 2017b), as all entries can in principle be produced in parallel.

Remark 4.9 (Why express complexity using work Tw and depth Td). We write each step of our
algorithm as O(nnz(A) + Tw) work and O(Td) depth to separate the cost of sparse access to A
from the cost of solving systems such as (A⊤DA)−1z. This style is standard in theory papers
related to linear programs (Lee & Sidford, 2014; Clarkson & Woodruff, 2017b; Dong et al., 2021)
because the best-known runtimes for such solves depend on subtle advances in matrix algorithms.
It keeps the statement adaptable: if future work improves the cost of exact or approximate solvers,
our total runtime bound immediately benefits.

5 CONCLUSION

We have introduced the first algorithm for computing ℓp Lewis weights under a rigorous differential-
privacy guarantee, addressing a key gap at the intersection of numerical linear algebra and data pro-
tection. By redefining adjacency to an ϵ0-closed neighborhood of matrices and injecting carefully
calibrated truncated Gaussian noise into the optimization framework, our method provably con-
verges to an accurate approximation of the true Lewis weights while satisfying (ϵDP, δDP)-privacy.
The resulting procedure runs in O(p−1(4 − p)−2ϵ−2 log2(n/(pϵ))) iterations, each implemented
in O(nnz(A) + Tw) work and O(Td) depth, making it practical for large-scale datasets. Beyond
its immediate use in private row-sampling and sketching techniques, our perturbation analysis for
weighted leverage scores may be of independent interest in other numerical linear-algebra research,
such as differentially private kernel regression. This work thus offers an effective and efficient solu-
tion to the utility-privacy trade-off in leverage-score computations, paving the way for privacy-aware
applications in optimization, machine learning, and large-scale data analysis.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron
Sidford. Leverage score sampling for faster accelerated regression and erm. arXiv preprint
arXiv:1711.08426, 2017.

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of experiments
via regret minimization. In International Conference on Machine Learning, pp. 126–135. PMLR,
2017.

Alexandr Andoni, Piotr Indyk, Sepideh Mahabadi, and Shyam Narayanan. Differentially private
approximate near neighbor counting in high dimensions. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 43544–43562, 2023.

Caridad Arroyo Arevalo, Sayedeh Leila Noorbakhsh, Yun Dong, Yuan Hong, and Binghui Wang.
Task-agnostic privacy-preserving representation learning for federated learning against attribute
inference attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 10909–10917, 2024.

Corwin L Atwood. Optimal and efficient designs of experiments. The Annals of Mathematical
Statistics, pp. 1570–1602, 1969.

Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and Uri
Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and lower
bounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1671–1684, 2022.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 236–249, 2016.

Jan van den Brand. A deterministic linear program solver in current matrix multiplication time.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
259–278. SIAM, 2020.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs
in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 775–788, 2020.

Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao Song,
and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for dense
instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 859–869, 2021.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pp. 41–1. JMLR
Workshop and Conference Proceedings, 2012a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Conference on Learning Theory, pp. 41–1. JMLR
Workshop and Conference Proceedings, 2012b.

TH Hubert Chan, Hao Xie, and Mengshi Zhao. Privacy amplification by iteration for admm with
(strongly) convex objective functions. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 38, pp. 11204–11211, 2024.

Neophytos Charalambides, Mert Pilanci, and Alfred O Hero. Gradient coding with iterative block
leverage score sampling. IEEE Transactions on Information Theory, 2024.

E Chen, Yang Cao, and Yifei Ge. A generalized shuffle framework for privacy amplification:
Strengthening privacy guarantees and enhancing utility. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 11267–11275, 2024.

Justin Y Chen, Shyam Narayanan, and Yinzhan Xu. All-pairs shortest path distances with dif-
ferential privacy: Improved algorithms for bounded and unbounded weights. arXiv preprint
arXiv:2204.02335, 2022.

Yuansi Chen, Raaz Dwivedi, Martin J Wainwright, and Bin Yu. Fast mcmc sampling algorithms on
polytopes. Journal of Machine Learning Research, 19(55):1–86, 2018.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P Woodruff, Fred Zhang, Qiuyi Zhang, and
Samson Zhou. Robust algorithms on adaptive inputs from bounded adversaries. arXiv preprint
arXiv:2304.07413, 2023.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input spar-
sity time. Journal of the ACM (JACM), 63(6):1–45, 2017a.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input spar-
sity time. Journal of the ACM (JACM), 63(6):1–45, 2017b.

Michael B Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pp. 183–192, 2015.

Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approxi-
mating the john ellipsoid. In Conference on Learning Theory, pp. 849–873. PMLR, 2019.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy. Ad-
vances in Neural Information Processing Systems, 35:33702–33715, 2022.

Fabrizio Dabbene, Didier Henrion, and Constantino M Lagoa. Simple approximations of semialge-
braic sets and their applications to control. Automatica, 78:110–118, 2017.

Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via interior
point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pp. 451–460, 2008.

George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

Yichuan Deng, Zhihang Li, and Zhao Song. An improved sample complexity for rank-1 matrix
sensing. arXiv preprint arXiv:2303.06895, 2023.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product re-
gression and p-splines. In International Conference on Artificial Intelligence and Statistics, pp.
1299–1308. PMLR, 2018.

Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs with
small treewidth: a multiscale representation of robust central path. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1784–1797, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Dong, Zijun Chen, Qiyao Luo, Elaine Shi, and Ke Yi. Continual observation of joins under
differential privacy. Proceedings of the ACM on Management of Data, 2(3):1–27, 2024.

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4829–
4837, 2016.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006a.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for l2 re-
gression and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 1127–1136, 2006b.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Marek Eliáš, Michael Kapralov, Janardhan Kulkarni, and Yin Tat Lee. Differentially private release
of synthetic graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 560–578. SIAM, 2020.

Alessandro Epasto, Vahab Mirrokni, Shyam Narayanan, and Peilin Zhong. k-means clustering with
distance-based privacy. Advances in Neural Information Processing Systems, 36, 2024.

Tamás Erdélyi, Cameron Musco, and Christopher Musco. Fourier sparse leverage scores and ap-
proximate kernel learning. Advances in Neural Information Processing Systems, 33:109–122,
2020.

Hossein Esfandiari, Vahab Mirrokni, and Shyam Narayanan. Tight and robust private mean estima-
tion with few users. In International Conference on Machine Learning, pp. 16383–16412. PMLR,
2022.

Chenglin Fan and Ping Li. Distances release with differential privacy in tree and grid graph. In 2022
IEEE International Symposium on Information Theory (ISIT), pp. 2190–2195. IEEE, 2022.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Alireza Farhadi, MohammadTaghi Hajiaghayi, and Elaine Shi. Differentially private densest sub-
graph. In International Conference on Artificial Intelligence and Statistics, pp. 11581–11597.
PMLR, 2022.

Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis weights to
high precision. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 2723–2742. SIAM, 2022.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confi-
dence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC confer-
ence on computer and communications security, pp. 1322–1333, 2015.

Filippo Galli, Catuscia Palamidessi, and Tommaso Cucinotta. Online sensitivity optimization in
differentially private learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12109–12117, 2024.

Dashan Gao, Sheng Wan, Lixin Fan, Xin Yao, and Qiang Yang. Complementary knowledge dis-
tillation for robust and privacy-preserving model serving in vertical federated learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 38(18):19832–19839, Mar. 2024.
doi: 10.1609/aaai.v38i18.29958. URL https://ojs.aaai.org/index.php/AAAI/
article/view/29958.

12

https://ojs.aaai.org/index.php/AAAI/article/view/29958
https://ojs.aaai.org/index.php/AAAI/article/view/29958

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility tradeoff
in approximate differential privacy. In International Conference on Artificial Intelligence and
Statistics, pp. 89–99. PMLR, 2020.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential mecha-
nism. In Conference on Learning Theory, pp. 1948–1989. PMLR, 2022.

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Private convex optimiza-
tion in general norms. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 5068–5089. SIAM, 2023.

Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mech-
anisms in neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for structured support
vector machines. arXiv preprint arXiv:2307.07735, 2023.

Elad Hazan and Zohar Karnin. Volumetric spanners: an efficient exploration basis for learning. The
Journal of Machine Learning Research, 17(1):4062–4095, 2016.

Jerry Yao-Chieh Hu, Erzhi Liu, Han Liu, Zhao Song, and Lichen Zhang. On differentially private
string distances. arXiv preprint arXiv:2411.05750, 2024.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. A faster quantum algo-
rithm for semidefinite programming via robust ipm framework. arXiv preprint arXiv:2207.11154,
2022a.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022b.

Han Huang. John ellipsoid and the center of mass of a convex body. Discrete & Computational
Geometry, 60:809–830, 2018.

Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and Sanjeev Arora. Texthide: Tackling data
privacy in language understanding tasks. In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 1368–1382, 2020a.

Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-hiding schemes for
private distributed learning. In International conference on machine learning, pp. 4507–4518.
PMLR, 2020b.

Yangsibo Huang, Yushan Su, Sachin Ravi, Zhao Song, Sanjeev Arora, and Kai Li. Privacy-
preserving learning via deep net pruning. arXiv preprint arXiv:2003.01876, 2020c.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient in-
version attacks and defenses in federated learning. Advances in neural information processing
systems, 34:7232–7241, 2021.

Ziyue Huang and Ke Yi. Approximate range counting under differential privacy. In 37th Interna-
tional Symposium on Computational Geometry (SoCG 2021). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2021.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC, 2021.

Fritz John. Extremum problems with inequalities as subsidiary conditions, studies and essays pre-
sented to r. courant on his 60th birthday, january 8, 1948, 1948.

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe
Shenfeld. A new analysis of differential privacy’s generalization guarantees. arXiv preprint
arXiv:1909.03577, 2019.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Securing
bloom filters with differential privacy. arXiv preprint arXiv:2502.00693, 2025.

Leonid G Khachiyan. Rounding of polytopes in the real number model of computation. Mathematics
of Operations Research, 21(2):307–320, 1996.

Leonid G Khachiyan and Michael J Todd. On the complexity of approximating the maximal in-
scribed ellipsoid for a polytope. Technical report, Cornell University Operations Research and
Industrial Engineering, 1990.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing ellipsoids and core sets. Journal
of Optimization Theory and applications, 126(1):1–21, 2005.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sampling for
neural networks. Advances in Neural Information Processing Systems, 33:10775–10787, 2020.

Yin Tat Lee and Aaron Sidford. Path finding ii: An\˜ o (m sqrt (n)) algorithm for the minimum cost
flow problem. arXiv preprint arXiv:1312.6713, 2013a.

Yin Tat Lee and Aaron Sidford. Path finding i: Solving linear programs with\˜ o (sqrt (rank)) linear
system solves. arXiv preprint arXiv:1312.6677, 2013b.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in o (vrank) iterations and faster algorithms for maximum flow. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 424–433. IEEE, 2014.

Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves. arXiv
preprint arXiv:1910.08033, 2019.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140–2157. PMLR, 2019.

D. Lewis. Finite dimensional subspaces of l{p}. Studia Mathematica, 63(2):207–212, 1978. URL
http://eudml.org/doc/218208.

Ping Li and Xiaoyun Li. Differential privacy with random projections and sign random projections.
arXiv preprint arXiv:2306.01751, 2023.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024a.

Xiaoyu Li, Zhao Song, and Junwei Yu. Quantum speedups for approximating the john ellipsoid.
arXiv preprint arXiv:2408.14018, 2024b.

14

http://eudml.org/doc/218208

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xingguo Li, Jarvis Haupt, and David Woodruff. Near optimal sketching of low-rank tensor regres-
sion. Advances in Neural Information Processing Systems, 30, 2017.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024.

Yuting Ma, Yuanzhi Yao, and Xiaohua Xu. Ppidsg: A privacy-preserving image distribution sharing
scheme with gan in federated learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 14272–14280, 2024.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
them. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5188–5196, 2015.

Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences, 106(3):697–702, 2009.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Shyam Narayanan. Private high-dimensional hypothesis testing. In Conference on Learning Theory,
pp. 3979–4027. PMLR, 2022.

Shyam Narayanan. Better and simpler lower bounds for differentially private statistical estimation.
arXiv preprint arXiv:2310.06289, 2023.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2003.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Eric Price, Zhao Song, and David P. Woodruff. Fast regression with an ℓ∞ guarantee, 2017. URL
https://arxiv.org/abs/1705.10723.

Tao Qi, Huili Wang, and Yongfeng Huang. Towards the robustness of differentially private federated
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):19911–19919,
Mar. 2024. doi: 10.1609/aaai.v38i18.29967. URL https://ojs.aaai.org/index.php/
AAAI/article/view/29967.

Lianke Qin, Rajesh Jayaram, Elaine Shi, Zhao Song, Danyang Zhuo, and Shumo Chu. Adore:
Differentially oblivious relational database operators. arXiv preprint arXiv:2212.05176, 2022.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for
projection matrix vector multiplication with application to empirical risk minimization. In Fran-
cisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine
Learning Research, pp. 101–156. PMLR, 25–27 Apr 2023. URL https://proceedings.
mlr.press/v206/qin23a.html.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming.
Mathematical programming, 40(1):59–93, 1988.

15

https://arxiv.org/abs/1705.10723
https://ojs.aaai.org/index.php/AAAI/article/view/29967
https://ojs.aaai.org/index.php/AAAI/article/view/29967
https://proceedings.mlr.press/v206/qin23a.html
https://proceedings.mlr.press/v206/qin23a.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Elon Rimon and Stephen P Boyd. Obstacle collision detection using best ellipsoid fit. Journal of
Intelligent and Robotic Systems, 18:105–126, 1997.

Rob Romijnders, Christos Louizos, Yuki M Asano, and Max Welling. Protect your score: Contact-
tracing with differential privacy guarantees. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 14829–14837, 2024.

Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo Rosasco. On fast leverage
score sampling and optimal learning. Advances in Neural Information Processing Systems, 31,
2018.

Jssai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
veränderlichen. 1911.

Weiwei Shen and Jun Wang. Transaction costs-aware portfolio optimization via fast lowner-john
ellipsoid approximation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 29, 2015.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp.
688–701, 2017.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse fourier transform over
lattices: A unified approach to signal reconstruction. arXiv preprint arXiv:2205.00658, 2022a.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022b.

Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john
ellipsoid computation. arXiv preprint arXiv:2211.14407, 2022c.

Zhao Song, Yitan Wang, Zheng Yu, and Lichen Zhang. Sketching for first order method: efficient
algorithm for low-bandwidth channel and vulnerability. In International Conference on Machine
Learning, pp. 32365–32417. PMLR, 2023a.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning, pp. 32418–32462. PMLR, 2023b.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(\sqrt{n})
passes, small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023c.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing, pp. 563–568, 2008.

Peng Sun and Robert M Freund. Computation of minimum-volume covering ellipsoids. Operations
Research, 52(5):690–706, 2004.

Yukai Tang, Jean-Bernard Lasserre, and Heng Yang. Uncertainty quantification of set-membership
estimation in control and perception: Revisiting the minimum enclosing ellipsoid. In 6th Annual
Learning for Dynamics & Control Conference, pp. 286–298. PMLR, 2024.

Sergei Pavlovich Tarasov. The method of inscribed ellipsoids. In Soviet Mathematics-Doklady,
volume 37, pp. 226–230, 1988.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Pravin M Vaidya. An algorithm for linear programming which requires o (((m+ n) n 2+(m+ n) 1.5
n) l) arithmetic operations. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pp. 29–38, 1987.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th annual
symposium on foundations of computer science, pp. 332–337. IEEE Computer Society, 1989.

Santosh Vempala. Geometric random walks: a survey. Combinatorial and computational geometry,
52(573-612):2, 2005.

Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. Split learning for health:
Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564,
2018.

Per-Åke Wedin. Perturbation theory for pseudo-inverses. BIT Numerical Mathematics, 13:217–232,
1973.

Hermann Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differen-
tialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Mathematische
Annalen, 71(4):441–479, 1912.

David Woodruff and Amir Zandieh. Leverage score sampling for tensor product matrices in input
sparsity time. In International Conference on Machine Learning, pp. 23933–23964. PMLR, 2022.

David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit functions of a
matrix. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 847–858.
IEEE, 2016.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Bourgan: Generative networks with metric embed-
dings. Advances in neural information processing systems, 31, 2018.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
some well-known conditional gradient methods using maxip data-structures. Advances in Neural
Information Processing Systems, 34:5576–5589, 2021.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we present the theoretical results on Lewis Weight computation under
a differential privacy guarantee. In Section B, we show some backgrounds for differential privacy.
In Section C, we introduce some basic notations in linear programming. In Section D, we provide
the basic definitions for the linear program algorithm. In Section E, we describe how to efficiently
compute approximations to Lewis weights.

A PERTURBATION LEMMA FOR LEWIS WEIGHTS

In Section A.1, we show some basic facts on matrix norm. In Section A.2, we present a lemma on
the perturbation of the spectral inverse. In Section A.3, we present a perturbation lemma for the
computation of W 1/2−1/pA. In Section A.4, we present the perturbation lemma for the computaion
of (A⊤W 1−2/pA)−1. In Section A.5, we show the final perturbation lemma for the Lewis weight
computation.

A.1 BASIC FACTS ON MATRIX NORM

In this section, we list basic facts about matrix norms. Due to the straightforward nature of these
facts, we omit the proofs here.
Fact A.1. Let A ∈ Rm×n be a matrix. Then we have

∥A∥ ≤ ∥A∥F .

Fact A.2. Let A ∈ Rm×n be a matrix where a⊤i is the i-th row of A. Then we have

∥ai∥2 ≤ σmax(A).

Fact A.3. Let A,B ∈ Rm×n, x ∈ Rn. Then the following two statements are equivalent:

• ∥BB⊤ −AA⊤∥ ≤ ϵ.

• ∥x⊤BB⊤x− x⊤AA⊤x∥ ≤ ϵ · x⊤x.
Lemma A.4 (Perturbation of singular value, (Weyl, 1912)). Let A,B ∈ Rm×n. Let σi(A) denote
the i-th singular value of A, then we have for any i ∈ [n],

∥σi(A)− σi(B)∥ ≤ ∥A−B∥.

Lemma A.5 (Perturbation of pseudoinverse, (Wedin, 1973)). Let A,B ∈ Rm×n. Then we have

∥A† −B†∥ ≤ 2max{∥A†∥2, ∥B†∥2} · ∥A−B∥.

Fact A.6. Let A,B ∈ Rm×n, x ∈ Rn. Then we have

• Part 1. ∥A∥ = ∥A⊤∥ = σmax(A) ≥ σmin(A).

• Part 2. ∥A−1∥ = ∥A∥−1.

• Part 3. σmax(B)− ∥A−B∥ ≤ σmax(A) ≤ σmax(B) + ∥A−B∥.

• Part 4. σmin(B)− ∥A−B∥ ≤ σmin(A) ≤ σmin(B) + ∥A−B∥.

• Part 5. ∥Ax∥2 ≤ ∥A∥ · ∥x∥2.

A.2 PERTURB SPECTRAL INVERSE

Building upon previous facts on matrix norm, we present a perturbation lemma for matrix inverse
and spectral norm.
Lemma A.7 (Lemma C.11 on page 19 of (Li et al., 2024a)). If the following conditions hold

• ∥A−B∥ ≤ ϵ1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• ϵ0 ≤ 0.1σmin(A).

Then we have

∥(AA⊤)−1 − (BB⊤)−1∥ ≤ 8κ(A)σ−3
min(A)ϵ1.

We ignore the proofs here.

A.3 PERTURBATION LEMMA FOR W 1/2−1/pA

To construct a perturbation lemma for the Lewis weight, we first examine a part of it, namely
W 1/2−1/pA.
Lemma A.8 (Formal Version of Lemma 4.1). If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is only different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Let gp(γ) := max{1, γ1/2−1/p}.

Then we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ gp(γ) · ϵ0.

Proof. Let B = W 1/2A and B′ = W 1/2A′. We have

∥B −B′∥ = ∥W 1/2−1/pA−W 1/2−1/pA′∥
≤ ∥W 1/2−1/pA−W 1/2−1/pA′∥F

≤ (

n∑
i=1

|wi|1−2/p∥ai − a′i∥22)1/2

= |wi|1/2−1/p∥aj − a′j∥2
≤ |wi|1/2−1/pϵ0

= max{1, γ1/2−1/p}ϵ0,

where the first step comes from the definition of B,B′, the second step is the result of ∥ · ∥ ≤ ∥ · ∥F ,
the third step comes from the definition of Frobenius norm, the fourth step utilizes that A and A′

only differs in j-th row, the fifth step derives from ∥aj − a′j∥2 ≤ ϵ0, and the last step is from
wi ∈ [γ, 1].

A.4 PERTURBATION LEMMA FOR (A⊤W 1−2/pA)−1

In this section, we extend the previous perturbation lemma for W 1/2−1/pA to (A⊤W 1−2/pA)−1.
We begin by presenting a basic fact for the eigenvalues of the matrix W .
Fact A.9. If W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m], the following statements are true:

• For 1/2− 1/p < 0, we have σmin(W
1/2−1/p) ≥ 1 and σmax(W

1/2−1/p) ≤ γ1/2−1/p.

• For 1/2− 1/p > 0, we have σmin(W
1/2−1/p) ≥ γ1/2−1/p and σmax(W

1/2−1/p) ≤ 1.

Proof. This directly follows from Part 3 and Part 4 of Fact A.6.

Next, we apply this fact to obtain the following perturbation lemma.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma A.10 (Formal Version of Lemma 4.2). If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Suppose that ϵ0 ≤ 0.1σmin(A).

• Let gp(γ) := max{1, γ1/2−1/p}.

• Let ϵ1 := gp(γ)ϵ0.

Then we have

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Proof. By Lemma A.8, we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ ϵ1.

We can show that

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8κ(W 1/2−1/pA)σ−3
min(W

1/2−1/pA)ϵ1

≤ 8max{γ−|1/2−1/p|, γ−4|1/2−1/p|}κ(A)σ−3
min(A)ϵ1

≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1,

where the first step is the result of Lemma A.7 and the second step is from Fact A.9.

A.5 PERTURBATION LEMMA FOR LEWIS WEIGHTS

In this section, we introduce the perturbation lemma for the full Lewis weights f(w,A). We begin
by establishing both the upper and lower bounds for each element f(w,A)i of the Lewis weights.
Lemma A.11. If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Let f(w,A) := (f(w,A)1, . . . , f(w,A)n).

• Let f(w,A)i := w
1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai for i ∈ [m].

• Suppose that ϵ0 ≤ 0.1σmin(A).

• Let gp(γ) := max{1, γ1/2−1/p}.

• Let ϵ1 := gp(γ)ϵ0.

• Let ϵ2 = 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Then we have

• Part 1. For i ̸= j, we have

|f(w,A)i − f(w,A′)i| ≤ ϵ2gp(γ)σmax(A)2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Part 2. It holds that

|f(w,A)j − f(w,A′)j | ≤ gp(γ)ϵ2(σmax(A) + ϵ0)
2 + ϵ1γ

−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0).

Proof. Proof of Part 1. For i ̸= j, we have

|f(w,A)i − f(w,A′)i| = |w1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai − w
1−2/p
i ai

⊤(A′⊤W 1−2/pA′)−1ai|

≤ |w1−2/p
i | · |a⊤i (A⊤W 1−2/pA)−1ai − ai

⊤(A′⊤W 1−2/pA′)−1ai|

≤ gp(γ)|a⊤i (A⊤W 1−2/pA)−1ai − ai
⊤(A′⊤W 1−2/pA′)−1ai|

≤ gp(γ)ϵ2 · a⊤i ai
= gp(γ)ϵ2 · ∥ai∥22
≤ ϵ2gp(γ)σmax(A)2,

where the first step follows from the definition of f , the second definition comes from basic algebra,
the third step comes from wi ∈ [γ, 1], the fourth step derives from Lemma A.10 and Fact A.3, the
fifth step utilizes basic algebra, and the last step derives from ∥ai∥2 ≤ σmax(A).

Proof of Part 2. Next, we define

C1 := a⊤j (A
⊤W 1−2/pA)−1aj − a′j

⊤
(A⊤W 1−2/pA)−1a′j ,

C2 := a′j
⊤
(A⊤W 1−2/pA)−1a′j − a′j

⊤
(A′⊤W 1−2/pA′)−1a′j .

We first bound C1. We can show that

|C1| = |a⊤j (A⊤W 1−2/pA)−1aj − a′j
⊤
(A⊤W 1−2/pA)−1a′j |

= |a⊤j (A⊤W 1−2/pA)−1aj − a′j
⊤
(A⊤W 1−2/pA)−1aj + a′j

⊤
(A⊤W 1−2/pA)−1aj − a′j

⊤
(A⊤W 1−2/pA)−1a′j |

= | (aj − a′j)
⊤(A⊤W 1−2/pA)−1ai︸ ︷︷ ︸

:=C3

+ a′j
⊤
(A⊤W 1−2/pA)−1(ai − a′j)︸ ︷︷ ︸

:=C4

|

≤ |C3|+ |C4|.

where the first step follows from the definition of C1, the second and third steps follow from basic
algebra, and the last step follows from the triangle inequality.

For C3, we have

|C3| = |(aj − a′j)
⊤(A⊤W 1−2/pA)−1ai|

≤ ∥(aj − a′j)∥2 · ∥(A⊤W 1−2/pA)−1ai∥

≤ ∥(aj − a′j)∥2 · ∥(A⊤W 1−2/pA)−1∥ · ∥ai∥2
≤ ϵ0 · σmin(W

1/2−1/pA)−2 · σmax(A)

≤ ϵ0γ
−2|1/2−1/p| · σmin(A)−2 · σmax(A),

where the first step comes from definition of C3, the second step utilizes Cauchy-Schwarz inequality,
the third step derives from Part 5 of Fact A.6, the fourth step comes from Fact A.2 and Part 2 of
Fact A.6, and the last step follows from that wi ∈ [γ, 1] for i ∈ [m].

For C4, we have

|C4| = |a′j
⊤
(A⊤W 1−2/pA)−1(aj − a′j)|

≤ ∥a′j∥2 · ∥(A⊤W 1−2/pA)−1(aj − a′j)∥

≤ ∥a′j∥2 · ∥(A⊤W 1−2/pA)−1∥ · ∥aj − a′j∥2
≤ (∥aj∥2 + ϵ0) · σmin(W

1/2−1/pA)−2 · ϵ0
≤ (σmax(A) + ϵ0) · σmin(W

1/2−1/pA)−2 · ϵ0
≤ (σmax(A) + ϵ0) · γ−2|1/2−1/p| · σmin(A)−2 · ϵ0,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where the first step comes from the definition of C3, the second step is from Cauchy-Schwarz in-
equality, the third step derives from Part 5 of Fact A.6, and the fourth step is from ∥aj − a′j∥ ≤ ϵ0
and Part 2 of Fact A.6, and the fifth step comes from Fact A.2, and the last step follows from that
wi ∈ [γ, 1] for i ∈ [m].

Combining the bounds of |C3| and |C4|, we have

|C1| ≤ ϵ0 · γ−2|1/2−1/p| · σmin(A)−2 · (2σmax(A) + ϵ0).

We next bound C2. We can show that

|C2| = |a′j
⊤
(A⊤W 1−2/pA)−1a′j − a′j

⊤
(A′⊤W 1−2/pA′)−1a′j |

≤ ϵ2a
′
j
⊤
a′j

≤ ϵ2∥a′j∥2

≤ ϵ2(∥aj∥+ ϵ0)
2

≤ ϵ2(σmax(A) + ϵ0)
2,

where the first step follows from the definition of C2, the second step follows from Lemma A.7 and
Fact A.3, and the third step follows from basic algebra, and the last step follows from ∥aj−a′j∥ ≤ ϵ0.

We can show that

|f(w,A)j − f(w,A′)j |

= |w1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai − w
1−2/p
i a′j

⊤
(A′⊤W 1−2/pA′)−1a′j |

= |w1−2/p
i C1 + w

1−2/p
i C2|

= |w1−2/p
i | · |C1 + C2|

≤ gp(γ)|C1 + C2|
≤ gp(γ)(|C1|+ |C2|)
≤ gp(γ)ϵ2(σmax(A) + ϵ0)

2 + gp(γ)ϵ0γ
−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0))

= gp(γ)ϵ2(σmax(A) + ϵ0)
2 + ϵ1γ

−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0),

where the first step stems from the definition of f , the second step comes from the definition of
C1, C2, the third step is from basic algebra, the fourth step comes from wi ≤ gp(γ) for i ∈ [m], the
fifth step follows from triangle inequality, the sixth step derives from the bounds of |C1| and |C2|,
and the last step is due to ϵ1 = gp(γ)ϵ0.

Next, we combine the element-wise upper and lower bounds to obtain the ℓ∞ global sensitivity of
the Lewis weights.
Theorem A.12 (Formal Version of Theorem 4.4). If the following conditions hold:

• Let A,A′ ∈ Rm×n be two neighbouring polytopes that are different in the j-th row, i.e.,
∥aj − a′j∥2 ≤ ϵ0.

• Let f(w,A) be the Lewis Weights in Definition E.1, where f(w,A) := σ(W 1/2−1/pA).

• We assume that all leverage scores in satisfy σi ∈ [γ, 1] for i ∈ [m].

• Let ϵ0 ≤ 0.1σmin(A).

Thus there exists L = poly(n, d, γ−|1/2−1/p|, κ(A), σmax(A)) such that

∥f(w,A)− f(w,A′)∥∞ ≤ L · ϵ0.

Proof. It directly follows from Part 1 and Part 2 of Lemma A.11.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B BACKGROUNDS ON DIFFERENTIAL PRIVACY

In Section B.1, we define the concept of neighboring polytopes. In Section B.2, we show the funda-
mental definition of differential privacy. In Section B.3, we present the definition of Rényi differen-
tial privacy. In Section B.4, we show some basic facts for Rényi differential privacy.

B.1 NEIGHBORING POLYTOPES

In this section, we first define the neighboring polytopes, which are crucial for formalizing the global
sensitivity of Lewis weights.

Definition B.1 (Symmetric convex polytope, Definition 4.1 in (Song et al., 2022c)). Let A ∈ Rm×n

be a matrix with full rank and a⊤i is the i-th row of A for i ∈ [m]. The symmetric convex polytope
P is defined as

P := {x ∈ Rd : |⟨ai, x⟩| ≤ 1,∀i ∈ [m]}.

Definition B.2 (Neighboring polytopes). Let P, P ′ be two polytopes defined by A,A′ ∈ Rm×n,
respectively. We say that P and P ′ are ϵ0-close if there exists exact one i ∈ [m] such that ∥Ai,∗ −
A′

i,∗∥2 ≤ ϵ0, and for all j ∈ [m] \ {i}, Aj,∗ = A′
j,∗.

B.2 DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Differential Privacy (DP).

Definition B.3 (Differential Privacy). A randomized mechanismM : X → R with domain X and
range R satisfies (ϵ, δ)-differential privacy if for any two neighboring dataset, X,X ′ ∈ X and for
any subset of outputs S ⊆ R it holds that

Pr[M(X) ∈ S] ≤ eϵ Pr[M(X ′) ∈ S] + δ.

B.3 RÉNYI DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Rényi Divergence and then present a correspond-
ing concept, Rényi DP.

Definition B.4 (Rényi Divergence, Definition 3 in (Mironov, 2017)). Let α > 1. For two probability
distributions P and Q defined overR, the Rényi divergence of order α is defined as

Dα(P∥Q) :=
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
.

Definition B.5 (Rényi DP, Definition 4 in (Mironov, 2017)). Let α > 1 and ϵ > 0. We say that a
mechanismM is (α, ϵ)-RDP if for all neighboring datasets X,X ′,

Dα(M(X)∥M(X ′)) ≤ ϵ.

B.4 BASIC FACTS FOR RÉNYI DIFFERENTIAL PRIVACY

In this section, we review basic facts for the Rényi Differential Privacy.

Lemma B.6 (Adaptive Composition of RDP, Proposition 1 in (Mironov, 2017)). If the following
conditions hold

• Let X be the input dataset.

• M1 is an (α, ϵ1)-RDP mechanism that takes X as input.

• M2 is an (α, ϵ2)-RDP mechanism that takes X andM1(X) as input.

Then the composition mechanism ofM1 andM2 is (α, ϵ1 + ϵ2)-RDP.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. LetM1 : X → R1 andM2 : X × R1 → R2. We define the domain and range ofM as
M : R1 ×R2 → R3. Let P1, P2 be the distributions forM1(X) andM2(X,M1(X)), and P3 be
the joint distribution ofM(X) w.r.t. bothM1(X) andM2(X,M1(X)).

Considering two different inputs X,X ∈ X , if P ′
1, P

′
2, P

′
3 are similarly defined, we have the follow-

ing:

exp((α− 1)Dα(M(X)∥M(X ′)))

=

∫
R1×R2

P3(y1, y2)
αP ′

3(y1, y2)
1−αdy1dy2

=

∫
R1

∫
R2

(P1(y1)P2(y1, y2))
α(P ′

1(y1)P
′
2(y1, y2))

1−αdy2dy1

=

∫
R1

P1(y1)
αP ′

1(y1)
1−α(

∫
R2

P2(y1, y2)
αP ′

2(y1, y2)
1−α)dy1

≤
∫
R1

P1(y1)
αP ′

1(y1)
1−αdy1 exp((α− 1)ϵ2)

≤ exp((α− 1)ϵ1) · exp((α− 1)ϵ2)

= exp((α− 1)(ϵ1 + ϵ2)),

where the first step follows from Definition B.5, the second step follows from changing the multiple
integral into iterated integrals, the third step follows from extracting the terms related to P1 and P ′

1,
the fourth and the fifth steps follow from the property of RDP, and the last step follows from basic
algebra.

Thus, we complete the proof.

Lemma B.7 ((RDP to DP Conversion, Proposition 3 in (Mironov, 2017)). LetM be a mechanism
that is (α, ϵ)-RDP. ThenM is (ϵ+ log(1/δ)

α−1 , δ)-DP for any δ > 0.

Proof. By the probability preservation property in (Mironov, 2017), we can conclude that for two
distributions P,Q defined overR and for any event E ∈ R, the following statement is true:

P (E) ≤ exp(Dα(P∥Q) ·Q(A))1−1/α.

Therefore, considering arbitrary X,X ′ ∈ X and subset S ⊆ R, we have

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α. (3)

To further conclude thatM isM is (ϵ+ log(1/δ)
α−1 , δ)-DP, we consider two cases.

Case 1. eϵ Pr[M(X ′) ∈ S] > δα/(α−1). In this case, we have the following:

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α (4)

= eϵ Pr[M(X ′) ∈ S] · (eϵ Pr[M(X ′) ∈ S])−1/α

≤ eϵ Pr[M(X ′) ∈ S] · δ1/(1−α)

= exp(ϵ+
log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S],

where the first step follows from Eq. (3), the second step follows from basic algebra, the third step
follows from the fact that eϵ Pr[M(X ′) ∈ S] > δ1−1/α, and the last step follows from the basic
property of exponential functions.

Case 2. eϵ Pr[M(X ′) ∈ S] ≤ δα/(α−1). In this case, we simply have

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α (5)
= δ,

where the first step follows from Eq. (3), and the second step follows from eϵ Pr[M(X ′) ∈ S] ≤
δα/(α−1).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Combining both cases above, we can obtain the following:

Pr[M(X) ∈ S] ≤ max{exp(ϵ+ log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S], δ}

≤ exp(ϵ+
log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S] + δ,

where the first step follows from combing Eq. (4) and Eq. (5), and the second step follows from the
basic property of max.

Therefore, we can conclude thatM is (ϵ+ log(1/δ)
α−1 , δ)-DP, which completes the proof.

Lemma B.8 (Gaussian Mechanism, Corollary 3 in (Mironov, 2017)). If the following conditions
hold

• Let α > 1.

• Let D be the input dataset.

• Let f be a real-valued function with sensitivity L.

• Let z ∼ N (0, σ2) be a Gaussian random variable.

• Let Gσf be a mechanism defined as Gσf(D) = f(D) + z.

Then Gσf satisfies (α, αL2

2σ2)-RDP.

Proof. The Rényi divergence between a zero-mean Gaussian random variable and its offset has a
closed-form solution, which can be computed as follows:

Dα(N (0, σ2)∥N (µ, σ2))

= (α− 1)−1 log

∫ ∞

−∞
σ−1(2π)−1/2 exp(−0.5ασ−2x2) · exp(−0.5(1− α)σ−2(x− µ)2)dx

= (α− 1)−1 log exp(0.5(α2 − α)σ−2µ2)

= 0.5ασ−2µ2,

where the first step follows from Definition B.4 and the probability density function of Gaussian
random variables, the second step follows from the property of Gaussian random variables, and the
last step follows from basic algebra.

Therefore, we can conclude that for a real-valued function f with sensitivity L, the Gaussian mech-
anism is (α, αL2

2σ2)-RDP, since the offset between z and Gσf is at most L.

Thus, we finish the proof.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C LINEAR PROGRAMMING: NOTATIONS AND BASIC FACTS

In Section C.1, we introduce basic notations. In Section C.2, we present basic algebra facts. In Sec-
tion C.3, we introduce basic derivative fact. In Section C.4, we introduce basic norm inequalities. In
Section C.5, we present basic matrix inequalities. In Section C.6, we present basic real number in-
equalities. In Section C.7, we present basic inequalities for p. In Section C.8, we provide basic PSD
Matrix Facts. In Section C.9, we provide basic PSD inequalities. In Section C.10, we present basic
PSD inequalities with trace. In Section C.11, we provide basic PD inequalities. In Section C.12, we
introduce commutative property and eigenvalues of A(I − cA)−1. In Section C.13, we introduce
basic power calculations. In Section C.15, we introduce the simple constrained minimization by
gradient descent method. In Section C.16, we introduce a fact about the equivalence of objective
functions.

C.1 NOTATIONS

In this section, we introduce basic notations.

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors x, y ∈ Rn, we denote the element-wise vector product xy ∈ Rn with (xy)i = xiyi, for
i ∈ [n]. In addition, we also x ◦ y to denote the element-wise product. For any vector x ∈ Rn, the
absolute value of x is defined element-wise as |x| := (|x1|, |x2|, · · · , |xn|).

Basic Notations. We denote all the positive real numbers as R>0, and denote m-dimensional
positive real vectors as Rm

>0. We use ±δ to denote a real value with magnitude at most δ, e.g.
a = e±δb means a ∈ [e−δb, eδb].

Matrices. If a matrix A ∈ Rm×n has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B ∈ Rn×n be a symmetric matrix. B ∈ Rn×n is positive semidefinite (PSD) if
x⊤Bx ≥ 0 for all x ∈ Rn, and positive definite (PD) if x⊤Bx > 0 for all x ∈ Rn. We denote the
kernel (the null space) of the matrix A ∈ Rm×n as ker(A), i.e., ker(A) := {x ∈ Rn : Ax = 0m}.
We denote the image space (the column space) as im(A), i.e., im(A) := {y ∈ Rm : y = Ax}.

Matrix Operations. Let A,B ∈ Rn×n be two symmetric matrices. We use A ⪯ B to indicate that
x⊤Ax ≤ x⊤Bx for all x ∈ Rn. We define ≺,⪰,≻ analogously. For matrices A,B ∈ Rn×m, we
denote the Hadamard product as A◦B, i.e., for i ∈ [n], j ∈ [m], (A◦B)i,j := Ai,j ·Bi,j . We define
A◦2 := A ◦ A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A,B ∈ Rn×n with scalars 0 < c1 ≤ c2, we write A ∈ [c1, c2] ·B to mean that c1B ⪯ A ⪯ c2B.

Diagonals. Let A ∈ Rn×n be a matrix. We define Diag(A) ∈ Rn with Diag(A)i := Ai,i

for all i ∈ [n]. For a vector x ∈ Rn, we define diag(x) ∈ Rn×n as the diagonal matrix with
diag(x)i,i := xi for i ∈ [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(x) ∈ Rn×n for x ∈ Rn.

Fundamental Matrices. For a non-degenerate matrix A ∈ Rm×n, we define P (A) :=
A(A⊤A)−1A⊤ as the orthogonal projection matrix onto A’s image. We define σ(A) :=
Diag(P (A)) as A’s leverage scores. We define Σ(A) := diag(σ(A)). We define Λ(A) :=
Σ(A) − P ◦2(A) as a Laplacian matrix and Λ(A) := Σ(A)−1/2Λ(A)Σ(A)−1/2 as a normalized
Laplacian matrix.

Norms. For any positive real number p > 0 and vector x ∈ Rn, we define the vector ℓp norm as
∥x∥p := (

∑n
i=1 |xi|p)1/p. We define the vector ℓ0 norm as the number of non-zero elements in x,

i.e., ∥x∥0 :=
∑n

i=1 1[xi = ̸= 0]. For a positive definite matrix A ∈ Rn×n and a vector x ∈ Rn, we
define ∥x∥A := (x⊤Ax)1/2. For a vector w ∈ Rn

>0, we define ∥x∥w := (
∑n

i=1 wix
2
i)

1/2. If we
let W := diag(w), then know that ∥x∥w = ∥x∥W . For any matrix spectral norm ∥ · ∥, we define
∥M∥ := sup∥x∥2=1 ∥Mx∥2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Calculus. Let g(x, y) ∈ R be a function of two vectors x ∈ Rn1 and y ∈ Rn2 . We define the
gradient of g with respect to x at (a, b) ∈ Rn1×n2 as ∇xg(a, b) ∈ Rn1 , where ∇xg(a, b)i :=
d

dxi
g(a, b), and define ∇yg(a, b)i :=

d
yi
g(a, b), ∇yyg(a, b)i,j := d

dyi

d
dyj

g(a, b), ∇xxg(a, b)i,j :=
d

dxi

d
dxj

g(a, b). For h : Rn → Rm and x ∈ Rn, we use Jh(x) ∈ Rm×n to denote the Jacobian of h

at x, where Jh(x)i,j := d
dxj

h(x)i for i ∈ [m], j ∈ [n]. For f : Rn → R and x, h ∈ Rn, we define
the directional derivative of f in direction h at x as Df(x)[h] := limt→0(f(x+ th)− f(x))/t.

Convex Sets. A set U ⊆ Rk is convex if t · x + (1 − t) · y ∈ U for all x, y ∈ U, t ∈ [0, 1]. A set
U ⊆ Rk is symmetric if x ∈ U , then −x ∈ U for all x ∈ U . For all α > 0 and U ⊆ Rk, we define
αU := {x ∈ Rk : α−1x ∈ U}. For all p ∈ [1,∞] and r > 0, we call the symmetric convex set
{x ∈ Rk : ∥x∥p ≤ r} the ℓp ball of radius r.

C.2 BASIC ALGEBRA FACTS

Fact C.1. For any vectors a, b, c ∈ Rm, square matrix M , diagonal matrix D, and symmetric matrix
P ∈ Rm×m, we have

• a ◦ b = diag(a)b = diag(b)a.

• a⊤ diag(b)c = a⊤ diag(c)b.

• e⊤j aiei = e⊤j diag(a)ei.

• diag(a) =
∑m

i=1 eie
⊤
i ai.

• e⊤i Mei = Mi,i.

• (diag(a)M) ◦ I = Diag(M)a.

• Diag(diag(b)P) = Diag(P diag(b)) = Diag(P)b.

• Diag(P diag(b)P) = (P ◦ P)b.

Proof. Let i ∈ [m]/ For i-th entry of vector, it is
∑m

j=1 P
2
i,jbj . Thus it’s true. The other parts of the

statement are trivial.

C.3 BASIC DERIVATIVE FACTS

Fact C.2. Let A denote a positive definite matrix, then we have

• Part 1.

dA−1

dt
= −A−1 dA

dt
A−1.

• Part 2.

d log det(A)

dt
= tr[A−1 dA

dt
].

C.4 BASIC NORM INEQUALITIES

Fact C.3. If the following conditions hold:

• Let a, b ∈ Rm be two vectors.

Then, for any vector norm ∥ · ∥, we have

∥a ◦ b∥ ≤ ∥a∥∞∥b∥.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. For i ∈ [m], we have
|(a ◦ b)i| = |aibi| ≤ ∥a∥∞|bi|,

where the first step follows from the definition of Hadamard product, and the second step follows
from |ai| ≤ ∥a∥∞ for i ∈ [m].

Since the inequality holds for i ∈ [m], thus we have
∥a ◦ b∥ ≤ ∥a∥∞ ∥b∥.

The proof is complete.

Fact C.4 (Folklore). Let x, y ∈ Rm be two vectors. If for all i ∈ [m], |xi| ≤ |yi|, then the following
statements are true:

• Part 1. For any positive real number p > 0, ∥x∥p ≤ ∥y∥p.

• Part 2. For any w ∈ Rm, ∥x∥w ≤ ∥y∥w.

• Part 3. For any w ∈ Rm and W := diag(w), ∥x∥W ≤ ∥y∥W .
Fact C.5. Let a, b > 0 be positive real numbers and r ∈ (0, 0.5). Let |a−1(a − b)| ≤ r. We have
a = e±1.5rb.

Proof. Since we have |a−1(a− b)| ≤ r, we can imply by the definition of absolute value that

−r ≤ 1− b

a
≤ r.

Thus, we can imply by basic algebra that
(1 + r)a ≤ b ≤ (1− r)a.

Therefore, if we apply Part 1 of Fact C.28 for the lower bound of b and apply Part 2 of Fact C.28 for
the upper bound of b, we can conclude that

e−1.5ra ≤ b ≤ e1.5ra.

This is equivalent to
a = e±1.5rb.

Thus, we finish the proof.

Fact C.6. If the following conditions hold:

• Let w, v ∈ Rm
>0 be two positive vectors.

• Let W := diag(w).

• Let r ∈ (0, 0.5).

• We assume ∥W−1(w − v)∥∞ ≤ r.

Then the following statement is true:
w = e±1.5rv.

Proof. Since we have ∥W−1(w − v)∥∞ ≤ r, we have the following for for all i ∈ [m]:

|w−1
i (wi − vi)| ≤ r,

where this step follows from the definition of infinity norm.

By Fact C.5, we can conclude for all i ∈ [m] that

wi = e±1.5rvi.

Thus, we can combine all the entries wi and vi for all i ∈ [m], and directly obtain

w = e±1.5rv,

which finishes the proof.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C.5 BASIC MATRIX INEQUALITIES

Definition C.7. We say matrix P is a projection matrix if PP = P .

Now, we show the basic properties of the projection matrix without proof.
Fact C.8 (Folklore). If P is a projection matrix as defined in Definition C.7, we have the following:

• All the eigenvalues of P are either 0 or 1.

• P ⪰ 0.

• P ⪯ I .

• P ◦ I ⪯ I .

• Pi,i ∈ [0, 1] for all i ∈ [n].

• e⊤i Pei ∈ [0, 1] for all i ∈ [n].
Fact C.9 (Folklore). Let A denote a symmetric matrix such that Ai,i ≥ 0, Ai,j ≤ 0 and∑n

j=1 Ai,j ≥ 0 for all i, then we have A ⪰ 0.

C.6 BASIC REAL NUMBER INEQUALITIES

Fact C.10 (folklore). If the following conditions hold:

• Let x ∈ (0, 1).

• Let y > 0.

• Let f = (1+x
1−x)

y .

Then, we have f ≥ 1.
Fact C.11. If the following conditions hold:

• Let a ≥ 1.

• Let b > 0 > c.

• Let x ∈ [0, 1].

Then we have

min{axb, xc} ≤ a
−c
b−c .

Proof. Case 1. We first consider the extreme case when axb = xc. In this case, we can solve for x
and obtain that x = a−

1
b−c . Thus, we have

min{axb, xc} = xc

= (a−
1

b−c)c

= a−
c

b−c ,

where the first step follows from axb = xc, the second step follows from x = a−
1

b−c , and the last
step follows from basic algebra.

Therefore, the original statement is true when axb = xc.

Case 2. Now we just need to show that as long as axb is not equal xc, then one of them must be at
most a−c/(b−c). This is obviously true since both two functions are monotonically functions.

Fact C.12. Let ϵ ∈ (0, 1) and α > 0. We have ϵ = α
1+α is the minimizer for function f(ϵ) :=

1
(1−ϵ)ϵα .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Proof. The derivative of the function f is

df

dϵ
= ((1− ϵ)ϵα)−2(−ϵα + α(1− ϵ)ϵα−1)

= (1− ϵ)−2ϵ−2α(αϵα−1 − (α+ 1)ϵα)

= (1− ϵ)−2ϵ−α−1(α− (α+ 1)ϵ),

where the first step follows from the chain rule, and the second step and the last steps follow from
basic algebra.

Therefore, we let df
dϵ = 0 and solve for ϵ, which directly yields

ϵ =
α

1 + α
.

Thus, we can conclude that ϵ = α
1+α is the minimizer for function f .

C.7 BASIC INEQUALITIES FOR p

Fact C.13. For any p ∈ (0, 4), we have 1− p/4 ≤ 2/p− |1− 2/p|.

Proof. Case 1. Let p ∈ (0, 2]. We have |1 − 2/p| = 2/p − 1. Therefore, the original inequality is
equivalent to

1− p/4 ≤ 2/p− (2/p− 1).

Moving the terms, we can obtain

p/4 ≥ 0,

which trivially holds since p ∈ (0, 2].

Case 2. Let p ∈ (2, 4). We have |1−2/p| = 1−2/p. Therefore, the original inequality is equivalent
to

1− p/4 ≤ 2/p− (1− 2/p).

Moving the terms, we have

p/4 + 4/p ≥ 2,

which is a true statement since p/4 + 4/p ≥ 2
√
(p/4) · (4/p) = 2.

Since 1− p/4 ≤ 2/p− |1− 2/p| holds for both p ∈ (0, 2] and p ∈ (2, 4), the proof is finished.

Fact C.14. If p ∈ (0, 4), then we have

p2(4− p) · (4 + 8/p) · (1 + 4/p) ≤ 210(1− p/4).

Proof. We can show

p2(4− p)(4 + 8/p)(1 + 4/p) ≤ (4− p) · (4p+ 8) · (p+ 4)

≤ (4− p) · 24 · 8
≤ 28 · (4− p)

= 210 · (1− p/4),

where the first step follows from basic algebra, the second step follows from p ∈ (0, 4), and the
third step follows from 24 · 8 ≤ 28, and the last step follows from pulling out the factor 4.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Fact C.15. If p ∈ (0, 4), we have

min{1/4, 1/(2p)}
max{4, 8/p}

≥ 1

16
· 1

p/2 + 2/p
.

Proof. Case 1. For p ≥ 2, we have

min{1, 2/p}
max{1, 2/p}

=
1

2/p
.

Case 2. For p < 2, we have

min{1, 2/p}
max{1, 2/p}

=
2/p

1
=

1

p/2
.

Therefore, by combining two cases, We can show that

min{1/4, 1/(2p)}
max{4, 8/p}

=
1

16
· min{1, 2/p}
max{1, 2/p}

≥ 1

16
· 1

p/2 + 2/p
, (6)

where the last step follows from x ≥ 1/a and x ≥ 1/b implies that x ≥ 1
a+b .

C.8 BASIC PSD MATRIX FACTS

Fact C.16 (Schur product theorem, Theorem VII in page 14 in (Schur, 1911)). If the following
conditions hold:

• Let A,B ∈ Rm×m be two positive semidefinite matrices.

Then A ◦B is a positive semi-definite matrix.

Fact C.17 (Folklore). If the following conditions hold:

• Let A ∈ Rm×m be a symmetric matrix.

• Let 0 ⪯ A ⪯ I .

• For i ∈ [m], denote the eigenvalue of the matrix A as λi.

Then for i ∈ [m], λi ∈ [0, 1].

C.9 BASIC PSD INEQUALITIES

Fact C.18 (Folklore). If the following conditions hold:

• Let A ∈ Rm×n.

• Let B ∈ Rm×m be a matrix B ⪰ 0.

Then we have A⊤BA ⪰ 0.

Fact C.19. If the following conditions hold

• Let w, v ∈ Rm
>0 with wi = eδivi for |δi| ≤ δ for all i ∈ [m].

• Let p > 0.

Then we have

e−|1−2/p|δW 1−2/p ⪯ V 1−2/p ⪯ e|1−2/p|δW 1−2/p.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. For any i ∈ [m], we have

(
vi
wi

)1−2/p = e−(1−2/p)δi ∈ [e−|1−2/p|δ, e|1−2/p|δ].

Thus, we complete the proof.

Fact C.20. If the following conditions hold:

• Let A ∈ Rm×n.

• Let k ∈ R be an arbitrary real number such that k > 0.

• Let W,V ∈ Rm×m denote a positive diagonal matrix.

• We have W ⪯ k · V .

Then the following statement is true:

• (A⊤WA)−1 ⪰ k−1(A⊤V A)−1.

• A(A⊤WA)−1A⊤ ⪰ k−1A(A⊤V A)−1A⊤.

Proof. Since W ⪯ kV , then A⊤WA ⪯ kA⊤V A. Taking the inverse on both sides, we have
(A⊤WA)−1 ⪰ k−1(AV A)−1. Thus, we have A(A⊤WA)−1A⊤ ⪰ k−1A(A⊤V A)−1A⊤.

Fact C.21. If the following conditions hold:

• Let ϵ > 0.

• Let Iw≤ ϵ
m
∈ Rm×m be the diagonal matrix where Iϵ,i,i = 1 if wi > ϵ

m and Iϵ,i,i = 0
otherwise.

• Let Iw> ϵ
m

:= I − Iw≤ ϵ
m

.

Then the following statement is true:

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A.

Proof. Note that

tr[(A⊤W 1−2/pA)−1A⊤W 1−2/pIw≤ ϵ
m
A] = tr[A(A⊤W 1−2/pA)−1A⊤W 1−2/pIw≤ ϵ

m
]

=
∑
i∈[m]

(A(A⊤W 1−2/pA)−1A⊤)i,i(W
1−2/pIw≤ ϵ

m
)i,i

=
∑
i∈[m]

w
2/p
i (W 1−2/pIw≤ ϵ

m
)i,i

=
∑

i∈[m] : wi≤ ϵ
m

w
2/p
i w

1−2/p
i

=
∑

i∈[m] : wi≤ ϵ
m

wi

≤m · ϵ
m

= ϵ, (7)

where the first step follows from the cyclic property of the trace, the second step follows from the
fact that W and Iw≤ ϵ

m
are diagonal matrices, the third step follows from the definition of Lewis

weight (Definition E.1, ci,i = (W 1/2−1/pcW 1/2−1/p)i,i/w
1−2/p
i = wi/w

1−2/p = w
2/p
i) , the

fourth step follows from the definition of Iw≤ ϵ
m

, the fifth step follows from basic algebra, and the
last step follows from wi ≤ ϵ

m .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

We have,

A⊤W 1−2/pIw≤ ϵ
m
A ⪯ ϵ ·A⊤W 1−2/pA,

where the step follows from Eq. (7) and X ⪯ tr[Y −1X]Y (Fact C.23)

Note that Iw> ϵ
m

= I − Iw≤ ϵ
m

implies

A⊤W 1−2/pIw> ϵ
m
A+A⊤W 1−2/pIw≤ ϵ

m
A = A⊤W 1−2/pA

The above two equations implies

A⊤W 1−2/pIw> ϵ
m
A ⪰ (1− ϵ) ·A⊤W 1−2/pA,

By rescaling the factor 1− ϵ on both sides, we get

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A.

C.10 BASIC PSD INEQUALITIES WITH TRACE

Fact C.22 (Folklore). Let Z be any PSD matrix. The following statement is true:

Z ⪯ ∥Z∥ · I ⪯ tr[Z] · I.

Fact C.23. If the following conditions hold:

• Let X,Y be any PSD matrices.

Then the following statement is true:

X ⪯ tr[Y −1X] · Y.

Proof. Due to cyclic property of the trace, we know that

tr[Y −1X] = tr[Y −1/2XY −1/2].

Thus, the original statement

X ⪯ tr[Y −1X] · Y

is equivalent to

X ⪯ tr[Y −1/2XY −1/2]Y,

which is further equivalent to

Y −1/2XY −1/2 ⪯ tr[Y −1/2XY −1/2] · I,

which is a true statement following Fact C.22.

Thus, since the equivalent form of the original statement is true, we can complete the proof.

Fact C.24. If the following conditions hold:

• Let A ∈ Rm×n.

• Let B,C ∈ Rm×m be non-negative diagonal matrices.

• Let

α := tr[(A⊤BA)−1(A⊤|C −B|A)].

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

then we have

(1− α)A⊤BA ⪯ A⊤CA ⪯ (1 + α)A⊤BA.

which is equivalent to

A⊤CA ∈ [1− α, 1 + α] ·A⊤BA

Proof. Note that

(1− α)A⊤BA ⪯ A⊤CA ⪯ (1 + α)A⊤BA

is equivalent to

−αA⊤BA ⪯ A⊤(C −B)A ⪯ αA⊤BA.

The following equation implies the above equation

A⊤|C −B|A ⪯ α ·A⊤BA.

Since A⊤|C − B|A and A⊤BA are both PSD matrices, we can choose X = A⊤|C − B|A and
Y = A⊤BA and then apply Fact C.23 to show that the above equation is true.

Thus, we complete the proof.

C.11 BASIC PD INEQUALITIES

Fact C.25 (Folklore). If the following conditions hold:

• Let Q ∈ Rm×m denote a matrix that Q ≻ 0.

• Let W ∈ Rm×m be positive diagonal matrix.

Then we have WQW ≻ 0.

C.12 COMMUTATIVE PROPERTY AND EIGENVALUES OF A(I − cA)−1

Fact C.26. If the following conditions hold:

• Let A ∈ Rm×m.

• Let (I − cA) be invertible.

Then, we have

(I − cA)−1A = A(I − cA)−1.

Proof. It is easy to see

(I − cA)A = A− cA2 = A(I − cA).

Then multiplyling (I − cA)−1 · (I − cA)−1 on both sides of the above equation, then we can get the
following

A(I − cA)−1 = (I − cA)−1A.

We remark that an alternative proof of the following claim can use von Neumann series in Claim 8
in (Price et al., 2017).

Fact C.27. For any symmetric A ∈ Rm×m and real number c > 0, we have A(I − cA)−1 whose
eigenvalues are of the form λ/(1− cλ) for each eigenvalue λ of A.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Proof. Assume A = UΛU⊤ here Λ ∈ Rk×k is a diagonal matrix, U ∈ Rm×k has all columns are
orthogonal to each other and each column has ℓ2 norm equal to 1. Since A might have full rank,
thus k ≤ m. It is obvious U⊤U = I .

Thus, we can show

UΛU⊤(I − cUΛU⊤)−1 = UΛU⊤(UU⊤ − cUΛU⊤)−1

= UΛU⊤(U(I − cΛ)U⊤)−1

= UΛU⊤(U(I − cΛ)−1U⊤)

= UΛ(I − cΛ)−1U⊤,

where the first step follows from I = UU⊤, the second step follows from basic algebra, the third
step follows from the definition of the inverse matrix, and the last step follows from U⊤U = I .

C.13 BASIC POWER CALCULATIONS

Before proving the main statement, we first show a fact. Note that ex =
∑∞

i=0
1
i!x

i.
Fact C.28. For any x ∈ (0, 0.5], we have

• 1− x ≥ e−1.5x

• 1 + x ≤ e1.5x

• ex ≤ 1 + 4
3x

• e−x ≥ 1− 4
3x

• ex ≥ 1 + x− x2

• ex ≤ 1 + x+ x2

Fact C.29. If the following conditions hold:

• Let x ∈ (0, 0.5).

• Let y be any real number such that |y| < 0.5.

Then the following statement is true:

e±x(ey − 1) = (ey − 1)± 2x|y|.

Proof.

e±x(ey − 1) = (1± 4

3
x)(ey − 1)

= (ey − 1)± 4

3
x(ey − 1)

= (ey − 1)± 4

3
x
4

3
|y|

= (ey − 1)± 2x|y|,

where the first step follows from applying Fact C.28 on e±x, the second step follows from basic
algebra, the third step follows from applying Fact C.28 on ey , the last step follows from basic
algebra.

Fact C.30. If the following conditions hold

• Let n ≥ 2 denote positive integers.

• Let p > 0.

• Let β := 4 · (1 + 2/p)2 ·
√
n.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• Let θ := 2 · |1− 2/p| ·
√
n.

• Let δ ∈ (0, 0.1/β].

Then we can show

• Part 1. (1− θδ)−2/p ≥ 1− βδ.

• Part 2. (1 + θδ)−2/p ≤ 1 + βδ.

• Part 3. (1− θδ)−2/p ≤ 1 + βδ.

• Part 2. (1 + θδ)−2/p ≥ 1− βδ.

Proof. Note that βδ ∈ (0, 0.1]. Also note that θδ ≤ 0.1 · θ/β ≤ (0, 0.5).

We can show

4θ/p = 4 · 2|1− 2/p|
√
n/p

≤ 4 · (1 + 2/p) · |1− 2/p|
√
n

≤ 4 · (1 + 2/p)2
√
n

= β.

Thus,

4θδ/p ≤ 0.1

Proof of Part 1.

We can show

(1− θδ)−2/p ≥ 1

≥ 1− βδ,

where first step is trivial, and the last step follows βδ > 0.

Proof of Part 2.

We can show

(1 + θδ)−2/p ≤ 1

≤ 1 + βδ,

where the first step is trivial, and the last step follows βδ > 0.

Proof of Part 3.

Using the fact (1− x) ≥ e−1.5x for all x ∈ (0, 0.5) (see Fact C.28) , we can show

(1− θδ) ≥ e−1.5θδ.

Then, we can show

(1− θδ)−2/p ≤ (e−1.5θδ)−2/p

= e3θδ/p

≤ 1 + 4θδ/p

≤ 1 + βδ,

where the third step follows from ex ≤ 1 + 4
3x(see Fact C.28, and the last step follows from

4θ/p ≤ β.

Proof of Part 4.

Using the fact (1 + x) ≤ e1.5x for all x ∈ (0, 0.5) (see Fact C.28), we can show

(1 + θδ) ≤ e1.5θδ.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Then, we can show

(1 + θδ)−2/p ≥ (e1.5θδ)−2/p

= e−3θδ/p

≥ 1− 4θδ/p

≥ 1− βδ,

where the third step follows from e−x ≥ 1 − 4
3x (see Fact C.28), and the last step follows from

4θ/p ≤ β.

C.14 LEVERAGE SCORE EQUIVALENCE FORMAT

Fact C.31 (Folklore). Let σ denote the leverage score. Then, the following quantities are equivalent

• e⊤i W
1/2−1/pA(A⊤W 1−2/pA)−1W 1/2−1/pei.

• (W 1/2−1/pA(A⊤W 1−2/pA)−1W 1/2−1/p)i,i.

• σi(W
1/2−1/pA).

C.15 SIMPLE CONSTRAINED MINIMIZATION BY GRADIENT DESCENT METHOD

Theorem C.32 (Simple Constrained Minimization for Twice Differentiable Function, Theorem 52
in page 50 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let H be a positive definite matrix.

• Let Q ⊆ Rm be a convex set.

• Let f : Q→ Rm be a twice differentiable function.

• Suppose that there are constraints 0 ≤ µ ≤ L such that for all x ∈ Q, we have µ · H ⪯
∇2f(x) ⪯ L ·H .

• Let x(0) ∈ Q.

• Let k ≥ 0.

• Apply the update rule

x(k+1) = argmin
x∈Q
∇f(x(k))⊤(x− x(k)) +

L

2
∥x− x(k)∥2H .

Then, we have

∥x(k) − x∗∥2H ≤ (1− µ

L
)k∥x(0) − x∗∥2H .

C.16 EQUIVALENCE OF OBJECTIVE FUNCTIONS

Fact C.33. If the following conditions hold:

• Let B ∈ Rm×m be a diagonal matrix.

• Let w ∈ Rm.

• Let b ∈ Rm.

• Define f(w) := ⟨w,Bw⟩ − 2⟨b, w⟩.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Then we have

arg min
w∈Rm

f(w) = arg min
w∈Rm

∥w −B−1b∥2B .

Proof. We have

∥w −B−1b∥2B = w⊤Bw − 2(B−1b)⊤Bw + (B−1b)⊤B(B−1b)

= w⊤Bw − 2b⊤w + b⊤B−1b

= ⟨w,Bw⟩ − 2⟨b, w⟩+ b⊤B−1b, (8)

where the first step follows from the definition of ∥ · ∥B , the second step follows from basic algebra,
the third step follows from the definition of the inner product.

Thus, we have

arg min
w∈Rm

∥w −B−1b∥2B = arg min
w∈Rm

⟨w,Bw⟩ − 2⟨b, w⟩+ b⊤B−1b

= arg min
w∈Rm

f(w),

where the first step follows from Eq. (8), the second step follows from the fact that b⊤B−1b is a
constant.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D LINEAR PROGRAMMING: BACKGROUND

In Section D.1, we introduce the definition of linear program. In Section D.2, we present the basics
of the self-concordance property. In Section D.3, we show the definition of the weighted central
path. In Section D.4, we introduce the Newton step. In Section D.5, we present the definition of the
weight function. In Section D.6, we introduce the concept of centrality. In Section D.7, we introduce
the derivative computation of the volumetric barrier. In Section D.8, we present the derivatives of
the potential function. In Section D.9, we show some basic properties of the projection matrix.

D.1 DEFINITION OF LINEAR PROGRAM

Definition D.1 (Linear program, Implicit in page 3 in (Lee & Sidford, 2019)). If the following
conditions hold:

• Let A ∈ Rm×n, b ∈ Rn be a non-degenerate matrix.

• For an arbitrary real number y ∈ R, we define set dom(y) := {y ∈ R : li < y < ui}.

• For vector x ∈ Rm and all i ∈ [m], the set dom(xi) is neither the empty set nor the entire
real line.

• For i ∈ [m], li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞}.

• Assume the interior of the polytope Ω◦ := {x ∈ Rm : A⊤x = b, li < xi < ui,∀i ∈ [m]}
is not empty.

We define the following linear program:

OPT := min
x∈Rm : A⊤x=b

∀i∈[m] : li≤xi≤ui

c⊤x.

D.2 SELF-CONCORDANCE

Definition D.2 (Self-concordance, Definition 4 in page 12 in (Nesterov & Nemirovskii, 1994)). Let
ϕ : K → Rn be a convex, thrice continuously differentiable function. If the following conditions
hold:

• limi→∞ ϕ(xi)→∞ for all sequences xi ∈ K converging to the boundary of K.

• |D3ϕ(x)[h, h, h]| ≤ 2|D2ϕ(x)[h, h]|3/2 for all x ∈ K and h ∈ Rn.

• |Dϕ(x)[h]| ≤
√
ν|D2ϕ(x)[h, h]|1/2 for all x ∈ K and h ∈ Rn.

Then the function ϕ is a ν-self-concordant barrier function for open convex set K ⊂ Rn.

Lemma D.3 (Theorem 4.1.6 in page 182 in (Nesterov, 2003)). If the following conditions hold:

• Let ϕ′′
i denote the second derivative of ϕi : Rm → R, for all i ∈ [m].

• Let s ∈ dom(ϕi) for i ∈ [m].

• Define r := maxi∈[m]

√
ϕ′′
i (s)|s− t|.

• Let U denote the maximum diameter of all dom(ϕi).

Then, we have

• Part 1. r ∈ (0, 1).

• Part 2. t ∈ dom(ϕi) and (1− r)
√
ϕ′′
i (s) ≤

√
ϕ′′
i (t) ≤ (1− r)−1

√
ϕ′′
i (s).

• Part 3.
√
ϕ′′
i (s) ≥ 1/U where U is the diameter of dom(ϕi).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Lemma D.4 (Theorem 4.2.4 in page 196 in (Nesterov, 2003), see Lemma 9 in page 10 in (Lee &
Sidford, 2019) as an example). For all x, y ∈ dom(ϕi) and i ∈ [m], we have ϕ′

i(x) · (y − x) ≤ 1.

For all x ∈ Ω◦, we define ϕ(x) ∈ Rm by ϕ(x)i := ϕi(xi) for i ∈ [m], define ϕ′(x), ϕ′′(x) and
ϕ′′′(x) analogously, for example ϕ(x)′i := ϕi(xi) and let Φ′ = diag(ϕ′),Φ′′ = diag(ϕ′′),Φ′′′ =
diag(ϕ′′′) denote their associated diagonal matrices.

D.3 WEIGHTED CENTRAL PATH

Definition D.5 (Weighted central path, Implicit in page 11 in (Lee & Sidford, 2019)). Let ϕi : R→
R. We define the penalized objective function as

ft(x,w) := t · c⊤x+
∑
i∈[m]

wiϕi(xi).

The path-finding algorithm maintains a feasible point x ∈ Ω◦, weights w ∈ Rm
>0 and minimizes the

penalized objective function for increasing t and small w

min
A⊤x=b

ft(x,w).

For every fixed set of weights, w ∈ Rm
>0 the set of points xw(t) := argminx∈Ω◦ ft(x,w) for

t ∈ [0,∞) form a path through the interior of the polytope that we call the weighted central path.
We call xw(0) a weighted center of Ω◦.

As shown in Theorem 4.2.7 on page 200 of (Nesterov, 2003), limt→∞ xw(t) is a solution to the
linear program in Definition D.1.

The above definition (Definition D.5) can trivially yield the following fact.
Fact D.6 (Folklore). If the following condition holds

• Let ft(x,w) be defined as Definition D.5.

Then we can show

∇xft(x,w) = t · c+ wϕ′(x)

∇2
xxft(x,w) =WΦ′′(x).

Fact D.7. If the following conditions hold

• We have w(v) := argminw∈Rm
>0

f(v, w).

• Let f(x,w) be defined as Definition D.5 (We treat t as a fixed parameter in this statement,
thus ignore it).

• The minimizer for function f(v, w) is in the interior of its domain.

Then we have

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(w,w(v)).

Proof. Since the optimal for f(v, w) is in the interior and the optimality condition∇wf(v, w(v)) =
0 holds, we can take derivative w.r.t. v on both sides and obtain

∇2
w,vf(v, w(v)) +∇2

w,wf(v, w(v))Jw(v) = 0.

Then, solving for Jw(v) directly yields:

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(w,w(v)).

This finishes the proof.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

D.4 NEWTON STEP

Lemma D.8 (Lemma 51 in page 49 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define f(x) := v⊤x+ 0.5∥x∥2W .

• Define x∗ := −W−1v +W−1A(A⊤W−1A)−1A⊤W−1v ∈ Rm.

Then, for any vector v ∈ Rm, any positive vector w ∈ Rm and matrix A ∈ Rm×n, we have

arg min
A⊤x=0

f(x) = x∗.

Proof. A point x ∈ ker(A⊤) is optimal if and only if the gradient ∇f(x) = v +Wx is orthogonal
to every feasible direction in ker(A⊤).

Equivalently,

v +Wx ∈ Im(A).

Then, there exists some vector y ∈ Rm such that v +Wx = Ay.

Thus,

x = W−1(Ay − v). (9)

Let us left multiply A on both sides,

A⊤x = A⊤W−1(Ay − v).

Since A⊤x = 0, so

A⊤W−1Ay −A⊤W−1v = 0.

We have

y = (A⊤W−1A)−1A⊤W−1v.

Substituting back to Eq. (9), we have

x∗ := −W−1v +W−1A(A⊤W−1A)−1A⊤W−1v.

The proof is complete.

Definition D.9. For notation convenience in Hessian computation, we define:

• Ax := Φ′′(x)−1/2A.

• Px,w := I −W−1Ax(A
⊤
x WAx)

−1A⊤
x .

Lemma D.10 (Newton step, Implicit in page 11 in (Lee & Sidford, 2019)). If the following condi-
tions hold:

• Let ft(x,w) be defined in Definition D.5.

• Let Φ(x) ∈ Rm×m denote a diagonal matrix where i-th entry is ϕi(x).

• Let Ax and Px,w be defined as Definition D.9.

Then, the new newton step for x with respect to ft(x,w) is

ht(x,w) = −Φ′′(x)−1/2Px,wW
−1Φ′′(x)−1/2∇xft(x,w).

Proof. Lemma D.8 (with replacing the W by WΦ′′(x) and v by gradient in x∗ definition) shows
that a Newton step for x is given by

ht(x,w) = − (I − (WΦ′′(x))−1A(A⊤(WΦ′′(x))−1A)−1A⊤)(WΦ′′(x))−1∇xft(x,w)

= − Φ′′(x)−1/2Px,wW
−1Φ′′(x)−1/2∇xft(x,w),

where the second step follows from definition of Ax, Px,w.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

D.5 WEIGHT FUNCTION

Definition D.11 ((ci, cγ , ck)-Weight Function, Definition 12 in page 13 in (Lee & Sidford, 2019)).
We say a function differentiable g : Ω◦ → Rm

>0 is a (ci, cγ , ck)-weight function if the following
conditions hold:

• The size, c1, satisfies c1 ≥ max{1, ∥g(x)∥1}. This bounds how quickly centrality changes
as t changes.

• The sensitivity, cs, satisfies cs ≥ e⊤i G(x)−1Ax(A
⊤
x G(x)−1Ax)

−1A⊤
x G(x)−1ei. This

bounds how quickly the Hessian changes as x changes. Here ei is the length-m vector
where i-th location 1 and 0 everywhere else.

• The consistency, ck, satisfies ∥G(x)−1Jg(x)(Φ
′′(x))−1/2∥g(x)+∞ ≤ 1 − c−1

k < 1. This
bounds how much the weights change as x changes, thereby governing how consistent the
weights are with changes to x along the weighted central path. For definition of Jg(x),
please see Fact D.7.

D.6 CENTRALITY

Here, we explain how we measure the distance from x to the minimum of ft(x,w) for fixed w,
denoted δt(x,w). As δt(x,w) measures the proximity of x to the weighted central path, we call it a
centrality measure of x and w.

Definition D.12 (Mixed Norm, Implicit in page 12 in (Lee & Sidford, 2019)). We define the mixed
norm for all y ∈ Rm by

∥y∥w+∞ := ∥y∥∞ + Cnorm∥y∥w.

Definition D.13 (Centrality Measure, Definition 11 in page 12 in (Lee & Sidford, 2019)). Let Px,w

be defined as Definition D.9. For {x,w} ∈ {Ω◦ × Rm
>0} and t ≥ 0, we let ht(x,w) denote the

projected Newton step for x on the penalized objective ft given by

ht(x,w) := −
1√
ϕ′′(x)

Px,w(
∇xft(x,w)

w
√
ϕ′′(x)

).

We measure the centrality of {x,w} by

δt(x,w) := min
η∈Rn

∥∇xft(x,w)−Aη

w
√

ϕ′′(x)
∥w+∞,

where for all y ∈ Rm, let ∥y∥w+∞ := ∥y∥∞ + Cnorm∥y∥W for Cnorm > 0 is defined in Defini-
tion D.12.

Lemma D.14 (Lemma 10 in page 12 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define Ax := Φ′′(x)−1/2A ∈ Rm×n.

• Define Px,w := I −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x ∈ Rm×m.

• For any norm ∥ · ∥, we define Q-norm which is ∥y∥Q := minη∈Rn ∥y − Aη

w
√

ϕ′′(x)
∥.

Then, we have

• Part 1. ∥y∥Q ≤ ∥Px,wy∥ ≤ ∥Px,w∥ · ∥y∥Q.

• Part 2. For all {x,w} ∈ {Ω◦ × Rm
>0}, we have

δt(x,w) ≤ ∥
√

ϕ′′(x)ht(x,w)∥w+∞ ≤ ∥Px,w∥w+∞ · δ(x,w).

Proof. Proof of Part 1.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

We can show

Px,wy = (I −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x)y

= y −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x y

= y −W−1Φ′′−1/2A · (A⊤
x W

−1Ax)
−1A⊤

x y

= y −W−1Φ′′−1/2A · ηy

= y − Aηy

w
√

ϕ′′(x)
, (10)

where the first step follows definition of Px,w, the second step follows simple algebra, the third step
follows from definition of Ax, the forth step follows from letting ηy = (A⊤

x W
−1Ax)

−1A⊤
x y, the

last step follows from W is diagonal matrix w, similarly for Φ′′ and ϕ′′.

We have

∥y∥Q = min
η∈Rn

∥y − Aη

w
√

ϕ′′(x)
∥

≤ ∥y − Aηy

w
√

ϕ′′(x)
∥

= ∥Px,wy∥,
where the first step follows from the definition of ∥y∥Q, the second step follows from ηy can not
achieve a smaller objective function value than the minimizer, the third step follows from Px,wy =

y − Aηy

w
√

ϕ′′(x)
for some ηy ∈ Rn (see Eq. (10)).

We have

∥Px,w∥ · ∥y∥Q = ∥Px,w∥ · ∥y −
Aηq

w
√
ϕ′′ ∥

≥ ∥Px,w(y −
Aηq

w
√
ϕ′′)∥

= ∥Px,wy∥,

where the first step follows from letting ηq be such that ∥y∥Q = ∥y − Aηq

w
√

ϕ′′(x)
∥, the second step

follows from the property of spectral norm, and the last step follows from Px,wW
−1(Φ′′)−1/2A =

0.

Thus, with y = ∇xft(x,w), the proof is complete.

Proof of Part 2.

We choose y = ∇xft(x,w)

w
√

ϕ′′(x)
.

Then, we have

δt(x,w) = min
η∈Rn

∥y − Aη

w
√

ϕ′′(x)
∥w+∞

= ∥y∥Q
≤ ∥Px,wy∥w+∞

= ∥
√
ϕ′′(x)ht(x,w)∥w+∞

≤ ∥Px,w∥w+∞∥y∥Q
= ∥Px,w∥w+∞δt(x,w),

where the first step follows from the definition of δt(x,w), the second step follows from the def-
inition of ∥y∥Q, the third step follows from Part 1, the fourth step follows from the definition of
ht(x,w), the fifth step follows from Part 1, and the last step follows from δt(x,w) = ∥y∥Q.

Thus, the proof is complete.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

D.7 DERIVATIVE OF VOLUMETRIC BARRIER

Lemma D.15 (Derivative of Volumetric Barrier, Lemma 48 in page 47 in (Lee & Sidford, 2019)).
If the following conditions hold:

• For a vector w ∈ Rm, let us W := diag(w) denote the m×m size diagonal matrix.

• For a full rank matrix A ∈ Rn×m, we define

f(w) := log det(A⊤WA).

Then, for any w ∈ Rm
>0, we have

∇f(w) = W−1σ(W 1/2A).

Proof. We have that for all i ∈ [m]

df(w)

dwi
= tr[(A⊤WA)−1 d

dwi
(A⊤WA)]

= tr[(A⊤WA)−1A⊤eie
⊤
i A]

= tr[e⊤i A(A⊤WA)−1A⊤ei]

= e⊤i A(A⊤WA)−1A⊤ei

= e⊤i W
−1/2W 1/2A(A⊤WA)−1A⊤W 1/2W−1/2ei

= w−1
i σ(W 1/2A)i

= (w−1 ◦ σ(W 1/2A))i

= (W−1σ(W 1/2A))i,

where the first step follows from Fact C.2, the second step follows from W is a diagonal matrix
and dW

dwi
= eie

⊤
i , the third step follows from the cyclic property of trace (tr[ABC] = tr[CAB]),

the fourth step follows from basic algebra, the fifth step follows from basic algebra, the sixth step
follows from the definition of σ(W 1/2A), the seventh step follows from the Hadamard product, and
the last step follows from Fact C.1.

Therefore, we have

∇f(w) = W−1σ(W 1/2A).

D.8 POTENTIAL FUNCTION DERIVATIVE

Lemma D.16 (Potential Function Derivative, Lemma 50 in page 48 in (Lee & Sidford, 2019)). If
the following conditions hold:

• Let A ∈ Rm×n be a non-degenerate matrix.

• Let A∗,i denote the i-th column of A for all i ∈ [n].

• Let q > 0 with q ̸= 2.

• Define Ax := S−1
x A.

• Sx := diag(Ax− b).

• Let ui = (1/2− 1/q)(ei ◦ w−1).

• For all x ∈ Rn with Ax > b and all w ∈ Rm
>0, let p(x,w) := log det(A⊤

x W
1−2/qAx).

• Define cq := 1− 2
q .

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

• Let Bx = W 1/2−1/qAx.

• σx,w := σ(Bx).

• Σx,w := Σ(Bx).

• Λx,w := Λ(Bx).

• We recall the preliminary that P ◦2 := P ◦ P .

• We recall the preliminary that P (A) := A(A⊤A)−1A⊤.

• We recall the preliminary that Λ(A) := Σ(A)− P ◦2(A).

Then we have

• Part 1. dAx
dxi

= A∗,i.

• Part 2. dSx

dxi
= diag(A∗,i).

• Part 3. dS−1
x

dxi
= −S−1

x diag(Ax,∗,i).

• Part 4. dAx

dxi
= −diag(Ax,∗,i)Ax.

• Part 5 dAx,∗,j
dxi

= − diag(Ax,∗,i)Ax,∗,j .

• Part 6 dBx

dxi
= −diag(Ax,∗,i)Bx.

• Part 7 dBx

dwi
= diag(ui)Bx.

• Part 8. dB⊤
x Bx

dxi
= −2B⊤

x diag(Ax,∗,i)Bx.

• Part 9 dB⊤
x Bx

dwi
= 2B⊤

x diag(ui)Bx.

• Part 10. d(B⊤
x Bx)

−1

dxi
= 2(B⊤

x Bx)
−1B⊤

x diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1.

• Part 11 d(B⊤
x Bx)

−1

dwi
= −2(B⊤

x Bx)
−1(B⊤

x diag(ui)Bx)(B
⊤
x Bx)

−1.

• Part 12 dP (Bx)
dxi

= − diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx) −
P (Bx) diag(Ax,∗,i).

• Part 13 dP (Bx)
dwi

= diag(ui)P (Bx)− 2P (Bx) diag(ui)P (Bx) + P (Bx) diag(ui).

• Part 14 dσx,w

dxi
= −2Λx,wAx,∗,i.

• Part 15. dσx,w

dwi
= 2Λx,wui.

• Part 16. ∇xp(x,w) = −2A⊤
x σx,w.

• Part 17. ∇wp(x,w) = cqW
−1σx,w.

• Part 18. ∇2
xxp(x,w) = A⊤

x (2Σx,w + 4Λx,w)Ax.

• Part 19. ∇2
wwp(x,w) = −cqW−1(Σx,w − cqΛx,w)W

−1.

• Part 20. ∇2
xwp(x,w) = −2cqA⊤

x σx,wW
−1.

• Part 21. dσx,w

dq = Λ((1− 2/q)W−1 dw
dq + 2

q2 logw).

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Proof. Proof of Part 1.

We can show

dAx

dxi︸ ︷︷ ︸
m×1

= A︸︷︷︸
m×n

dx

dxi︸︷︷︸
n×1

= A︸︷︷︸
m×n

ei︸︷︷︸
n×1

= A∗,i,

where the first step follows from the irrelevance between A and x, the second step follows from
basic algebra, and the last step follows from basic algebra.

Proof of Part 2.

We can show

dSx

dxi
=

ddiag(Ax− b)

dxi

=
ddiag(Ax)

dxi

= diag(
dAx

dxi
)

= diag(A∗,i),

where the first step follows from the definition of Sx, the second step follows from the irrelevance
between b and x, the third step follows from the linearity of diag(·), and the last step follows from
Part 1.

Proof of Part 3.

We can show

dS−1
x

dxi
= − S−1

x

dSx

dxi
S−1
x

= − S−2
x

dSx

dxi

= − S−2
x diag(A∗,i)

= − S−1
x diag(Ax,∗,i),

where the first step follows from Fact C.2, the second step follows from the fact that Sx is a diagonal
matrix, the third step follows from Part 2, and the last step follows from Ax = S−1

x A (implies that
(Ax)∗,i = (S−1

x A)∗,i = S−1
x A∗,i).

Proof of Part 4.

We can show

dAx

dxi
=

d(S−1
x A)

dxi

=
dS−1

x

dxi
A

= − S−1
x diag(Ax,∗,i)A

= − diag(Ax,∗,i)S
−1
x A

= − diag(Ax,∗,i)Ax,

where the first step follows from the definition of Ax, the second step follows from the irrelevance
between A and x, the third step follows from Part 3, the fourth step follows from the fact that Sx is
a diagonal matrix, and the last step follows from the definition of Ax.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Proof of Part 5.

dAx,∗,j

dxi
= (

dAx

dxi
)∗,j

= (−diag(Ax,∗,i)Ax)∗,j

= − diag(Ax,∗,i)Ax,∗,j ,

where the first step follows from selecting the j-th column of the derivative, the second step follows
from Part 4 of the proof, and the last step follows from basic algebra.

Proof of Part 6.

We have

dBx

dxi
=

dW 1/2−1/qAx

dxi

=W 1/2−1/q dAx

dxi

= −W 1/2−1/q diag(Ax,∗,i)Ax

= − diag(Ax,∗,i)Bx,

where the first step follows from the definition of Bx, the second step follows from the irrelevance
between W and xi, the third step follows from Part 4, the last step follows from the commutative
property of the products of diagonal matrices and the definition of Bx.

Proof of Part 7.

We have

dBx

dwi
=

dW 1/2−1/qAx

dwi

= (1/2− 1/q) diag(ei)W
−1/2−1/qAx

= (1/2− 1/q) diag(ei ◦ w−1)Bx

= diag(ui)Bx,

where the first step follows from the definition of Bx, the second step follows from dW
dwi

= diag(ei),
and the third step follows from the definition of Bx, the last step follows from definition of ui.

Proof of Part 8.

We can show

dB⊤
x Bx

dxi
=

dB⊤
x

xi
Bx +B⊤

x

dBx

xi

= −B⊤
x diag(Ax,∗,i)Bx −B⊤

x diag(Ax,∗,i)Bx

= − 2B⊤
x diag(Ax,∗,i)Bx,

where the first step follows from the product rule, the second step follows from Part 6, and the last
step follows from basic algebra.

Proof of Part 9.

We have

dB⊤
x Bx

dwi
=

dB⊤
x

wi
Bx +B⊤

x

dBx

wi

= (diag(ui)Bx)
⊤Bx +B⊤

x diag(ui)Bx

= 2B⊤
x diag(ui)Bx,

where the first step follows from the chain rule for products, the second step follows from Part 7,
and the last step follows from the fact that W and diag(ei) can commute.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof of Part 10.

We can show

d(B⊤
x Bx)

−1

dxi
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

xi
(B⊤

x Bx)
−1

= 2(B⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx(B

⊤
x Bx)

−1,

where the first step follows from dA−1

dt = −A−1 dA
dt A

−1 (Fact C.2), and the last step follows from
Part 8.

Proof of Part 11.

We have

d(B⊤
x Bx)

−1

dwi
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

dwi
(B⊤

x Bx)
−1

= − 2(B⊤
x Bx)

−1(B⊤
x diag(ui)Bx)(B

⊤
x Bx)

−1,

where the first step follows from dA−1

dt = −A−1 dA
dt A

−1 (Fact C.2), the second step follows from
Part 9.

Proof of Part 12.

We have

dP (Bx)

dxi
=

dBx(B
⊤
x Bx)

−1B⊤
x

dxi

=
dBx

dxi
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dxi
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dxi

= − diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx
d(B⊤

x Bx)
−1

dxi
B⊤

x

−Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)

= − diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx(2(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx(B

⊤
x Bx)

−1)B⊤
x

−Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)

= − diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx)− P (Bx) diag(Ax,∗,i),

where the first step follows from the definition of P (Bx), the second step follows from the product
rule, the third step follows from Part 6, the fourth step follows from Part 10, and the last step follows
from the definition of P (Bx).

Proof of Part 13

For the convenience of writing proofs, we recall ui = (1/2− 1/p)(ei ◦ w−1).

We have

dP (Bx)

dwi
=

dBx(B
⊤
x Bx)

−1B⊤
x

dwi

=
dBx

dwi
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dwi
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dwi

= diag(ui)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx
d(B⊤

x Bx)
−1

dwi
B⊤

x

+Bx(B
⊤
x Bx)

−1(diag(ui)Bx)
⊤

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

= diag(ui)Bx(B
⊤
x Bx)

−1B⊤
x

−Bx(2(B
⊤
x Bx)

−1(B⊤
x diag(ui)Bx)(B

⊤
x Bx)

−1)B⊤
x

+Bx(B
⊤
x Bx)

−1(diag(ui)Bx)
⊤

= diag(ui)P (Bx)

− 2P (Bx) diag(ui)P (Bx)

+ P (Bx) diag(ui),

where the first step follows from the definition of P (Bx), the second step follows from the chain
rule for product, the third step follows from Part 7, the fourth step follows from Part 11, and the last
step follows from the definition of P (Bx).

Proof of Part 14.

We can show that
dσx,w

dxi
=

dDiag(P (Bx))

dxi

= Diag(
dP (Bx)

dxi
)

= Diag(−diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx)− P (Bx) diag(Ax,∗,i))

= − 2 diag(Ax,∗,i)σx,w + 2Diag(P (Bx) diag(Ax,∗,i)P (Bx)),

= − 2 diag(Ax,∗,i)σx,w + 2(P (Bx) ◦ P (Bx))Ax,∗,i

= − 2Σx,wAx,∗,i + 2(P (Bx) ◦ P (Bx))Ax,∗,i

= − 2Λx,wAx,∗,i,

where the first step follows from the definition of σx,w, the second step follows from the linearity of
Diag(·), the third step follows from Part 12, the fourth follows from Fact C.1, the fifth step follows
from Fact C.1, the sixth step follows from Fact C.1, and the last step follows from the definition of
Λx,w.

Proof of Part 15.

We have
dσx,w

dwi
=

dDiag(P (Bx))

dwi

= Diag(
dP (Bx)

dwi
)

= Diag(diag(ui)P (Bx)− 2P (Bx) diag(ui)P (Bx) + P (Bx) diag(ui))

= Diag(diag(ui)P (Bx))

− 2Diag(P (Bx) diag(ui)P (Bx))

+ Diag(P (Bx) diag(ui))

= diag(ui)σx,w − 2Diag(P (Bx) diag(ui)P (Bx)) + diag(ui)σx,w

= 2(diag(ui)σx,w −Diag(P (Bx) diag(ui)P (Bx)))

= 2(diag(ui)σx,w − P (Bx) ◦ P (Bx)ui)

= 2(Σx,wui − P (Bx) ◦ P (Bx)ui)

= 2Λx,wui, (11)
where the first step follows from the definition of σx,w, the second step follows from the linearity
of Diag(·), the third step follows from Part 13, the fourth step follows from linearity of Diag(·), the
fifth step follows from Fact C.1, the sixth step follows from basic algebra the seventh step follows
from Fact C.1, the eighth step follows from basic algebra, and the last step follows from the definition
of Λx,w.

Proof of Part 16.

We have
dp(x,w)

dxi
=

d

dxi
log(det(B⊤

x Bx))

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

= tr[(B⊤
x Bx)

−1 d

dxi
(B⊤

x Bx)]

= − 2 tr[(B⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx]

= − 2 tr[Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)]

= − 2 tr[diag(σx,w) diag(Ax,∗,i)]

= − 2⟨σx,w, Ax,∗,i⟩
= − 2A⊤

x,∗,iσx,w,

where the first step follows from the definition of p(x,w), the second step follows from Fact C.2, the
third step follows from Part 6, the fourth step follows from the cyclic property of trace, the fifth step
follows the definition of σx,w, the sixth step follows from basic algebra, and the last step follows
from the definition of vector inner product.

Thus,

dp(x,w)

dx
= −2A⊤

x σx,w.

Proof of Part 17.

We have
dp(x,w)

dwi
=

d

dwi
log(det(B⊤

x Bx))

= tr[(B⊤
x Bx)

−1 d

dwi
(B⊤

x Bx)]

= tr[(B⊤
x Bx)

−1((1− 2/q)B⊤
x diag(ei ◦ w−1)Bx)]

= (1− 2/q) tr[(B⊤
x Bx)

−1B⊤
x eie

⊤
i W

−1Bx]

= (1− 2/q) tr[e⊤i W
−1Bx(B

⊤
x Bx)

−1B⊤
x ei]

= (1− 2/q)(W−1Bx(B
⊤
x Bx)

−1B⊤
x)i,i

= (1− 2/q)(W−1Px,w)i,i

= (1− 2/q)w−1
i σx,w,i,

where the first step follows from the definition of Bx, the second step follows from Fact C.2, the
third step follows from Part 9, the fourth step follows from diag(ei) = eie

⊤
i , the fifth step follows

from the cyclic property of the trace, the sixth step follows from basic algebra, the seventh step
follows from the definition of Px,w, and the last step follows from basic algebra.

Therefore,

∇wp(x,w) = (1− 2/q)W−1σx,w.

Proof of Part 18.

We have
d2p(x,w)

dxjdxi
=

d

dxi
(−2e⊤j A⊤

x σx,w)

= − 2e⊤j
d

dxi
(A⊤

x σx,w)

= − 2e⊤j (
dA⊤

x

dxi
σx,w +A⊤

x

dσx,w

dxi
)

= − 2e⊤j (−A⊤
x diag(Ax,∗,i)σx,w +A⊤

x (−2Λx,wAx,∗,i))

= e⊤j (2A
⊤
x diag(Ax,∗,i)σx,w + 4AxΛx,wAx,∗,i)

= e⊤j (2A
⊤
x Σx,wAx,∗,i + 4AxΛx,wAx,∗,i)

= e⊤j (2A
⊤
x Σx,wAx + 4AxΛx,wAx)ei,

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from the chain rule for product, the fourth step follows from Part 4 and Part 14, the fifth step
follows from basic algebra, the sixth step follows from diag(a)b = diag(b)a (Fact C.1), and the last
step follows from basic algebra.

Therefore,

∇2
xxp(x,w) = A⊤

x (2Σx,w + 4Λx,w)Ax.

Proof of Part 19.

We have
d2p(x,w)

dwjdwi
=

d

dwi
((1− 2/q)w−1

j σx,w,j)

= (1− 2/q)(
dw−1

j

dwi
σx,w,j + w−1

j

dσx,w,j

dwi
)

= (1− 2/q)(−1[i = j]w−2
j σx,w,j + w−1

j

dσx,w,j

dwi
)

= (1− 2/q)(−1[i = j]w−2
j σx,w,j + w−1

j ((1− 2/q)e⊤j Λx,w(w
−1 ◦ ei)))

= cq(−1[i = j]w−2
j σx,w,j + w−1

j (cqe
⊤
j Λx,w(w

−1 ◦ ei)))

= cq(−e⊤j w−1
i σx,w,iw

−1
i ei + w−1

j (cqe
⊤
j Λx,w(w

−1 ◦ ei)))

= cq(−e⊤j w−1
i σx,w,iw

−1
i ei + (cq(ej ◦ w−1)⊤Λx,w(w

−1 ◦ ei)))
= − cqe

⊤
j W

−1(Σx,w − cqΛx,w)W
−1ei,

where the first step follows from Part 17, the second step follows from the chain rule for the product,

the third step follows from
dw−1

j

dwi
= 1[i = j]w−2

j , the fourth step follows from Part 15, the fifth
step follows from cq = 1 − 2/q, the sixth step follows from 1[i = j] = e⊤j ei, the seventh step
follows from w−1

j e⊤j = (ej ◦w−1)⊤, the eighth step follows from e⊤j aiei = e⊤j diag(a)ei (we treat
w−1

i σx,w,iw
−1
i = ai) and (a ◦ b) = diag(a)b = diag(b)a (Fact C.1).

Therefore,

∇2
wwp(x,w) = −cqW−1(Σx,w − cqΛx,w)W

−1.

Proof of Part 20.

We have

d2p(x,w)

dxjdwi
=

d(−2e⊤j A⊤
x σx,w)

dwi

= − 2e⊤j A
⊤
x

dσx,w

wi

= − 2(1− 2/q)e⊤j A
⊤
x Λx,w(w

−1 ◦ ei)
= − 2(1− 2/q)e⊤j A

⊤
x Λx,wW

−1ei,

where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from Part 15, and the last step follows from a ◦ b = diag(a)b (Fact C.1).

Therefore, by the chain rule

∇xwp(x,w) = −2cqA⊤
x Λx,wW

−1.

Proof of Part 21.

We have
d(W 1/2−1/q)

dq
=

de(1/2−1/q) logW

dq

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

=W 1/2−1/q((
d(1/2− 1/q)

dq
) logW + (1/2− 1/q)W−1 dW

dq
)

=W 1/2−1/q(
1

q2
logW + (1/2− 1/q)W−1 dW

dq
), (12)

where the first step follows from a = elog a, the second step follows from the chain rule, and the last
step follows from d(1/q)

dq = −1/q2.

For the convenience of writing proofs, we define a diagonal matrix

U :=
1

q2
logW + (1/2− 1/q)W−1 dW

dq
.

We have

dBx

dq
=

d(W 1/2−1/qAx)

dq

= W 1/2−1/q(
1

q2
logW + (1/2− 1/q)W−1 dW

dq
)Ax

= UBx, (13)

where the first step follows from the definition of Bx, and the second step follows from Eq. (12),
and the last step follows from the definition of U .

We have

dB⊤
x Bx

dq
=

dB⊤
x

dq
·Bx +B⊤

x ·
dBx

dq

= B⊤
x UBx +B⊤

x UBx

= 2B⊤
x UBx, (14)

where the first step follows from the product rule, the second step follows from Eq. (13), and the
third step follows from basic algebra.

We have

d(B⊤
x Bx)

−1

dq
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

dq
(B⊤

x Bx)
−1

= − 2(B⊤
x Bx)

−1B⊤
x UBx(B

⊤
x Bx)

−1, (15)

where the first step follows from Fact C.2, the second step follows from Eq. (14).

For notation simplicity, we define P := P (Bx) and Λ := Λx,w.

Then, we have

dP (Bx)

dq
=

dBx(B
⊤
x Bx)

−1B⊤
x

dq

=
dBx

dq
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dq
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dq

= UP − 2PUP + PU, (16)

where the first step follows from the definition of P (Bx), the second step follows from the product
rule, and the last step follows from Eq. (13), Eq. (15) and the definition of P (Bx).

We can show

dσx,w

dq
=

dDiag(P)

dq

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

= Diag(
dP

dq
)

= Diag(UP − 2PUP + PU)

= Diag(UP)− 2Diag(PUP) + Diag(PU)

= 2Σu− 2(P ◦ P)u

= 2(Σ− P ◦ P)u

= 2Λu

= Λ((1− 2/q)W−1 dw

dq
+

2

q2
logw),

where the first step follows from the definition of σx,w, the second step follows from the linearity of
Diag(·), the third step follows from Eq. (16), the fourth step follows from the linearity of Diag(·),
the fifth step follows from Fact C.1, the sixth step follows from basic algebra, the seventh step
follows from Λ = Σ− P ◦ P , and the last step follows from the definition of u.

D.9 PROPERTIES OF PROJECTION MATRIX

Lemma D.17 (Projection Matrices, Lemma 47 in page 46 in (Lee & Sidford, 2019)). If the following
conditions hold:

• Let P ∈ Rm×m be an arbitrary orthogonal projection matrix (see Definition C.7).

• Let Σ := P ◦ I ∈ Rm×m.

Then, for all i, j ∈ [m], we have

• Part 1. Σi,i =
∑m

j=1 P
◦2
i,j .

• Part 2. 0 ⪯ P ◦2 ⪯ Σ ⪯ I, (0 ≤ Σi,i ≤ 1).

• Part 3. P ◦2
i,j ≤ Σi,iΣj,j .

• Part 4. ∥Σ−1P ◦2x∥∞ ≤ ∥x∥Σ.

• Part 5. ∥Σ−1P ◦2x∥∞ ≤ ∥x∥∞.

• Part 6.
∑m

i=1 Σi,i = rank[P].

• Part 7. |y⊤XP ◦2y| ≤ ∥y∥2Σ · ∥x∥Σ.

• Part 8. |y⊤(P ◦ PXP)y| ≤ ∥y∥2Σ · ∥x∥Σ.

Proof. Proof of Part 1.

We have

Σi,i = Pi,i

= e⊤i Pei

= e⊤i PPei

=

m∑
j=1

P 2
i,j

=

m∑
j=1

P ◦2
i,j ,

where the first step follows from Σi,i is a diagonal entry for i ∈ [m], the second step follows from
the property of matrix, the third step follows from P = PP , the fourth step follows from matrix
product, and the last step follows from the definition of P ◦2.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Proof of Part 2.

We observe that since P is a projection matrix, all its eigenvalues are either 0 or 1. Therefore, Σ ⪯ I .

By part 1, consider the matrix Σ− P ◦2, for i ∈ [m], its diagonal entries are

(Σ− P ◦2)i,i =
∑
j ̸=i

P 2
i,j .

And its off-diagonal entries, for i ̸= j,

(Σ− P ◦2)i,j = −P 2
i,j .

Consequently, we can conclude by Fact C.9 that Σ − P ◦2 ⪰ 0. Rearranging terms and using
Fact C.16 yields Part 2.

Proof of Part 3.

For i, j ∈ [m], we have

P 2
i,j = (

m∑
k=1

Pi,kPk,j)
2

≤ (

m∑
k=1

P 2
i,k)(

m∑
k=1

P 2
k,j)

= Σi,iΣj,j ,

where the first step follows from P = PP , the second step follows from Cauchy-Schwarz, and the
third step follows from Part 1.

Proof of Part 4.

For any index i ∈ [m], we have

|e⊤i P ◦2x|2 = (|
m∑
j=1

P ◦2
i,jxj |)2

≤ (

m∑
j=1

Σj,jx
2
j) · (

m∑
j=1

P ◦4
i,j

Σj,j
)

≤ (

m∑
j=1

Σj,jx
2
j) · (

m∑
j=1

P 2
i,jΣi,iΣj,j

Σj,j
)

= (

m∑
j=1

Σj,jx
2
j) · (Σi,i

m∑
j=1

P 2
i,j)

= (

m∑
j=1

Σj,jx
2
j) · Σ2

i,i

= (Σi,i∥x∥Σ)2,
where the first step follows from basic algebra, the second step follows from Cauchy-Schwarz, the
third step follows from Part 3, the fourth step follows from basic algebra, the fifth step follows Part
1, and the last step follows from ∥x∥Σ :=

√∑m
j=1 Σj,jx2

j .

Taking the square root of the above equation, we get

|e⊤i P ◦2x| ≤ Σi,i∥x∥Σ.

Proof of Part 5.

We have

|e⊤i P ◦2x| = |
m∑
j=1

P ◦2
i,jxj |

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

≤
m∑
j=1

|P ◦2
i,jxj |

=

m∑
j=1

P ◦2
i,j |xj |

≤
m∑
j=1

P ◦2
i,j∥x∥∞

= Σi,i∥x∥∞,

where the first step follows from basic algebra, the second step follows from the triangle inequality,
the third step follows from P ◦2

i,j ≥ 0 for i, j ∈ [m], the fourth step follows from the definition of
∥ · ∥∞, and the last step follows from Part 1.

Proof of Part 6.

We have
m∑
i=1

Σi,i = tr[P]

= rank[P],

where the first step follows from Σ = diag(Diag(P)), and the second step holds since all the
eigenvalues of P are either 0 or 1.

Proof of Part 7.

Recall x ∈ Rm and X = diag(x). We have

|y⊤XP ◦2y| = |⟨X⊤y, P ◦2y⟩|

= |
m∑
i=1

(xiyi) · (P ◦2y)i|

= |
m∑
i=1

xiyie
⊤
i P

◦2y|

≤
m∑
i=1

|xi| · |yi| · |e⊤i P ◦2y|

≤
m∑
i=1

|xi| · |yi| · Σi,i · ∥y∥Σ

≤

√√√√ m∑
i=1

Σi,ix2
i

√√√√ m∑
i=1

Σi,iy2i · ∥y∥Σ

= ∥x∥Σ∥y∥Σ∥y∥Σ,
where the first and the second steps follow from basic algebra, the third step follows from selecting
the i-th entry of (P ◦2y) with ei, the fourth step follows from triangle inequality and |abc| = |a| ·
|b| · |c|, the fifth step follows from Part 4, the sixth step follows from Cauchy-Schwarz, and the last
step follows from the definition of ∥x∥Σ.

Proof of Part 8.

We define

a1 :=

m∑
i=1

m∑
j=1

|yi| · |yj | · P 2
i,j ,

a2 :=

m∑
i=1

m∑
j=1

|yi| · |yj | · (PXP)2i,j .

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

We have

|y⊤(P ◦ PXP)y| = |
m∑
i=1

m∑
j=1

yiyj(P ◦ PXP)i,j |

= |
m∑
i=1

m∑
j=1

yiyjPi,j(PXP)i,j |

≤
√
a1 · a2,

where the first step follows from the fact that x⊤Ax =
∑m

i=1

∑m
j=1 xixjAi,j , the second step

follows from the fact that (A ◦B)i,j = Ai,j ·Bi,j , and the last step follows from Cauchy-Schwarz.

Letting |x| and |y| be the vectors whose entries are the absolute values of the entries of x and y
respectively, we have

a1 = ∥|y|∥2P◦2

≤ ∥|y|∥2Σ
= ∥y∥2Σ,

where the first step follows from the definition of ∥|y|||P◦2 , the second step follows from Part 2, and
the third step holds since Σ is diagonal.

We have

a2 =

m∑
i=1

m∑
j=1

|yi| · |yj | · (PXP)2i,j

=

m∑
i=1

m∑
j=1

|yi| · |yj | · (
m∑

k=1

Pi,kPj,kxk)
2

=

m∑
i=1

m∑
j=1

(

m∑
k=1

(Pi,k

√
|yi||xk|)(Pj,k

√
|yj ||xk|))2

≤
m∑
i=1

m∑
j=1

(

m∑
k=1

P 2
i,k|yi||xk|) · (

m∑
k=1

P 2
j,k|yj ||xk|)

= (

m∑
i=1

m∑
k=1

|yi|P 2
i,k|xk|)2

= (|y|⊤P ◦2|x|)2

= ⟨|y|, |x|⟩2P◦2

≤ ∥|y|∥2P◦2∥|x|∥2P◦2

≤ ∥y∥2Σ∥x∥2Σ,

where the first step follows from the definition of a2, the second step follows from basic algebra,
the third step follows from absorbing |yi| · |yj | into (

∑m
k=1 Pi,kPj,kxk)

2, the forth step follows
from Cauchy-Schwartz, the fifth step follows from basic algebra, the sixth step follows from basic
algebra, the seventh step follows from the definition of inner product, the eighth step follows from
Cauchy-Schwartz, and the last step follows from Part 2.

Combining these inequalities then yields the desired bound on |y⊤(P ◦ PXP)y|.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

E LINEAR PROGRAMMING: LEWIS WEIGHT COMPUTATION

In Section E.1, we introduce the volumetric potential. In Section E.2, we show that Lewis weights
are the result of solving a particular convex optimization problem. In Section E.3, we study the
stability of Lewis weight under rescaling. In Section E.4, we study the Lewis weight rounding
properties. In Section E.5, we compute the gradient and Hessian of the volumetric potential. In Sec-
tion E.6, we present an important lemma for Hessian approximation. In Section E.7, compute the
weight function. In Section E.8, we show we can get a multiplicative approximation of wp. In Sec-
tion E.9, we introduce exact weight computation. In Section E.10, we present approximate weight
computation. In Section E.11, we introduce the computation of the leverage score. In Section E.12,
we compute an initial weight. In Section E.13, we introduce the theorem of exact weight computa-
tion. In Section E.14, we provide the theorem of approximate weight computation. In Section E.15,
we introduce a useful theorem for the weight function.

E.1 VOLUMETRIC POTENTIAL

Definition E.1 (Lewis Weight (Lewis, 1978), see Definition 2.2 in page 3 of (Cohen & Peng, 2015)
as an example). For all p > 0 and non-degenerate A ∈ Rm×n, we define the ℓp Lewis weight wp(A)

as the vector w ∈ Rm
>0 such that w = σ(W 1/2−1/pA) where W = diag(w).

Fact E.2. If wp is the Lewis Weight in Definition E.1 that satisfies wp = σ(W
1/2−1/p
p A), then we

have

Wp = Diag(A(A⊤W 1−2/pA)−1A⊤)p/2.

Proof. We have

wp = σ(W 1/2−1/p
p A)

= Diag(W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p).

The above equation implies

1m = Diag(W−1/p
p A⊤(A⊤W 1−2/p

p A)−1AW−1/p
p).

The above equation is equivalent to

W 2/p
p = Diag(A⊤(A⊤W 1−2/p

p A)−1A).

Thus

Wp = Diag(A(A⊤W 1−2/p
p A)−1A)p/2.

Definition E.3 (Volumetric Potential, Definition 21 in page 20 in (Lee & Sidford, 2019)). For non-
degenerate A ∈ Rm×n and p > 0 with p ̸= 2 we define the volumetric potential as

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA).

E.2 CONVEX FORMULATION OF LEWIS WEIGHTS

Lemma E.4 (Lemma 22 in page 20 in (Lee & Sidford, 2019)). If the following conditions hold:

• We define

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA)

as described in Definition E.3.

• For all w ∈ Rm
>0, define f(w) := − 1

1−2/p log det(A
⊤W 1−2/pA) +

∑m
i=1 wi.

• We recall that the leverage score σ is defined as σ(A) := Diag(A(A⊤A)−1A⊤).

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

• Let σw := σ(W 1/2−1/pA) where W := diag(w).

• Suppose all non-degenerate A ∈ Rm×n its ℓp Lewis weights exist and are unique for p > 0.

• Let p ̸= 2.

• Let F1(w) denote the following optimization problem:

min
w∈Rm

>0

VA
p (w) +

m∑
i=1

wi.

• Let F2(w) denote the following optimization problem:

min
w∈Rm

>0:
∑m

i=1 wi=n
VA
p (w).

Then, the following statements are true:

• Part 1. The minimizer of Problem F1(w) is in the interior of its feasible region.

• Part 2. The Lewis Weight wp(A) is the minimizer of Problem F1(w).

• Part 3. Problem F1(w) is strictly convex.

• Part 4. The minimizer of Problem F1(w) is unique.

• Part 5. Problems F1(w) and F2(w) are equivalent.

Proof. Proof of Part 1.

For all w ∈ Rm
>0 if wi > 1 then

df(w)

dwi
= 1− σw,i

wi

≥ 1− 1

wi

> 0,

where the first step follows from Lemma E.9, the second step follows from σw,i ∈ [0, 1] (Part 2 of
Lemma D.17), and the last step follows from wi > 1.

The above derivative computation implies that f(w) is monotonically increasing when wi > 1 (this
is range on the right side of extreme point).

Hence, we have infwi>0 f(w) = inf1>wi>0 f(w).

Case 1. p > 2.

Now if p > 2 and wi ∈ [0, 1] for all i ∈ [m] then since 1− 2/p > 0,

σw,i = σ(W 1/2−1/pA)i

= (W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p)i,i

= w
1−2/p
i (A(A⊤W 1−2/pA)−1A⊤)i,i

≥ w
1−2/p
i (A(A⊤A)−1A⊤)i,i

= w
1−2/p
i σ(A)i, (17)

where the first step follows from the definition of σw, the second step follows from the definition of
σ(W 1/2−1/pA), the third step follows from the fact that W = diag(w) is a diagonal matrix and M
is a square matrix so (WMW)i,i = wiMi,iwi, the fourth step follows from W 1−2/p ⪯ Im (and
then applying Fact C.20), the fifth step follows from the definition of σ(A).

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Since A is non-degenerate, σ(A)i ∈ (0, 1] for all i.

Therefore for any j ∈ [m] with wj < σ(A)
p/2
j , we have

df(w)

dwj
= 1− σw,j

wj

≤ 1− w
−2/p
j σ(A)j

< 0,

where the first step follows from Lemma E.9, the second step follows from Eq. (17), and the last
step follows from wj < σ(A)

p/2
j .

The above derivative computation implies that f(w) is monotonically increasing when wj <

σ(A)
p/2
j (this is range on the left of extreme point).

Consequently, infwi>0 f(w) = inf1>wi≥0 f(w) = inf
1>wi>σ(A)

p/2
i

f(w).

Case 2. p < 2.

Similarly, if p < 2, wi ∈ [0, 1] for all i ∈ [m], and wmin = mini∈[m] wi. Then since 1 − 2/p < 0,
we have W 1−2/p ⪯ w

1−2/p
min Im.

Consequently, by analogous derivation to Eq. (17), we can show

σw,i = σ(W 1/2−1/pA)i

= w
1−2/p
i (A(A⊤W 1−2/pA)−1A⊤)i,i

≥ (wi/wmin)
1−2/p(A(A⊤A)−1A⊤)i,i

= (wi/wmin)
1−2/pσ(A)i,

where the first step follows from the definition of σw, the second step follows from the definition of
σ(W 1/2−1/pA), the third step follows from W 1−2/p ⪯ w

1−2/p
min Im (and then applying Fact C.20),

the fourth step follows from the definition of σ(A).

If j ∈ argmini∈[m] wi, this implies that σw,j ≥ σ(A)j and therefore if wj < σ(A)j we have
df(w)
dwj

< 0.

Therefore, if we let σmin := mini∈[m] σi > 0, we have infwi>0 f(w) = inf1>wi≥σmin f(w).

In either case, since f is continuous, the above reasoning argues that f achieves its minimum on the
interior of the domain.

Proof of Part 2. Therefore, we have that the minimizer of w∗ of f(w) satisfies ∇F1(w∗) = 0. By
Part 1 of Lemma E.9, we further have

−W−1
∗ σw∗ + 1m = 0m.

Therefore, we can conclude that w∗,i = σw,i for all i ∈ [n].

This proves that the minimizer of f(w) exists on w ∈ Rm
>0 and equals to the Lewis weights in

Definition E.1.

Proof of Part 3. Further, for all w > 0,

∇2f(w) =∇2VA
p (w) + 0

⪰ 2

max{p, 2}
·W−1ΣwW

−1

≻ 0,

where the first step follows from relationship between f(w) and Vw
p (w), the second step follows

from Part 3 of Lemma E.9, and the last step follows from Fact C.25 since Σw and W are positive
definite matrices and W is diagonal.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Therefore f is strictly convex where 1 ≥ wi ≥ min{σi, σ
p/2
i } for all i.

Proof of Part 4. Consequently, the minimizer of F1 is unique and it is the unique point satisfying
∇f(w) = 0 for w ∈ Rn

>0.

Proof of Part 5. Further, since
∑m

i=1 Σw,i,i = rank[A] = n by Part 6 of Lemma D.17, we have∑m
i=1 wp(A)i = n and we have the equivalence of the two objective functions.

E.3 STABILITY OF LEWIS WEIGHTS UNDER RESCALING

Lemma E.5 (Lemma 24 in page 21 in (Lee & Sidford, 2019)). If the following conditions hold:

• For all non-degenerate A ∈ Rm×n.

• Let p > 0 with p ̸= 2.

• Let wp(·) be defined as Definition E.1.

• Let v ∈ Rm, define w(v) := wp(V A) where V := Diag(v).

• We recall that the leverage score σ is defined as σ(A) := Diag(A(A⊤A)−1A⊤).

• We recall that Σ(A) := diag(σ(A)).

• We recall that Λ(A) := Σ(A)− P ◦2(A).

• Define Λv := Λ(W 1/2−1/pV A).

• Define Wv := diag(w(v)).

• For w(v) : Rm → Rm and v ∈ Rm, we use Jw(v) ∈ Rm×n to denote the Jacobian of w
at v, where Jw(v)i,j :=

d
dvj

w(v)i for i ∈ [m], j ∈ [m].

Then, we have

Jw(v) = 2Wv(Wv − (1− 2/p)Λv)
−1ΛvV

−1.

Proof. We define

f(v, w) := − 1

1− 2/p
log det(A⊤VW 1−2/pV A) +

m∑
i=1

wi.

Let us applying Lemma E.4 to the above equation by treating V A as A. Lemma E.4 shows that

w(v) = arg min
w∈Rm

>0

f(v, w)

and that the optimum is in the interior.

Hence, the optimality conditions yield ∇wf(v, w(v)) = 0. Taking the derivative with respect to v
on both sides, we have

∇v∇wf(v, w(v)) = ∇v0.

We further expand the left side of the above equation, then we have

∇2
w,vf(v, w(v)) +∇2

w,wf(v, w(v))Jw(v) = 0.

Therefore, we have that

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(v, w(v)). (18)

And we have

∇2
w,wf(v, w) = W−1(Σw − (1− 2/p)Λw)W

−1, (19)

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

where the step follows from Part 19 of Lemma D.16. (We remark that in the future, when we use
the above equation, we need to replace f(v, w) by f(v, w(v)), thus all the W and w should be Wv

and w(v))

For∇2
w,vf(v, w(v)), we note that

∇wf(v, w) = −W−1σ(W 1/2−1/pV A),

where the step follows from Part 17 of Lemma D.16.

The Part 15 of Lemma D.16 with q =∞, we can be re-stating as follows

d

wj
σ(W 1/2A) = Λ(w−1 ◦ ej).

Replacing W 1/2 by V , we obtain

d

vj
σ(V A) = 2Λ(v−1 ◦ ej). (20)

Taking derivative with respect to v gives that

∇2
w,vf(v, w)i,j =

d

dvj

df(v, w)

dwi

=
d

dvj
(−w−1

i σ(W 1/2−1/pV A)i)

=
d

dvj
(−(ei ◦ w−1)⊤σ(W 1/2−1/pV A))

= − e⊤i W
−1 d

dvj
σ(W 1/2−1/pV A)

= − e⊤i W
−1 d

dvj
σ(VW 1/2−1/pA)

= − 2e⊤i W
−1Λ(VW 1/2−1/pA) · (v−1 ◦ ej)

= − 2e⊤i W
−1Λ(W 1/2−1/pV A) · (v−1 ◦ ej)

= − 2eiW
−1 · Λ(W 1/2−1/pV A) · V −1ej ,

where the first step follows from basic algebra, the second step follows from Part 17 of Lemma D.16,
the third step follows from Fact C.1, and the fourth steps follow from Fact C.1, the fifth step follows
from the fact that the product between diagonal matrices V and W 1/2−1/p can commute, the sixth
step follows from Eq. (20) (by treating V as W 1/2 and W 1/2−1/pA as A when applying Eq. (20)),
the seventh step follows from the fact that the product between diagonal matrices V and W 1/2−1/p

can commute, and the last step follows from Fact C.1.

Thus, we have

∇2
w,vf(v, w) = −2W−1Λ(W 1/2−1/pV A)V −1. (21)

We can show

Σw = diag(σ(W 1/2−1/pV A))

= diag(w(v))

=Wv, (22)

where the first step follows from Lemma D.16 by treating V A = Ax, the second step follows from
the definition of w(v), and the last step follows from Wv = diag(w(v)).

We can show

Λw = Λ(W 1/2−1/pV A)

= Λv, (23)

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

where the first step follows from Lemma D.16 by treating V A = Ax, the second step follows from
the definition of Λv .

We further have

Jw(v) = − (∇2
w,wf(v, w(v)))

−1∇2
w,vf(v, w(v))

= 2Wv(Σw − (1− 2/p)Λw)
−1ΛvV

−1

= 2Wv(Wv − (1− 2/p)Λw)
−1ΛvV

−1

= 2Wv(Wv − (1− 2/p)Λv)
−1ΛvV

−1,

where the first step follows from Eq. (18), the second step follows from Eq. (19) and Eq. (21) (with
reparamertize w by w(v) in f(v, w)), the third step follows from Eq. (22), and the last step follows
from Eq. (23).

Lemma E.6 (Lemma 25 in page 22 in (Lee & Sidford, 2019)). If the following conditions hold:

• Under the setting of Lemma E.5.

• Let wp(·) be defined as Definition E.1.

• Let v ∈ Rm, define w(v) := wp(V A) where V := Diag(v).

• Let v ∈ Rm
>0.

• Let h ∈ Rm.

We have

• Part 1.

∥W−1
v Jw(v)h∥w(v) ≤ p · ∥V −1h∥w(v).

• Part 2.

∥(W−1
v Jw(v)− pV −1)h∥∞ ≤ p ·max{p/2, 1} · ∥V −1h∥w(v).

Proof. Proof of Part 1.

Fixing an arbitrary v ∈ Rm
>0 and h ∈ Rm.

According to the definition of wp(A) (Definition E.1), we know wp(V A) is the unique solution to

w = σ(W 1/2−1/pV A).

Thus, if we define w := wp(V A), then have w = σ(W 1/2−1/pV A).

Since w(v) := wp(V A) (see Lemma statement), we also have w = w(v).

Thus, we can further define Σ notation,

Σ := Σ(W 1/2−1/pV A),

it is obvious that

Σ = diag(σ(W 1/2−1/pV A)) = diag(w) = W = Wv = diag(w(v)). (24)

We further define

• Λ := Λ(W 1/2−1/pV A) (recall that Λ ⪯ Σ)

• Λ := Λ(W 1/2−1/pV A) where Λ = Σ−1/2ΛΣ−1/2

• P ◦2 := P ◦2(W 1/2−1/pV A)

• Q := I − (1− 2/p)Λ

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

From Q = I − (1− 2/p)Λ, we can multiply p on both sides, we get

pQ = pI − pΛ + 2Λ,

which is further equivalent to

2Λ− pQ = pΛ− pI. (25)

We have that

Jw(v)h = 2Wv(Wv − (1− 2/p)Λ)−1ΛV −1h

= 2Σ(Σ− (1− 2/p)Λ)−1ΛV −1h

= 2Σ1/2(I − (1− 2/p)Λ)−1Σ−1/2ΛV −1h

= 2Σ1/2Q−1Σ−1/2ΛV −1h

= 2Σ1/2Q−1ΛΣ1/2V −1h

= 2W 1/2Q−1ΛW 1/2V −1h

= 2W 1/2ΛQ−1W 1/2V −1h, (26)

where the first step follows from Lemma E.5, the second step follows from Wv = Σ (Eq. (24)), the
third step follows from Λ = Σ1/2ΛΣ1/2, the fourth step follows from definition of Q, the fifth step
follows from Λ = Σ−1/2ΛΣ−1/2, the sixth step follows from W = Σ (Eq. (24)), and the last step
follows from Q−1Λ = ΛQ−1 (Fact C.26).

Using Fact C.27, we can conclude that Λ(I − (1 − 2/p)Λ)−1 is a matrix whose eigenvalues are of
the form λ/(1− (1− 2/p)λ), where λ represents an arbitrary eigenvalue for Λ.

Thus, we have

∥Q−1Λ∥ = ∥(I − (1− 2/p)Λ)−1Λ∥

≤ max
0≤λ≤1

λ

1− (1− 2/p)λ

=
p

2
, (27)

where the first step follows from the definition of matrix Q, the second step follows from Fact C.17
(for 0 ≤ λ ≤ 1) and Fact C.27 (for the form of eigenvalues), and the last step holds since the
maximum of the function occurs at λ = 1.

Consequently, Part 1 follows from

∥W−1Jw(v)h∥w =
√
h⊤Jw(v)⊤W−1Jw(v)h

= ∥W−1/2Jw(v)h∥2
= 2∥Q−1ΛW 1/2V −1h∥2
≤ 2∥Q−1Λ∥ · ∥W 1/2V −1h∥2
≤ p∥W 1/2V −1h∥2
= p∥V −1h∥w(v),

where the first step follows from the definition of ∥ · ∥w, the second step follows from the definition
of ∥ · ∥2, the third step follows from Eq. (26), the fourth step follows from the property of matrix
spectral norm, the fifth step follows from Eq. (27), and the last step follows from the definition of
∥ · ∥w and w(v) = w (see Eq. (24)).

Proof of Part 2.

Next,

I − Λ = Σ−1/2(Σ− Σ1/2ΛΣ1/2)Σ−1/2

= Σ−1/2(Σ− Λ)Σ−1/2

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

= Σ−1/2P ◦2Σ−1/2

= W−1/2P ◦2W−1/2, (28)

where the second step follows from Λ = Σ−1/2ΛΣ−1/2, the third step follows from Λ = Σ− P ◦2,
and the last step follows from Σ = W .

Then we have

(W−1Jw(v)− pV −1)h

= (W−12W 1/2ΛQ−1W 1/2V −1 − pV −1)h

=W−1/2 · (2Λ− pQ)Q−1 ·W 1/2V −1h

=W−1/2 · (pΛ− pI) ·Q−1W 1/2V −1h

= − pW−1P ◦2W−1/2Q−1W 1/2V −1h, (29)

where the first step follows from Eq. (26), the second step follows from Q is invertible, the third step
follows from Eq. (25), and the fourth step follows from Eq. (28).

However, we know that for all x,

∥Σ−1P ◦2x∥∞ ≤ ∥x∥Σ
= ∥Σ1/2x∥2, (30)

where the first step follows from Part 4 of Lemma D.17, the second step follows from the definition
of ∥ · ∥2.

Note that

∥Q−1∥ = ∥(I − (1− 2/p)Λ)−1∥

≤ max
0≤λ≤1

1

1− (1− 2/p)λ

= max{1, p
2
}, (31)

where the first step follows from the definition of Q, the second step follows from Fact C.17 (for
0 ≤ λ ≤ 1) and Fact C.27 (for the form of eigenvalues), and the last step follows from computing
the maximum value.

And therefore

∥(W−1Jw(v)− pV −1)h∥∞ = ∥pW−1P ◦2W−1/2Q−1W 1/2V −1h∥∞
= p · ∥W−1P ◦2W−1/2Q−1W 1/2V −1h∥∞
≤ p · ∥W 1/2W−1/2Q−1W 1/2V −1h∥2
= p · ∥Q−1W 1/2V −1h∥2
≤ p · ∥Q−1∥ · ∥W 1/2V −1h∥2
≤ p ·max{1, p

2
} · ∥W 1/2V −1h∥2

≤ p ·max{1, p
2
} · ∥V −1h∥w,

where the first step follows from Eq. (29), the second step follows from the linearity of the norm,
the third step follows from Eq. (30), the fourth step follows from W 1/2W−1/2 = I , the fifth step
follows from property of the matrix spectral norm, the sixth step follows from Eq. (31), and the last
step follows from the definition of ∥ · ∥w.

Thus, we complete the proof.

E.4 LEWIS WEIGHT ROUNDING PROPERTIES

Lemma E.7 (Lemma 28 in page 24 in (Lee & Sidford, 2019)). If the following conditions hold:

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

• Let A ∈ Rm×n, p > 0.

• Define w := wp(A).

• Define α := 2/p− 2/r.

• Let r ≥ p.

• Let gα := (1 + α)(1 + 1/α)α.

We have

A⊤W 1−2/rA ⪯ A⊤W 1−2/pA ⪯ gα ·mα ·A⊤W 1−2/rA.

Proof. We have

A⊤W 1−2/rA ⪯ A⊤W 1−2/pA,

where the step holds since r ≥ p and wi ∈ (0, 1] for all i ∈ [m] we have that w1−2/r
i ≤ w

1−2/p
i for

all i ∈ [m].

To prove the other direction, let ϵ ∈ (0, 1) be a positive real number.

Let Iw≤ ϵ
m
∈ Rm×m be the diagonal matrix where Iϵ,i,i = 1 if wi >

ϵ
m and Iϵ,i,i = 0 otherwise.

Let Iw> ϵ
m

:= I − Iw≤ ϵ
m

.

Using Fact C.21, we have

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A, (32)

Since r ≥ p > 0 and w ∈ Rm
>0, we have (mϵ)

−2/pW−2/p ⪯ (mϵ)
−2/rW−2/r, which further implies

that

(
m

ϵ
)−2/pA⊤W 1−2/pIw> ϵ

m
A ⪯ (

m

ϵ
)−2/rA⊤W 1−2/rIw> ϵ

m
A.

Thus, multiplying (m/ϵ)2/p on the both sides of the above equation, we have

A⊤W 1−2/pIw> ϵ
m
A ⪯ (

m

ϵ
)2/p−2/rA⊤W 1− 2

r Iw> ϵ
m
A. (33)

Combining Eq. (32) and Eq. (33), we can obtain that

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A

⪯ 1

1− ϵ
(
m

ϵ
)2/p−2/rA⊤W 1−2/rA

=
1

1− ϵ
(
m

ϵ
)αA⊤W 1−2/rA

=
(1 + α)1+α

αα
mαA⊤W 1−2/rA

= gα ·mα ·A⊤W 1−2/rA,

where the first step follows from Eq. (32), the second step follows from Eq. (33), the third step
follows from α = 2/p − 2/r, the fourth step follows from choosing ϵ = α

1+α to be the minimizer
of function f(ϵ) = 1

(1−ϵ)ϵα (see Fact C.12), and the last step follows from the definition of gα and
basic algebra.

Lemma E.8 (Lemma 26 in page 23 in (Lee & Sidford, 2019)). If the following conditions hold:

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

• Let A ∈ Rm×n be a non-degenerate matrix.

• Define w := wp(A) for 0 < p < r.

• Define α := 2/p− 2/r.

• Let gα := (1 + α)(1 + 1/α)α.

• Define cp,r,m := (gα)
1

1+α ·m
α

1+α .

Then we have

σ(W 1/2−1/rA)iw
−1
i ≤ cp,r,m ≤ 2m

α
1+α .

Proof. We have

A⊤W 1−2/rA ⪰ (gαm
α)−1 ·A⊤W 1−2/pA,

where the step follows from Lemma E.7.

Taking the inverse of the above equation on both sides, we get

(A⊤W 1−2/rA)−1 ⪯ (gαm
α) · (A⊤W 1−2/pA)−1.

For all i ∈ [m] it follows that

e⊤i A(A⊤W 1−2/rA)−1A⊤eiw
−2/r
i

≤ (gαm
α) · e⊤i A(A⊤W 1−2/pA)−1A⊤eiw

−2/r
i

= (gαm
α) · e⊤i w

2/p−1
i w

1/2−1/p
i A(A⊤W 1−2/pA)−1A⊤w

1/2−1/p
i eiw

−2/r
i

= (gαm
α) · w2/p−1

i σi(W
1/2−1/pA)w

−2/r
i

= (gαm
α) · w2/p−1

i · wi · w−2/r
i

= (gαm
α) · wα

i , (34)

where the first step follows from multiplying e⊤i · eiw
−2/r
i on both sides of previous equation, the

second step follows from w
2/p−1
i w

1/2−1/p
i w

1/2−1/p
i = 1, the third step follows from Fact C.31, the

fourth step follows from w = σ(W 1/2−1/pA), and the last step follows definition of α = 2/p−2/r.

For any fixed index i ∈ [m],

A⊤W 1− 2
rA =

m∑
j=1

w
1− 2

r
j A⊤eje

⊤
j A

⪰ w
1− 2

r
i A⊤eie

⊤
i A, (35)

where the first step follows from
∑m

j=1 w
1−2/r
j eje

⊤
j = W 1−2/r (see Fact C.1), the second step

follows from w
1− 2

r
j A⊤eje

⊤
j A is positive semidefinite for j ∈ [m].

Thus, we have

w
1− 2

r
i e⊤i A(A⊤W 1− 2

rA)−1A⊤ei = (W 1/2−1/rA(A⊤W 1− 2
rA)−1W 1/2−1/rA⊤)i,i

= σi(W
1/2−1/rA)

≤ 1,

where the first step follows from Fact C.8, the second step follows from the definition of leverage
score σ(·), and the last step follows from Part 2 of Lemma D.17.

Therefore, for i ∈ [m],

e⊤i A(A⊤W 1− 2
rA)−1A⊤eiw

− 2
r

i ≤ w−1
i , (36)

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

For i ∈ [m], we have

σ(W 1/2−1/rA)iw
−1
i = e⊤i A(A⊤W 1−2/rA)−1A⊤eiw

−2/r
i

≤ min{gαmαwα
i , w

−1
i }

≤ (gαm
α)

1
1+α

= cp,r,m, (37)

where the first step follows from definition of σ(W 1/2−1/rA) and basic algebra, the second step
follows from combining Eq. (34) and Eq. (36), the third step follows from Fact C.11, and the last
step follows from the definition of cp,r,m.

The fact that if we let

f(α) := (gα)
1

1+α = (1 + α)
1

1+α (1 +
1

α
)

α
1+α ,

then for all α ≥ 0,

log f(α) =
log(1 + α)

1 + α
+

α · log(1 + (1/α))

1 + α

≤ log(
1 + α

1 + α
+

α · (1 + (1/α))

1 + α
)

= log 2,

where the first step follows from basic algebra, the second step follows from the concavity of log
(γf(a) + (1 − γ)f(b) ≤ f(γa + (1 − γ)b) for any concave function f), and the last step follows
from basic algebra.

Therefore, we have

cp,r,m ≤ 2m
α

1+α ,

where the step follows from Eq. (37) and f(α) ≤ 2.

E.5 GRADIENT AND HESSIAN OF VOLUMETRIC POTENTIAL

Lemma E.9 (Gradient and Hessian of Volumetric Potential, Lemma 24 in page 20 in (Lee & Sidford,
2019)). If the following conditions hold:

• For all non-degenerate A ∈ Rm×n.

• Let w ∈ Rm
>0.

• Let p > 0 with p ̸= 2.

• Define W := diag(w) ∈ Rm×m.

• Define σw := σ(W 1/2−1/pA).

• Define Σw := Σ(W 1/2−1/pA).

• Define Λw := Λ(W 1/2−1/pA).

• Define

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA).

Then, we have

• Part 1.

∇VA
p (w) = −W−1σw.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

• Part 2.

∇2VA
p (w) =W−1(Σw − (1− 2/p)Λw)W

−1.

• Part 3. VA
p is convex in w and

2

max{p, 2}
·W−1ΣwW

−1 ⪯ ∇2VA
p (w) ⪯ 2

min{p, 2}
·W−1ΣwW

−1.

Proof. Proof of Part 1.

The formula for ∇VA
p (w) follow from Part 17 of Lemma D.16.

Proof of Part 2.

The formula for ∇2VA
p (w) follow from Part 19 of Lemma D.16.

Proof of Part 3.

Recall that Λ := Σ− P ◦2.

We have 0 ⪯ Λw ⪯ Σw by Part 2 of Lemma D.17.

If p < 2 then (1− 2/p) < 0, then we have

Σw − (1− 2/p)Λw ⪰ Σw.

where the first step follows Λw ⪰ 0.

And, we also have

Σw − (1− 2/p)Λw ⪯ Σw − (1− 2/p)Σw =
2

p
Σw,

where the first step follows Λw ⪯ Σw.

Applying the Fact C.25 to above two equations, then we have

W−1ΣwW
−1 ⪯ ∇2VA

p (w) ⪯ 2

p
W−1ΣwW

−1.

If p > 2 then (1− 2/p) > 0, then we have

Σw − (1− 2/p)Λw ⪰
2

p
Σw,

where the first step follows from Σw ⪰ Λw.

Then we also can show

Σw − (1− 2/p)Λw ⪯ Σw,

where the first step follows from Λw ⪰ 0.

Applying the Fact C.25 to above two equations, then we have

2

p
W−1ΣwW

−1 ⪯ ∇2VA
p (w) ⪯W−1ΣwW

−1.

Thus, we complete the proof.

E.6 HESSIAN APPROXIMATION

Fact E.10. If the following conditions hold:

• Define ϵ ∈ (0, 1).

• Define f(p) := (1+ϵ
1−ϵ)

|1−2/p|.

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

• For all i ∈ [m], we assume that vi, wi > 0.

• For all i ∈ [m], let (1− ϵ)vi ≤ wi ≤ (1 + ϵ)vi.

Then we have

Σ(W 1/2−1/pA) ∈ [f(p), f(p)−1] · Σ(V 1/2−1/pA).

Proof. For i ∈ [m], We have

Σ(W 1/2−1/pA)i,i = (W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p)i,i

≤ (1 + ϵ)|1−2/p|(V 1/2−1/pA(A⊤W 1−2/pA)−1A⊤V 1/2−1/p)i,i

≤ (1 + ϵ)|1−2/p|

(1− ϵ)|1−2/p| (V
1/2−1/pA(A⊤W 1−2/pA)−1A⊤V 1/2−1/p)i,i

≤ f(p)(V 1/2−1/pA(A⊤V 1−2/pA)−1A⊤V 1/2−1/p)i,i

= f(p)Σ(V 1/2−1/pA)i,i,

where the first step follows from the definition of Σ(W 1/2−1/pA), the second step follows from
(1 − ϵ)vi ≤ wi ≤ (1 + ϵ)vi for i ∈ [m], the third step follows from Fact C.20, the fourth step
follows from the definition of f(p), and the last step follows from the definition of Σ(V 1/2−1/pA).

Similarly, we can show

Σ(W 1/2−1/pA)i,i ≥ f(p)−1Σ(V 1/2−1/pA)i,i.

Thus, the proof is complete.

Lemma E.11 (Hessian Approximation, Lemma 53 in page 50 in (Lee & Sidford, 2019)). If the
following conditions hold:

• Denote the optimal point of Lewis weight as wp.

• Define ϵ := p
8(p+2) . (it implies that ϵ ∈ (0, 0.125)).

• Let w ∈ Rm
≥0 satisfies ∥W−1(wp − w)∥∞ ≤ ϵ for the matrix W := diag(w).

• Define V := diag(wp).

Then, we have

min{1/2, 1/p}W−1 ⪯ ∇2VA
p (w) ⪯ max{2, 4/p}W−1.

Proof. Since we V := diag(wp), then it is obvious that V = Σ(V 1/2−1/pA).

For i ∈ [m], we have

(1− ϵ)wp,i ≤ wi ≤ (1 + ϵ)wp,i,

where the step follows from ∥W−1(wp − w)∥∞ ≤ ϵ (it implies |wp,i−wi

wi
| ≤ ϵ).

By definition of V = diag(wp) in lemma statement, we have

(1− ϵ)vi ≤ wi ≤ (1 + ϵ)vi, (38)

where ϵ ∈ (0, 0.2) (see condition in Lemma statement).

We define

f(p) :=
(1 + p

8(p+2))
|1−2/p|

(1− p
8(p+2))

|1−2/p| .

Using Fact C.10, we know that f(p) ≥ 1.

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Then, we have

Σw = Σ(W 1/2−1/pA)

⪯ f(p)Σ(V 1/2−1/pA)

= f(p)V

⪯ V

⪯ 2W,

where the first step follows from the definition of Σw, the second step follows from Eq. (38) and
Fact E.10, the third step follows from V = Σ(V 1/2−1/pA), the fourth step follows from Fact C.10
(it gives f(p) ≤ 1), and the last step follows from Eq. (38).

And

Σw = Σ(W 1/2−1/pA)

⪰ f(p)−1Σ(V 1/2−1/pA)

= f(p)−1V

⪰ V

⪰ 0.5W,

where the first step follows from the definition of Σw, the second step follows from Eq. (38), the third
step follows from V = Σ(V 1/2−1/pA), the fourth step follows from Fact C.10 (it gives f(p) ≤ 1),
and the last step follows from Eq. (38).

Then the result follows from Lemma E.9.

E.7 COMPUTE THE WEIGHT FUNCTION

Lemma E.12 (Lemma 54 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define r := p
20(p+2) .

• Let w(0) ∈ Rm
>0 such that ∥W (0)

−1
(wp − w(0))∥∞ ≤ r.

• Let w(0) satisfy that ⟨w(0),1m⟩ = n.

• Use MEDIAN(x, y, z)i to denote the median of xi, yi and zi for all i ∈ [m].

• Define L := max{4, 8/p}.

• For all k ≥ 0,

w(k + 1) := MEDIAN((1− r)w(0), w(k)− 1

L
(w(0)− w(0)

w(k)
σ(W (k)1/2−1/pA)), (1 + r)w(0)).

Then, for all k, we have

∥w(k)− wp∥W−1
p
≤ 2
√
n · (1− 1

16(p/2 + 2/p)
)k/2∥W (0)

−1
(wp − w(0))∥∞.

Proof. We define

Q := {w ∈ Rm : ∥W (0)
−1

(w − w(0))∥∞ ≤ r}.

Recall Theorem C.32, we have the following iterative step for an arbitrary positive definite matrix
H:

w(k + 1) = arg min
w∈Q
∇f(w(k))⊤(w − w(k)) +

L

2
∥w − w(k)∥2H . (39)

We consider the optimization problem minwi>0 VA
p (w) +

∑m
i=1 wi.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Using Part 1 of Lemma E.9, we know ∇VA
p (w) = −W−1σ.

It is obvious that we should choose H = W (0)−1 when applying Theorem C.32.

Thus, let f(w) = VA
p (w) +

∑m
i=1 wi, we have ∇f(w) = −W−1σ + 1m.

We use 1m ∈ Rm to denote the vector whose all entries are 1.

We define

a := 1m − w(k)−1 ◦ σ(W (k)1/2−1/pA).

It is easy to see that

⟨∇f(w(k)), w − w(k)⟩
= ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w − w(k)⟩
= ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w⟩ − ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w(k)⟩
= ⟨a,w⟩ − ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w(k)⟩.

Because the second term in above equation does not depend on w. Thus taking the argmin of the
both side, we have

argmin
w
⟨∇f(w(k)), w − w(k)⟩ = argmin

w
⟨a,w⟩.

Then, we have

w(k + 1) = arg min
w∈Q
⟨a,w⟩+ L

2
∥w − w(k)∥2

W (0)−1

= arg min
w∈Q
⟨a,w⟩+ L

2
⟨w,W (0)

−1
w⟩ − L⟨w,W (0)

−1
w(k)⟩+ L

2
⟨w(k),W (0)

−1
w(k)⟩

= arg min
w∈Q
⟨a,w⟩+ L

2
⟨w,W (0)

−1
w⟩ − L⟨w,W (0)

−1
w(k)⟩

= arg min
w∈Q

L

2
⟨w,W (0)

−1
w⟩ − L⟨W (0)

−1
w(k)− a

L
,w⟩

= arg min
w∈Q
∥w −W (0)(W (0)

−1
w(k)− a

L
1m)∥2

W (0)−1

= arg min
w∈Q
∥w − w(k) +

1

L
(w(0)− w(0)

w(k)
σ(W (k)1/2−1/pA))∥2

W (0)−1 ,

where the first step follows from the previous equation and Eq. (39), the second step follows from
expanding the inner product, the third step follows from the fact that the last term is constant with
respect to w, the fourth step follows from basic algebra, the fifth step follows from Fact C.33 (by
treating B = W (0)−1 and b = W (0)−1w(k)− a

L1m), and the last step follows from the definition
of a.

We have

∇2V(w) ⪯ max{2, 4
p
}W−1

⪯ max{4, 8
p
}W (0)−1, (40)

where the first step follows from Lemma E.11, the second step follows from that wi = (1±0.2)wp,i

and wp,i = (1± 0.2)w(0)i.

And

∇2V(w) ⪰ min{1/2, 1/p}W−1

⪰ min{1
4
,
1

2p
}W (0)−1, (41)

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

where the first step follows from Lemma E.11, the second step follows from that wi = (1±0.2)wp,i

and wp,i = (1± 0.2)w(0)i)

Then we have

min{1
4
,
1

2p
}W (0)

−1 ⪯ ∇2V(w) ⪯ max{4, 8
p
}W (0)

−1
,

where the step follows from Eq. (40) and Eq. (41).

Hence, we have

∥w(k)− wp∥2W (0)−1 ≤ (1− min{1/4, 1/(2p)}
max{4, 8/p}

)k∥w(0)− wp∥2W (0)−1

≤ (1− 1

16(p/2 + 2/p)
)k∥w(0)− wp∥2W (0)−1 , (42)

where the first step follows from Theorem C.32, the second step follows from Fact C.15.

∥w(0)− wp∥2W (0)−1 = (w(0)− wp)
⊤W (0)

−1
(w(0)− wp)

=

m∑
i=1

(w(0)− wp)
2
i

w(0)i

=

m∑
i=1

w(0)i(
(w(0)− wp)i

w(0)i
)2

≤
m∑
i=1

w(0)i∥W (0)
−1

(wp − w(0))∥2∞

≤ 2n∥W (0)
−1

(wp − w(0))∥2∞, (43)

where the first step follows from the definition of ∥ · ∥W , the second step follows from W (0) is
diagonal matrix, the third step follows from multiplying and dividing same factor, the fourth step
follows from the definition of ∥ · ∥∞, and the last step follows from

∑m
i=1 wi(0) = n (see Lemma

statement).

Combining Eq. (42) and Eq. (43) gives

∥w(k)− wp∥2W−1
p
≤ 4n · (1− 1

16(p/2 + 2/p)
)k∥W (0)

−1
(wp − w(0))∥2∞.

Thus, taking the square root of both sides completes the proof.

E.8 MULTIPLICATIVE APPROXIMATION OF wp

Lemma E.13 (Lemma 55 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:

• Given w ∈ Rm such that ∥W−1
p (wp − w)∥∞ ≤ p

8(p+2) .

• Let β := 4(1 + 2/p)2
√
n denote a local variable only be used in this lemma.

• Given w ∈ Rm such that ∥w − wp∥W−1
p
≤ 0.1/β.

• Let δ := ∥w − wp∥W−1
p

.

• Let ŵ := (Diag(A(A⊤W 1−2/pA)−1A⊤))2/p.

• Let wp be defined as wp := (Diag(A(A⊤W
1−2/p
p A)−1A⊤))2/p.

• Let θ := 2 · |1− 2/p| ·
√
n.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

Then, we have

∥W−1
p (ŵ − wp)∥∞ ≤ β · ∥w − wp∥W−1

p
.

Proof. To show ŵ is multiplicative close to wp (i.e., ŵi = (1 ± 0.1)wp,i), it suffices to prove that
A⊤W

1−2/p
p A is multiplicatively close to A⊤W 1−2/pA.

Firstly, to simplify computation, we define

α := tr[(A⊤W 1−2/p
p A)−1(A⊤|W 1−2/p −W 1−2/p

p |A)].

Using Fact C.24, then we have

A⊤W 1−2/pA ∈ [(1− α), (1 + α)] ·A⊤W 1−2/p
p A. (44)

Taking the inverse of the above equation

(A⊤W 1−2/pA)−1 ∈ [(1 + α)−1, (1− α)−1] · (A⊤W 1−2/p
p A)−1.

Multiplying e⊤i A ·A⊤ei, we have

(A(A⊤W 1−2/pA)−1A⊤)i.i ∈ [(1 + α)−1, (1− α)−1](A(A⊤W 1−2/p
p A)−1A⊤)i,i.

Taking the power of 2/p on both sides

(A(A⊤W 1−2/pA)−1A⊤)
2/p
i,i ∈ [(1 + α)−2/p, (1− α)−2/p](A(A⊤W 1−2/p

p A)−1A⊤)
2/p
i,i .

Re-organizing the above equation, we get

(A(A⊤W 1−2/pA)−1A⊤)
2/p
i,i

(A(A⊤W
1−2/p
p A)−1A⊤)

2/p
i,i

∈ [(1 + α)−2/p, (1− α)−2/p]. (45)

Next, we can rewrite α as follows:

α = tr[(A⊤W 1−2/p
p A)−1(A⊤|W 1−2/p −W 1−2/p

p |A)]

= tr[(A⊤W 1−2/p
p A)−1A⊤ ·W 1/2−1/pW−1+2/p · |W 1−2/p −W 1−2/p

p | ·W 1/2−1/p ·A]

= tr[W 1/2−1/p
p A(A⊤W 1−2/p

p A)−1A⊤W 1/2−1/p
p ·W−1+2/p

p · |W 1−2/p −W 1−2/p
p |]

= tr[P (W 1/2−1/p
p A) ·W−1+2/p

p · |W 1−2/p −W 1−2/p
p |]

=

m∑
i=1

(P (W 1/2−1/p
p A)W−1+2/p

p |W 1−2/p −W 1−2/p
p |)i,i

=

m∑
i=1

P (W
1/2−1/p
p A)i,i

w
1−2/p
p,i

· |w1−2/p
i − w

1−2/p
p,i |

=

m∑
i=1

σ(W
1/2−1/p
p A)i

w
1−2/p
p,i

· |w1−2/p
i − w

1−2/p
p,i |, (46)

where the first step follows from definition of α, the second step follows from WW−1 = I and
W ,Wp are diagonal matrices, the third step follows from trace cyclic property, the fourth step follows
definition of P (W

1/2−1/p
p A), the fifth step follows from the definition of trace, the sixth step follows

from the (P diag(w))i,i = Pi,iwi, and the last step follows from P (X)i,i = σ(X)i for i ∈ [m].

Since ∥W−1
p (wp − w)∥∞ ≤ p

8(p+2) , we have that for all i ∈ [m],

|w1−2/p
i − w

1−2/p
p,i | ≤ 2 · |1− 2/p| · |wi − wp,i

w
2/p
p,i

|, (47)

where the step follows from the mean-value theorem |f(x)− f(y)| ≤ |f ′(x)| · |x− y|.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

Therefore, we obtain

α ≤ 2 · |1− 2/p| ·
m∑
i=1

σ(W
1/2−1/p
p A)i

w
1−2/p
p,i

· |wi − wp,i

w
2/p
p,i

|

≤ 2 · |1− 2/p| · (
m∑
i=1

σ(W
1/2−1/p
p A)2i
wp,i

)1/2 · (
m∑
i=1

(wi − wp,i)
2

wp,i
)1/2

= 2 · |1− 2/p| ·
√
n · δ

= θδ, (48)

where the first step follows from Eq. (46) and Eq. (47), the second step follows from Cauchy-

Schwarz, the third step follows from
∑m

i=1

σ(W 1/2−1/p
p A)2i
wp,i

=
∑m

i=1

w2
p,i

wp,i
= n (since wp is a Lewis

Weight), and definition of δ = ∥w−wp∥−1
Wp

= (
∑m

i=1(wi−wp,i)
2/wp,i)

1/2 (see Lemma Statement),
and the last step follows from definition of θ.

Note that for all δ ≤ (0, 0.1/β] where β = 4(1 + 2/p)2
√
n.

Using Fact C.30, we have

(1− θδ)−2/p ≤ 1 + βδ and (1 + θδ)−2/p ≥ 1− βδ. (49)

Then we have

∥W−1
p (ŵ − wp)∥∞ = max

i∈[m]
|w−1

p,i (ŵi − wp,i)|

= max
i∈[m]

|
(A(A⊤W 1−2/pA)−1A⊤)

2/p
i,i

(A(A⊤W
1−2/p
p A)−1A⊤)

2/p
i,i

− 1|

= max{(1− α)−2/p − 1, 1− (1 + α)−2/p}
≤ max{(1− θδ)−2/p − 1, 1− (1 + θδ)−2/p}
≤ β · δ
= β · ∥w − wp∥W−1

p
,

where the first step follows from the definition of the infinity norm, the second step follows from the
definition of ŵ, the third step follows from Eq. (45), the fourth step follows from Eq. (48), the fifth
step follows from Eq. (49), and the last step follows from the definition of δ.

E.9 EXACT WEIGHT UPDATES

Algorithm 2 Exact weight computation

1: procedure COMPUTEEXACTWEIGHT(A ∈ Rm×n, p ∈ N+, w(0) ∈ Rm
>0, ϵ ∈ (0, 1))

2: T ← ⌈32(p/2 + 2/p) log(8n(1 + 2/p)ϵ−1⌉, r ← p
20(p+2) , L← max{4, 8

p}
3: for k = 1, . . . , T − 1 do
4: w(k+1) ← MEDIAN((1 − r)w(0), w(k) − 1

L (w(0) −
w(0)
w(k)σ(W (k)1/2−1/pA)), (1 +

r)w(0))
5: end for
6: return (Diag(A(A⊤W (T)1−2/pA)−1A⊤))2/p ▷ W (T) = diag(w(T))
7: end procedure

The goal of this section is to prove Theorem E.14.
Theorem E.14 (Exact Weight Updates, Theorem 56 in page 52 in (Lee & Sidford, 2019)). If the
following conditions hold:

• Let ϵ ∈ (0, 1).

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

• Let w(0) ∈ Rm
>0 with ∥w(0)−1(wp(A)− w(0))∥∞ ≤ p

20(p+2) .

• T = O((p+ 1/p) log(n(1 + 1/p)ϵ−1)).

• ∥W (0)
−1

(wp − w(0))∥∞ ≤ poly(n).

Then we can show

• Part 1. Then the algorithm COMPUTEEXACTWEIGHT(A, p,w(0), ϵ) (Algorithm 2)

– outputs w ∈ Rm
>0 with ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ in T iterations.

– Each iteration involves computing σ(V A) for diagonal matrix V and extra linear time
work and O(1) depth.

Proof. We define δ0 := ∥W (0)
−1

(wp − w(0))∥∞.

Then we have

∥W−1
p (ŵ − wp)∥∞ ≤ 4(1 + 2/p)2

√
n∥w(k)− wp∥W−1

p

≤ 8(1 + 2/p)2n(1− 1

16(p/2 + 2/p)
)k/2δ0,

where the first step follows from Lemma E.13, the second step follows from Lemma E.12

For conveinent of writing proofs, we define

α1 := 8(1 + 2/p)2,

α2 := 16(p/2 + 2/p).

Thus, we need to choose k to make the following happen

α1(1− 1/α2)
k/2δ0 ≤ ϵ/n.

which is equivalent to

(1− 1/α2)
k/2 ≤ ϵ

δ0α1n
,

Note that

(1− 1/α2)
k/2 ≤ e−0.5k/α2 ,

where the first step follows from the fact that 1− x ≤ e−x for x ∈ R.

Thus, as long as we can show

e−0.5k/α2 ≤ ϵ

δ0α1n
,

then we’re done.

We can just choose

k ≥ 2α2 log(δ0α1n/ϵ).

Note that, recall the definition of α1, α2 and δ0 ≤ poly(n), thus we can show the number iterations
T to be

O((p+ 1/p) log(n(1 + 1/p)ϵ−1)).

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

Algorithm 3 Approximate weight computation

1: procedure COMPUTEAPXWEIGHT(A ∈ Rm×n, p ∈ (0, 4), w(0) ∈ Rm
>0, ϵ ∈ (0, 2/p − |1 −

2/p|))
2: L← max{4, 8

p}, r ←
p2(4−p)

220 , δ ← (4−p)ϵ
256 .

3: T ← ⌈80(p2 + 2/p) log(pn
32ϵ)⌉.

4: ▷ T is the number of iterations
5: for j = 1, . . . , T − 1 do
6: Compute σ(j) ∈ Rn such that

e−δσ(W (j)
1/2−1/p

A)i ≤ σ(j)i ≤ eδσ(W (j)
1/2−1/p

A)i for all i ∈ [m].

7: w(j + 1) = MEDIAN((1− r)w(0), w(j)− 1
L (w(0)− w(j))σ(j), (1 + r)w(0)).

8: end for
9: return (Diag(A(A⊤W (T)1/2−1/p)−1A⊤))2/p.

10: end procedure

E.10 APPROXIMATE WEIGHT COMPUTATION

In this section, we introduce how to use approximate leverage scores instead of exact leverage
scores in computing gradient. First, we give a lemma showing that the optimality condition
σ(W 1/2−1/pA)i/wi is stable under changes to w.
Lemma E.15 (Lemma 57 in page 53 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let w, v ∈ Rm
>0 with wi = eδivi for |δi| ≤ δ for all i ∈ [m].

Then, for all i ∈ [m],

v−1
i σ(V 1/2−1/pA)i ∈ [e

2
p δi−|1−2/p|δ, e

2
p δi+|1−2/p|δ] · w−1

i σ(W 1/2−1/pA)i.

Proof. We have

v−1
i σ(V 1/2−1/pA)i = v

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

= e
2
p δiw

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

≤ e
2
p δi+|1−2/p|δw

−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai,

where ai is the i-th row of A, the first step follows from the definition of σ(·), the second step fol-
lows from wi = eδivi, the third step follows from (A⊤V 1−2/pA)−1 ⪯ e|1−2/p|δ(A⊤W 1−2/pA)−1

(implied by Fact C.19 and Fact C.20).

For the lower bound,

v−1
i σ(V 1/2−1/pA)i = v

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

= e
2
p δiw

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

≥ e
2
p δi−|1−2/p|δw

−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai,

where ai is the i-th row of A, the first step follows from the definition of σ(·), the second step follows
from wi = eδivi, the third step follows from (A⊤V 1−2/pA)−1 ⪰ e−|1−2/p|δ(A⊤W 1−2/pA)−1

(implied by Fact C.19 and Fact C.20).

Theorem E.16 (Approximate Weight Computation, Theorem 58 in page 53 in (Lee & Sidford,
2019)). If the following conditions hold:

• Let p ∈ (0, 4).

• Define r := p2(4−p)
220 .

• Let w(0) ∈ Rm
>0 satisfy ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ r.

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2026

• Let ϵ ∈ (0, 2/p− |1− 2/p|).

• Define L := max{4, 8/p}.

• Define δ := (4−p)ϵ
256 . (it implies δ ∈ (0, 0.1))

Then we have

• Part 1. The algorithm COMPUTEAPXWEIGHT (x,w(0), ϵ) return w

– such that ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ in O(p−1 log(np−1ϵ−1)) steps.
– Each step involves computing σ up to ±Θ((4− p) · ϵ) multiplicative error with some

extra linear time work.

Proof. Consider an execution of COMPUTEAPXWEIGHT(x,w(0), ϵ) where there is no error in com-
puting leverages scores, i.e. σ(j) = σ(W (j)

1/2−1/p
A), and let v(j) denote the w computed during

this idealized execution of COMPUTEAPXWEIGHT.

We will show that w(j) and v(j) are multiplicatively close.

Suppose that for i ∈ [m], wi(j) = eδ
(j)
i v(j)i with |δ(j)i | ≤ δ(j) for some δ(j) ≥ 0.

We use ±δ to denote a real value with magnitude at most δ.

Define v(j + 1), w(j + 1) ∈ Rm
>0 to be v(j + 1) and w(j + 1) before taking the median, i.e.

v(j + 1) := v(j)− 1

L
(w(0)− w(0)

v(j)
e±δσ(V (j)

1/2−1/p
A))

w(j + 1) := w(j)− 1

L
(w(0)− w(0)

w(j)
σ(j)). (50)

We have

w(j + 1)i − v(j + 1)i

= w(j)− v(j) +
w(0)

L
(
e±δσ(W (j)

1/2−1/p
A)

w(j)
− σ(V (j)

1/2−1/p
A)

v(j)
)

= (eδ
(j)
i − 1)v(j)i +

w(0)

L
(
e±δσ(W (j)

1/2−1/p
A)

w(j)
− σ(V (j)

1/2−1/p
A)

v(j)
)

= (eδ
(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1−2/p|δ(j)±δ − 1) · σ(V (j)

1/2−1/p
A)

v(j)
, (51)

where the first step follows from Eq. (50), the second step follows from wi = eδ
(j)
i v(j)i, the third

step follows from Lemma E.15.

Since

∥W (0)
−1

(w(0)− v(j))∥∞ ≤ r

will imply that w(0) = e±1.5rv(j) (see Fact C.6) and that

∥W (0)
−1

(w(0)− wp(A))∥∞ ≤ r

will imply that w(0) = e±1.5rwp(A) (see Fact C.6).

Combining the above two equations, we get the following

wp(A) = e±3rv(j). (52)

Recall Lemma E.15 for wi = eδivi with |δi| ≤ δ,

v−1
i σ(V 1/2−1/pA)i ∈ [e−(2/p+|1−2/p|)δ, e(2/p+|1−2/p|)δ] · w−1

i σ(W 1/2−1/pA)i. (53)

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2026

Then, rename the variables in Eq. (53) for w = wp(A) and v = v(j) with δ = 3r (due to Eq. (52)),
we have

(v(j)i)
−1σ(V (j)

1/2−1/p
A)i ∈ [e−3(2/p+|1−2/p|)r, e3(2/p+|1−2/p|)r] · w−1

i σ(W 1/2−1/pA)i.

Further, using 2/p+ |1− 2/p| ≤ 1 + 4/p (∀p > 0), the above equation will imply that

(v(j)i)
−1σ(V (j)

1/2−1/p
A)i ∈ [e−3(1+1/p)r, e3(1+4/p)r] · w−1

i σ(W 1/2−1/pA)i. (54)

We have

w(j + 1)i − v(j + 1)i = (eδ
(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1−2/p|δ(j)±δ − 1)e±3(1+4/p)r,

where the step follows from combining Eq. (51) and Eq. (54).

The truncation means, that w is taking the median of w, (1 − r)w(0) and (1 + r)w(0). So if w is
not inside 1 − r and 1 + r range, this can be viewed as a truncation. Since w(j + 1) and v(j + 1)
are just truncation of w(j + 1) and v(j + 1), we have the same bound for w(j + 1)i − v(j + 1)i.

We get that

(eδ
(j+1)
i − 1)vi(j + 1) = (eδ

(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1− 2

p |δ
(j)±δ − 1)e±3(1+4/p)r,

where the step follows from wi(j + 1) = eδ
(j+1)
i vi(j + 1).

Finally,

eδ
(j+1)
i − 1 = e±4r(eδ

(j)
i − 1) +

1

L
(e−

2
p δ

(j)
i ±|1− 2

p |δ
(j)±δ − 1)e±3(2+4/p)r

:= A1 +A2, (55)

where the first step follows from v(j + 1) = e±2rw(0) and v(j) = e±2rw(0), the second step
follows from we define A1 and A2 in that way to simplify the proof.

Due to definition of L, we can show

L = max{4, 8/p} ≥ 2max{1, 4/p} ≥ 1 + 4/p. (56)

Bound A1. We can bound

A1 = e±4r(eδ
(j)
i − 1)

= (eδ
(j)
i − 1)± 8rδ

(j)
i

= δ
(j)
i ± (δ

(j)
i)2 ± 8rδ

(j)
i

= δ
(j)
i ± 2rδ(j) ± 8rδ

(j)
i

= δ
(j)
i ± 10rδ(j), (57)

where the first step follows from the definition of A1, the second step follows from e±x(ey − 1) =
(ey − 1)± 2x|y| (see Fact C.29), the third step follows from ex − 1 = x± x2 (see Fact C.28), the
fourth step follows from δ

(j)
i ≤ δ(j) ≤ 2r, and the last step follows from δ

(j)
i ≤ δ(j).

Bound A2. For the convenience of writing proofs, we first define

y := −2

p
δ
(j)
i ± |1−

2

p
|δ(j) ± δ.

Then, we can show

|y| ≤ (1 + 4/p)δ(j) + δ, (58)

where the step follows from |δ(j)i | ≤ δ(j), δ > 0 and triangle inequality.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2026

We can bound

y2 ≤ ((1 + 4/p)δ(j) + δ)2

≤ 2((1 + 4/p)δ(j))2 + 2δ2

≤ 2((1 + 4/p)δ(j))2 + δ

≤ 4(1 + 4/p)2rδ(j) + δ, (59)

where the first step follows from Eq. (58), the second step follows from (a + b)2 ≤ 2a2 + 2b2, the
third step follows from δ ∈ (0, 0.1), and the last step follows from δ(j) ≤ 2r.

Then we have

A2 =
1

L
(ey − 1)e±3(2+4/p)r

=
1

L
(ey − 1) +

6

L
(2 + 4/p)r · |y|

:= A2,1 +A2,2,

where the first step follows from the definition of A2, the second step follows from Fact C.29, and
the last step follows from we define A2,1 and A2,2 to simplify the proof.

We have

A2,1 =
1

L
(ey − 1)

=
1

L
(y ± (y)2)

=
1

L
(−2

p
δ
(j)
i ± |1−

2

p
|δ(j) ± 2δ ± 4(1 + 4/p)2rδ(j))

= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 2δ

L
± 4

L
(1 + 4/p)2rδ(j)

= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 2δ

L
± 4(1 + 4/p)rδ(j), (60)

where the first step follows from the definition of A2,1, the second step follows from ex−1 = x±x2

for all x ∈ (0, 0.5) (see Fact C.28), the third step follows from Eq. (59), the fourth step follows from
basic algebra, and the last step follows from L ≥ 1 + 4/p (see Eq. (56)).

We have

A2,2 =
6

L
(2 + 4/p)r|y|

≤ 12

L
(1 + 4/p)r|y|

≤ 12

L
(1 + 4/p)r((1 + 4/p)δ(j) + δ)

=
12

L
(1 + 4/p)r(1 + 4/p)δ(j) +

12

L
(1 + 2/p)rδ

≤ 12(1 + 4/p)rδ(j) +
12

L
(1 + 2/p)rδ

≤ 12(1 + 4/p)rδ(j) +
δ

L
, (61)

where the first step follows from the definition of A2,2, the second step follows from basic algebra,
the third step follows from Eq. (58), the fourth step follows from basic algebra, the fifth step follows
from (1 + 4/p) ≤ L (see Eq. (56)), and the last step follows from 12(1 + 2/p)r ≤ 1.

We have

A2 = A2,1 +A2,2

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2026

= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 3δ

L
± 20(1 + 4/p)rδ(j), (62)

where the first step follows from the definition of A2,1 and A2,2, and the second step follows from
substituting A2,1 and A2,2 with Eq. (60) and Eq. (61).

We have

eδ
(j+1)
i − 1

= A1 +A2

= δ
(j)
i ± 10rδ(j) +A2

= (1− 2

pL
)δ

(j)
i ±

1

L
|1− 2

p
|δ(j) ± 3δ

L
± 40(1 + 4/p)rδ(j), (63)

where the first step follows from Eq. (55), the second step follows from Eq. (57), the third step
follows from Eq. (62).

For the first two terms in Eq. (63), for i ∈ [m],

|(1− 2

pL
)δ

(j)
i ±

1

L
· |1− 2/p| · δ(j)| ≤ (1− 2

pL
+

1

L
· |1− 2/p|)δ(j), (64)

where the step follows from triangle inequality.

For the last two terms in Eq. (63), we have

| ± 40(1 + 4/p)rδ(j) ± 3δ

L
| ≤ 40(1 + 4/p)rδ(j) +

3δ

L
, (65)

where the step follows from triangle inequality.

We have

δ(j+1) ≤ eδ
(j+1)
i − 1

≤ LHS of Eq. (64) + LHS of Eq. (65)

≤ (1− 2

pL
+

1

L
· |1− 2/p|)δ(j) + 40(1 + 4/p)rδ(j) +

3δ

L

= (1− 1

L
(2/p− |1− 2/p|) + 40(1 + 4/p)r)δ(j) +

3δ

L
, (66)

where the first step follows from x ≤ ex − 1, the second step follows from triangle inequality and
Eq. (63), the third step follows from Eq. (64) and Eq. (65), the fourth step follows from merging the
terms related to δ(j).

We can show that

r · L · (1 + 4/p) = r ·max{4, 8/p}(1 + 4/p)

≤ r · (4 + 8/p)(1 + 4/p)

≤ p2(4− p)

220
· (4 + 8/p)(1 + 4/p)

≤ 1

210
(1− p/4), (67)

where the first step follows from choice of L (see Lemma statement), the second step follows from
max{a, b} ≤ a+ b for a, b ≥ 0, the third step follows from choice of r (see Lemma statement), and
the last step follows from Fact C.14.

We have

40(1 + 4/p)r ≤ 1

2L
· (1− p/4)

≤ 1

2L
· (2/p− |1− 2/p|), (68)

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2026

where the first step follows from Eq. (67), and the second step follows from Fact C.13.

And hence

δ(j+1) ≤ (1− 1

2L
(2/p− |1− 2/p|)︸ ︷︷ ︸

:=α

)δ(j) +
3δ

L︸︷︷︸
:=β

, (69)

where the step follows from Eq. (68) and Eq. (66).

Recursively applying the above equation, we can show

δ(j) ≤ (1− α)δ(j−1) + β

≤ (1− α)2δ(j−2) + (1− α)β + β

≤ · · ·

≤ (1− α)j · δ(0) +
j−1∑
i=0

(1− α)iβ

=

j−1∑
i=0

(1− α)iβ

=
1− (1− α)j

α
β

≤ β

α
,

where the first step follows from using Eq. (68) for j, the second step follows using Eq. (68) for
j − 1, the fifth step follows from δ(0) (in that 0-th iteration, we can trivially think v(0) = w(0)), the
sixth step follows geometric sum, and the last step follows from simple algebra.

Using α = 1
2L (2/p− |1− 2/p|) and β = 3δ/L to substitute α and β in the bound above, we further

have

δ(j) ≤ 1
1
2L (2/p− |1− 2/p|)

· 3δ
L

≤ 8δ

2/p− |1− 2/p|

≤ 1

4
ϵ,

where the first step follows from Eq. (69), the second step follows from basic algebra, and the third
step follows from δ = 4

256 · ϵ · (1− p/4) ≤ 1
32 · ϵ · (2/p− |1− 2/p|) (Fact C.13).

Recalling that

k = ⌈80(2/p+ 2)p log(
pn

32ϵ
)⌉,

we have

∥W−1
p (wp − w(k))∥∞ ≤ ∥W−1

p (wp − v(k))∥∞ + ∥W−1
p (v(k)− w(k))∥∞

≤ 4(1 + 2/p)2
√
n · ∥w − wp∥W−1

p
+ 2δ(k)

≤ 4(1 + 2/p)2
√
n · 2
√
n · (1− 1

16(2/p+ 2)
)

k
2 · p

160
+ 2δ(k)

≤ ϵ/2 + 2δ(k)

≤ ϵ,

where the first step follows from triangle inequality, the second step follows from Lemma E.13, the
third step follows from Lemma E.12, the fourth step follows from choice of k, and the last step
follows from δ(k) ≤ ϵ/4.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2026

E.11 COMPUTE LEVERAGE SCORE

We provide an algorithm and theorem statement below most closely resembling the one from (Spiel-
man & Srivastava, 2008).

Algorithm 4 Compute leverage score

1: procedure COMPUTELEVERAGESCORES(A ∈ Rm×n, ϵ ∈ (0, 1))
2: Let q(j) be k random ±1/

√
k vectors of length m with k = O(log(m)/ϵ2)

3: Compute l(j) ← (A⊤A)−1q(j) and p(j) ← Al(i)

4: return
∑k

j=1(p
(j)
i)2

5: end procedure

Lemma E.17 (Lemma 59 in page 56 in (Lee & Sidford, 2019)). If the following conditions hold:

• For ϵ ∈ (0, 1) with probability at least 1− 1
mO(1) .

The algorithm COMPUTELEVERAGESCORES returns σ(apx) such that for all i ∈ [m], (1 −
ϵ)σ(A)i ≤ σ

(apx)
i ≤ (1 + ϵ)σ(A)i, by solving only O(ϵ−2 logm) linear systems.

E.12 INITIAL WEIGHT

Algorithm 5 Compute initial weight

1: procedure COMPUTEINITIALWEIGHT(A ∈ Rm×n, ptarget ∈ (0, 4), ϵ ∈ (0, 1))
2: p← 2
3: while p ̸= ptarget do
4: Let r be defined as in COMPUTEAPXWEIGHT or COMPUTEEXACTWEIGHT
5: h← min{2,p}√

n log mϵ2

n

· r

6: p(new) ← median(p− h, ptarget, p+ h)

7: Either w ← COMPUTEAPXWEIGHT(p(new), w p(new)

p , r
4)

8: Or w ← COMPUTEEXACTWEIGHT(p(new), w p(new)

p , r
4)

9: p← p(new)

10: end while
11: return COMPUTEAPXWEIGHT(ptarget, w, ϵ)
12: end procedure

Lemma E.18 (Lemma 60 in page 57 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let m ≥ n.

• Let q > 0.

• Let w̃q ∈ Rm
>0 denote the vector with w̃q,i = wp(A)

q/p
i for all i ∈ [m].

• Let |p− q| ≤ min{2,p}√
n log(me2/n)

.

Then we have

∥ log(wq(A)

w̃q
)∥∞ ≤ max{1/2, 1/p}

√
n log(

me2

n
).

Proof. For notational convenience, let w := wp(A), W := diag(w) and Λ := Λ(W 1/2−1/pA).

We have
dw

dp
=

dwp(A)

dp

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2026

= 2Λ(
(1/2− 1/p)w−1/2−1/p dw

dp + w1/2−1/p 1
p2 logw

w1/2−1/p
)

= Λ((1− 2/p)W−1 dw

dp
+

2

p2
logw), (70)

where the first step follows from w = wp(A), the second step follows from taking the derivative
with respect to p on both sides and Part 21 of Lemma D.16, and the last step follows from basic
algebra.

We define J := Jw(1m).

Since Eq. (70) is an equation about dw
dp , we can solve for dw

dp and obtain the following:

dw

dp
= 2W (W − (1− 2/p)Λ)−1Λ

logw

p2

= J
logw

p2
, (71)

where the first step follows from Eq. (70), the second step follows from Lemma E.5.

And for all h ∈ Rm,

∥(W−1J − p)h∥∞ ≤ p ·max{p/2, 1} · ∥h∥W , (72)

where the step follows from Lemma E.6.

We have

∥W−1 dwp(A)

dp
− logwp

p
∥∞ = ∥W−1J

logw

p2
− logwp

p
∥∞

≤ p ·max{p/2, 1} · ∥p−2 logw∥W
≤ max{1/2, 1/p} · ∥ logw∥W , (73)

where the first step follows from Eq. (71), the second step follows from Eq. (72) and h = p−2 logw,
and the last step follows from basic algebra.

We define

a1 :=
∑

wi∈(0, 1e]

wi log
2 wi,

a2 :=
∑

wi∈(1
e ,1]

wi log
2 wi.

Finally,

∥ logw∥2W =

m∑
i=1

wi log
2 wi

= a1 + a2,

where the first step follows from the definition of ∥ · ∥W , and the second step follows from splitting
the sum.

For the first term,

a1 =
∑

wi∈(0,1/e]

wi log
2 wi

=m · 1
m

∑
wi∈(0,1/e]

wi log
2 wi

=m · 1
m

∑
wi∈(0,1/e]

f(wi)

83

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535

Under review as a conference paper at ICLR 2026

≤m · f(1
m

∑
wi∈(0,1/e]

wi)

≤m · f(n
m
)

≤m · n
m

log2(n/m)

=m · n
m

log2(m/n)

= n log2
m

n
, (74)

where the first step follows from definition of a1, the second step follows from basic algebra, the
third step follows from f(x) := x log2 x, the fourth step follows from that f is concave, the fifth
step follows from

∑
wi∈(0,1/e] wi ≤ n, the sixth step follows from the definition of f , the seventh

step follows from log(1/x) = − log(x), and the last step follows from basic algebra.

For the second term,

a2 ≤
∑

wi∈(1
e ,1]

wi

≤ n, (75)

where the first step follows from log2 wi ≤ 1 for wi ∈ (1e , 1], the second step follows from∑
wi∈[n] wi ≤ n.

Thus, we have

∥ logw∥2W ≤ n log2
m

n
+ n

≤ n log2
em

n
,

where the first step follows from Eq. (74) and Eq. (75), and the second step follows from (x+y)2 ≥
x2 + y2 for x, y ∈ R

We can compute

d

dq
log(w̃q) =

d

dq
(q/p) log(wp(A))

= p−1 log(wp(A))

= q−1(q/p) log(wp(A))

= q−1 log(w̃q).

Thus, for all q, wq := wq(A), and Wq := diag(wq), we have

∥ d
dq

log(wq/w̃q)∥∞ = ∥d log(wq)

dq
− d log(w̃q)

dq
∥∞

= ∥W−1
q

d

dq
wq − q−1 log(w̃q)∥∞

= ∥W−1
q

d

dq
wq − q−1 log(wq) + q−1 log(wq)− q−1 log(w̃q)∥∞

≤ ∥W−1
q

d

dq
wq − q−1 log(wq)∥∞ + ∥q−1 log(wq)− q−1 log(w̃q)∥∞

≤ max{1/2, 1/q}
√
n log(

me

n
) + q−1∥ log(wq/w̃q)∥∞

≤ max{1/2, 1/q}
√
n log(

em

n
) + q−1

≤ max{1/2, 1/q}
√
n log(

me2

n
),

84

4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589

Under review as a conference paper at ICLR 2026

where the first step follows from basic algebra, the second step follows from computing the deriva-
tive, the third step follows from adding a term and removing the same term, the fourth step fol-
lows from triangle inequality, the fifth step follows from Eq. (73), the sixth step follows from
∥ log(wq/w̃q)∥∞ ≤ 1(the reason is letting δ be the largest number for which q satisfying |p−q| ≤ δ,
it will imply that equation), and the last step follows from q−1 ≤ max{1/2, 1/q}

√
n and merging

the logarithm.

Therefore, it must be the case that

δ ≤ (max{1/2, 1/q}
√
n log(

me2

n
))−1

and the result follows.

E.13 THOEREM OF EXACT WEIGHT COMPUTATION

Theorem E.19 (Exact Weight Computation, Theorem 45 in page 40 in (Lee & Sidford, 2019)). If
the following conditions hold:

• Let A ∈ Rm×n be a non-degenerate matrix.

• Let ϵ ∈ (0, 1).

• Let p ∈ (0,∞).

• Let w(0) ∈ Rm
>0 with ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ p
20(p+2) .

Then, we have

• Part 1. The algorithm COMPUTEEXACTWEIGHT(A, p,w(0), ϵ) (Algorithm 2) can be im-
plemented to return w

– so that w satisfies ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ,
– the algorithm uses O(mnw−1(p+ 1/p) log(n(1 + 1/p)ϵ−1)) work,
– O((p+ 1/p) log(m) log(n(1 + 1/p)ϵ−1)) depth.

• Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, ϵ) (Algorithm 5)
can be implemented to achieve the same guarantee

– with O(mnw−(1/2)(p+ p−1)2 log m
n log(nϵ−1(p+ p−1))) work,

– O((p+ p−1)2 log(mn) log(m) log(nϵ−1(p+ p−1)))depth.

Proof. From Lemma E.18, we know each step of p lies within the requirement of Theorem E.14.

Furthermore, Lemma E.18 shows that it takes

O(
√
n(p+ 1/p) log(

m

n
))

steps in the COMPUTEINITIALWEIGHT.

Each call of COMPUTEEXACTWEIGHT involves

O((p+ 1/p) log(nϵ−1(1 + 1/p))

iterations and each iteration takes O(mnw−1) work and O(logm) depth to compute leverage score.

E.14 THOEREM OF APPROXIMATE WEIGHT COMPUTATION

Theorem E.20 (Approximate Weight Computation, Theorem 39 in page 58 in (Lee & Sidford,
2019)). If the following conditions hold:

• Let A ∈ Rm×n be non-degenerate.

85

4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

Under review as a conference paper at ICLR 2026

• Let Tw and Td denote the work and depth needed to compute (A⊤DA)−1z for an arbitrary
positive diagonal matrix D and vector z.

• Let ϵ ∈ (0, 1).

• Let p ∈ (0, 4).

• Define r := 2−20p2(4− p).

• Let w(0) ∈ Rm
>0 with ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ r.

Then we have

• Part 1. The algorithm COMPUTEAPXWEIGHT(x,w(0), ϵ) can be implemented to return
w such that

– with high probability in ∥wp(A)−1(wp(A) − w)∥∞ ≤ ϵ in O(p−1(4 −
p)−2ϵ−2 log2(n/(pϵ))) steps,

– each of which can be implemented in O(nnz(A) + Tw) work and O(Td) depth.

• Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, ϵ) (Algorithm 5)
can be implemented to have the same guarantee

– with O(
√
n(4− p)−3p−3) log(mn) log2(n/(pϵ)) steps of the same cost.

Proof. From Lemma E.18, we know each step of p lies within the requirement of Theorem E.16.

Furthermore, Lemma E.18 shows that it takes

O(
√
n((4− p)−1 + p−2) log

m

n
)

steps in the COMPUTEINITIALWEIGHT. Each call of COMPUTEAPXWEIGHT involves

O(p−1 log(n/(pϵ)))

iterations and each iteration involves computing leverage score up to accuracy
ϵ

32(2/p− |1− 2/p|)
= Θ((4− p) · ϵ).

Finally, Lemma E.17 shows this involves solving

O((4− p)−2ϵ−2 logm)

linear systems.

E.15 WEIGHT FUNCTION THEOREM

Theorem E.21 (Theorem 29 in page 25 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define Ax := (Φ′′(x))−1/2A.

• Let p ∈ (0, 1).

• Let c0 ≥ 0.

• Define the weight function g : Ω◦ → Rm
>0 for all x ∈ Rm

>0 as g(x) := wp(Ax) + c0.

Then we have,

• Part 1. c1(g) ≤ n+ c0m, cs(g) ≤ 2m1−p, and ck(g) ≤ 2
1−p .

• Part 2. For p = 1− 1
log(4m) and c0 = n

2m , we have

86

4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697

Under review as a conference paper at ICLR 2026

– c1(g) ≤ 3
2n, cs(g) ≤ 4

– and ck(g) ≤ 2 log(4m).

Proof. To bound the size, c1(g), recall that wp(Ax) = σ(W 1/2−1/pAx) and therefore Lemma D.17
implies for i ∈ [m],

m∑
i=1

wp(Ax)i = n.

We define α := 2(1− p).

To bound the sensitivity cs(g), then for i ∈ [m],

e⊤i G(x)−1Ax(A
⊤
x G(x)−1Ax)

−1A⊤
x G(x)−1ei = g(x)−1

i σ(G(x)−1/2Ax)i

≤ 2m
1+α
α

≤ 2m1−p,

where the first step follows from the definition of leverage score, and the second step follows from
Lemma E.8 (with choosing r =∞), the third step follows from α

1+α = 2−2p
2−2p+p ≤ 1− p.

Using the following two equations,

dg(x)j
dxi

=
dwp,j(Ax)

dxi

=
dwj

dxi

and

dwj

dΦ′′(x)
−1/2
i

=
dwj

dxi
· dxi

dΦ′′(x)
−1/2
i

=
dwj

dxi
· (Φ

′′(x)
−1/2
i

dxi
)−1

=
dwj

dxi
· (−0.5 · Φ′′(x)−1.5

i Φ′′′(x)i)
−1.

Then, we can show

Jg(x)(Φ
′′(x))1.5(−2)(Φ′′′(x))−1 = Jw((Φ

′′(x))−1/2).

Multiplying G(x)−1 · () · z on the both sides of above equation, we get

G(x)−1Jg(x)(Φ
′′(x))1.5(−2)(Φ′′′(x))−1z = G(x)−1Jw((Φ

′′(x))−1/2)z,

which is equivalent to for an arbitrary h ∈ Rm

G(x)−1Jg(x)(Φ
′′(x))−1/2h = G(x)−1Jw((Φ

′′(x))−1/2)z, (76)

where z = −0.5(Φ′′(x))−2Φ′′′(x)h.

We have that

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x) ≤ p∥(Φ′′(x))1/2z∥g(x), (77)

where the step follows from Part 1 of Lemma E.6.

We can show

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥∞

≤ p∥(Φ′′(x))1/2z∥∞ + ∥G(x)−1Jw((Φ
′′(x))−1/2)z − p(Φ′′(x))1/2z∥∞

87

4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751

Under review as a conference paper at ICLR 2026

≤ p∥(Φ′′(x))1/2z∥∞ + p ·max{p/2, 1}∥(Φ′′(x))1/2z∥g(x)
≤ p∥(Φ′′(x))1/2z∥∞ + p∥(Φ′′(x))1/2z∥g(x), (78)

where the first step follows from triangle inequality, the second step follows from Part 2 of
Lemma E.6, and the last step follows from p ∈ (0, 1).

We have

∥G(x)−1Jg(x)(Φ
′′(x))−1/2h∥g(x)+∞ = ∥G(x)Jw((Φ

′′(x))−1/2)z∥g(x)+∞

Then, we can show

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x)+∞

= ∥G(x)−1Jw((Φ
′′(x))−1/2)z∥∞ + Cnorm∥G(x)−1Jw((Φ

′′(x))−1/2)z∥g(x)
≤ p∥(Φ′′(x))1/2z∥∞ + p(1 + Cnorm) · ∥(Φ′′(x))1/2z∥g(x), (79)

where the first step follows from ∥ · ∥g(x)+∞ = ∥ · ∥∞ +Cnorm · ∥ · ∥g(x) (see Definition D.12), and
the second step follows from Eq. (76).

Note that

|(Φ′′(x))1/2z|i = 0.5|Φ′′(x)−3/2Φ′′′(x)h|i
≤ |h|i, (80)

where the first step follows from choice of z, the second step follows from property of Φ (see
Definition D.2).

Therefore,

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x)+∞ ≤ p∥(Φ′′(x))1/2z∥∞ + p(1 + Cnorm) · ∥(Φ′′(x))1/2z∥g(x)

≤ p∥h∥∞ + p(1 + Cnorm) · ∥h∥g(x)

≤ p(1 +
1

Cnorm
)∥h∥∞ + p(1 + Cnorm) · ∥h∥g(x)

= p(1 +
1

Cnorm
)(∥h∥∞ + Cnorm · ∥h∥g(x))

= p(1 +
1

Cnorm
) · ∥h∥g(x)+∞,

where the first step follows from Eq. (79), the second step follows from Eq. (80) and Fact C.4, the
third step follows from Cnorm > 0, the fourth step follows from basic algebra, and the last step
follows from the definition of ∥ · ∥g(x)+∞ (see Definition D.12).

Thus, following Eq. (76), we further have

∥G(x)−1Jg(x)(Φ
′′(x))−1/2h∥g(x)+∞ ≤ p(1 +

1

Cnorm
) · ∥h∥g(x)+∞.

The bound of ck(g) = 2
1−p follows from

p(1 +
1

Cnorm
)

≤ p+
1

Cnorm

= p+
1

24
√
cs(g)ck(g)

≤ p+
1

24ck(g)

= 1− 2

ck(g)
+

1

24ck(g)

88

4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805

Under review as a conference paper at ICLR 2026

≤ 1− 1

ck(g)
,

where the first step follows from p ∈ (0, 1), the second step follows from Cnorm = 24
√
cs(g)ck(g),

the third step follows from cs(g) ≥ 1, the fourth step follows from p = 1− 2
ck(g)

, and the last step
follows from simple algebra.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

89

	Introduction
	Our Contributions

	Related Work
	Preliminary
	Notations
	Differential Privacy

	Differentially Private Lewis Weight Computation
	Perturbation of Lewis Weight Computation
	Differential Privacy Guarantee of Lewis Weight Computation
	Main Result

	Conclusion
	Perturbation Lemma for Lewis Weights
	Basic Facts on Matrix Norm
	Perturb Spectral Inverse
	Perturbation Lemma for
	Perturbation Lemma for
	Perturbation Lemma for Lewis Weights

	Backgrounds on Differential Privacy
	Neighboring Polytopes
	Differential Privacy
	Rényi Differential Privacy
	Basic Facts for Rényi Differential Privacy

	Linear Programming: Notations and Basic Facts
	Notations
	Basic Algebra Facts
	Basic Derivative Facts
	Basic Norm Inequalities
	Basic Matrix Inequalities
	Basic Real Number Inequalities
	Basic Inequalities for
	Basic PSD Matrix Facts
	Basic PSD Inequalities
	Basic PSD Inequalities with Trace
	Basic PD Inequalities
	Commutative Property and Eigenvalues of
	Basic Power Calculations
	Leverage Score Equivalence Format
	Simple Constrained Minimization by Gradient Descent Method
	Equivalence of Objective Functions

	Linear Programming: Background
	Definition of Linear Program
	Self-concordance
	Weighted Central Path
	Newton Step
	Weight Function
	Centrality
	Derivative of Volumetric Barrier
	Potential Function Derivative
	Properties of Projection Matrix

	Linear Programming: Lewis Weight Computation
	Volumetric Potential
	Convex Formulation of Lewis Weights
	Stability of Lewis Weights Under Rescaling
	Lewis Weight Rounding Properties
	Gradient and Hessian of Volumetric Potential
	Hessian Approximation
	Compute the Weight Function
	Multiplicative Approximation of
	Exact Weight Updates
	Approximate Weight Computation
	Compute Leverage Score
	Initial Weight
	Thoerem of Exact Weight Computation
	Thoerem of Approximate Weight Computation
	Weight Function Theorem

