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ABSTRACT

Lewis weight is a row leverage score for data matrices. It allows selecting a
small number of important rows to approximate the original matrix with prov-
ably small error. Computing Lewis weights has long been a key problem in opti-
mization, machine learning, and large-scale data analysis. Despite the significant
advancement in the computational efficiency of Lewis Weights, privacy concerns
regarding the weight computation are naturally rising. In this work, we propose
a privacy-preserving Lewis weight computation with high efficiency and a dif-
ferential privacy (DP) guarantee. Our theoretical results clearly demonstrate the
proposed algorithm’s convergence and privacy assurances, providing an effective
solution to the trade-off between utility and privacy in Lewis weight computation.

1 INTRODUCTION

The Lewis weight is a row leverage score for data matrices. It allows selecting a small number
of important rows to approximate the original matrix with provably small error. Computing Lewis
weights has long been a key problem in optimization, machine learning, and large-scale data anal-
ysis. The Lewis weight has a broad range of real-world applications, covering linear program-
ming (Lee & Sidford, 2014), robotics and control (Dabbene et al., 2017; Tang et al., 2024), collision
detection (Rimon & Boyd, 1997), bandit learning (Bubeck et al., 2012a; Hazan & Karnin, 2016),
Markov Chain Monte Carlo sampling (Chen et al., 2018), and portfolio optimization costs (Shen &
Wang, 2015). Specifically, computing the Lewis weight involves finding a fixed point of the leverage
score mapping for an arbitrary non-degenerate1 matrix A ∈ Rm×n, which is defined as follows:
Definition 1.1 (Leverage score). For an arbitrary non-degenerate matrix A ∈ Rm×n, its leverage
score σ(A) ∈ Rm

>0 is defined by

σ(A) := Diag(A(A⊤A)−1A⊤).

Definition 1.2 (Lewis weights). Let p > 0 and let A ∈ Rm×n be a non-degenerate matrix. The ℓp
Lewis weights of A are the unique positive vector wp(A) ∈ Rm

>0 satisfying the fixed-point equation

wp(A) := σ(W 1/2−1/pA),

where W := diag(wp(A)), and σ(·) denotes the vector of leverage scores in Definition 1.1.

Recently, Lee & Sidford (2019) introduced an efficient method to compute Lewis weights by running
projected gradient descent in a carefully scaled space and using a homotopy scheme to obtain a good
initialization. As a result, Lewis weights can now be computed in practical time.

Despite the significant advancement in the computational efficiency of Lewis Weights, privacy con-
cerns regarding the weight computation are naturally rising. It is specifically crucial to determine
the value of the Lewis weights with a specific matrix A, keeping useful statistical information while
not revealing sensitive information. For instance, in bandit learning scenarios, our goal is to ensure
the privacy of sensitive pay-off values in each round while still maintaining a policy that results in
minimal regret. Therefore, in this work, we aim to answer this fundamental research question:

1In numerical linear algebra, it is common to assume A is non-degenerate (Brand et al., 2020; 2021; Fazel
et al., 2022), avoiding pseudo-inverses. This standard simplification does not restrict our results: any degenerate
A can be reduced to a non-degenerate subproblem and the solution then mapped back.
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Can we preserve the privacy of individual data points in fast Lewis weight computation?

We provide an affirmative answer to this question by employing privacy-preserving Lewis weight
computation from a Differential Privacy (DP) perspective. Specifically, by integrating DP into the
framework, our method achieves an optimal balance between Lewis weight utility and data privacy,
allowing downstream applications to extract meaningful insights from data while ensuring that no
individual data points can be distinguished from the computed weights. Moreover, the strong privacy
guarantees provided by DP enhance compliance with various data protection regulations, including
but not limited to GDPR and CCPA, fostering trust among data-centric technologies, users, and
regulatory agencies.

1.1 OUR CONTRIBUTIONS

We commence by introducing some fundamental concepts in differential privacy (DP). Consider the
case where the Lewis weight wp(A) is computed for a given matrix A. Replacing a single row of the
matrix can lead to significant variations in the computed weights. Consequently, the standard defini-
tion of neighboring data points in DP may not hold, motivating us to introduce a new formulation–
the ϵ0-closed neighborhood of matrices/datasets. Specifically, we define two matrices/datasets as
neighboring if they are ϵ0-close.
Definition 1.3 (Neighboring matrices). Let A,A′ ∈ Rm×n be two matrices. We say that A and A′

are ϵ0-close if there exists exact one i ∈ [m] such that ∥Ai,∗ − A′
i,∗∥2 ≤ ϵ0 and Aj,∗ = A′

j,∗holds
for all j ∈ [m] \ {i}.

Thus, the formal definition of differential privacy is given as follows:
Definition 1.4 (Differential Privacy). A randomized algorithm A : D → R with domain D and
range R satisfies (ϵ, δ)-differential privacy if for any two neighboring datasets D,D′ ∈ D and for
any subset of outputs S ∈ R it holds that

Pr[M(D) ∈ S] = eϵ Pr[M(D′) ∈ S] + δ.

In this work, we present the first algorithm for efficiently computing Lewis weights with a differen-
tial privacy guarantee. Our theoretical results clearly demonstrate the algorithm’s convergence and
privacy assurances, providing an effective solution to the trade-off between utility and privacy in
Lewis weight computation.
Theorem 1.5 (Main Result, Informal Version of Theorem 4.7). Under some mild conditions, there
exists a differentially private algorithm that approximately compute the ℓp-Lewis weight for any
p ∈ (0, 4).

Our contributions can be summarized as follows:

• Differentially Private Optimization: We establish the final differential privacy (DP) guar-
antee of the Lewis weight computation algorithm, leveraging a novel DP-optimization an-
alytical framework specifically designed for truncated Gaussian noise.

• Fast DP-LW Convergence: We conduct a convergence analysis of our optimized DP-LW
algorithm (Algorithm 1), demonstrating its DP guarantee under truncated Gaussian noise
perturbation.

• Generalizable Perturbation Analysis: We present a comprehensive study of weighted
leverage score perturbation, highlighting its applicability to a range of fundamental prob-
lems in machine learning, including kernel regression.

Roadmap. In Section 2, we extensively review the relevant prior works for this paper. In Section 3,
we present the basic notations and background of DP. In Section 4, we show our main algorithm and
its corresponding DP guarantee. In Section 5, we conclude our paper.

2 RELATED WORK

John Ellipsoid Algorithm and Its Applications. The John Ellipsoid Algorithm, initially pro-
posed by John (1948), provides a powerful method for approximating any convex polytope by its

2
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maximum volume inscribed ellipsoid. This foundational work has spurred extensive research into
optimization techniques for solving the John Ellipsoid problem within polynomial time constraints.
Among the seminal contributions, Khachiyan (1996); Kumar & Yildirim (2005) introduced first-
order methods, which significantly improved computational efficiency. Furthermore, Nesterov &
Nemirovskii (1994); Khachiyan & Todd (1990); Sun & Freund (2004) developed approaches utiliz-
ing interior point methods to enhance the precision and speed of solving the John Ellipsoid problem.
Recent advancements have continued to push the boundaries of this algorithm. Cohen et al. (2019)
employed fixed point iteration techniques, leading to the derivation of a more robust solution to the
John Ellipsoid. Moreover, they introduced innovative sketching techniques that accelerated com-
putational processes. Building on this, Song et al. (2022c) integrated leverage score sampling into
these sketching techniques, further optimizing the algorithm’s performance, and Li et al. (2024b)
used quantum techniques to further speed up the computation of John Ellipsoids. The implications
of the John Ellipsoid Algorithm extend far beyond theoretical mathematics, impacting various fields.
In the realm of linear bandit problems, research by Bubeck et al. (2012b); Hazan & Karnin (2016)
has shown significant advancements. Experimental design methods have also seen improvements
due to contributions from Atwood (1969); Allen-Zhu et al. (2017). In linear programming, the algo-
rithm has provided enhanced solutions, with notable work by Lee & Sidford (2013a). Control theory
applications have been advanced through research by Tang et al. (2024), and cutting plane methods
have been refined as demonstrated by Tarasov (1988). The algorithm’s influence in statistics is also
noteworthy; for instance, it plays a critical role in Markov chain techniques for sampling convex
bodies, as explored by Huang (2018) and developed for random walk sampling by Vempala (2005);
Chen et al. (2018).

Differential Privacy Analysis and Applications. Differential privacy has become one of the most
essential standards for data security and privacy protection since it was proposed in Dwork et al.
(2006). There are plenty of related work focusing on providing a guarantee for existing algorithms,
data structures, and machine learning by satisfying the definition of differential privacy, such as
Esfandiari et al. (2022); Andoni et al. (2023); Cherapanamjeri et al. (2023); Cohen-Addad et al.
(2022); Dong et al. (2024); Farhadi et al. (2022); Gopi et al. (2023); Li et al. (2022); Gopi et al.
(2022); Huang & Yi (2021); Jung et al. (2019); Li & Li (2024); Epasto et al. (2024); Chen et al.
(2022); Farhadi et al. (2022); Beimel et al. (2022); Narayanan (2022; 2023); Fan & Li (2022); Fan
et al. (2024); Li & Li (2023); Eliáš et al. (2020); Yu et al. (2024); Liang et al. (2024); Gu et al. (2024);
Song et al. (2023b); Qin et al. (2022); Song et al. (2023a); Galli et al. (2024); Chen et al. (2024);
Romijnders et al. (2024); Qi et al. (2024); Ke et al. (2025); Hu et al. (2024); Liu et al. (2024). In ad-
dition, recently, there are emerging privacy mechanisms that improve traditional privacy guarantees,
such as Gaussian, Exponential, and Laplacian mechanisms (Dwork et al., 2014). For example, Geng
et al. (2020) introduced a truncated Laplace mechanism, which has been demonstrated to achieve
the tightest bounds among all (ϵ, δ)-DP distribution.

Sketching and Leverage Score. Our work improves the efficiency of the John Ellipsoid algorithm
by leveraging sketching and score sampling. Sketching, a widely used technique, has advanced nu-
merous domains, including neural network training, kernel methods (Lee et al., 2020; Song et al.,
2021), and matrix sensing (Deng et al., 2023). It has been applied to distributed problems (Woodruff
& Zhong, 2016; Boutsidis et al., 2016), low-rank approximation (Clarkson & Woodruff, 2017a;
Razenshteyn et al., 2016; Song et al., 2017), and generative adversarial networks (Xiao et al., 2018).
In addition, projected gradient descent (Xu et al., 2021), tensor-related problems (Li et al., 2017;
Diao et al., 2018), and signal interpolation (Song et al., 2022a) have benefited significantly from
sketching. Leverage scores, introduced by Drineas et al. (2006a;b), are pivotal in linear regression
and randomized linear algebra, optimizing tasks such as matrix multiplication, CUR decompositions
(Mahoney & Drineas, 2009; Song et al., 2019), and tensor decompositions (Song et al., 2019). More-
over, leverage score sampling can be used in kernel learning (Erdélyi et al., 2020). Recent research
has further extended the application of leverage score sampling. Studies by Agarwal et al. (2017);
Charalambides et al. (2024); Woodruff & Zandieh (2022); Lee et al. (2020); Rudi et al. (2018) have
demonstrated the ability to leverage score sampling to significantly enhance the efficiency of var-
ious algorithms and computational processes. These advancements underscore the versatility and
effectiveness of leverage scores in optimizing performance across diverse fields.
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Linear Programming and Semidefinite Programming Linear programming is a fundamental
computer science and optimization topic. The Simplex algorithm, introduced in Dantzig (1951),
is a pivotal method in linear programming, though it has an exponential runtime. The Ellipsoid
method, which reduces runtime to polynomial time, is theoretically significant but often slower in
practice compared to the Simplex method. The interior-point method, introduced in Karmarkar
(1984), is a major advancement, offering both polynomial runtime and strong practical performance
on real-world problems. This method opened up a new avenue of research, leading to a series
of developments aimed at speeding up the interior point method for solving a variety of classical
optimization problems. John Ellipsoid has deep implication in the field of linear programming.
For example, in interior point method, John Ellipsoid is utilized to find path to solutions (Lee &
Sidford, 2014). The interior point method has a wide impact on linear programming as well as other
complex tasks, such as Vaidya (1987); Renegar (1988); Vaidya (1989); Daitch & Spielman (2008);
Lee & Sidford (2013b; 2014; 2019); Cohen et al. (2021); Lee et al. (2019); Brand (2020); Brand
et al. (2020); Jiang et al. (2021); Song & Yu (2021); Gu & Song (2022). Moreover, the interior
method and John ellipsoid are fundamental to solving semidefinite programming problems, such as
Jiang et al. (2020); Song et al. (2023c); Gu & Song (2022); Huang et al. (2022a;b).

Linear programming and semidefinite programming are widely applied in the field of machine learn-
ing theory, particularly in topics such as empirical risk minimization (Lee et al., 2019; Song et al.,
2022b; Qin et al., 2023) and support vector machines (Gu et al., 2023; Gao et al., 2023).

Privacy and Security Data privacy and security have become a critical issue in the field of ma-
chine learning, particularly with the growing use of deep neural networks. As there is an increasing
demand for training deep learning models on distributed and private datasets, privacy concerns have
come to the forefront.

To address these concerns, various methods have been proposed for privacy-preserving deep learn-
ing. These methods often involve sharing model updates (Konečnỳ et al., 2016) or hidden-layer
representations (Vepakomma et al., 2018) rather than raw data. Despite these precautions, recent
studies have shown that even if raw data remains private, sharing model updates or hidden-layer
activations can still result in the leakage of sensitive information about the input, referred to as the
victim. Such information leakage might reveal the victim’s class, specific features (Fredrikson et al.,
2015), or even reconstruct the original data record (Mahendran & Vedaldi, 2015; Dosovitskiy &
Brox, 2016; Zhu et al., 2019). This privacy leakage presents a significant threat to individuals whose
private data have been utilized in training deep neural networks. Moreover, privacy and security have
been studied in other fields in machine learning, such as attacks and defenses in federated learning
(Huang et al., 2021; Arevalo et al., 2024; Ma et al., 2024; Gao et al., 2024), deep net pruning (Huang
et al., 2020c), language understanding tasks (Huang et al., 2020a), alternating direction method of
multipliers (ADMM) (Chan et al., 2024), and distributed learning (Huang et al., 2020b).

3 PRELIMINARY

In this section, we commence by presenting the basic notations in differential privacy (DP) and
Lewis Weight computation in Section 3.1, and then show the background of DP in Section 3.2.

3.1 NOTATIONS

In this section, we introduce basic notations. For a full list of all the notations used in this paper,
please refer to Appendix C.1.

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors x, y ∈ Rn, we denote the element-wise vector product xy ∈ Rn with (xy)i = xiyi, for
i ∈ [n]. In addition, we also x ◦ y to denote the element-wise product. For any vector x ∈ Rn, the
absolute value of x is defined element-wise as |x| := (|x1|, |x2|, · · · , |xn|).

Basic Notations. We denote all the positive real numbers as R>0, and denote m-dimensional
positive real vectors as Rm

>0. We use ±δ to denote a real value with magnitude at most δ, e.g.
a = e±δb means a ∈ [e−δb, eδb].

4
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Matrices. If a matrix A ∈ Rm×n has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B ∈ Rn×n be a symmetric matrix. B ∈ Rn×n is positive semidefinite (PSD) if
x⊤Bx ≥ 0 for all x ∈ Rn, and positive definite (PD) if x⊤Bx > 0 for all x ∈ Rn. We denote the
kernel (the null space) of the matrix A ∈ Rm×n as ker(A), i.e., ker(A) := {x ∈ Rn : Ax = 0m}.
We denote the image space (the column space) as im(A), i.e., im(A) := {y ∈ Rm : y = Ax}.

Matrix Operations. Let A,B ∈ Rn×n be two symmetric matrices. We use A ⪯ B to indicate that
x⊤Ax ≤ x⊤Bx for all x ∈ Rn. We define ≺,⪰,≻ analogously. For matrices A,B ∈ Rn×m, we
denote the Hadamard product as A◦B, i.e., for i ∈ [n], j ∈ [m], (A◦B)i,j := Ai,j ·Bi,j . We define
A◦2 := A ◦ A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A,B ∈ Rn×n with scalars 0 < c1 ≤ c2, we write A ∈ [c1, c2] ·B to mean that c1B ⪯ A ⪯ c2B.

Diagonals. Let A ∈ Rn×n be a matrix. We define Diag(A) ∈ Rn with Diag(A)i := Ai,i

for all i ∈ [n]. For a vector x ∈ Rn, we define diag(x) ∈ Rn×n as the diagonal matrix with
diag(x)i,i := xi for i ∈ [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(x) ∈ Rn×n for x ∈ Rn.

Norms. For any positive real number p > 0 and vector x ∈ Rn, we define the vector ℓp norm as
∥x∥p := (

∑n
i=1 |xi|p)1/p. We define the vector ℓ0 norm as the number of non-zero elements in x,

i.e., ∥x∥0 :=
∑n

i=1 1[xi = ̸= 0]. For a positive definite matrix A ∈ Rn×n and a vector x ∈ Rn, we
define ∥x∥A := (x⊤Ax)1/2. For a vector w ∈ Rn

>0, we define ∥x∥w := (
∑n

i=1 wix
2
i )

1/2. If we
let W := diag(w), then know that ∥x∥w = ∥x∥W . For any matrix spectral norm ∥ · ∥, we define
∥M∥ := sup∥x∥2=1 ∥Mx∥2.

3.2 DIFFERENTIAL PRIVACY

In this section, we introduce more preliminaries on differential privacy and collect some useful tools
from prior works.

We begin by defining Rényi divergence, which measures the distance between two probability dis-
tributions.
Definition 3.1 (Rényi Divergence, Definition 3 in Mironov (2017)). Let α > 1. For two probability
distributions P and Q defined overR, the Rényi divergence of order α is defined as

Dα(P∥Q) :=
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
.

Then we define the Rényi Divergence which is a generalization of the concept differential privacy.
Definition 3.2 (Rényi DP, Definition 4 in Mironov (2017)). Let α > 1 and ϵ > 0. We say that a
mechanismM is (α, ϵ)-RDP if for all neighboring datasets X,X ′,

Dα(M(X)∥M(X ′)) ≤ ϵ.

Next, we state the adaptive composition lemma of RDP.
Lemma 3.3 (Adaptive Composition of RDP, Proposition 1 in Mironov (2017)). For any input
dataset X , ifM1 is an (α, ϵ1)-RDP mechanism that takes X as input andM2 is an (α, ϵ2)-RDP
mechanism that takes both X and M1(X) as input, then the composition mechanism of M1 and
M2 is (α, ϵ1 + ϵ2)-RDP.

The following lemma can be used to convert RDP to DP.
Lemma 3.4 (RDP to DP Conversion, Proposition 3 in Mironov (2017)). Let M be a mechanism
that is (α, ϵ)-RDP. ThenM is (ϵ+ log(1/δ)

α−1 , δ)-DP for any δ > 0.

The following lemma guarantees that adding a Gaussian noise leads to RDP.
Lemma 3.5 (Gaussian Mechanism, Corollary 3 in Mironov (2017)). Let X be the input dataset and
f be a real-valued function with sensitivity L. For Gaussian random variable z ∼ N (0, σ2) and
α > 1, the Gaussian mechanism Gσf defined as Gσf(D) = f(D) + z satisfies (α, αL2

2σ2 )-RDP.
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Algorithm 1 Differentially Private Approximate Weight Computation

1: procedure DPCOMPUTEAPXWEIGHT(A ∈ Rm×n, p ∈ (0, 4), w(0) ∈ Rm
>0, ϵ ∈ (0, 2/p− |1−

2/p|))
2: L0 ← max{4, 8

p}, r ←
p2(4−p)

220 , δ ← (4−p)ϵ
256 .

3: T ← ⌈80(p2 + 2/p) log( pn
32ϵ )⌉.

4: ▷ T is the number of iterations
5: for j = 1, . . . , T − 1 do
6: Differentially privately compute σ(j) ∈ Rn with Lemma 4.5 such that

e−δσ(j)(W
1/2−1/p
(j) A)i ≤ σ

(j)
i ≤ eδσ(j)(W

1/2−1/p
(j) A)i for all i ∈ [m].

7: w(j+1) = MEDIAN((1− r)w(0), w(j) − 1
L0

(w(0) − w(j))σ(j), (1 + r)w(0)).
8: end for
9: return (Diag(A(A⊤W

1/2−1/p
(T ) )−1A⊤))2p.

10: end procedure

4 DIFFERENTIALLY PRIVATE LEWIS WEIGHT COMPUTATION

In Section 4.1, we present the fundamental perturbation lemmas for Lewis Weight computation. In
Section 4.2, we show the DP guarantee of our proposed Lewis Weight computation algorithm. In
Section 4.3, we present our main results.

4.1 PERTURBATION OF LEWIS WEIGHT COMPUTATION

We first bound the difference between the product of W 1/2−1/p and two ϵ0-neighboring polytopes.
Lemma 4.1 (Informal Version of Lemma A.8). Let A,A′ ∈ Rm×n be two non-degenerate matrices.
Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is only different in j-th row,
and ∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m]. Let
gp(γ) := max{1, γ1/2−1/p}. Then we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ gp(γ) · ϵ0.

Then we show that the perturbation of (A⊤W 1−2/pA)−1 and (A′⊤W 1−2/pA′)−1 can be bounded.
Lemma 4.2 (Informal Version of Lemma A.10). Let A,A′ ∈ Rm×n be two non-degenerate matri-
ces. Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is different in j-th row, and
∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m]. Suppose that
ϵ0 ≤ 0.1σmin(A). Let gp(γ) := max{1, γ1/2−1/p}. Let ϵ1 := gp(γ)ϵ0. Then we have

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Equipped with previous two lemmas, we can show that the perturbation of each entry of f(w,A)
can be bounded.
Lemma 4.3 (Informal Version of Lemma A.11). Let A,A′ ∈ Rm×n be two non-degenerate ma-
trices. Let a⊤i denote the i-th row of A for i ∈ [m]. Suppose A and A′ is different in j-th
row, and ∥aj − a′j∥2 ≤ ϵ0. Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

Let f(w,A) := (f(w,A)1, . . . , f(w,A)n). Let f(w,A)i := w
1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai for
i ∈ [m]. Suppose that ϵ0 ≤ 0.1σmin(A). Let gp(γ) := max{1, γ1/2−1/p}. Let ϵ1 := gp(γ)ϵ0. Let
ϵ2 = 8γ−4|1/2−1/p|κ(A)σ−3

min(A)ϵ1. Then we have

• Part 1. For i ̸= j, we have
|f(w,A)i − f(w,A′)i| ≤ ϵ2gp(γ)σmax(A)2.

• Part 2. It holds that
|f(w,A)j − f(w,A′)j | ≤ gp(γ)ϵ2(σmax(A) + ϵ0)

2

+ ϵ1γ
−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0).

6
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Finally, we are ready to prove our main perturbation theorem of Lewis weight computation.

Theorem 4.4 (Informal Version of Theorem A.12). Let A,A′ ∈ Rm×n be two neighbouring
polytopes that are different in the j-th row, i.e., ∥aj − a′j∥2 ≤ ϵ0. Let f(w,A) be the Lewis
Weights in Definition E.1, where f(w,A) := σ(W 1/2−1/pA), and we assume that all lever-
age scores in satisfy σi ∈ [γ, 1] for i ∈ [m]. Thus, for ϵ0 ≤ 0.1σmin(A), there exists
L = poly(n, d, γ−|1/2−1/p|, κ(A), σmax(A)) such that

∥f(w,A)− f(w,A′)∥∞ ≤ L · ϵ0.

Proof. It directly follows from Lemma 4.3.

4.2 DIFFERENTIAL PRIVACY GUARANTEE OF LEWIS WEIGHT COMPUTATION

The following Lemma shows that in each round we can approximately compute the Lewis weight
with Rényi differential privacy guarantee.

Lemma 4.5. For i ∈ [m] , let σi := σ(W 1/2−1/pA)i denote the i-th leverage score and
σ̃i = σi(1 + zi), where zi ∼ N (0, τ2) for. If we suppose that σi ∈ [γ, 1] for i ∈ [m],
τ ≥ Lϵ0γ

−1
√
T/(ϵ− log(1/δ)), and δfail ∈ (0, 0.1), then the following statements are true:

• Part 1. For every i ∈ [m], σ̃i is (α, αL2ϵ20
2γ2τ2 )-RDP.

• Part 2. With probability 1− δfail, for every i ∈ [m], we have

e−τ
√

2 log (2n/δfail)σi ≤ σ̃i ≤ eτ
√

2 log (2n/δfail)σi.

Proof. Proof of Part 1. Note that when x ∈ [1/γ, 1], we have

|d log x
dx

| = | 1
x
|

≤ 1

γ

where the first step follows from the derivative of log x, the second step follows from x ∈ [1/γ, 1].

Thus log x is 1/γ-Lipschitz over x ∈ [γ, 1].

For two ϵ0-close polytopes A,A′, by Lemma 4.3, we have

|σ(W 1/2−1/pA)i − σ(W 1/2−1/pA′)i| ≤ L · ϵ0 (1)

where L is the Lipschitz constant defined in Lemma 4.3.

By the Lipschitzness of log x over [γ, 1] and Eq. (1), we have

| log σ(W 1/2−1/pA)i − log σ(W 1/2−1/pA′)i| ≤
Lϵ0
γ

.

Let ũi := log(σi) + zi. By Lemma 3.5, ũi satisfies (α,
αL2ϵ20
2γ2τ2 )-RDP. If τ ≥ Lϵ0

√
α

γ
√
2ϵ

, then it is
(α, ϵ)-RDP.

Proof of Part 2. Let σ̃i := eũi for i ∈ [m]. Now we bound the multiplicative error between σ̃i and
σi. We can show that

σ̃i = eũi

= elog(σi)+zi

= σie
zi . (2)

where the first step follows from the definition of σ̃i, the second step follows from ũi := log(σi)+zi,
and the last step is due to basic algebra.
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Since zi ∼ N (0, τ2), for any t > 0, we have

Pr
zi∼N (0,τ2)

[|zi| ≥ t] ≤ 2 exp(− t2

2τ2
).

Applying a union bound over all i ∈ [m], we want with probability at least 1− δfail that

|zi| ≤ τ ·
√
2 log(2n/δfail), ∀i ∈ [m].

Thus by Eq. (2), with probability at least 1− δfail, we have:

e−τ
√

2 log(2n/δfail) · σi ≤ σ̃i ≤ eτ
√

2 log(2n/δfail) · σi.

Thus we complete the proof.

Theorem 4.6. For i ∈ [m] , let σi := σ(W 1/2−1/pA)i denote the i-th leverage score and
σ̃i = σi(1 + zi), where zi ∼ N (0, τ2) for. If we suppose that σi ∈ [γ, 1] for i ∈ [m] and
τ ≥ Lϵ0γ

−1
√

T/(ϵ− log(1/δ)), then Algorithm 1 is (ϵDP, δDP)-DP.

Proof. Let ϵα :=
αL2ϵ20
2γ2τ2 . For each round j, the weight update

w(j+1) = w(j) − 1

L0
(w(0) − w(j))σ̃(j)

is a function of (w(j), σ̃(j)).

Thus by post-processing, Lemma 4.5 and Lemma 3.3, w(T ) satisfies (α, Tϵα)-RDP.

By Lemma 3.4, we can convert RDP to DP, i.e., w(T ) is (Tϵα + log(1/δ)
α−1 , δ)-DP.

Let

ϵDP ≤ Tϵα +
log(1/δ)

α− 1
.

Since ϵα =
αL2ϵ20
2γ2τ2 , we have

ϵDP ≤
αTL2ϵ20
2γ2τ2

+
log(1/δ)

α− 1
.

Let α = 2 and solve the above inequality for τ , we need

τ ≥ Lϵ0γ
−1
√

T/(ϵ− log(1/δ))

to guarantee (ϵDP, δDP)-DP.

Thus we complete the proof.

4.3 MAIN RESULT

The following theorem guarantees the utility of the approximate Lewis weight computation.

Theorem 4.7 (Main Result, Formal Version of Theorem 1.5). Let A ∈ Rm×n be non-degenerate.
Let Tw and Td denote the work and depth needed to compute (A⊤DA)−1z for an arbitrary positive
diagonal matrix D and vector z. Let ϵ ∈ (0, 1). Let p ∈ (0, 4). Define r := 2−20p2(4 − p). Let
w(0) ∈ Rm

>0 with ∥w(0)−1
(wp(A) − w(0))∥∞ ≤ r. Let L be defined in Lemma 4.3. Then there is

an algorithm that satisfies the follow guarantees:

• Privacy: The algorithm is (ϵDP, δDP).

8
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• Utility: It returns w such that with high probability in ∥wp(A)−1(wp(A) − w)∥∞ ≤ ϵ
where

ϵ = O

(
Lϵ0γ

−1

4− p

√
T log(n)

(ϵDP − log(1/δDP))

)
.

Moreover, it runs in O(p−1(4− p)−2ϵ−2 log2(n/(pϵ))) steps, each of which can be implemented in
O(nnz(A) + Tw) work and O(Td) depth.

Proof. We can set the δ as the following:

δ = τ
√
2 log(2n/δfail).

Since in Algorithm 1, we have δ = (4−p)ϵ
256 . Thus we have

ϵ =
256δ

4− p

=
256τ

4− p

√
2 log(2n/δfail)

=
256Lϵ0γ

−1
√
2T log(2n/δfail)/(ϵDP − log(1/δDP))

4− p

where the first step follows from rearranging δ = (4−p)ϵ
256 , the second step follows from that δ =

τ
√
2 log(2n/δfail), and the last step follows from that τ = Lϵ0γ

−1
√

T/(ϵ− log(1/δ)).

Next, we can set δfail as a sufficiently small constant and apply union bound to make that in every
iteration the guarantee hold successfully. Finally, combining Theorem 4.6 and Theorem E.20, we
complete the proof.

Remark 4.8 (On work and depth). The quantities Tw and Td follow standard usage in numerical lin-
ear algebra. Formally, work Tw is the total time needed to perform the computation, while depth Td
is the inherently sequential part that cannot be parallelized even with unlimited processors. For ex-
ample, matrix multiplication has O(nω) work (where ω ≈ 2.37 for the current fastest method) and
O(1) depth (Clarkson & Woodruff, 2017b), as all entries can in principle be produced in parallel.

Remark 4.9 (Why express complexity using work Tw and depth Td). We write each step of our
algorithm as O(nnz(A) + Tw) work and O(Td) depth to separate the cost of sparse access to A
from the cost of solving systems such as (A⊤DA)−1z. This style is standard in theory papers
related to linear programs (Lee & Sidford, 2014; Clarkson & Woodruff, 2017b; Dong et al., 2021)
because the best-known runtimes for such solves depend on subtle advances in matrix algorithms.
It keeps the statement adaptable: if future work improves the cost of exact or approximate solvers,
our total runtime bound immediately benefits.

5 CONCLUSION

We have introduced the first algorithm for computing ℓp Lewis weights under a rigorous differential-
privacy guarantee, addressing a key gap at the intersection of numerical linear algebra and data pro-
tection. By redefining adjacency to an ϵ0-closed neighborhood of matrices and injecting carefully
calibrated truncated Gaussian noise into the optimization framework, our method provably con-
verges to an accurate approximation of the true Lewis weights while satisfying (ϵDP, δDP)-privacy.
The resulting procedure runs in O(p−1(4 − p)−2ϵ−2 log2(n/(pϵ))) iterations, each implemented
in O(nnz(A) + Tw) work and O(Td) depth, making it practical for large-scale datasets. Beyond
its immediate use in private row-sampling and sketching techniques, our perturbation analysis for
weighted leverage scores may be of independent interest in other numerical linear-algebra research,
such as differentially private kernel regression. This work thus offers an effective and efficient solu-
tion to the utility-privacy trade-off in leverage-score computations, paving the way for privacy-aware
applications in optimization, machine learning, and large-scale data analysis.
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Appendix
Roadmap. In Section A, we present the theoretical results on Lewis Weight computation under
a differential privacy guarantee. In Section B, we show some backgrounds for differential privacy.
In Section C, we introduce some basic notations in linear programming. In Section D, we provide
the basic definitions for the linear program algorithm. In Section E, we describe how to efficiently
compute approximations to Lewis weights.

A PERTURBATION LEMMA FOR LEWIS WEIGHTS

In Section A.1, we show some basic facts on matrix norm. In Section A.2, we present a lemma on
the perturbation of the spectral inverse. In Section A.3, we present a perturbation lemma for the
computation of W 1/2−1/pA. In Section A.4, we present the perturbation lemma for the computaion
of (A⊤W 1−2/pA)−1. In Section A.5, we show the final perturbation lemma for the Lewis weight
computation.

A.1 BASIC FACTS ON MATRIX NORM

In this section, we list basic facts about matrix norms. Due to the straightforward nature of these
facts, we omit the proofs here.
Fact A.1. Let A ∈ Rm×n be a matrix. Then we have

∥A∥ ≤ ∥A∥F .

Fact A.2. Let A ∈ Rm×n be a matrix where a⊤i is the i-th row of A. Then we have

∥ai∥2 ≤ σmax(A).

Fact A.3. Let A,B ∈ Rm×n, x ∈ Rn. Then the following two statements are equivalent:

• ∥BB⊤ −AA⊤∥ ≤ ϵ.

• ∥x⊤BB⊤x− x⊤AA⊤x∥ ≤ ϵ · x⊤x.
Lemma A.4 (Perturbation of singular value, (Weyl, 1912)). Let A,B ∈ Rm×n. Let σi(A) denote
the i-th singular value of A, then we have for any i ∈ [n],

∥σi(A)− σi(B)∥ ≤ ∥A−B∥.

Lemma A.5 (Perturbation of pseudoinverse, (Wedin, 1973)). Let A,B ∈ Rm×n. Then we have

∥A† −B†∥ ≤ 2max{∥A†∥2, ∥B†∥2} · ∥A−B∥.

Fact A.6. Let A,B ∈ Rm×n, x ∈ Rn. Then we have

• Part 1. ∥A∥ = ∥A⊤∥ = σmax(A) ≥ σmin(A).

• Part 2. ∥A−1∥ = ∥A∥−1.

• Part 3. σmax(B)− ∥A−B∥ ≤ σmax(A) ≤ σmax(B) + ∥A−B∥.

• Part 4. σmin(B)− ∥A−B∥ ≤ σmin(A) ≤ σmin(B) + ∥A−B∥.

• Part 5. ∥Ax∥2 ≤ ∥A∥ · ∥x∥2.

A.2 PERTURB SPECTRAL INVERSE

Building upon previous facts on matrix norm, we present a perturbation lemma for matrix inverse
and spectral norm.
Lemma A.7 (Lemma C.11 on page 19 of (Li et al., 2024a)). If the following conditions hold

• ∥A−B∥ ≤ ϵ1.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• ϵ0 ≤ 0.1σmin(A).

Then we have

∥(AA⊤)−1 − (BB⊤)−1∥ ≤ 8κ(A)σ−3
min(A)ϵ1.

We ignore the proofs here.

A.3 PERTURBATION LEMMA FOR W 1/2−1/pA

To construct a perturbation lemma for the Lewis weight, we first examine a part of it, namely
W 1/2−1/pA.
Lemma A.8 (Formal Version of Lemma 4.1). If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is only different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Let gp(γ) := max{1, γ1/2−1/p}.

Then we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ gp(γ) · ϵ0.

Proof. Let B = W 1/2A and B′ = W 1/2A′. We have

∥B −B′∥ = ∥W 1/2−1/pA−W 1/2−1/pA′∥
≤ ∥W 1/2−1/pA−W 1/2−1/pA′∥F

≤ (

n∑
i=1

|wi|1−2/p∥ai − a′i∥22)1/2

= |wi|1/2−1/p∥aj − a′j∥2
≤ |wi|1/2−1/pϵ0

= max{1, γ1/2−1/p}ϵ0,

where the first step comes from the definition of B,B′, the second step is the result of ∥ · ∥ ≤ ∥ · ∥F ,
the third step comes from the definition of Frobenius norm, the fourth step utilizes that A and A′

only differs in j-th row, the fifth step derives from ∥aj − a′j∥2 ≤ ϵ0, and the last step is from
wi ∈ [γ, 1].

A.4 PERTURBATION LEMMA FOR (A⊤W 1−2/pA)−1

In this section, we extend the previous perturbation lemma for W 1/2−1/pA to (A⊤W 1−2/pA)−1.
We begin by presenting a basic fact for the eigenvalues of the matrix W .
Fact A.9. If W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m], the following statements are true:

• For 1/2− 1/p < 0, we have σmin(W
1/2−1/p) ≥ 1 and σmax(W

1/2−1/p) ≤ γ1/2−1/p.

• For 1/2− 1/p > 0, we have σmin(W
1/2−1/p) ≥ γ1/2−1/p and σmax(W

1/2−1/p) ≤ 1.

Proof. This directly follows from Part 3 and Part 4 of Fact A.6.

Next, we apply this fact to obtain the following perturbation lemma.
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Lemma A.10 (Formal Version of Lemma 4.2). If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Suppose that ϵ0 ≤ 0.1σmin(A).

• Let gp(γ) := max{1, γ1/2−1/p}.

• Let ϵ1 := gp(γ)ϵ0.

Then we have

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Proof. By Lemma A.8, we have

∥W 1/2−1/pA−W 1/2−1/pA′∥ ≤ ϵ1.

We can show that

∥(A⊤W 1−2/pA)−1 − (A′⊤W 1−2/pA′)−1∥ ≤ 8κ(W 1/2−1/pA)σ−3
min(W

1/2−1/pA)ϵ1

≤ 8max{γ−|1/2−1/p|, γ−4|1/2−1/p|}κ(A)σ−3
min(A)ϵ1

≤ 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1,

where the first step is the result of Lemma A.7 and the second step is from Fact A.9.

A.5 PERTURBATION LEMMA FOR LEWIS WEIGHTS

In this section, we introduce the perturbation lemma for the full Lewis weights f(w,A). We begin
by establishing both the upper and lower bounds for each element f(w,A)i of the Lewis weights.
Lemma A.11. If the following conditions hold

• Let A,A′ ∈ Rm×n.

• Let a⊤i denote the i-th row of A for i ∈ [m].

• Suppose A and A′ is different in j-th row, and ∥aj − a′j∥2 ≤ ϵ0.

• Suppose that W = diag(w) where wi ∈ [γ, 1] for every i ∈ [m].

• Let f(w,A) := (f(w,A)1, . . . , f(w,A)n).

• Let f(w,A)i := w
1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai for i ∈ [m].

• Suppose that ϵ0 ≤ 0.1σmin(A).

• Let gp(γ) := max{1, γ1/2−1/p}.

• Let ϵ1 := gp(γ)ϵ0.

• Let ϵ2 = 8γ−4|1/2−1/p|κ(A)σ−3
min(A)ϵ1.

Then we have

• Part 1. For i ̸= j, we have

|f(w,A)i − f(w,A′)i| ≤ ϵ2gp(γ)σmax(A)2.
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• Part 2. It holds that

|f(w,A)j − f(w,A′)j | ≤ gp(γ)ϵ2(σmax(A) + ϵ0)
2 + ϵ1γ

−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0).

Proof. Proof of Part 1. For i ̸= j, we have

|f(w,A)i − f(w,A′)i| = |w1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai − w
1−2/p
i ai

⊤(A′⊤W 1−2/pA′)−1ai|

≤ |w1−2/p
i | · |a⊤i (A⊤W 1−2/pA)−1ai − ai

⊤(A′⊤W 1−2/pA′)−1ai|

≤ gp(γ)|a⊤i (A⊤W 1−2/pA)−1ai − ai
⊤(A′⊤W 1−2/pA′)−1ai|

≤ gp(γ)ϵ2 · a⊤i ai
= gp(γ)ϵ2 · ∥ai∥22
≤ ϵ2gp(γ)σmax(A)2,

where the first step follows from the definition of f , the second definition comes from basic algebra,
the third step comes from wi ∈ [γ, 1], the fourth step derives from Lemma A.10 and Fact A.3, the
fifth step utilizes basic algebra, and the last step derives from ∥ai∥2 ≤ σmax(A).

Proof of Part 2. Next, we define

C1 := a⊤j (A
⊤W 1−2/pA)−1aj − a′j

⊤
(A⊤W 1−2/pA)−1a′j ,

C2 := a′j
⊤
(A⊤W 1−2/pA)−1a′j − a′j

⊤
(A′⊤W 1−2/pA′)−1a′j .

We first bound C1. We can show that

|C1| = |a⊤j (A⊤W 1−2/pA)−1aj − a′j
⊤
(A⊤W 1−2/pA)−1a′j |

= |a⊤j (A⊤W 1−2/pA)−1aj − a′j
⊤
(A⊤W 1−2/pA)−1aj + a′j

⊤
(A⊤W 1−2/pA)−1aj − a′j

⊤
(A⊤W 1−2/pA)−1a′j |

= | (aj − a′j)
⊤(A⊤W 1−2/pA)−1ai︸ ︷︷ ︸

:=C3

+ a′j
⊤
(A⊤W 1−2/pA)−1(ai − a′j)︸ ︷︷ ︸

:=C4

|

≤ |C3|+ |C4|.

where the first step follows from the definition of C1, the second and third steps follow from basic
algebra, and the last step follows from the triangle inequality.

For C3, we have

|C3| = |(aj − a′j)
⊤(A⊤W 1−2/pA)−1ai|

≤ ∥(aj − a′j)∥2 · ∥(A⊤W 1−2/pA)−1ai∥

≤ ∥(aj − a′j)∥2 · ∥(A⊤W 1−2/pA)−1∥ · ∥ai∥2
≤ ϵ0 · σmin(W

1/2−1/pA)−2 · σmax(A)

≤ ϵ0γ
−2|1/2−1/p| · σmin(A)−2 · σmax(A),

where the first step comes from definition of C3, the second step utilizes Cauchy-Schwarz inequality,
the third step derives from Part 5 of Fact A.6, the fourth step comes from Fact A.2 and Part 2 of
Fact A.6, and the last step follows from that wi ∈ [γ, 1] for i ∈ [m].

For C4, we have

|C4| = |a′j
⊤
(A⊤W 1−2/pA)−1(aj − a′j)|

≤ ∥a′j∥2 · ∥(A⊤W 1−2/pA)−1(aj − a′j)∥

≤ ∥a′j∥2 · ∥(A⊤W 1−2/pA)−1∥ · ∥aj − a′j∥2
≤ (∥aj∥2 + ϵ0) · σmin(W

1/2−1/pA)−2 · ϵ0
≤ (σmax(A) + ϵ0) · σmin(W

1/2−1/pA)−2 · ϵ0
≤ (σmax(A) + ϵ0) · γ−2|1/2−1/p| · σmin(A)−2 · ϵ0,
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where the first step comes from the definition of C3, the second step is from Cauchy-Schwarz in-
equality, the third step derives from Part 5 of Fact A.6, and the fourth step is from ∥aj − a′j∥ ≤ ϵ0
and Part 2 of Fact A.6, and the fifth step comes from Fact A.2, and the last step follows from that
wi ∈ [γ, 1] for i ∈ [m].

Combining the bounds of |C3| and |C4|, we have

|C1| ≤ ϵ0 · γ−2|1/2−1/p| · σmin(A)−2 · (2σmax(A) + ϵ0).

We next bound C2. We can show that

|C2| = |a′j
⊤
(A⊤W 1−2/pA)−1a′j − a′j

⊤
(A′⊤W 1−2/pA′)−1a′j |

≤ ϵ2a
′
j
⊤
a′j

≤ ϵ2∥a′j∥2

≤ ϵ2(∥aj∥+ ϵ0)
2

≤ ϵ2(σmax(A) + ϵ0)
2,

where the first step follows from the definition of C2, the second step follows from Lemma A.7 and
Fact A.3, and the third step follows from basic algebra, and the last step follows from ∥aj−a′j∥ ≤ ϵ0.

We can show that

|f(w,A)j − f(w,A′)j |

= |w1−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai − w
1−2/p
i a′j

⊤
(A′⊤W 1−2/pA′)−1a′j |

= |w1−2/p
i C1 + w

1−2/p
i C2|

= |w1−2/p
i | · |C1 + C2|

≤ gp(γ)|C1 + C2|
≤ gp(γ)(|C1|+ |C2|)
≤ gp(γ)ϵ2(σmax(A) + ϵ0)

2 + gp(γ)ϵ0γ
−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0))

= gp(γ)ϵ2(σmax(A) + ϵ0)
2 + ϵ1γ

−2|1/2−1/p|σmin(A)−2(2σmax(A) + ϵ0),

where the first step stems from the definition of f , the second step comes from the definition of
C1, C2, the third step is from basic algebra, the fourth step comes from wi ≤ gp(γ) for i ∈ [m], the
fifth step follows from triangle inequality, the sixth step derives from the bounds of |C1| and |C2|,
and the last step is due to ϵ1 = gp(γ)ϵ0.

Next, we combine the element-wise upper and lower bounds to obtain the ℓ∞ global sensitivity of
the Lewis weights.
Theorem A.12 (Formal Version of Theorem 4.4). If the following conditions hold:

• Let A,A′ ∈ Rm×n be two neighbouring polytopes that are different in the j-th row, i.e.,
∥aj − a′j∥2 ≤ ϵ0.

• Let f(w,A) be the Lewis Weights in Definition E.1, where f(w,A) := σ(W 1/2−1/pA).

• We assume that all leverage scores in satisfy σi ∈ [γ, 1] for i ∈ [m].

• Let ϵ0 ≤ 0.1σmin(A).

Thus there exists L = poly(n, d, γ−|1/2−1/p|, κ(A), σmax(A)) such that

∥f(w,A)− f(w,A′)∥∞ ≤ L · ϵ0.

Proof. It directly follows from Part 1 and Part 2 of Lemma A.11.
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B BACKGROUNDS ON DIFFERENTIAL PRIVACY

In Section B.1, we define the concept of neighboring polytopes. In Section B.2, we show the funda-
mental definition of differential privacy. In Section B.3, we present the definition of Rényi differen-
tial privacy. In Section B.4, we show some basic facts for Rényi differential privacy.

B.1 NEIGHBORING POLYTOPES

In this section, we first define the neighboring polytopes, which are crucial for formalizing the global
sensitivity of Lewis weights.

Definition B.1 (Symmetric convex polytope, Definition 4.1 in (Song et al., 2022c)). Let A ∈ Rm×n

be a matrix with full rank and a⊤i is the i-th row of A for i ∈ [m]. The symmetric convex polytope
P is defined as

P := {x ∈ Rd : |⟨ai, x⟩| ≤ 1,∀i ∈ [m]}.

Definition B.2 (Neighboring polytopes). Let P, P ′ be two polytopes defined by A,A′ ∈ Rm×n,
respectively. We say that P and P ′ are ϵ0-close if there exists exact one i ∈ [m] such that ∥Ai,∗ −
A′

i,∗∥2 ≤ ϵ0, and for all j ∈ [m] \ {i}, Aj,∗ = A′
j,∗.

B.2 DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Differential Privacy (DP).

Definition B.3 (Differential Privacy). A randomized mechanismM : X → R with domain X and
range R satisfies (ϵ, δ)-differential privacy if for any two neighboring dataset, X,X ′ ∈ X and for
any subset of outputs S ⊆ R it holds that

Pr[M(X) ∈ S] ≤ eϵ Pr[M(X ′) ∈ S] + δ.

B.3 RÉNYI DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Rényi Divergence and then present a correspond-
ing concept, Rényi DP.

Definition B.4 (Rényi Divergence, Definition 3 in (Mironov, 2017)). Let α > 1. For two probability
distributions P and Q defined overR, the Rényi divergence of order α is defined as

Dα(P∥Q) :=
1

α− 1
log E

x∼Q

[(
P (x)

Q(x)

)α]
.

Definition B.5 (Rényi DP, Definition 4 in (Mironov, 2017)). Let α > 1 and ϵ > 0. We say that a
mechanismM is (α, ϵ)-RDP if for all neighboring datasets X,X ′,

Dα(M(X)∥M(X ′)) ≤ ϵ.

B.4 BASIC FACTS FOR RÉNYI DIFFERENTIAL PRIVACY

In this section, we review basic facts for the Rényi Differential Privacy.

Lemma B.6 (Adaptive Composition of RDP, Proposition 1 in (Mironov, 2017)). If the following
conditions hold

• Let X be the input dataset.

• M1 is an (α, ϵ1)-RDP mechanism that takes X as input.

• M2 is an (α, ϵ2)-RDP mechanism that takes X andM1(X) as input.

Then the composition mechanism ofM1 andM2 is (α, ϵ1 + ϵ2)-RDP.
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Proof. LetM1 : X → R1 andM2 : X × R1 → R2. We define the domain and range ofM as
M : R1 ×R2 → R3. Let P1, P2 be the distributions forM1(X) andM2(X,M1(X)), and P3 be
the joint distribution ofM(X) w.r.t. bothM1(X) andM2(X,M1(X)).

Considering two different inputs X,X ∈ X , if P ′
1, P

′
2, P

′
3 are similarly defined, we have the follow-

ing:

exp((α− 1)Dα(M(X)∥M(X ′)))

=

∫
R1×R2

P3(y1, y2)
αP ′

3(y1, y2)
1−αdy1dy2

=

∫
R1

∫
R2

(P1(y1)P2(y1, y2))
α(P ′

1(y1)P
′
2(y1, y2))

1−αdy2dy1

=

∫
R1

P1(y1)
αP ′

1(y1)
1−α(

∫
R2

P2(y1, y2)
αP ′

2(y1, y2)
1−α)dy1

≤
∫
R1

P1(y1)
αP ′

1(y1)
1−αdy1 exp((α− 1)ϵ2)

≤ exp((α− 1)ϵ1) · exp((α− 1)ϵ2)

= exp((α− 1)(ϵ1 + ϵ2)),

where the first step follows from Definition B.5, the second step follows from changing the multiple
integral into iterated integrals, the third step follows from extracting the terms related to P1 and P ′

1,
the fourth and the fifth steps follow from the property of RDP, and the last step follows from basic
algebra.

Thus, we complete the proof.

Lemma B.7 ((RDP to DP Conversion, Proposition 3 in (Mironov, 2017)). LetM be a mechanism
that is (α, ϵ)-RDP. ThenM is (ϵ+ log(1/δ)

α−1 , δ)-DP for any δ > 0.

Proof. By the probability preservation property in (Mironov, 2017), we can conclude that for two
distributions P,Q defined overR and for any event E ∈ R, the following statement is true:

P (E) ≤ exp(Dα(P∥Q) ·Q(A))1−1/α.

Therefore, considering arbitrary X,X ′ ∈ X and subset S ⊆ R, we have

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α. (3)

To further conclude thatM isM is (ϵ+ log(1/δ)
α−1 , δ)-DP, we consider two cases.

Case 1. eϵ Pr[M(X ′) ∈ S] > δα/(α−1). In this case, we have the following:

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α (4)

= eϵ Pr[M(X ′) ∈ S] · (eϵ Pr[M(X ′) ∈ S])−1/α

≤ eϵ Pr[M(X ′) ∈ S] · δ1/(1−α)

= exp(ϵ+
log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S],

where the first step follows from Eq. (3), the second step follows from basic algebra, the third step
follows from the fact that eϵ Pr[M(X ′) ∈ S] > δ1−1/α, and the last step follows from the basic
property of exponential functions.

Case 2. eϵ Pr[M(X ′) ∈ S] ≤ δα/(α−1). In this case, we simply have

Pr[M(X) ∈ S] ≤ (eϵ Pr[M(X ′) ∈ S])1−1/α (5)
= δ,

where the first step follows from Eq. (3), and the second step follows from eϵ Pr[M(X ′) ∈ S] ≤
δα/(α−1).
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Combining both cases above, we can obtain the following:

Pr[M(X) ∈ S] ≤ max{exp(ϵ+ log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S], δ}

≤ exp(ϵ+
log(1/δ)

α− 1
) · Pr[M(X ′) ∈ S] + δ,

where the first step follows from combing Eq. (4) and Eq. (5), and the second step follows from the
basic property of max.

Therefore, we can conclude thatM is (ϵ+ log(1/δ)
α−1 , δ)-DP, which completes the proof.

Lemma B.8 (Gaussian Mechanism, Corollary 3 in (Mironov, 2017)). If the following conditions
hold

• Let α > 1.

• Let D be the input dataset.

• Let f be a real-valued function with sensitivity L.

• Let z ∼ N (0, σ2) be a Gaussian random variable.

• Let Gσf be a mechanism defined as Gσf(D) = f(D) + z.

Then Gσf satisfies (α, αL2

2σ2 )-RDP.

Proof. The Rényi divergence between a zero-mean Gaussian random variable and its offset has a
closed-form solution, which can be computed as follows:

Dα(N (0, σ2)∥N (µ, σ2))

= (α− 1)−1 log

∫ ∞

−∞
σ−1(2π)−1/2 exp(−0.5ασ−2x2) · exp(−0.5(1− α)σ−2(x− µ)2)dx

= (α− 1)−1 log exp(0.5(α2 − α)σ−2µ2)

= 0.5ασ−2µ2,

where the first step follows from Definition B.4 and the probability density function of Gaussian
random variables, the second step follows from the property of Gaussian random variables, and the
last step follows from basic algebra.

Therefore, we can conclude that for a real-valued function f with sensitivity L, the Gaussian mech-
anism is (α, αL2

2σ2 )-RDP, since the offset between z and Gσf is at most L.

Thus, we finish the proof.
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C LINEAR PROGRAMMING: NOTATIONS AND BASIC FACTS

In Section C.1, we introduce basic notations. In Section C.2, we present basic algebra facts. In Sec-
tion C.3, we introduce basic derivative fact. In Section C.4, we introduce basic norm inequalities. In
Section C.5, we present basic matrix inequalities. In Section C.6, we present basic real number in-
equalities. In Section C.7, we present basic inequalities for p. In Section C.8, we provide basic PSD
Matrix Facts. In Section C.9, we provide basic PSD inequalities. In Section C.10, we present basic
PSD inequalities with trace. In Section C.11, we provide basic PD inequalities. In Section C.12, we
introduce commutative property and eigenvalues of A(I − cA)−1. In Section C.13, we introduce
basic power calculations. In Section C.15, we introduce the simple constrained minimization by
gradient descent method. In Section C.16, we introduce a fact about the equivalence of objective
functions.

C.1 NOTATIONS

In this section, we introduce basic notations.

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors x, y ∈ Rn, we denote the element-wise vector product xy ∈ Rn with (xy)i = xiyi, for
i ∈ [n]. In addition, we also x ◦ y to denote the element-wise product. For any vector x ∈ Rn, the
absolute value of x is defined element-wise as |x| := (|x1|, |x2|, · · · , |xn|).

Basic Notations. We denote all the positive real numbers as R>0, and denote m-dimensional
positive real vectors as Rm

>0. We use ±δ to denote a real value with magnitude at most δ, e.g.
a = e±δb means a ∈ [e−δb, eδb].

Matrices. If a matrix A ∈ Rm×n has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B ∈ Rn×n be a symmetric matrix. B ∈ Rn×n is positive semidefinite (PSD) if
x⊤Bx ≥ 0 for all x ∈ Rn, and positive definite (PD) if x⊤Bx > 0 for all x ∈ Rn. We denote the
kernel (the null space) of the matrix A ∈ Rm×n as ker(A), i.e., ker(A) := {x ∈ Rn : Ax = 0m}.
We denote the image space (the column space) as im(A), i.e., im(A) := {y ∈ Rm : y = Ax}.

Matrix Operations. Let A,B ∈ Rn×n be two symmetric matrices. We use A ⪯ B to indicate that
x⊤Ax ≤ x⊤Bx for all x ∈ Rn. We define ≺,⪰,≻ analogously. For matrices A,B ∈ Rn×m, we
denote the Hadamard product as A◦B, i.e., for i ∈ [n], j ∈ [m], (A◦B)i,j := Ai,j ·Bi,j . We define
A◦2 := A ◦ A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A,B ∈ Rn×n with scalars 0 < c1 ≤ c2, we write A ∈ [c1, c2] ·B to mean that c1B ⪯ A ⪯ c2B.

Diagonals. Let A ∈ Rn×n be a matrix. We define Diag(A) ∈ Rn with Diag(A)i := Ai,i

for all i ∈ [n]. For a vector x ∈ Rn, we define diag(x) ∈ Rn×n as the diagonal matrix with
diag(x)i,i := xi for i ∈ [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(x) ∈ Rn×n for x ∈ Rn.

Fundamental Matrices. For a non-degenerate matrix A ∈ Rm×n, we define P (A) :=
A(A⊤A)−1A⊤ as the orthogonal projection matrix onto A’s image. We define σ(A) :=
Diag(P (A)) as A’s leverage scores. We define Σ(A) := diag(σ(A)). We define Λ(A) :=
Σ(A) − P ◦2(A) as a Laplacian matrix and Λ(A) := Σ(A)−1/2Λ(A)Σ(A)−1/2 as a normalized
Laplacian matrix.

Norms. For any positive real number p > 0 and vector x ∈ Rn, we define the vector ℓp norm as
∥x∥p := (

∑n
i=1 |xi|p)1/p. We define the vector ℓ0 norm as the number of non-zero elements in x,

i.e., ∥x∥0 :=
∑n

i=1 1[xi = ̸= 0]. For a positive definite matrix A ∈ Rn×n and a vector x ∈ Rn, we
define ∥x∥A := (x⊤Ax)1/2. For a vector w ∈ Rn

>0, we define ∥x∥w := (
∑n

i=1 wix
2
i )

1/2. If we
let W := diag(w), then know that ∥x∥w = ∥x∥W . For any matrix spectral norm ∥ · ∥, we define
∥M∥ := sup∥x∥2=1 ∥Mx∥2.
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Calculus. Let g(x, y) ∈ R be a function of two vectors x ∈ Rn1 and y ∈ Rn2 . We define the
gradient of g with respect to x at (a, b) ∈ Rn1×n2 as ∇xg(a, b) ∈ Rn1 , where ∇xg(a, b)i :=
d

dxi
g(a, b), and define ∇yg(a, b)i :=

d
yi
g(a, b), ∇yyg(a, b)i,j := d

dyi

d
dyj

g(a, b), ∇xxg(a, b)i,j :=
d

dxi

d
dxj

g(a, b). For h : Rn → Rm and x ∈ Rn, we use Jh(x) ∈ Rm×n to denote the Jacobian of h

at x, where Jh(x)i,j := d
dxj

h(x)i for i ∈ [m], j ∈ [n]. For f : Rn → R and x, h ∈ Rn, we define
the directional derivative of f in direction h at x as Df(x)[h] := limt→0(f(x+ th)− f(x))/t.

Convex Sets. A set U ⊆ Rk is convex if t · x + (1 − t) · y ∈ U for all x, y ∈ U, t ∈ [0, 1]. A set
U ⊆ Rk is symmetric if x ∈ U , then −x ∈ U for all x ∈ U . For all α > 0 and U ⊆ Rk, we define
αU := {x ∈ Rk : α−1x ∈ U}. For all p ∈ [1,∞] and r > 0, we call the symmetric convex set
{x ∈ Rk : ∥x∥p ≤ r} the ℓp ball of radius r.

C.2 BASIC ALGEBRA FACTS

Fact C.1. For any vectors a, b, c ∈ Rm, square matrix M , diagonal matrix D, and symmetric matrix
P ∈ Rm×m, we have

• a ◦ b = diag(a)b = diag(b)a.

• a⊤ diag(b)c = a⊤ diag(c)b.

• e⊤j aiei = e⊤j diag(a)ei.

• diag(a) =
∑m

i=1 eie
⊤
i ai.

• e⊤i Mei = Mi,i.

• (diag(a)M) ◦ I = Diag(M)a.

• Diag(diag(b)P ) = Diag(P diag(b)) = Diag(P )b.

• Diag(P diag(b)P ) = (P ◦ P )b.

Proof. Let i ∈ [m]/ For i-th entry of vector, it is
∑m

j=1 P
2
i,jbj . Thus it’s true. The other parts of the

statement are trivial.

C.3 BASIC DERIVATIVE FACTS

Fact C.2. Let A denote a positive definite matrix, then we have

• Part 1.

dA−1

dt
= −A−1 dA

dt
A−1.

• Part 2.

d log det(A)

dt
= tr[A−1 dA

dt
].

C.4 BASIC NORM INEQUALITIES

Fact C.3. If the following conditions hold:

• Let a, b ∈ Rm be two vectors.

Then, for any vector norm ∥ · ∥, we have

∥a ◦ b∥ ≤ ∥a∥∞∥b∥.
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Proof. For i ∈ [m], we have
|(a ◦ b)i| = |aibi| ≤ ∥a∥∞|bi|,

where the first step follows from the definition of Hadamard product, and the second step follows
from |ai| ≤ ∥a∥∞ for i ∈ [m].

Since the inequality holds for i ∈ [m], thus we have
∥a ◦ b∥ ≤ ∥a∥∞ ∥b∥.

The proof is complete.

Fact C.4 (Folklore). Let x, y ∈ Rm be two vectors. If for all i ∈ [m], |xi| ≤ |yi|, then the following
statements are true:

• Part 1. For any positive real number p > 0, ∥x∥p ≤ ∥y∥p.

• Part 2. For any w ∈ Rm, ∥x∥w ≤ ∥y∥w.

• Part 3. For any w ∈ Rm and W := diag(w), ∥x∥W ≤ ∥y∥W .
Fact C.5. Let a, b > 0 be positive real numbers and r ∈ (0, 0.5). Let |a−1(a − b)| ≤ r. We have
a = e±1.5rb.

Proof. Since we have |a−1(a− b)| ≤ r, we can imply by the definition of absolute value that

−r ≤ 1− b

a
≤ r.

Thus, we can imply by basic algebra that
(1 + r)a ≤ b ≤ (1− r)a.

Therefore, if we apply Part 1 of Fact C.28 for the lower bound of b and apply Part 2 of Fact C.28 for
the upper bound of b, we can conclude that

e−1.5ra ≤ b ≤ e1.5ra.

This is equivalent to
a = e±1.5rb.

Thus, we finish the proof.

Fact C.6. If the following conditions hold:

• Let w, v ∈ Rm
>0 be two positive vectors.

• Let W := diag(w).

• Let r ∈ (0, 0.5).

• We assume ∥W−1(w − v)∥∞ ≤ r.

Then the following statement is true:
w = e±1.5rv.

Proof. Since we have ∥W−1(w − v)∥∞ ≤ r, we have the following for for all i ∈ [m]:

|w−1
i (wi − vi)| ≤ r,

where this step follows from the definition of infinity norm.

By Fact C.5, we can conclude for all i ∈ [m] that

wi = e±1.5rvi.

Thus, we can combine all the entries wi and vi for all i ∈ [m], and directly obtain

w = e±1.5rv,

which finishes the proof.
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C.5 BASIC MATRIX INEQUALITIES

Definition C.7. We say matrix P is a projection matrix if PP = P .

Now, we show the basic properties of the projection matrix without proof.
Fact C.8 (Folklore). If P is a projection matrix as defined in Definition C.7, we have the following:

• All the eigenvalues of P are either 0 or 1.

• P ⪰ 0.

• P ⪯ I .

• P ◦ I ⪯ I .

• Pi,i ∈ [0, 1] for all i ∈ [n].

• e⊤i Pei ∈ [0, 1] for all i ∈ [n].
Fact C.9 (Folklore). Let A denote a symmetric matrix such that Ai,i ≥ 0, Ai,j ≤ 0 and∑n

j=1 Ai,j ≥ 0 for all i, then we have A ⪰ 0.

C.6 BASIC REAL NUMBER INEQUALITIES

Fact C.10 (folklore). If the following conditions hold:

• Let x ∈ (0, 1).

• Let y > 0.

• Let f = ( 1+x
1−x )

y .

Then, we have f ≥ 1.
Fact C.11. If the following conditions hold:

• Let a ≥ 1.

• Let b > 0 > c.

• Let x ∈ [0, 1].

Then we have

min{axb, xc} ≤ a
−c
b−c .

Proof. Case 1. We first consider the extreme case when axb = xc. In this case, we can solve for x
and obtain that x = a−

1
b−c . Thus, we have

min{axb, xc} = xc

= (a−
1

b−c )c

= a−
c

b−c ,

where the first step follows from axb = xc, the second step follows from x = a−
1

b−c , and the last
step follows from basic algebra.

Therefore, the original statement is true when axb = xc.

Case 2. Now we just need to show that as long as axb is not equal xc, then one of them must be at
most a−c/(b−c). This is obviously true since both two functions are monotonically functions.

Fact C.12. Let ϵ ∈ (0, 1) and α > 0. We have ϵ = α
1+α is the minimizer for function f(ϵ) :=

1
(1−ϵ)ϵα .
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Proof. The derivative of the function f is

df

dϵ
= ((1− ϵ)ϵα)−2(−ϵα + α(1− ϵ)ϵα−1)

= (1− ϵ)−2ϵ−2α(αϵα−1 − (α+ 1)ϵα)

= (1− ϵ)−2ϵ−α−1(α− (α+ 1)ϵ),

where the first step follows from the chain rule, and the second step and the last steps follow from
basic algebra.

Therefore, we let df
dϵ = 0 and solve for ϵ, which directly yields

ϵ =
α

1 + α
.

Thus, we can conclude that ϵ = α
1+α is the minimizer for function f .

C.7 BASIC INEQUALITIES FOR p

Fact C.13. For any p ∈ (0, 4), we have 1− p/4 ≤ 2/p− |1− 2/p|.

Proof. Case 1. Let p ∈ (0, 2]. We have |1 − 2/p| = 2/p − 1. Therefore, the original inequality is
equivalent to

1− p/4 ≤ 2/p− (2/p− 1).

Moving the terms, we can obtain

p/4 ≥ 0,

which trivially holds since p ∈ (0, 2].

Case 2. Let p ∈ (2, 4). We have |1−2/p| = 1−2/p. Therefore, the original inequality is equivalent
to

1− p/4 ≤ 2/p− (1− 2/p).

Moving the terms, we have

p/4 + 4/p ≥ 2,

which is a true statement since p/4 + 4/p ≥ 2
√
(p/4) · (4/p) = 2.

Since 1− p/4 ≤ 2/p− |1− 2/p| holds for both p ∈ (0, 2] and p ∈ (2, 4), the proof is finished.

Fact C.14. If p ∈ (0, 4), then we have

p2(4− p) · (4 + 8/p) · (1 + 4/p) ≤ 210(1− p/4).

Proof. We can show

p2(4− p)(4 + 8/p)(1 + 4/p) ≤ (4− p) · (4p+ 8) · (p+ 4)

≤ (4− p) · 24 · 8
≤ 28 · (4− p)

= 210 · (1− p/4),

where the first step follows from basic algebra, the second step follows from p ∈ (0, 4), and the
third step follows from 24 · 8 ≤ 28, and the last step follows from pulling out the factor 4.
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Fact C.15. If p ∈ (0, 4), we have

min{1/4, 1/(2p)}
max{4, 8/p}

≥ 1

16
· 1

p/2 + 2/p
.

Proof. Case 1. For p ≥ 2, we have

min{1, 2/p}
max{1, 2/p}

=
1

2/p
.

Case 2. For p < 2, we have

min{1, 2/p}
max{1, 2/p}

=
2/p

1
=

1

p/2
.

Therefore, by combining two cases, We can show that

min{1/4, 1/(2p)}
max{4, 8/p}

=
1

16
· min{1, 2/p}
max{1, 2/p}

≥ 1

16
· 1

p/2 + 2/p
, (6)

where the last step follows from x ≥ 1/a and x ≥ 1/b implies that x ≥ 1
a+b .

C.8 BASIC PSD MATRIX FACTS

Fact C.16 (Schur product theorem, Theorem VII in page 14 in (Schur, 1911)). If the following
conditions hold:

• Let A,B ∈ Rm×m be two positive semidefinite matrices.

Then A ◦B is a positive semi-definite matrix.

Fact C.17 (Folklore). If the following conditions hold:

• Let A ∈ Rm×m be a symmetric matrix.

• Let 0 ⪯ A ⪯ I .

• For i ∈ [m], denote the eigenvalue of the matrix A as λi.

Then for i ∈ [m], λi ∈ [0, 1].

C.9 BASIC PSD INEQUALITIES

Fact C.18 (Folklore). If the following conditions hold:

• Let A ∈ Rm×n.

• Let B ∈ Rm×m be a matrix B ⪰ 0.

Then we have A⊤BA ⪰ 0.

Fact C.19. If the following conditions hold

• Let w, v ∈ Rm
>0 with wi = eδivi for |δi| ≤ δ for all i ∈ [m].

• Let p > 0.

Then we have

e−|1−2/p|δW 1−2/p ⪯ V 1−2/p ⪯ e|1−2/p|δW 1−2/p.
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Proof. For any i ∈ [m], we have

(
vi
wi

)1−2/p = e−(1−2/p)δi ∈ [e−|1−2/p|δ, e|1−2/p|δ].

Thus, we complete the proof.

Fact C.20. If the following conditions hold:

• Let A ∈ Rm×n.

• Let k ∈ R be an arbitrary real number such that k > 0.

• Let W,V ∈ Rm×m denote a positive diagonal matrix.

• We have W ⪯ k · V .

Then the following statement is true:

• (A⊤WA)−1 ⪰ k−1(A⊤V A)−1.

• A(A⊤WA)−1A⊤ ⪰ k−1A(A⊤V A)−1A⊤.

Proof. Since W ⪯ kV , then A⊤WA ⪯ kA⊤V A. Taking the inverse on both sides, we have
(A⊤WA)−1 ⪰ k−1(AV A)−1. Thus, we have A(A⊤WA)−1A⊤ ⪰ k−1A(A⊤V A)−1A⊤.

Fact C.21. If the following conditions hold:

• Let ϵ > 0.

• Let Iw≤ ϵ
m
∈ Rm×m be the diagonal matrix where Iϵ,i,i = 1 if wi > ϵ

m and Iϵ,i,i = 0
otherwise.

• Let Iw> ϵ
m

:= I − Iw≤ ϵ
m

.

Then the following statement is true:

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A.

Proof. Note that

tr[(A⊤W 1−2/pA)−1A⊤W 1−2/pIw≤ ϵ
m
A] = tr[A(A⊤W 1−2/pA)−1A⊤W 1−2/pIw≤ ϵ

m
]

=
∑
i∈[m]

(A(A⊤W 1−2/pA)−1A⊤)i,i(W
1−2/pIw≤ ϵ

m
)i,i

=
∑
i∈[m]

w
2/p
i (W 1−2/pIw≤ ϵ

m
)i,i

=
∑

i∈[m] : wi≤ ϵ
m

w
2/p
i w

1−2/p
i

=
∑

i∈[m] : wi≤ ϵ
m

wi

≤m · ϵ
m

= ϵ, (7)

where the first step follows from the cyclic property of the trace, the second step follows from the
fact that W and Iw≤ ϵ

m
are diagonal matrices, the third step follows from the definition of Lewis

weight (Definition E.1, ci,i = (W 1/2−1/pcW 1/2−1/p)i,i/w
1−2/p
i = wi/w

1−2/p = w
2/p
i ) , the

fourth step follows from the definition of Iw≤ ϵ
m

, the fifth step follows from basic algebra, and the
last step follows from wi ≤ ϵ

m .
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We have,

A⊤W 1−2/pIw≤ ϵ
m
A ⪯ ϵ ·A⊤W 1−2/pA,

where the step follows from Eq. (7) and X ⪯ tr[Y −1X]Y (Fact C.23)

Note that Iw> ϵ
m

= I − Iw≤ ϵ
m

implies

A⊤W 1−2/pIw> ϵ
m
A+A⊤W 1−2/pIw≤ ϵ

m
A = A⊤W 1−2/pA

The above two equations implies

A⊤W 1−2/pIw> ϵ
m
A ⪰ (1− ϵ) ·A⊤W 1−2/pA,

By rescaling the factor 1− ϵ on both sides, we get

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A.

C.10 BASIC PSD INEQUALITIES WITH TRACE

Fact C.22 (Folklore). Let Z be any PSD matrix. The following statement is true:

Z ⪯ ∥Z∥ · I ⪯ tr[Z] · I.

Fact C.23. If the following conditions hold:

• Let X,Y be any PSD matrices.

Then the following statement is true:

X ⪯ tr[Y −1X] · Y.

Proof. Due to cyclic property of the trace, we know that

tr[Y −1X] = tr[Y −1/2XY −1/2].

Thus, the original statement

X ⪯ tr[Y −1X] · Y

is equivalent to

X ⪯ tr[Y −1/2XY −1/2]Y,

which is further equivalent to

Y −1/2XY −1/2 ⪯ tr[Y −1/2XY −1/2] · I,

which is a true statement following Fact C.22.

Thus, since the equivalent form of the original statement is true, we can complete the proof.

Fact C.24. If the following conditions hold:

• Let A ∈ Rm×n.

• Let B,C ∈ Rm×m be non-negative diagonal matrices.

• Let

α := tr[(A⊤BA)−1(A⊤|C −B|A)].
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then we have

(1− α)A⊤BA ⪯ A⊤CA ⪯ (1 + α)A⊤BA.

which is equivalent to

A⊤CA ∈ [1− α, 1 + α] ·A⊤BA

Proof. Note that

(1− α)A⊤BA ⪯ A⊤CA ⪯ (1 + α)A⊤BA

is equivalent to

−αA⊤BA ⪯ A⊤(C −B)A ⪯ αA⊤BA.

The following equation implies the above equation

A⊤|C −B|A ⪯ α ·A⊤BA.

Since A⊤|C − B|A and A⊤BA are both PSD matrices, we can choose X = A⊤|C − B|A and
Y = A⊤BA and then apply Fact C.23 to show that the above equation is true.

Thus, we complete the proof.

C.11 BASIC PD INEQUALITIES

Fact C.25 (Folklore). If the following conditions hold:

• Let Q ∈ Rm×m denote a matrix that Q ≻ 0.

• Let W ∈ Rm×m be positive diagonal matrix.

Then we have WQW ≻ 0.

C.12 COMMUTATIVE PROPERTY AND EIGENVALUES OF A(I − cA)−1

Fact C.26. If the following conditions hold:

• Let A ∈ Rm×m.

• Let (I − cA) be invertible.

Then, we have

(I − cA)−1A = A(I − cA)−1.

Proof. It is easy to see

(I − cA)A = A− cA2 = A(I − cA).

Then multiplyling (I − cA)−1 · (I − cA)−1 on both sides of the above equation, then we can get the
following

A(I − cA)−1 = (I − cA)−1A.

We remark that an alternative proof of the following claim can use von Neumann series in Claim 8
in (Price et al., 2017).

Fact C.27. For any symmetric A ∈ Rm×m and real number c > 0, we have A(I − cA)−1 whose
eigenvalues are of the form λ/(1− cλ) for each eigenvalue λ of A.
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Proof. Assume A = UΛU⊤ here Λ ∈ Rk×k is a diagonal matrix, U ∈ Rm×k has all columns are
orthogonal to each other and each column has ℓ2 norm equal to 1. Since A might have full rank,
thus k ≤ m. It is obvious U⊤U = I .

Thus, we can show

UΛU⊤(I − cUΛU⊤)−1 = UΛU⊤(UU⊤ − cUΛU⊤)−1

= UΛU⊤(U(I − cΛ)U⊤)−1

= UΛU⊤(U(I − cΛ)−1U⊤)

= UΛ(I − cΛ)−1U⊤,

where the first step follows from I = UU⊤, the second step follows from basic algebra, the third
step follows from the definition of the inverse matrix, and the last step follows from U⊤U = I .

C.13 BASIC POWER CALCULATIONS

Before proving the main statement, we first show a fact. Note that ex =
∑∞

i=0
1
i!x

i.
Fact C.28. For any x ∈ (0, 0.5], we have

• 1− x ≥ e−1.5x

• 1 + x ≤ e1.5x

• ex ≤ 1 + 4
3x

• e−x ≥ 1− 4
3x

• ex ≥ 1 + x− x2

• ex ≤ 1 + x+ x2

Fact C.29. If the following conditions hold:

• Let x ∈ (0, 0.5).

• Let y be any real number such that |y| < 0.5.

Then the following statement is true:

e±x(ey − 1) = (ey − 1)± 2x|y|.

Proof.

e±x(ey − 1) = (1± 4

3
x)(ey − 1)

= (ey − 1)± 4

3
x(ey − 1)

= (ey − 1)± 4

3
x
4

3
|y|

= (ey − 1)± 2x|y|,

where the first step follows from applying Fact C.28 on e±x, the second step follows from basic
algebra, the third step follows from applying Fact C.28 on ey , the last step follows from basic
algebra.

Fact C.30. If the following conditions hold

• Let n ≥ 2 denote positive integers.

• Let p > 0.

• Let β := 4 · (1 + 2/p)2 ·
√
n.
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• Let θ := 2 · |1− 2/p| ·
√
n.

• Let δ ∈ (0, 0.1/β].

Then we can show

• Part 1. (1− θδ)−2/p ≥ 1− βδ.

• Part 2. (1 + θδ)−2/p ≤ 1 + βδ.

• Part 3. (1− θδ)−2/p ≤ 1 + βδ.

• Part 2. (1 + θδ)−2/p ≥ 1− βδ.

Proof. Note that βδ ∈ (0, 0.1]. Also note that θδ ≤ 0.1 · θ/β ≤ (0, 0.5).

We can show

4θ/p = 4 · 2|1− 2/p|
√
n/p

≤ 4 · (1 + 2/p) · |1− 2/p|
√
n

≤ 4 · (1 + 2/p)2
√
n

= β.

Thus,

4θδ/p ≤ 0.1

Proof of Part 1.

We can show

(1− θδ)−2/p ≥ 1

≥ 1− βδ,

where first step is trivial, and the last step follows βδ > 0.

Proof of Part 2.

We can show

(1 + θδ)−2/p ≤ 1

≤ 1 + βδ,

where the first step is trivial, and the last step follows βδ > 0.

Proof of Part 3.

Using the fact (1− x) ≥ e−1.5x for all x ∈ (0, 0.5) (see Fact C.28) , we can show

(1− θδ) ≥ e−1.5θδ.

Then, we can show

(1− θδ)−2/p ≤ (e−1.5θδ)−2/p

= e3θδ/p

≤ 1 + 4θδ/p

≤ 1 + βδ,

where the third step follows from ex ≤ 1 + 4
3x(see Fact C.28, and the last step follows from

4θ/p ≤ β.

Proof of Part 4.

Using the fact (1 + x) ≤ e1.5x for all x ∈ (0, 0.5) (see Fact C.28), we can show

(1 + θδ) ≤ e1.5θδ.
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Then, we can show

(1 + θδ)−2/p ≥ (e1.5θδ)−2/p

= e−3θδ/p

≥ 1− 4θδ/p

≥ 1− βδ,

where the third step follows from e−x ≥ 1 − 4
3x (see Fact C.28), and the last step follows from

4θ/p ≤ β.

C.14 LEVERAGE SCORE EQUIVALENCE FORMAT

Fact C.31 (Folklore). Let σ denote the leverage score. Then, the following quantities are equivalent

• e⊤i W
1/2−1/pA(A⊤W 1−2/pA)−1W 1/2−1/pei.

• (W 1/2−1/pA(A⊤W 1−2/pA)−1W 1/2−1/p)i,i.

• σi(W
1/2−1/pA).

C.15 SIMPLE CONSTRAINED MINIMIZATION BY GRADIENT DESCENT METHOD

Theorem C.32 (Simple Constrained Minimization for Twice Differentiable Function, Theorem 52
in page 50 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let H be a positive definite matrix.

• Let Q ⊆ Rm be a convex set.

• Let f : Q→ Rm be a twice differentiable function.

• Suppose that there are constraints 0 ≤ µ ≤ L such that for all x ∈ Q, we have µ · H ⪯
∇2f(x) ⪯ L ·H .

• Let x(0) ∈ Q.

• Let k ≥ 0.

• Apply the update rule

x(k+1) = argmin
x∈Q
∇f(x(k))⊤(x− x(k)) +

L

2
∥x− x(k)∥2H .

Then, we have

∥x(k) − x∗∥2H ≤ (1− µ

L
)k∥x(0) − x∗∥2H .

C.16 EQUIVALENCE OF OBJECTIVE FUNCTIONS

Fact C.33. If the following conditions hold:

• Let B ∈ Rm×m be a diagonal matrix.

• Let w ∈ Rm.

• Let b ∈ Rm.

• Define f(w) := ⟨w,Bw⟩ − 2⟨b, w⟩.
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Then we have

arg min
w∈Rm

f(w) = arg min
w∈Rm

∥w −B−1b∥2B .

Proof. We have

∥w −B−1b∥2B = w⊤Bw − 2(B−1b)⊤Bw + (B−1b)⊤B(B−1b)

= w⊤Bw − 2b⊤w + b⊤B−1b

= ⟨w,Bw⟩ − 2⟨b, w⟩+ b⊤B−1b, (8)

where the first step follows from the definition of ∥ · ∥B , the second step follows from basic algebra,
the third step follows from the definition of the inner product.

Thus, we have

arg min
w∈Rm

∥w −B−1b∥2B = arg min
w∈Rm

⟨w,Bw⟩ − 2⟨b, w⟩+ b⊤B−1b

= arg min
w∈Rm

f(w),

where the first step follows from Eq. (8), the second step follows from the fact that b⊤B−1b is a
constant.
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D LINEAR PROGRAMMING: BACKGROUND

In Section D.1, we introduce the definition of linear program. In Section D.2, we present the basics
of the self-concordance property. In Section D.3, we show the definition of the weighted central
path. In Section D.4, we introduce the Newton step. In Section D.5, we present the definition of the
weight function. In Section D.6, we introduce the concept of centrality. In Section D.7, we introduce
the derivative computation of the volumetric barrier. In Section D.8, we present the derivatives of
the potential function. In Section D.9, we show some basic properties of the projection matrix.

D.1 DEFINITION OF LINEAR PROGRAM

Definition D.1 (Linear program, Implicit in page 3 in (Lee & Sidford, 2019)). If the following
conditions hold:

• Let A ∈ Rm×n, b ∈ Rn be a non-degenerate matrix.

• For an arbitrary real number y ∈ R, we define set dom(y) := {y ∈ R : li < y < ui}.

• For vector x ∈ Rm and all i ∈ [m], the set dom(xi) is neither the empty set nor the entire
real line.

• For i ∈ [m], li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞}.

• Assume the interior of the polytope Ω◦ := {x ∈ Rm : A⊤x = b, li < xi < ui,∀i ∈ [m]}
is not empty.

We define the following linear program:

OPT := min
x∈Rm : A⊤x=b

∀i∈[m] : li≤xi≤ui

c⊤x.

D.2 SELF-CONCORDANCE

Definition D.2 (Self-concordance, Definition 4 in page 12 in (Nesterov & Nemirovskii, 1994)). Let
ϕ : K → Rn be a convex, thrice continuously differentiable function. If the following conditions
hold:

• limi→∞ ϕ(xi)→∞ for all sequences xi ∈ K converging to the boundary of K.

• |D3ϕ(x)[h, h, h]| ≤ 2|D2ϕ(x)[h, h]|3/2 for all x ∈ K and h ∈ Rn.

• |Dϕ(x)[h]| ≤
√
ν|D2ϕ(x)[h, h]|1/2 for all x ∈ K and h ∈ Rn.

Then the function ϕ is a ν-self-concordant barrier function for open convex set K ⊂ Rn.

Lemma D.3 (Theorem 4.1.6 in page 182 in (Nesterov, 2003)). If the following conditions hold:

• Let ϕ′′
i denote the second derivative of ϕi : Rm → R, for all i ∈ [m].

• Let s ∈ dom(ϕi) for i ∈ [m].

• Define r := maxi∈[m]

√
ϕ′′
i (s)|s− t|.

• Let U denote the maximum diameter of all dom(ϕi).

Then, we have

• Part 1. r ∈ (0, 1).

• Part 2. t ∈ dom(ϕi) and (1− r)
√
ϕ′′
i (s) ≤

√
ϕ′′
i (t) ≤ (1− r)−1

√
ϕ′′
i (s).

• Part 3.
√
ϕ′′
i (s) ≥ 1/U where U is the diameter of dom(ϕi).
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Lemma D.4 (Theorem 4.2.4 in page 196 in (Nesterov, 2003), see Lemma 9 in page 10 in (Lee &
Sidford, 2019) as an example). For all x, y ∈ dom(ϕi) and i ∈ [m], we have ϕ′

i(x) · (y − x) ≤ 1.

For all x ∈ Ω◦, we define ϕ(x) ∈ Rm by ϕ(x)i := ϕi(xi) for i ∈ [m], define ϕ′(x), ϕ′′(x) and
ϕ′′′(x) analogously, for example ϕ(x)′i := ϕi(xi) and let Φ′ = diag(ϕ′),Φ′′ = diag(ϕ′′),Φ′′′ =
diag(ϕ′′′) denote their associated diagonal matrices.

D.3 WEIGHTED CENTRAL PATH

Definition D.5 (Weighted central path, Implicit in page 11 in (Lee & Sidford, 2019)). Let ϕi : R→
R. We define the penalized objective function as

ft(x,w) := t · c⊤x+
∑
i∈[m]

wiϕi(xi).

The path-finding algorithm maintains a feasible point x ∈ Ω◦, weights w ∈ Rm
>0 and minimizes the

penalized objective function for increasing t and small w

min
A⊤x=b

ft(x,w).

For every fixed set of weights, w ∈ Rm
>0 the set of points xw(t) := argminx∈Ω◦ ft(x,w) for

t ∈ [0,∞) form a path through the interior of the polytope that we call the weighted central path.
We call xw(0) a weighted center of Ω◦.

As shown in Theorem 4.2.7 on page 200 of (Nesterov, 2003), limt→∞ xw(t) is a solution to the
linear program in Definition D.1.

The above definition (Definition D.5) can trivially yield the following fact.
Fact D.6 (Folklore). If the following condition holds

• Let ft(x,w) be defined as Definition D.5.

Then we can show

∇xft(x,w) = t · c+ wϕ′(x)

∇2
xxft(x,w) =WΦ′′(x).

Fact D.7. If the following conditions hold

• We have w(v) := argminw∈Rm
>0

f(v, w).

• Let f(x,w) be defined as Definition D.5 (We treat t as a fixed parameter in this statement,
thus ignore it).

• The minimizer for function f(v, w) is in the interior of its domain.

Then we have

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(w,w(v)).

Proof. Since the optimal for f(v, w) is in the interior and the optimality condition∇wf(v, w(v)) =
0 holds, we can take derivative w.r.t. v on both sides and obtain

∇2
w,vf(v, w(v)) +∇2

w,wf(v, w(v))Jw(v) = 0.

Then, solving for Jw(v) directly yields:

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(w,w(v)).

This finishes the proof.
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D.4 NEWTON STEP

Lemma D.8 (Lemma 51 in page 49 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define f(x) := v⊤x+ 0.5∥x∥2W .

• Define x∗ := −W−1v +W−1A(A⊤W−1A)−1A⊤W−1v ∈ Rm.

Then, for any vector v ∈ Rm, any positive vector w ∈ Rm and matrix A ∈ Rm×n, we have

arg min
A⊤x=0

f(x) = x∗.

Proof. A point x ∈ ker(A⊤) is optimal if and only if the gradient ∇f(x) = v +Wx is orthogonal
to every feasible direction in ker(A⊤).

Equivalently,

v +Wx ∈ Im(A).

Then, there exists some vector y ∈ Rm such that v +Wx = Ay.

Thus,

x = W−1(Ay − v). (9)

Let us left multiply A on both sides,

A⊤x = A⊤W−1(Ay − v).

Since A⊤x = 0, so

A⊤W−1Ay −A⊤W−1v = 0.

We have

y = (A⊤W−1A)−1A⊤W−1v.

Substituting back to Eq. (9), we have

x∗ := −W−1v +W−1A(A⊤W−1A)−1A⊤W−1v.

The proof is complete.

Definition D.9. For notation convenience in Hessian computation, we define:

• Ax := Φ′′(x)−1/2A.

• Px,w := I −W−1Ax(A
⊤
x WAx)

−1A⊤
x .

Lemma D.10 (Newton step, Implicit in page 11 in (Lee & Sidford, 2019)). If the following condi-
tions hold:

• Let ft(x,w) be defined in Definition D.5.

• Let Φ(x) ∈ Rm×m denote a diagonal matrix where i-th entry is ϕi(x).

• Let Ax and Px,w be defined as Definition D.9.

Then, the new newton step for x with respect to ft(x,w) is

ht(x,w) = −Φ′′(x)−1/2Px,wW
−1Φ′′(x)−1/2∇xft(x,w).

Proof. Lemma D.8 (with replacing the W by WΦ′′(x) and v by gradient in x∗ definition) shows
that a Newton step for x is given by

ht(x,w) = − (I − (WΦ′′(x))−1A(A⊤(WΦ′′(x))−1A)−1A⊤)(WΦ′′(x))−1∇xft(x,w)

= − Φ′′(x)−1/2Px,wW
−1Φ′′(x)−1/2∇xft(x,w),

where the second step follows from definition of Ax, Px,w.
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D.5 WEIGHT FUNCTION

Definition D.11 ((ci, cγ , ck)-Weight Function, Definition 12 in page 13 in (Lee & Sidford, 2019)).
We say a function differentiable g : Ω◦ → Rm

>0 is a (ci, cγ , ck)-weight function if the following
conditions hold:

• The size, c1, satisfies c1 ≥ max{1, ∥g(x)∥1}. This bounds how quickly centrality changes
as t changes.

• The sensitivity, cs, satisfies cs ≥ e⊤i G(x)−1Ax(A
⊤
x G(x)−1Ax)

−1A⊤
x G(x)−1ei. This

bounds how quickly the Hessian changes as x changes. Here ei is the length-m vector
where i-th location 1 and 0 everywhere else.

• The consistency, ck, satisfies ∥G(x)−1Jg(x)(Φ
′′(x))−1/2∥g(x)+∞ ≤ 1 − c−1

k < 1. This
bounds how much the weights change as x changes, thereby governing how consistent the
weights are with changes to x along the weighted central path. For definition of Jg(x),
please see Fact D.7.

D.6 CENTRALITY

Here, we explain how we measure the distance from x to the minimum of ft(x,w) for fixed w,
denoted δt(x,w). As δt(x,w) measures the proximity of x to the weighted central path, we call it a
centrality measure of x and w.

Definition D.12 (Mixed Norm, Implicit in page 12 in (Lee & Sidford, 2019)). We define the mixed
norm for all y ∈ Rm by

∥y∥w+∞ := ∥y∥∞ + Cnorm∥y∥w.

Definition D.13 (Centrality Measure, Definition 11 in page 12 in (Lee & Sidford, 2019)). Let Px,w

be defined as Definition D.9. For {x,w} ∈ {Ω◦ × Rm
>0} and t ≥ 0, we let ht(x,w) denote the

projected Newton step for x on the penalized objective ft given by

ht(x,w) := −
1√
ϕ′′(x)

Px,w(
∇xft(x,w)

w
√
ϕ′′(x)

).

We measure the centrality of {x,w} by

δt(x,w) := min
η∈Rn

∥∇xft(x,w)−Aη

w
√

ϕ′′(x)
∥w+∞,

where for all y ∈ Rm, let ∥y∥w+∞ := ∥y∥∞ + Cnorm∥y∥W for Cnorm > 0 is defined in Defini-
tion D.12.

Lemma D.14 (Lemma 10 in page 12 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define Ax := Φ′′(x)−1/2A ∈ Rm×n.

• Define Px,w := I −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x ∈ Rm×m.

• For any norm ∥ · ∥, we define Q-norm which is ∥y∥Q := minη∈Rn ∥y − Aη

w
√

ϕ′′(x)
∥.

Then, we have

• Part 1. ∥y∥Q ≤ ∥Px,wy∥ ≤ ∥Px,w∥ · ∥y∥Q.

• Part 2. For all {x,w} ∈ {Ω◦ × Rm
>0}, we have

δt(x,w) ≤ ∥
√

ϕ′′(x)ht(x,w)∥w+∞ ≤ ∥Px,w∥w+∞ · δ(x,w).

Proof. Proof of Part 1.
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We can show

Px,wy = (I −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x )y

= y −W−1Ax(A
⊤
x W

−1Ax)
−1A⊤

x y

= y −W−1Φ′′−1/2A · (A⊤
x W

−1Ax)
−1A⊤

x y

= y −W−1Φ′′−1/2A · ηy

= y − Aηy

w
√

ϕ′′(x)
, (10)

where the first step follows definition of Px,w, the second step follows simple algebra, the third step
follows from definition of Ax, the forth step follows from letting ηy = (A⊤

x W
−1Ax)

−1A⊤
x y, the

last step follows from W is diagonal matrix w, similarly for Φ′′ and ϕ′′.

We have

∥y∥Q = min
η∈Rn

∥y − Aη

w
√

ϕ′′(x)
∥

≤ ∥y − Aηy

w
√

ϕ′′(x)
∥

= ∥Px,wy∥,
where the first step follows from the definition of ∥y∥Q, the second step follows from ηy can not
achieve a smaller objective function value than the minimizer, the third step follows from Px,wy =

y − Aηy

w
√

ϕ′′(x)
for some ηy ∈ Rn (see Eq. (10)).

We have

∥Px,w∥ · ∥y∥Q = ∥Px,w∥ · ∥y −
Aηq

w
√
ϕ′′ ∥

≥ ∥Px,w(y −
Aηq

w
√
ϕ′′ )∥

= ∥Px,wy∥,

where the first step follows from letting ηq be such that ∥y∥Q = ∥y − Aηq

w
√

ϕ′′(x)
∥, the second step

follows from the property of spectral norm, and the last step follows from Px,wW
−1(Φ′′)−1/2A =

0.

Thus, with y = ∇xft(x,w), the proof is complete.

Proof of Part 2.

We choose y = ∇xft(x,w)

w
√

ϕ′′(x)
.

Then, we have

δt(x,w) = min
η∈Rn

∥y − Aη

w
√

ϕ′′(x)
∥w+∞

= ∥y∥Q
≤ ∥Px,wy∥w+∞

= ∥
√
ϕ′′(x)ht(x,w)∥w+∞

≤ ∥Px,w∥w+∞∥y∥Q
= ∥Px,w∥w+∞δt(x,w),

where the first step follows from the definition of δt(x,w), the second step follows from the def-
inition of ∥y∥Q, the third step follows from Part 1, the fourth step follows from the definition of
ht(x,w), the fifth step follows from Part 1, and the last step follows from δt(x,w) = ∥y∥Q.

Thus, the proof is complete.
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D.7 DERIVATIVE OF VOLUMETRIC BARRIER

Lemma D.15 (Derivative of Volumetric Barrier, Lemma 48 in page 47 in (Lee & Sidford, 2019)).
If the following conditions hold:

• For a vector w ∈ Rm, let us W := diag(w) denote the m×m size diagonal matrix.

• For a full rank matrix A ∈ Rn×m, we define

f(w) := log det(A⊤WA).

Then, for any w ∈ Rm
>0, we have

∇f(w) = W−1σ(W 1/2A).

Proof. We have that for all i ∈ [m]

df(w)

dwi
= tr[(A⊤WA)−1 d

dwi
(A⊤WA)]

= tr[(A⊤WA)−1A⊤eie
⊤
i A]

= tr[e⊤i A(A⊤WA)−1A⊤ei]

= e⊤i A(A⊤WA)−1A⊤ei

= e⊤i W
−1/2W 1/2A(A⊤WA)−1A⊤W 1/2W−1/2ei

= w−1
i σ(W 1/2A)i

= (w−1 ◦ σ(W 1/2A))i

= (W−1σ(W 1/2A))i,

where the first step follows from Fact C.2, the second step follows from W is a diagonal matrix
and dW

dwi
= eie

⊤
i , the third step follows from the cyclic property of trace (tr[ABC] = tr[CAB]),

the fourth step follows from basic algebra, the fifth step follows from basic algebra, the sixth step
follows from the definition of σ(W 1/2A), the seventh step follows from the Hadamard product, and
the last step follows from Fact C.1.

Therefore, we have

∇f(w) = W−1σ(W 1/2A).

D.8 POTENTIAL FUNCTION DERIVATIVE

Lemma D.16 (Potential Function Derivative, Lemma 50 in page 48 in (Lee & Sidford, 2019)). If
the following conditions hold:

• Let A ∈ Rm×n be a non-degenerate matrix.

• Let A∗,i denote the i-th column of A for all i ∈ [n].

• Let q > 0 with q ̸= 2.

• Define Ax := S−1
x A.

• Sx := diag(Ax− b).

• Let ui = (1/2− 1/q)(ei ◦ w−1).

• For all x ∈ Rn with Ax > b and all w ∈ Rm
>0, let p(x,w) := log det(A⊤

x W
1−2/qAx).

• Define cq := 1− 2
q .
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• Let Bx = W 1/2−1/qAx.

• σx,w := σ(Bx).

• Σx,w := Σ(Bx).

• Λx,w := Λ(Bx).

• We recall the preliminary that P ◦2 := P ◦ P .

• We recall the preliminary that P (A) := A(A⊤A)−1A⊤.

• We recall the preliminary that Λ(A) := Σ(A)− P ◦2(A).

Then we have

• Part 1. dAx
dxi

= A∗,i.

• Part 2. dSx

dxi
= diag(A∗,i).

• Part 3. dS−1
x

dxi
= −S−1

x diag(Ax,∗,i).

• Part 4. dAx

dxi
= −diag(Ax,∗,i)Ax.

• Part 5 dAx,∗,j
dxi

= − diag(Ax,∗,i)Ax,∗,j .

• Part 6 dBx

dxi
= −diag(Ax,∗,i)Bx.

• Part 7 dBx

dwi
= diag(ui)Bx.

• Part 8. dB⊤
x Bx

dxi
= −2B⊤

x diag(Ax,∗,i)Bx.

• Part 9 dB⊤
x Bx

dwi
= 2B⊤

x diag(ui)Bx.

• Part 10. d(B⊤
x Bx)

−1

dxi
= 2(B⊤

x Bx)
−1B⊤

x diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1.

• Part 11 d(B⊤
x Bx)

−1

dwi
= −2(B⊤

x Bx)
−1(B⊤

x diag(ui)Bx)(B
⊤
x Bx)

−1.

• Part 12 dP (Bx)
dxi

= − diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx) −
P (Bx) diag(Ax,∗,i).

• Part 13 dP (Bx)
dwi

= diag(ui)P (Bx)− 2P (Bx) diag(ui)P (Bx) + P (Bx) diag(ui).

• Part 14 dσx,w

dxi
= −2Λx,wAx,∗,i.

• Part 15. dσx,w

dwi
= 2Λx,wui.

• Part 16. ∇xp(x,w) = −2A⊤
x σx,w.

• Part 17. ∇wp(x,w) = cqW
−1σx,w.

• Part 18. ∇2
xxp(x,w) = A⊤

x (2Σx,w + 4Λx,w)Ax.

• Part 19. ∇2
wwp(x,w) = −cqW−1(Σx,w − cqΛx,w)W

−1.

• Part 20. ∇2
xwp(x,w) = −2cqA⊤

x σx,wW
−1.

• Part 21. dσx,w

dq = Λ((1− 2/q)W−1 dw
dq + 2

q2 logw).
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Proof. Proof of Part 1.

We can show

dAx

dxi︸ ︷︷ ︸
m×1

= A︸︷︷︸
m×n

dx

dxi︸︷︷︸
n×1

= A︸︷︷︸
m×n

ei︸︷︷︸
n×1

= A∗,i,

where the first step follows from the irrelevance between A and x, the second step follows from
basic algebra, and the last step follows from basic algebra.

Proof of Part 2.

We can show

dSx

dxi
=

ddiag(Ax− b)

dxi

=
ddiag(Ax)

dxi

= diag(
dAx

dxi
)

= diag(A∗,i),

where the first step follows from the definition of Sx, the second step follows from the irrelevance
between b and x, the third step follows from the linearity of diag(·), and the last step follows from
Part 1.

Proof of Part 3.

We can show

dS−1
x

dxi
= − S−1

x

dSx

dxi
S−1
x

= − S−2
x

dSx

dxi

= − S−2
x diag(A∗,i)

= − S−1
x diag(Ax,∗,i),

where the first step follows from Fact C.2, the second step follows from the fact that Sx is a diagonal
matrix, the third step follows from Part 2, and the last step follows from Ax = S−1

x A (implies that
(Ax)∗,i = (S−1

x A)∗,i = S−1
x A∗,i).

Proof of Part 4.

We can show

dAx

dxi
=

d(S−1
x A)

dxi

=
dS−1

x

dxi
A

= − S−1
x diag(Ax,∗,i)A

= − diag(Ax,∗,i)S
−1
x A

= − diag(Ax,∗,i)Ax,

where the first step follows from the definition of Ax, the second step follows from the irrelevance
between A and x, the third step follows from Part 3, the fourth step follows from the fact that Sx is
a diagonal matrix, and the last step follows from the definition of Ax.
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Proof of Part 5.

dAx,∗,j

dxi
= (

dAx

dxi
)∗,j

= (−diag(Ax,∗,i)Ax)∗,j

= − diag(Ax,∗,i)Ax,∗,j ,

where the first step follows from selecting the j-th column of the derivative, the second step follows
from Part 4 of the proof, and the last step follows from basic algebra.

Proof of Part 6.

We have

dBx

dxi
=

dW 1/2−1/qAx

dxi

=W 1/2−1/q dAx

dxi

= −W 1/2−1/q diag(Ax,∗,i)Ax

= − diag(Ax,∗,i)Bx,

where the first step follows from the definition of Bx, the second step follows from the irrelevance
between W and xi, the third step follows from Part 4, the last step follows from the commutative
property of the products of diagonal matrices and the definition of Bx.

Proof of Part 7.

We have

dBx

dwi
=

dW 1/2−1/qAx

dwi

= (1/2− 1/q) diag(ei)W
−1/2−1/qAx

= (1/2− 1/q) diag(ei ◦ w−1)Bx

= diag(ui)Bx,

where the first step follows from the definition of Bx, the second step follows from dW
dwi

= diag(ei),
and the third step follows from the definition of Bx, the last step follows from definition of ui.

Proof of Part 8.

We can show

dB⊤
x Bx

dxi
=

dB⊤
x

xi
Bx +B⊤

x

dBx

xi

= −B⊤
x diag(Ax,∗,i)Bx −B⊤

x diag(Ax,∗,i)Bx

= − 2B⊤
x diag(Ax,∗,i)Bx,

where the first step follows from the product rule, the second step follows from Part 6, and the last
step follows from basic algebra.

Proof of Part 9.

We have

dB⊤
x Bx

dwi
=

dB⊤
x

wi
Bx +B⊤

x

dBx

wi

= (diag(ui)Bx)
⊤Bx +B⊤

x diag(ui)Bx

= 2B⊤
x diag(ui)Bx,

where the first step follows from the chain rule for products, the second step follows from Part 7,
and the last step follows from the fact that W and diag(ei) can commute.
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Proof of Part 10.

We can show

d(B⊤
x Bx)

−1

dxi
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

xi
(B⊤

x Bx)
−1

= 2(B⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx(B

⊤
x Bx)

−1,

where the first step follows from dA−1

dt = −A−1 dA
dt A

−1 (Fact C.2), and the last step follows from
Part 8.

Proof of Part 11.

We have

d(B⊤
x Bx)

−1

dwi
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

dwi
(B⊤

x Bx)
−1

= − 2(B⊤
x Bx)

−1(B⊤
x diag(ui)Bx)(B

⊤
x Bx)

−1,

where the first step follows from dA−1

dt = −A−1 dA
dt A

−1 (Fact C.2), the second step follows from
Part 9.

Proof of Part 12.

We have

dP (Bx)

dxi
=

dBx(B
⊤
x Bx)

−1B⊤
x

dxi

=
dBx

dxi
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dxi
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dxi

= − diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx
d(B⊤

x Bx)
−1

dxi
B⊤

x

−Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)

= − diag(Ax,∗,i)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx(2(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx(B

⊤
x Bx)

−1)B⊤
x

−Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)

= − diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx)− P (Bx) diag(Ax,∗,i),

where the first step follows from the definition of P (Bx), the second step follows from the product
rule, the third step follows from Part 6, the fourth step follows from Part 10, and the last step follows
from the definition of P (Bx).

Proof of Part 13

For the convenience of writing proofs, we recall ui = (1/2− 1/p)(ei ◦ w−1).

We have

dP (Bx)

dwi
=

dBx(B
⊤
x Bx)

−1B⊤
x

dwi

=
dBx

dwi
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dwi
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dwi

= diag(ui)Bx(B
⊤
x Bx)

−1B⊤
x

+Bx
d(B⊤

x Bx)
−1

dwi
B⊤

x

+Bx(B
⊤
x Bx)

−1(diag(ui)Bx)
⊤
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= diag(ui)Bx(B
⊤
x Bx)

−1B⊤
x

−Bx(2(B
⊤
x Bx)

−1(B⊤
x diag(ui)Bx)(B

⊤
x Bx)

−1)B⊤
x

+Bx(B
⊤
x Bx)

−1(diag(ui)Bx)
⊤

= diag(ui)P (Bx)

− 2P (Bx) diag(ui)P (Bx)

+ P (Bx) diag(ui),

where the first step follows from the definition of P (Bx), the second step follows from the chain
rule for product, the third step follows from Part 7, the fourth step follows from Part 11, and the last
step follows from the definition of P (Bx).

Proof of Part 14.

We can show that
dσx,w

dxi
=

dDiag(P (Bx))

dxi

= Diag(
dP (Bx)

dxi
)

= Diag(−diag(Ax,∗,i)P (Bx) + 2P (Bx) diag(Ax,∗,i)P (Bx)− P (Bx) diag(Ax,∗,i))

= − 2 diag(Ax,∗,i)σx,w + 2Diag(P (Bx) diag(Ax,∗,i)P (Bx)),

= − 2 diag(Ax,∗,i)σx,w + 2(P (Bx) ◦ P (Bx))Ax,∗,i

= − 2Σx,wAx,∗,i + 2(P (Bx) ◦ P (Bx))Ax,∗,i

= − 2Λx,wAx,∗,i,

where the first step follows from the definition of σx,w, the second step follows from the linearity of
Diag(·), the third step follows from Part 12, the fourth follows from Fact C.1, the fifth step follows
from Fact C.1, the sixth step follows from Fact C.1, and the last step follows from the definition of
Λx,w.

Proof of Part 15.

We have
dσx,w

dwi
=

dDiag(P (Bx))

dwi

= Diag(
dP (Bx)

dwi
)

= Diag(diag(ui)P (Bx)− 2P (Bx) diag(ui)P (Bx) + P (Bx) diag(ui))

= Diag(diag(ui)P (Bx))

− 2Diag(P (Bx) diag(ui)P (Bx))

+ Diag(P (Bx) diag(ui))

= diag(ui)σx,w − 2Diag(P (Bx) diag(ui)P (Bx)) + diag(ui)σx,w

= 2(diag(ui)σx,w −Diag(P (Bx) diag(ui)P (Bx)))

= 2(diag(ui)σx,w − P (Bx) ◦ P (Bx)ui)

= 2(Σx,wui − P (Bx) ◦ P (Bx)ui)

= 2Λx,wui, (11)
where the first step follows from the definition of σx,w, the second step follows from the linearity
of Diag(·), the third step follows from Part 13, the fourth step follows from linearity of Diag(·), the
fifth step follows from Fact C.1, the sixth step follows from basic algebra the seventh step follows
from Fact C.1, the eighth step follows from basic algebra, and the last step follows from the definition
of Λx,w.

Proof of Part 16.

We have
dp(x,w)

dxi
=

d

dxi
log(det(B⊤

x Bx))
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= tr[(B⊤
x Bx)

−1 d

dxi
(B⊤

x Bx)]

= − 2 tr[(B⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)Bx]

= − 2 tr[Bx(B
⊤
x Bx)

−1B⊤
x diag(Ax,∗,i)]

= − 2 tr[diag(σx,w) diag(Ax,∗,i)]

= − 2⟨σx,w, Ax,∗,i⟩
= − 2A⊤

x,∗,iσx,w,

where the first step follows from the definition of p(x,w), the second step follows from Fact C.2, the
third step follows from Part 6, the fourth step follows from the cyclic property of trace, the fifth step
follows the definition of σx,w, the sixth step follows from basic algebra, and the last step follows
from the definition of vector inner product.

Thus,

dp(x,w)

dx
= −2A⊤

x σx,w.

Proof of Part 17.

We have
dp(x,w)

dwi
=

d

dwi
log(det(B⊤

x Bx))

= tr[(B⊤
x Bx)

−1 d

dwi
(B⊤

x Bx)]

= tr[(B⊤
x Bx)

−1((1− 2/q)B⊤
x diag(ei ◦ w−1)Bx)]

= (1− 2/q) tr[(B⊤
x Bx)

−1B⊤
x eie

⊤
i W

−1Bx]

= (1− 2/q) tr[e⊤i W
−1Bx(B

⊤
x Bx)

−1B⊤
x ei]

= (1− 2/q)(W−1Bx(B
⊤
x Bx)

−1B⊤
x )i,i

= (1− 2/q)(W−1Px,w)i,i

= (1− 2/q)w−1
i σx,w,i,

where the first step follows from the definition of Bx, the second step follows from Fact C.2, the
third step follows from Part 9, the fourth step follows from diag(ei) = eie

⊤
i , the fifth step follows

from the cyclic property of the trace, the sixth step follows from basic algebra, the seventh step
follows from the definition of Px,w, and the last step follows from basic algebra.

Therefore,

∇wp(x,w) = (1− 2/q)W−1σx,w.

Proof of Part 18.

We have
d2p(x,w)

dxjdxi
=

d

dxi
(−2e⊤j A⊤

x σx,w)

= − 2e⊤j
d

dxi
(A⊤

x σx,w)

= − 2e⊤j (
dA⊤

x

dxi
σx,w +A⊤

x

dσx,w

dxi
)

= − 2e⊤j (−A⊤
x diag(Ax,∗,i)σx,w +A⊤

x (−2Λx,wAx,∗,i))

= e⊤j (2A
⊤
x diag(Ax,∗,i)σx,w + 4AxΛx,wAx,∗,i)

= e⊤j (2A
⊤
x Σx,wAx,∗,i + 4AxΛx,wAx,∗,i)

= e⊤j (2A
⊤
x Σx,wAx + 4AxΛx,wAx)ei,
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where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from the chain rule for product, the fourth step follows from Part 4 and Part 14, the fifth step
follows from basic algebra, the sixth step follows from diag(a)b = diag(b)a (Fact C.1), and the last
step follows from basic algebra.

Therefore,

∇2
xxp(x,w) = A⊤

x (2Σx,w + 4Λx,w)Ax.

Proof of Part 19.

We have
d2p(x,w)

dwjdwi
=

d

dwi
((1− 2/q)w−1

j σx,w,j)

= (1− 2/q)(
dw−1

j

dwi
σx,w,j + w−1

j

dσx,w,j

dwi
)

= (1− 2/q)(−1[i = j]w−2
j σx,w,j + w−1

j

dσx,w,j

dwi
)

= (1− 2/q)(−1[i = j]w−2
j σx,w,j + w−1

j ((1− 2/q)e⊤j Λx,w(w
−1 ◦ ei)))

= cq(−1[i = j]w−2
j σx,w,j + w−1

j (cqe
⊤
j Λx,w(w

−1 ◦ ei)))

= cq(−e⊤j w−1
i σx,w,iw

−1
i ei + w−1

j (cqe
⊤
j Λx,w(w

−1 ◦ ei)))

= cq(−e⊤j w−1
i σx,w,iw

−1
i ei + (cq(ej ◦ w−1)⊤Λx,w(w

−1 ◦ ei)))
= − cqe

⊤
j W

−1(Σx,w − cqΛx,w)W
−1ei,

where the first step follows from Part 17, the second step follows from the chain rule for the product,

the third step follows from
dw−1

j

dwi
= 1[i = j]w−2

j , the fourth step follows from Part 15, the fifth
step follows from cq = 1 − 2/q, the sixth step follows from 1[i = j] = e⊤j ei, the seventh step
follows from w−1

j e⊤j = (ej ◦w−1)⊤, the eighth step follows from e⊤j aiei = e⊤j diag(a)ei (we treat
w−1

i σx,w,iw
−1
i = ai) and (a ◦ b) = diag(a)b = diag(b)a (Fact C.1).

Therefore,

∇2
wwp(x,w) = −cqW−1(Σx,w − cqΛx,w)W

−1.

Proof of Part 20.

We have

d2p(x,w)

dxjdwi
=

d(−2e⊤j A⊤
x σx,w)

dwi

= − 2e⊤j A
⊤
x

dσx,w

wi

= − 2(1− 2/q)e⊤j A
⊤
x Λx,w(w

−1 ◦ ei)
= − 2(1− 2/q)e⊤j A

⊤
x Λx,wW

−1ei,

where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from Part 15, and the last step follows from a ◦ b = diag(a)b (Fact C.1).

Therefore, by the chain rule

∇xwp(x,w) = −2cqA⊤
x Λx,wW

−1.

Proof of Part 21.

We have
d(W 1/2−1/q)

dq
=

de(1/2−1/q) logW

dq
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=W 1/2−1/q((
d(1/2− 1/q)

dq
) logW + (1/2− 1/q)W−1 dW

dq
)

=W 1/2−1/q(
1

q2
logW + (1/2− 1/q)W−1 dW

dq
), (12)

where the first step follows from a = elog a, the second step follows from the chain rule, and the last
step follows from d(1/q)

dq = −1/q2.

For the convenience of writing proofs, we define a diagonal matrix

U :=
1

q2
logW + (1/2− 1/q)W−1 dW

dq
.

We have

dBx

dq
=

d(W 1/2−1/qAx)

dq

= W 1/2−1/q(
1

q2
logW + (1/2− 1/q)W−1 dW

dq
)Ax

= UBx, (13)

where the first step follows from the definition of Bx, and the second step follows from Eq. (12),
and the last step follows from the definition of U .

We have

dB⊤
x Bx

dq
=

dB⊤
x

dq
·Bx +B⊤

x ·
dBx

dq

= B⊤
x UBx +B⊤

x UBx

= 2B⊤
x UBx, (14)

where the first step follows from the product rule, the second step follows from Eq. (13), and the
third step follows from basic algebra.

We have

d(B⊤
x Bx)

−1

dq
= − (B⊤

x Bx)
−1 d(B

⊤
x Bx)

dq
(B⊤

x Bx)
−1

= − 2(B⊤
x Bx)

−1B⊤
x UBx(B

⊤
x Bx)

−1, (15)

where the first step follows from Fact C.2, the second step follows from Eq. (14).

For notation simplicity, we define P := P (Bx) and Λ := Λx,w.

Then, we have

dP (Bx)

dq
=

dBx(B
⊤
x Bx)

−1B⊤
x

dq

=
dBx

dq
(B⊤

x Bx)
−1B⊤

x +Bx
d(B⊤

x Bx)
−1

dq
B⊤

x +Bx(B
⊤
x Bx)

−1 dB
⊤
x

dq

= UP − 2PUP + PU, (16)

where the first step follows from the definition of P (Bx), the second step follows from the product
rule, and the last step follows from Eq. (13), Eq. (15) and the definition of P (Bx).

We can show

dσx,w

dq
=

dDiag(P )

dq
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= Diag(
dP

dq
)

= Diag(UP − 2PUP + PU)

= Diag(UP )− 2Diag(PUP ) + Diag(PU)

= 2Σu− 2(P ◦ P )u

= 2(Σ− P ◦ P )u

= 2Λu

= Λ((1− 2/q)W−1 dw

dq
+

2

q2
logw),

where the first step follows from the definition of σx,w, the second step follows from the linearity of
Diag(·), the third step follows from Eq. (16), the fourth step follows from the linearity of Diag(·),
the fifth step follows from Fact C.1, the sixth step follows from basic algebra, the seventh step
follows from Λ = Σ− P ◦ P , and the last step follows from the definition of u.

D.9 PROPERTIES OF PROJECTION MATRIX

Lemma D.17 (Projection Matrices, Lemma 47 in page 46 in (Lee & Sidford, 2019)). If the following
conditions hold:

• Let P ∈ Rm×m be an arbitrary orthogonal projection matrix (see Definition C.7).

• Let Σ := P ◦ I ∈ Rm×m.

Then, for all i, j ∈ [m], we have

• Part 1. Σi,i =
∑m

j=1 P
◦2
i,j .

• Part 2. 0 ⪯ P ◦2 ⪯ Σ ⪯ I, (0 ≤ Σi,i ≤ 1).

• Part 3. P ◦2
i,j ≤ Σi,iΣj,j .

• Part 4. ∥Σ−1P ◦2x∥∞ ≤ ∥x∥Σ.

• Part 5. ∥Σ−1P ◦2x∥∞ ≤ ∥x∥∞.

• Part 6.
∑m

i=1 Σi,i = rank[P ].

• Part 7. |y⊤XP ◦2y| ≤ ∥y∥2Σ · ∥x∥Σ.

• Part 8. |y⊤(P ◦ PXP )y| ≤ ∥y∥2Σ · ∥x∥Σ.

Proof. Proof of Part 1.

We have

Σi,i = Pi,i

= e⊤i Pei

= e⊤i PPei

=

m∑
j=1

P 2
i,j

=

m∑
j=1

P ◦2
i,j ,

where the first step follows from Σi,i is a diagonal entry for i ∈ [m], the second step follows from
the property of matrix, the third step follows from P = PP , the fourth step follows from matrix
product, and the last step follows from the definition of P ◦2.
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Proof of Part 2.

We observe that since P is a projection matrix, all its eigenvalues are either 0 or 1. Therefore, Σ ⪯ I .

By part 1, consider the matrix Σ− P ◦2, for i ∈ [m], its diagonal entries are

(Σ− P ◦2)i,i =
∑
j ̸=i

P 2
i,j .

And its off-diagonal entries, for i ̸= j,

(Σ− P ◦2)i,j = −P 2
i,j .

Consequently, we can conclude by Fact C.9 that Σ − P ◦2 ⪰ 0. Rearranging terms and using
Fact C.16 yields Part 2.

Proof of Part 3.

For i, j ∈ [m], we have

P 2
i,j = (

m∑
k=1

Pi,kPk,j)
2

≤ (

m∑
k=1

P 2
i,k)(

m∑
k=1

P 2
k,j)

= Σi,iΣj,j ,

where the first step follows from P = PP , the second step follows from Cauchy-Schwarz, and the
third step follows from Part 1.

Proof of Part 4.

For any index i ∈ [m], we have

|e⊤i P ◦2x|2 = (|
m∑
j=1

P ◦2
i,jxj |)2

≤ (

m∑
j=1

Σj,jx
2
j ) · (

m∑
j=1

P ◦4
i,j

Σj,j
)

≤ (

m∑
j=1

Σj,jx
2
j ) · (

m∑
j=1

P 2
i,jΣi,iΣj,j

Σj,j
)

= (

m∑
j=1

Σj,jx
2
j ) · (Σi,i

m∑
j=1

P 2
i,j)

= (

m∑
j=1

Σj,jx
2
j ) · Σ2

i,i

= (Σi,i∥x∥Σ)2,
where the first step follows from basic algebra, the second step follows from Cauchy-Schwarz, the
third step follows from Part 3, the fourth step follows from basic algebra, the fifth step follows Part
1, and the last step follows from ∥x∥Σ :=

√∑m
j=1 Σj,jx2

j .

Taking the square root of the above equation, we get

|e⊤i P ◦2x| ≤ Σi,i∥x∥Σ.

Proof of Part 5.

We have

|e⊤i P ◦2x| = |
m∑
j=1

P ◦2
i,jxj |
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≤
m∑
j=1

|P ◦2
i,jxj |

=

m∑
j=1

P ◦2
i,j |xj |

≤
m∑
j=1

P ◦2
i,j∥x∥∞

= Σi,i∥x∥∞,

where the first step follows from basic algebra, the second step follows from the triangle inequality,
the third step follows from P ◦2

i,j ≥ 0 for i, j ∈ [m], the fourth step follows from the definition of
∥ · ∥∞, and the last step follows from Part 1.

Proof of Part 6.

We have
m∑
i=1

Σi,i = tr[P ]

= rank[P ],

where the first step follows from Σ = diag(Diag(P )), and the second step holds since all the
eigenvalues of P are either 0 or 1.

Proof of Part 7.

Recall x ∈ Rm and X = diag(x). We have

|y⊤XP ◦2y| = |⟨X⊤y, P ◦2y⟩|

= |
m∑
i=1

(xiyi) · (P ◦2y)i|

= |
m∑
i=1

xiyie
⊤
i P

◦2y|

≤
m∑
i=1

|xi| · |yi| · |e⊤i P ◦2y|

≤
m∑
i=1

|xi| · |yi| · Σi,i · ∥y∥Σ

≤

√√√√ m∑
i=1

Σi,ix2
i

√√√√ m∑
i=1

Σi,iy2i · ∥y∥Σ

= ∥x∥Σ∥y∥Σ∥y∥Σ,
where the first and the second steps follow from basic algebra, the third step follows from selecting
the i-th entry of (P ◦2y) with ei, the fourth step follows from triangle inequality and |abc| = |a| ·
|b| · |c|, the fifth step follows from Part 4, the sixth step follows from Cauchy-Schwarz, and the last
step follows from the definition of ∥x∥Σ.

Proof of Part 8.

We define

a1 :=

m∑
i=1

m∑
j=1

|yi| · |yj | · P 2
i,j ,

a2 :=

m∑
i=1

m∑
j=1

|yi| · |yj | · (PXP )2i,j .

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

We have

|y⊤(P ◦ PXP )y| = |
m∑
i=1

m∑
j=1

yiyj(P ◦ PXP )i,j |

= |
m∑
i=1

m∑
j=1

yiyjPi,j(PXP )i,j |

≤
√
a1 · a2,

where the first step follows from the fact that x⊤Ax =
∑m

i=1

∑m
j=1 xixjAi,j , the second step

follows from the fact that (A ◦B)i,j = Ai,j ·Bi,j , and the last step follows from Cauchy-Schwarz.

Letting |x| and |y| be the vectors whose entries are the absolute values of the entries of x and y
respectively, we have

a1 = ∥|y|∥2P◦2

≤ ∥|y|∥2Σ
= ∥y∥2Σ,

where the first step follows from the definition of ∥|y|||P◦2 , the second step follows from Part 2, and
the third step holds since Σ is diagonal.

We have

a2 =

m∑
i=1

m∑
j=1

|yi| · |yj | · (PXP )2i,j

=

m∑
i=1

m∑
j=1

|yi| · |yj | · (
m∑

k=1

Pi,kPj,kxk)
2

=

m∑
i=1

m∑
j=1

(

m∑
k=1

(Pi,k

√
|yi||xk|)(Pj,k

√
|yj ||xk|))2

≤
m∑
i=1

m∑
j=1

(

m∑
k=1

P 2
i,k|yi||xk|) · (

m∑
k=1

P 2
j,k|yj ||xk|)

= (

m∑
i=1

m∑
k=1

|yi|P 2
i,k|xk|)2

= (|y|⊤P ◦2|x|)2

= ⟨|y|, |x|⟩2P◦2

≤ ∥|y|∥2P◦2∥|x|∥2P◦2

≤ ∥y∥2Σ∥x∥2Σ,

where the first step follows from the definition of a2, the second step follows from basic algebra,
the third step follows from absorbing |yi| · |yj | into (

∑m
k=1 Pi,kPj,kxk)

2, the forth step follows
from Cauchy-Schwartz, the fifth step follows from basic algebra, the sixth step follows from basic
algebra, the seventh step follows from the definition of inner product, the eighth step follows from
Cauchy-Schwartz, and the last step follows from Part 2.

Combining these inequalities then yields the desired bound on |y⊤(P ◦ PXP )y|.
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E LINEAR PROGRAMMING: LEWIS WEIGHT COMPUTATION

In Section E.1, we introduce the volumetric potential. In Section E.2, we show that Lewis weights
are the result of solving a particular convex optimization problem. In Section E.3, we study the
stability of Lewis weight under rescaling. In Section E.4, we study the Lewis weight rounding
properties. In Section E.5, we compute the gradient and Hessian of the volumetric potential. In Sec-
tion E.6, we present an important lemma for Hessian approximation. In Section E.7, compute the
weight function. In Section E.8, we show we can get a multiplicative approximation of wp. In Sec-
tion E.9, we introduce exact weight computation. In Section E.10, we present approximate weight
computation. In Section E.11, we introduce the computation of the leverage score. In Section E.12,
we compute an initial weight. In Section E.13, we introduce the theorem of exact weight computa-
tion. In Section E.14, we provide the theorem of approximate weight computation. In Section E.15,
we introduce a useful theorem for the weight function.

E.1 VOLUMETRIC POTENTIAL

Definition E.1 (Lewis Weight (Lewis, 1978), see Definition 2.2 in page 3 of (Cohen & Peng, 2015)
as an example). For all p > 0 and non-degenerate A ∈ Rm×n, we define the ℓp Lewis weight wp(A)

as the vector w ∈ Rm
>0 such that w = σ(W 1/2−1/pA) where W = diag(w).

Fact E.2. If wp is the Lewis Weight in Definition E.1 that satisfies wp = σ(W
1/2−1/p
p A), then we

have

Wp = Diag(A(A⊤W 1−2/pA)−1A⊤)p/2.

Proof. We have

wp = σ(W 1/2−1/p
p A)

= Diag(W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p).

The above equation implies

1m = Diag(W−1/p
p A⊤(A⊤W 1−2/p

p A)−1AW−1/p
p ).

The above equation is equivalent to

W 2/p
p = Diag(A⊤(A⊤W 1−2/p

p A)−1A).

Thus

Wp = Diag(A(A⊤W 1−2/p
p A)−1A)p/2.

Definition E.3 (Volumetric Potential, Definition 21 in page 20 in (Lee & Sidford, 2019)). For non-
degenerate A ∈ Rm×n and p > 0 with p ̸= 2 we define the volumetric potential as

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA).

E.2 CONVEX FORMULATION OF LEWIS WEIGHTS

Lemma E.4 (Lemma 22 in page 20 in (Lee & Sidford, 2019)). If the following conditions hold:

• We define

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA)

as described in Definition E.3.

• For all w ∈ Rm
>0, define f(w) := − 1

1−2/p log det(A
⊤W 1−2/pA) +

∑m
i=1 wi.

• We recall that the leverage score σ is defined as σ(A) := Diag(A(A⊤A)−1A⊤).
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• Let σw := σ(W 1/2−1/pA) where W := diag(w).

• Suppose all non-degenerate A ∈ Rm×n its ℓp Lewis weights exist and are unique for p > 0.

• Let p ̸= 2.

• Let F1(w) denote the following optimization problem:

min
w∈Rm

>0

VA
p (w) +

m∑
i=1

wi.

• Let F2(w) denote the following optimization problem:

min
w∈Rm

>0:
∑m

i=1 wi=n
VA
p (w).

Then, the following statements are true:

• Part 1. The minimizer of Problem F1(w) is in the interior of its feasible region.

• Part 2. The Lewis Weight wp(A) is the minimizer of Problem F1(w).

• Part 3. Problem F1(w) is strictly convex.

• Part 4. The minimizer of Problem F1(w) is unique.

• Part 5. Problems F1(w) and F2(w) are equivalent.

Proof. Proof of Part 1.

For all w ∈ Rm
>0 if wi > 1 then

df(w)

dwi
= 1− σw,i

wi

≥ 1− 1

wi

> 0,

where the first step follows from Lemma E.9, the second step follows from σw,i ∈ [0, 1] (Part 2 of
Lemma D.17), and the last step follows from wi > 1.

The above derivative computation implies that f(w) is monotonically increasing when wi > 1 (this
is range on the right side of extreme point).

Hence, we have infwi>0 f(w) = inf1>wi>0 f(w).

Case 1. p > 2.

Now if p > 2 and wi ∈ [0, 1] for all i ∈ [m] then since 1− 2/p > 0,

σw,i = σ(W 1/2−1/pA)i

= (W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p)i,i

= w
1−2/p
i (A(A⊤W 1−2/pA)−1A⊤)i,i

≥ w
1−2/p
i (A(A⊤A)−1A⊤)i,i

= w
1−2/p
i σ(A)i, (17)

where the first step follows from the definition of σw, the second step follows from the definition of
σ(W 1/2−1/pA), the third step follows from the fact that W = diag(w) is a diagonal matrix and M
is a square matrix so (WMW )i,i = wiMi,iwi, the fourth step follows from W 1−2/p ⪯ Im (and
then applying Fact C.20), the fifth step follows from the definition of σ(A).
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Since A is non-degenerate, σ(A)i ∈ (0, 1] for all i.

Therefore for any j ∈ [m] with wj < σ(A)
p/2
j , we have

df(w)

dwj
= 1− σw,j

wj

≤ 1− w
−2/p
j σ(A)j

< 0,

where the first step follows from Lemma E.9, the second step follows from Eq. (17), and the last
step follows from wj < σ(A)

p/2
j .

The above derivative computation implies that f(w) is monotonically increasing when wj <

σ(A)
p/2
j (this is range on the left of extreme point).

Consequently, infwi>0 f(w) = inf1>wi≥0 f(w) = inf
1>wi>σ(A)

p/2
i

f(w).

Case 2. p < 2.

Similarly, if p < 2, wi ∈ [0, 1] for all i ∈ [m], and wmin = mini∈[m] wi. Then since 1 − 2/p < 0,
we have W 1−2/p ⪯ w

1−2/p
min Im.

Consequently, by analogous derivation to Eq. (17), we can show

σw,i = σ(W 1/2−1/pA)i

= w
1−2/p
i (A(A⊤W 1−2/pA)−1A⊤)i,i

≥ (wi/wmin)
1−2/p(A(A⊤A)−1A⊤)i,i

= (wi/wmin)
1−2/pσ(A)i,

where the first step follows from the definition of σw, the second step follows from the definition of
σ(W 1/2−1/pA), the third step follows from W 1−2/p ⪯ w

1−2/p
min Im (and then applying Fact C.20),

the fourth step follows from the definition of σ(A).

If j ∈ argmini∈[m] wi, this implies that σw,j ≥ σ(A)j and therefore if wj < σ(A)j we have
df(w)
dwj

< 0.

Therefore, if we let σmin := mini∈[m] σi > 0, we have infwi>0 f(w) = inf1>wi≥σmin f(w).

In either case, since f is continuous, the above reasoning argues that f achieves its minimum on the
interior of the domain.

Proof of Part 2. Therefore, we have that the minimizer of w∗ of f(w) satisfies ∇F1(w∗) = 0. By
Part 1 of Lemma E.9, we further have

−W−1
∗ σw∗ + 1m = 0m.

Therefore, we can conclude that w∗,i = σw,i for all i ∈ [n].

This proves that the minimizer of f(w) exists on w ∈ Rm
>0 and equals to the Lewis weights in

Definition E.1.

Proof of Part 3. Further, for all w > 0,

∇2f(w) =∇2VA
p (w) + 0

⪰ 2

max{p, 2}
·W−1ΣwW

−1

≻ 0,

where the first step follows from relationship between f(w) and Vw
p (w), the second step follows

from Part 3 of Lemma E.9, and the last step follows from Fact C.25 since Σw and W are positive
definite matrices and W is diagonal.
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Therefore f is strictly convex where 1 ≥ wi ≥ min{σi, σ
p/2
i } for all i.

Proof of Part 4. Consequently, the minimizer of F1 is unique and it is the unique point satisfying
∇f(w) = 0 for w ∈ Rn

>0.

Proof of Part 5. Further, since
∑m

i=1 Σw,i,i = rank[A] = n by Part 6 of Lemma D.17, we have∑m
i=1 wp(A)i = n and we have the equivalence of the two objective functions.

E.3 STABILITY OF LEWIS WEIGHTS UNDER RESCALING

Lemma E.5 (Lemma 24 in page 21 in (Lee & Sidford, 2019)). If the following conditions hold:

• For all non-degenerate A ∈ Rm×n.

• Let p > 0 with p ̸= 2.

• Let wp(·) be defined as Definition E.1.

• Let v ∈ Rm, define w(v) := wp(V A) where V := Diag(v).

• We recall that the leverage score σ is defined as σ(A) := Diag(A(A⊤A)−1A⊤).

• We recall that Σ(A) := diag(σ(A)).

• We recall that Λ(A) := Σ(A)− P ◦2(A).

• Define Λv := Λ(W 1/2−1/pV A).

• Define Wv := diag(w(v)).

• For w(v) : Rm → Rm and v ∈ Rm, we use Jw(v) ∈ Rm×n to denote the Jacobian of w
at v, where Jw(v)i,j :=

d
dvj

w(v)i for i ∈ [m], j ∈ [m].

Then, we have

Jw(v) = 2Wv(Wv − (1− 2/p)Λv)
−1ΛvV

−1.

Proof. We define

f(v, w) := − 1

1− 2/p
log det(A⊤VW 1−2/pV A) +

m∑
i=1

wi.

Let us applying Lemma E.4 to the above equation by treating V A as A. Lemma E.4 shows that

w(v) = arg min
w∈Rm

>0

f(v, w)

and that the optimum is in the interior.

Hence, the optimality conditions yield ∇wf(v, w(v)) = 0. Taking the derivative with respect to v
on both sides, we have

∇v∇wf(v, w(v)) = ∇v0.

We further expand the left side of the above equation, then we have

∇2
w,vf(v, w(v)) +∇2

w,wf(v, w(v))Jw(v) = 0.

Therefore, we have that

Jw(v) = −(∇2
w,wf(v, w(v)))

−1∇2
w,vf(v, w(v)). (18)

And we have

∇2
w,wf(v, w) = W−1(Σw − (1− 2/p)Λw)W

−1, (19)
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where the step follows from Part 19 of Lemma D.16. (We remark that in the future, when we use
the above equation, we need to replace f(v, w) by f(v, w(v)), thus all the W and w should be Wv

and w(v))

For∇2
w,vf(v, w(v)), we note that

∇wf(v, w) = −W−1σ(W 1/2−1/pV A),

where the step follows from Part 17 of Lemma D.16.

The Part 15 of Lemma D.16 with q =∞, we can be re-stating as follows

d

wj
σ(W 1/2A) = Λ(w−1 ◦ ej).

Replacing W 1/2 by V , we obtain

d

vj
σ(V A) = 2Λ(v−1 ◦ ej). (20)

Taking derivative with respect to v gives that

∇2
w,vf(v, w)i,j =

d

dvj

df(v, w)

dwi

=
d

dvj
(−w−1

i σ(W 1/2−1/pV A)i)

=
d

dvj
(−(ei ◦ w−1)⊤σ(W 1/2−1/pV A))

= − e⊤i W
−1 d

dvj
σ(W 1/2−1/pV A)

= − e⊤i W
−1 d

dvj
σ(VW 1/2−1/pA)

= − 2e⊤i W
−1Λ(VW 1/2−1/pA) · (v−1 ◦ ej)

= − 2e⊤i W
−1Λ(W 1/2−1/pV A) · (v−1 ◦ ej)

= − 2eiW
−1 · Λ(W 1/2−1/pV A) · V −1ej ,

where the first step follows from basic algebra, the second step follows from Part 17 of Lemma D.16,
the third step follows from Fact C.1, and the fourth steps follow from Fact C.1, the fifth step follows
from the fact that the product between diagonal matrices V and W 1/2−1/p can commute, the sixth
step follows from Eq. (20) (by treating V as W 1/2 and W 1/2−1/pA as A when applying Eq. (20)),
the seventh step follows from the fact that the product between diagonal matrices V and W 1/2−1/p

can commute, and the last step follows from Fact C.1.

Thus, we have

∇2
w,vf(v, w) = −2W−1Λ(W 1/2−1/pV A)V −1. (21)

We can show

Σw = diag(σ(W 1/2−1/pV A))

= diag(w(v))

=Wv, (22)

where the first step follows from Lemma D.16 by treating V A = Ax, the second step follows from
the definition of w(v), and the last step follows from Wv = diag(w(v)).

We can show

Λw = Λ(W 1/2−1/pV A)

= Λv, (23)
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where the first step follows from Lemma D.16 by treating V A = Ax, the second step follows from
the definition of Λv .

We further have

Jw(v) = − (∇2
w,wf(v, w(v)))

−1∇2
w,vf(v, w(v))

= 2Wv(Σw − (1− 2/p)Λw)
−1ΛvV

−1

= 2Wv(Wv − (1− 2/p)Λw)
−1ΛvV

−1

= 2Wv(Wv − (1− 2/p)Λv)
−1ΛvV

−1,

where the first step follows from Eq. (18), the second step follows from Eq. (19) and Eq. (21) (with
reparamertize w by w(v) in f(v, w)), the third step follows from Eq. (22), and the last step follows
from Eq. (23).

Lemma E.6 (Lemma 25 in page 22 in (Lee & Sidford, 2019)). If the following conditions hold:

• Under the setting of Lemma E.5.

• Let wp(·) be defined as Definition E.1.

• Let v ∈ Rm, define w(v) := wp(V A) where V := Diag(v).

• Let v ∈ Rm
>0.

• Let h ∈ Rm.

We have

• Part 1.

∥W−1
v Jw(v)h∥w(v) ≤ p · ∥V −1h∥w(v).

• Part 2.

∥(W−1
v Jw(v)− pV −1)h∥∞ ≤ p ·max{p/2, 1} · ∥V −1h∥w(v).

Proof. Proof of Part 1.

Fixing an arbitrary v ∈ Rm
>0 and h ∈ Rm.

According to the definition of wp(A) (Definition E.1), we know wp(V A) is the unique solution to

w = σ(W 1/2−1/pV A).

Thus, if we define w := wp(V A), then have w = σ(W 1/2−1/pV A).

Since w(v) := wp(V A) (see Lemma statement), we also have w = w(v).

Thus, we can further define Σ notation,

Σ := Σ(W 1/2−1/pV A),

it is obvious that

Σ = diag(σ(W 1/2−1/pV A)) = diag(w) = W = Wv = diag(w(v)). (24)

We further define

• Λ := Λ(W 1/2−1/pV A) (recall that Λ ⪯ Σ)

• Λ := Λ(W 1/2−1/pV A) where Λ = Σ−1/2ΛΣ−1/2

• P ◦2 := P ◦2(W 1/2−1/pV A)

• Q := I − (1− 2/p)Λ
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From Q = I − (1− 2/p)Λ, we can multiply p on both sides, we get

pQ = pI − pΛ + 2Λ,

which is further equivalent to

2Λ− pQ = pΛ− pI. (25)

We have that

Jw(v)h = 2Wv(Wv − (1− 2/p)Λ)−1ΛV −1h

= 2Σ(Σ− (1− 2/p)Λ)−1ΛV −1h

= 2Σ1/2(I − (1− 2/p)Λ)−1Σ−1/2ΛV −1h

= 2Σ1/2Q−1Σ−1/2ΛV −1h

= 2Σ1/2Q−1ΛΣ1/2V −1h

= 2W 1/2Q−1ΛW 1/2V −1h

= 2W 1/2ΛQ−1W 1/2V −1h, (26)

where the first step follows from Lemma E.5, the second step follows from Wv = Σ (Eq. (24)), the
third step follows from Λ = Σ1/2ΛΣ1/2, the fourth step follows from definition of Q, the fifth step
follows from Λ = Σ−1/2ΛΣ−1/2, the sixth step follows from W = Σ (Eq. (24)), and the last step
follows from Q−1Λ = ΛQ−1 (Fact C.26).

Using Fact C.27, we can conclude that Λ(I − (1 − 2/p)Λ)−1 is a matrix whose eigenvalues are of
the form λ/(1− (1− 2/p)λ), where λ represents an arbitrary eigenvalue for Λ.

Thus, we have

∥Q−1Λ∥ = ∥(I − (1− 2/p)Λ)−1Λ∥

≤ max
0≤λ≤1

λ

1− (1− 2/p)λ

=
p

2
, (27)

where the first step follows from the definition of matrix Q, the second step follows from Fact C.17
(for 0 ≤ λ ≤ 1) and Fact C.27 (for the form of eigenvalues), and the last step holds since the
maximum of the function occurs at λ = 1.

Consequently, Part 1 follows from

∥W−1Jw(v)h∥w =
√
h⊤Jw(v)⊤W−1Jw(v)h

= ∥W−1/2Jw(v)h∥2
= 2∥Q−1ΛW 1/2V −1h∥2
≤ 2∥Q−1Λ∥ · ∥W 1/2V −1h∥2
≤ p∥W 1/2V −1h∥2
= p∥V −1h∥w(v),

where the first step follows from the definition of ∥ · ∥w, the second step follows from the definition
of ∥ · ∥2, the third step follows from Eq. (26), the fourth step follows from the property of matrix
spectral norm, the fifth step follows from Eq. (27), and the last step follows from the definition of
∥ · ∥w and w(v) = w (see Eq. (24)).

Proof of Part 2.

Next,

I − Λ = Σ−1/2(Σ− Σ1/2ΛΣ1/2)Σ−1/2

= Σ−1/2(Σ− Λ)Σ−1/2
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= Σ−1/2P ◦2Σ−1/2

= W−1/2P ◦2W−1/2, (28)

where the second step follows from Λ = Σ−1/2ΛΣ−1/2, the third step follows from Λ = Σ− P ◦2,
and the last step follows from Σ = W .

Then we have

(W−1Jw(v)− pV −1)h

= (W−12W 1/2ΛQ−1W 1/2V −1 − pV −1)h

=W−1/2 · (2Λ− pQ)Q−1 ·W 1/2V −1h

=W−1/2 · (pΛ− pI) ·Q−1W 1/2V −1h

= − pW−1P ◦2W−1/2Q−1W 1/2V −1h, (29)

where the first step follows from Eq. (26), the second step follows from Q is invertible, the third step
follows from Eq. (25), and the fourth step follows from Eq. (28).

However, we know that for all x,

∥Σ−1P ◦2x∥∞ ≤ ∥x∥Σ
= ∥Σ1/2x∥2, (30)

where the first step follows from Part 4 of Lemma D.17, the second step follows from the definition
of ∥ · ∥2.

Note that

∥Q−1∥ = ∥(I − (1− 2/p)Λ)−1∥

≤ max
0≤λ≤1

1

1− (1− 2/p)λ

= max{1, p
2
}, (31)

where the first step follows from the definition of Q, the second step follows from Fact C.17 (for
0 ≤ λ ≤ 1) and Fact C.27 (for the form of eigenvalues), and the last step follows from computing
the maximum value.

And therefore

∥(W−1Jw(v)− pV −1)h∥∞ = ∥pW−1P ◦2W−1/2Q−1W 1/2V −1h∥∞
= p · ∥W−1P ◦2W−1/2Q−1W 1/2V −1h∥∞
≤ p · ∥W 1/2W−1/2Q−1W 1/2V −1h∥2
= p · ∥Q−1W 1/2V −1h∥2
≤ p · ∥Q−1∥ · ∥W 1/2V −1h∥2
≤ p ·max{1, p

2
} · ∥W 1/2V −1h∥2

≤ p ·max{1, p
2
} · ∥V −1h∥w,

where the first step follows from Eq. (29), the second step follows from the linearity of the norm,
the third step follows from Eq. (30), the fourth step follows from W 1/2W−1/2 = I , the fifth step
follows from property of the matrix spectral norm, the sixth step follows from Eq. (31), and the last
step follows from the definition of ∥ · ∥w.

Thus, we complete the proof.

E.4 LEWIS WEIGHT ROUNDING PROPERTIES

Lemma E.7 (Lemma 28 in page 24 in (Lee & Sidford, 2019)). If the following conditions hold:
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• Let A ∈ Rm×n, p > 0.

• Define w := wp(A).

• Define α := 2/p− 2/r.

• Let r ≥ p.

• Let gα := (1 + α)(1 + 1/α)α.

We have

A⊤W 1−2/rA ⪯ A⊤W 1−2/pA ⪯ gα ·mα ·A⊤W 1−2/rA.

Proof. We have

A⊤W 1−2/rA ⪯ A⊤W 1−2/pA,

where the step holds since r ≥ p and wi ∈ (0, 1] for all i ∈ [m] we have that w1−2/r
i ≤ w

1−2/p
i for

all i ∈ [m].

To prove the other direction, let ϵ ∈ (0, 1) be a positive real number.

Let Iw≤ ϵ
m
∈ Rm×m be the diagonal matrix where Iϵ,i,i = 1 if wi >

ϵ
m and Iϵ,i,i = 0 otherwise.

Let Iw> ϵ
m

:= I − Iw≤ ϵ
m

.

Using Fact C.21, we have

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A, (32)

Since r ≥ p > 0 and w ∈ Rm
>0, we have (mϵ )

−2/pW−2/p ⪯ (mϵ )
−2/rW−2/r, which further implies

that

(
m

ϵ
)−2/pA⊤W 1−2/pIw> ϵ

m
A ⪯ (

m

ϵ
)−2/rA⊤W 1−2/rIw> ϵ

m
A.

Thus, multiplying (m/ϵ)2/p on the both sides of the above equation, we have

A⊤W 1−2/pIw> ϵ
m
A ⪯ (

m

ϵ
)2/p−2/rA⊤W 1− 2

r Iw> ϵ
m
A. (33)

Combining Eq. (32) and Eq. (33), we can obtain that

A⊤W 1−2/pA ⪯ 1

1− ϵ
A⊤W 1−2/pIw> ϵ

m
A

⪯ 1

1− ϵ
(
m

ϵ
)2/p−2/rA⊤W 1−2/rA

=
1

1− ϵ
(
m

ϵ
)αA⊤W 1−2/rA

=
(1 + α)1+α

αα
mαA⊤W 1−2/rA

= gα ·mα ·A⊤W 1−2/rA,

where the first step follows from Eq. (32), the second step follows from Eq. (33), the third step
follows from α = 2/p − 2/r, the fourth step follows from choosing ϵ = α

1+α to be the minimizer
of function f(ϵ) = 1

(1−ϵ)ϵα (see Fact C.12), and the last step follows from the definition of gα and
basic algebra.

Lemma E.8 (Lemma 26 in page 23 in (Lee & Sidford, 2019)). If the following conditions hold:
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• Let A ∈ Rm×n be a non-degenerate matrix.

• Define w := wp(A) for 0 < p < r.

• Define α := 2/p− 2/r.

• Let gα := (1 + α)(1 + 1/α)α.

• Define cp,r,m := (gα)
1

1+α ·m
α

1+α .

Then we have

σ(W 1/2−1/rA)iw
−1
i ≤ cp,r,m ≤ 2m

α
1+α .

Proof. We have

A⊤W 1−2/rA ⪰ (gαm
α)−1 ·A⊤W 1−2/pA,

where the step follows from Lemma E.7.

Taking the inverse of the above equation on both sides, we get

(A⊤W 1−2/rA)−1 ⪯ (gαm
α) · (A⊤W 1−2/pA)−1.

For all i ∈ [m] it follows that

e⊤i A(A⊤W 1−2/rA)−1A⊤eiw
−2/r
i

≤ (gαm
α) · e⊤i A(A⊤W 1−2/pA)−1A⊤eiw

−2/r
i

= (gαm
α) · e⊤i w

2/p−1
i w

1/2−1/p
i A(A⊤W 1−2/pA)−1A⊤w

1/2−1/p
i eiw

−2/r
i

= (gαm
α) · w2/p−1

i σi(W
1/2−1/pA)w

−2/r
i

= (gαm
α) · w2/p−1

i · wi · w−2/r
i

= (gαm
α) · wα

i , (34)

where the first step follows from multiplying e⊤i · eiw
−2/r
i on both sides of previous equation, the

second step follows from w
2/p−1
i w

1/2−1/p
i w

1/2−1/p
i = 1, the third step follows from Fact C.31, the

fourth step follows from w = σ(W 1/2−1/pA), and the last step follows definition of α = 2/p−2/r.

For any fixed index i ∈ [m],

A⊤W 1− 2
rA =

m∑
j=1

w
1− 2

r
j A⊤eje

⊤
j A

⪰ w
1− 2

r
i A⊤eie

⊤
i A, (35)

where the first step follows from
∑m

j=1 w
1−2/r
j eje

⊤
j = W 1−2/r (see Fact C.1), the second step

follows from w
1− 2

r
j A⊤eje

⊤
j A is positive semidefinite for j ∈ [m].

Thus, we have

w
1− 2

r
i e⊤i A(A⊤W 1− 2

rA)−1A⊤ei = (W 1/2−1/rA(A⊤W 1− 2
rA)−1W 1/2−1/rA⊤)i,i

= σi(W
1/2−1/rA)

≤ 1,

where the first step follows from Fact C.8, the second step follows from the definition of leverage
score σ(·), and the last step follows from Part 2 of Lemma D.17.

Therefore, for i ∈ [m],

e⊤i A(A⊤W 1− 2
rA)−1A⊤eiw

− 2
r

i ≤ w−1
i , (36)
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For i ∈ [m], we have

σ(W 1/2−1/rA)iw
−1
i = e⊤i A(A⊤W 1−2/rA)−1A⊤eiw

−2/r
i

≤ min{gαmαwα
i , w

−1
i }

≤ (gαm
α)

1
1+α

= cp,r,m, (37)

where the first step follows from definition of σ(W 1/2−1/rA) and basic algebra, the second step
follows from combining Eq. (34) and Eq. (36), the third step follows from Fact C.11, and the last
step follows from the definition of cp,r,m.

The fact that if we let

f(α) := (gα)
1

1+α = (1 + α)
1

1+α (1 +
1

α
)

α
1+α ,

then for all α ≥ 0,

log f(α) =
log(1 + α)

1 + α
+

α · log(1 + (1/α))

1 + α

≤ log(
1 + α

1 + α
+

α · (1 + (1/α))

1 + α
)

= log 2,

where the first step follows from basic algebra, the second step follows from the concavity of log
(γf(a) + (1 − γ)f(b) ≤ f(γa + (1 − γ)b) for any concave function f ), and the last step follows
from basic algebra.

Therefore, we have

cp,r,m ≤ 2m
α

1+α ,

where the step follows from Eq. (37) and f(α) ≤ 2.

E.5 GRADIENT AND HESSIAN OF VOLUMETRIC POTENTIAL

Lemma E.9 (Gradient and Hessian of Volumetric Potential, Lemma 24 in page 20 in (Lee & Sidford,
2019)). If the following conditions hold:

• For all non-degenerate A ∈ Rm×n.

• Let w ∈ Rm
>0.

• Let p > 0 with p ̸= 2.

• Define W := diag(w) ∈ Rm×m.

• Define σw := σ(W 1/2−1/pA).

• Define Σw := Σ(W 1/2−1/pA).

• Define Λw := Λ(W 1/2−1/pA).

• Define

VA
p (w) := − 1

1− 2/p
log det(A⊤W 1−2/pA).

Then, we have

• Part 1.

∇VA
p (w) = −W−1σw.
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• Part 2.

∇2VA
p (w) =W−1(Σw − (1− 2/p)Λw)W

−1.

• Part 3. VA
p is convex in w and

2

max{p, 2}
·W−1ΣwW

−1 ⪯ ∇2VA
p (w) ⪯ 2

min{p, 2}
·W−1ΣwW

−1.

Proof. Proof of Part 1.

The formula for ∇VA
p (w) follow from Part 17 of Lemma D.16.

Proof of Part 2.

The formula for ∇2VA
p (w) follow from Part 19 of Lemma D.16.

Proof of Part 3.

Recall that Λ := Σ− P ◦2.

We have 0 ⪯ Λw ⪯ Σw by Part 2 of Lemma D.17.

If p < 2 then (1− 2/p) < 0, then we have

Σw − (1− 2/p)Λw ⪰ Σw.

where the first step follows Λw ⪰ 0.

And, we also have

Σw − (1− 2/p)Λw ⪯ Σw − (1− 2/p)Σw =
2

p
Σw,

where the first step follows Λw ⪯ Σw.

Applying the Fact C.25 to above two equations, then we have

W−1ΣwW
−1 ⪯ ∇2VA

p (w) ⪯ 2

p
W−1ΣwW

−1.

If p > 2 then (1− 2/p) > 0, then we have

Σw − (1− 2/p)Λw ⪰
2

p
Σw,

where the first step follows from Σw ⪰ Λw.

Then we also can show

Σw − (1− 2/p)Λw ⪯ Σw,

where the first step follows from Λw ⪰ 0.

Applying the Fact C.25 to above two equations, then we have

2

p
W−1ΣwW

−1 ⪯ ∇2VA
p (w) ⪯W−1ΣwW

−1.

Thus, we complete the proof.

E.6 HESSIAN APPROXIMATION

Fact E.10. If the following conditions hold:

• Define ϵ ∈ (0, 1).

• Define f(p) := ( 1+ϵ
1−ϵ )

|1−2/p|.
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• For all i ∈ [m], we assume that vi, wi > 0.

• For all i ∈ [m], let (1− ϵ)vi ≤ wi ≤ (1 + ϵ)vi.

Then we have

Σ(W 1/2−1/pA) ∈ [f(p), f(p)−1] · Σ(V 1/2−1/pA).

Proof. For i ∈ [m], We have

Σ(W 1/2−1/pA)i,i = (W 1/2−1/pA(A⊤W 1−2/pA)−1A⊤W 1/2−1/p)i,i

≤ (1 + ϵ)|1−2/p|(V 1/2−1/pA(A⊤W 1−2/pA)−1A⊤V 1/2−1/p)i,i

≤ (1 + ϵ)|1−2/p|

(1− ϵ)|1−2/p| (V
1/2−1/pA(A⊤W 1−2/pA)−1A⊤V 1/2−1/p)i,i

≤ f(p)(V 1/2−1/pA(A⊤V 1−2/pA)−1A⊤V 1/2−1/p)i,i

= f(p)Σ(V 1/2−1/pA)i,i,

where the first step follows from the definition of Σ(W 1/2−1/pA), the second step follows from
(1 − ϵ)vi ≤ wi ≤ (1 + ϵ)vi for i ∈ [m], the third step follows from Fact C.20, the fourth step
follows from the definition of f(p), and the last step follows from the definition of Σ(V 1/2−1/pA).

Similarly, we can show

Σ(W 1/2−1/pA)i,i ≥ f(p)−1Σ(V 1/2−1/pA)i,i.

Thus, the proof is complete.

Lemma E.11 (Hessian Approximation, Lemma 53 in page 50 in (Lee & Sidford, 2019)). If the
following conditions hold:

• Denote the optimal point of Lewis weight as wp.

• Define ϵ := p
8(p+2) . (it implies that ϵ ∈ (0, 0.125)).

• Let w ∈ Rm
≥0 satisfies ∥W−1(wp − w)∥∞ ≤ ϵ for the matrix W := diag(w).

• Define V := diag(wp).

Then, we have

min{1/2, 1/p}W−1 ⪯ ∇2VA
p (w) ⪯ max{2, 4/p}W−1.

Proof. Since we V := diag(wp), then it is obvious that V = Σ(V 1/2−1/pA).

For i ∈ [m], we have

(1− ϵ)wp,i ≤ wi ≤ (1 + ϵ)wp,i,

where the step follows from ∥W−1(wp − w)∥∞ ≤ ϵ (it implies |wp,i−wi

wi
| ≤ ϵ).

By definition of V = diag(wp) in lemma statement, we have

(1− ϵ)vi ≤ wi ≤ (1 + ϵ)vi, (38)

where ϵ ∈ (0, 0.2) (see condition in Lemma statement).

We define

f(p) :=
(1 + p

8(p+2) )
|1−2/p|

(1− p
8(p+2) )

|1−2/p| .

Using Fact C.10, we know that f(p) ≥ 1.
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Then, we have

Σw = Σ(W 1/2−1/pA)

⪯ f(p)Σ(V 1/2−1/pA)

= f(p)V

⪯ V

⪯ 2W,

where the first step follows from the definition of Σw, the second step follows from Eq. (38) and
Fact E.10, the third step follows from V = Σ(V 1/2−1/pA), the fourth step follows from Fact C.10
(it gives f(p) ≤ 1), and the last step follows from Eq. (38).

And

Σw = Σ(W 1/2−1/pA)

⪰ f(p)−1Σ(V 1/2−1/pA)

= f(p)−1V

⪰ V

⪰ 0.5W,

where the first step follows from the definition of Σw, the second step follows from Eq. (38), the third
step follows from V = Σ(V 1/2−1/pA), the fourth step follows from Fact C.10 (it gives f(p) ≤ 1),
and the last step follows from Eq. (38).

Then the result follows from Lemma E.9.

E.7 COMPUTE THE WEIGHT FUNCTION

Lemma E.12 (Lemma 54 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define r := p
20(p+2) .

• Let w(0) ∈ Rm
>0 such that ∥W (0)

−1
(wp − w(0))∥∞ ≤ r.

• Let w(0) satisfy that ⟨w(0),1m⟩ = n.

• Use MEDIAN(x, y, z)i to denote the median of xi, yi and zi for all i ∈ [m].

• Define L := max{4, 8/p}.

• For all k ≥ 0,

w(k + 1) := MEDIAN((1− r)w(0), w(k)− 1

L
(w(0)− w(0)

w(k)
σ(W (k)1/2−1/pA)), (1 + r)w(0)).

Then, for all k, we have

∥w(k)− wp∥W−1
p
≤ 2
√
n · (1− 1

16(p/2 + 2/p)
)k/2∥W (0)

−1
(wp − w(0))∥∞.

Proof. We define

Q := {w ∈ Rm : ∥W (0)
−1

(w − w(0))∥∞ ≤ r}.

Recall Theorem C.32, we have the following iterative step for an arbitrary positive definite matrix
H:

w(k + 1) = arg min
w∈Q
∇f(w(k))⊤(w − w(k)) +

L

2
∥w − w(k)∥2H . (39)

We consider the optimization problem minwi>0 VA
p (w) +

∑m
i=1 wi.
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Using Part 1 of Lemma E.9, we know ∇VA
p (w) = −W−1σ.

It is obvious that we should choose H = W (0)−1 when applying Theorem C.32.

Thus, let f(w) = VA
p (w) +

∑m
i=1 wi, we have ∇f(w) = −W−1σ + 1m.

We use 1m ∈ Rm to denote the vector whose all entries are 1.

We define

a := 1m − w(k)−1 ◦ σ(W (k)1/2−1/pA).

It is easy to see that

⟨∇f(w(k)), w − w(k)⟩
= ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w − w(k)⟩
= ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w⟩ − ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w(k)⟩
= ⟨a,w⟩ − ⟨1m − w(k)−1 ◦ σ(W (k)1/2−1/pA), w(k)⟩.

Because the second term in above equation does not depend on w. Thus taking the argmin of the
both side, we have

argmin
w
⟨∇f(w(k)), w − w(k)⟩ = argmin

w
⟨a,w⟩.

Then, we have

w(k + 1) = arg min
w∈Q
⟨a,w⟩+ L

2
∥w − w(k)∥2

W (0)−1

= arg min
w∈Q
⟨a,w⟩+ L

2
⟨w,W (0)

−1
w⟩ − L⟨w,W (0)

−1
w(k)⟩+ L

2
⟨w(k),W (0)

−1
w(k)⟩

= arg min
w∈Q
⟨a,w⟩+ L

2
⟨w,W (0)

−1
w⟩ − L⟨w,W (0)

−1
w(k)⟩

= arg min
w∈Q

L

2
⟨w,W (0)

−1
w⟩ − L⟨W (0)

−1
w(k)− a

L
,w⟩

= arg min
w∈Q
∥w −W (0)(W (0)

−1
w(k)− a

L
1m)∥2

W (0)−1

= arg min
w∈Q
∥w − w(k) +

1

L
(w(0)− w(0)

w(k)
σ(W (k)1/2−1/pA))∥2

W (0)−1 ,

where the first step follows from the previous equation and Eq. (39), the second step follows from
expanding the inner product, the third step follows from the fact that the last term is constant with
respect to w, the fourth step follows from basic algebra, the fifth step follows from Fact C.33 (by
treating B = W (0)−1 and b = W (0)−1w(k)− a

L1m), and the last step follows from the definition
of a.

We have

∇2V(w) ⪯ max{2, 4
p
}W−1

⪯ max{4, 8
p
}W (0)−1, (40)

where the first step follows from Lemma E.11, the second step follows from that wi = (1±0.2)wp,i

and wp,i = (1± 0.2)w(0)i.

And

∇2V(w) ⪰ min{1/2, 1/p}W−1

⪰ min{1
4
,
1

2p
}W (0)−1, (41)
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where the first step follows from Lemma E.11, the second step follows from that wi = (1±0.2)wp,i

and wp,i = (1± 0.2)w(0)i)

Then we have

min{1
4
,
1

2p
}W (0)

−1 ⪯ ∇2V(w) ⪯ max{4, 8
p
}W (0)

−1
,

where the step follows from Eq. (40) and Eq. (41).

Hence, we have

∥w(k)− wp∥2W (0)−1 ≤ (1− min{1/4, 1/(2p)}
max{4, 8/p}

)k∥w(0)− wp∥2W (0)−1

≤ (1− 1

16(p/2 + 2/p)
)k∥w(0)− wp∥2W (0)−1 , (42)

where the first step follows from Theorem C.32, the second step follows from Fact C.15.

∥w(0)− wp∥2W (0)−1 = (w(0)− wp)
⊤W (0)

−1
(w(0)− wp)

=

m∑
i=1

(w(0)− wp)
2
i

w(0)i

=

m∑
i=1

w(0)i(
(w(0)− wp)i

w(0)i
)2

≤
m∑
i=1

w(0)i∥W (0)
−1

(wp − w(0))∥2∞

≤ 2n∥W (0)
−1

(wp − w(0))∥2∞, (43)

where the first step follows from the definition of ∥ · ∥W , the second step follows from W (0) is
diagonal matrix, the third step follows from multiplying and dividing same factor, the fourth step
follows from the definition of ∥ · ∥∞, and the last step follows from

∑m
i=1 wi(0) = n (see Lemma

statement).

Combining Eq. (42) and Eq. (43) gives

∥w(k)− wp∥2W−1
p
≤ 4n · (1− 1

16(p/2 + 2/p)
)k∥W (0)

−1
(wp − w(0))∥2∞.

Thus, taking the square root of both sides completes the proof.

E.8 MULTIPLICATIVE APPROXIMATION OF wp

Lemma E.13 (Lemma 55 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:

• Given w ∈ Rm such that ∥W−1
p (wp − w)∥∞ ≤ p

8(p+2) .

• Let β := 4(1 + 2/p)2
√
n denote a local variable only be used in this lemma.

• Given w ∈ Rm such that ∥w − wp∥W−1
p
≤ 0.1/β.

• Let δ := ∥w − wp∥W−1
p

.

• Let ŵ := (Diag(A(A⊤W 1−2/pA)−1A⊤))2/p.

• Let wp be defined as wp := (Diag(A(A⊤W
1−2/p
p A)−1A⊤))2/p.

• Let θ := 2 · |1− 2/p| ·
√
n.
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Then, we have

∥W−1
p (ŵ − wp)∥∞ ≤ β · ∥w − wp∥W−1

p
.

Proof. To show ŵ is multiplicative close to wp (i.e., ŵi = (1 ± 0.1)wp,i), it suffices to prove that
A⊤W

1−2/p
p A is multiplicatively close to A⊤W 1−2/pA.

Firstly, to simplify computation, we define

α := tr[(A⊤W 1−2/p
p A)−1(A⊤|W 1−2/p −W 1−2/p

p |A)].

Using Fact C.24, then we have

A⊤W 1−2/pA ∈ [(1− α), (1 + α)] ·A⊤W 1−2/p
p A. (44)

Taking the inverse of the above equation

(A⊤W 1−2/pA)−1 ∈ [(1 + α)−1, (1− α)−1] · (A⊤W 1−2/p
p A)−1.

Multiplying e⊤i A ·A⊤ei, we have

(A(A⊤W 1−2/pA)−1A⊤)i.i ∈ [(1 + α)−1, (1− α)−1](A(A⊤W 1−2/p
p A)−1A⊤)i,i.

Taking the power of 2/p on both sides

(A(A⊤W 1−2/pA)−1A⊤)
2/p
i,i ∈ [(1 + α)−2/p, (1− α)−2/p](A(A⊤W 1−2/p

p A)−1A⊤)
2/p
i,i .

Re-organizing the above equation, we get

(A(A⊤W 1−2/pA)−1A⊤)
2/p
i,i

(A(A⊤W
1−2/p
p A)−1A⊤)

2/p
i,i

∈ [(1 + α)−2/p, (1− α)−2/p]. (45)

Next, we can rewrite α as follows:

α = tr[(A⊤W 1−2/p
p A)−1(A⊤|W 1−2/p −W 1−2/p

p |A)]

= tr[(A⊤W 1−2/p
p A)−1A⊤ ·W 1/2−1/pW−1+2/p · |W 1−2/p −W 1−2/p

p | ·W 1/2−1/p ·A]

= tr[W 1/2−1/p
p A(A⊤W 1−2/p

p A)−1A⊤W 1/2−1/p
p ·W−1+2/p

p · |W 1−2/p −W 1−2/p
p |]

= tr[P (W 1/2−1/p
p A) ·W−1+2/p

p · |W 1−2/p −W 1−2/p
p |]

=

m∑
i=1

(P (W 1/2−1/p
p A)W−1+2/p

p |W 1−2/p −W 1−2/p
p |)i,i

=

m∑
i=1

P (W
1/2−1/p
p A)i,i

w
1−2/p
p,i

· |w1−2/p
i − w

1−2/p
p,i |

=

m∑
i=1

σ(W
1/2−1/p
p A)i

w
1−2/p
p,i

· |w1−2/p
i − w

1−2/p
p,i |, (46)

where the first step follows from definition of α, the second step follows from WW−1 = I and
W ,Wp are diagonal matrices, the third step follows from trace cyclic property, the fourth step follows
definition of P (W

1/2−1/p
p A), the fifth step follows from the definition of trace, the sixth step follows

from the (P diag(w))i,i = Pi,iwi, and the last step follows from P (X)i,i = σ(X)i for i ∈ [m].

Since ∥W−1
p (wp − w)∥∞ ≤ p

8(p+2) , we have that for all i ∈ [m],

|w1−2/p
i − w

1−2/p
p,i | ≤ 2 · |1− 2/p| · |wi − wp,i

w
2/p
p,i

|, (47)

where the step follows from the mean-value theorem |f(x)− f(y)| ≤ |f ′(x)| · |x− y|.
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Therefore, we obtain

α ≤ 2 · |1− 2/p| ·
m∑
i=1

σ(W
1/2−1/p
p A)i

w
1−2/p
p,i

· |wi − wp,i

w
2/p
p,i

|

≤ 2 · |1− 2/p| · (
m∑
i=1

σ(W
1/2−1/p
p A)2i
wp,i

)1/2 · (
m∑
i=1

(wi − wp,i)
2

wp,i
)1/2

= 2 · |1− 2/p| ·
√
n · δ

= θδ, (48)

where the first step follows from Eq. (46) and Eq. (47), the second step follows from Cauchy-

Schwarz, the third step follows from
∑m

i=1

σ(W 1/2−1/p
p A)2i
wp,i

=
∑m

i=1

w2
p,i

wp,i
= n (since wp is a Lewis

Weight), and definition of δ = ∥w−wp∥−1
Wp

= (
∑m

i=1(wi−wp,i)
2/wp,i)

1/2 (see Lemma Statement),
and the last step follows from definition of θ.

Note that for all δ ≤ (0, 0.1/β] where β = 4(1 + 2/p)2
√
n.

Using Fact C.30, we have

(1− θδ)−2/p ≤ 1 + βδ and (1 + θδ)−2/p ≥ 1− βδ. (49)

Then we have

∥W−1
p (ŵ − wp)∥∞ = max

i∈[m]
|w−1

p,i (ŵi − wp,i)|

= max
i∈[m]

|
(A(A⊤W 1−2/pA)−1A⊤)

2/p
i,i

(A(A⊤W
1−2/p
p A)−1A⊤)

2/p
i,i

− 1|

= max{(1− α)−2/p − 1, 1− (1 + α)−2/p}
≤ max{(1− θδ)−2/p − 1, 1− (1 + θδ)−2/p}
≤ β · δ
= β · ∥w − wp∥W−1

p
,

where the first step follows from the definition of the infinity norm, the second step follows from the
definition of ŵ, the third step follows from Eq. (45), the fourth step follows from Eq. (48), the fifth
step follows from Eq. (49), and the last step follows from the definition of δ.

E.9 EXACT WEIGHT UPDATES

Algorithm 2 Exact weight computation

1: procedure COMPUTEEXACTWEIGHT(A ∈ Rm×n, p ∈ N+, w(0) ∈ Rm
>0, ϵ ∈ (0, 1))

2: T ← ⌈32(p/2 + 2/p) log(8n(1 + 2/p)ϵ−1⌉, r ← p
20(p+2) , L← max{4, 8

p}
3: for k = 1, . . . , T − 1 do
4: w(k+1) ← MEDIAN((1 − r)w(0), w(k) − 1

L (w(0) −
w(0)
w(k)σ(W (k)1/2−1/pA)), (1 +

r)w(0))
5: end for
6: return (Diag(A(A⊤W (T )1−2/pA)−1A⊤))2/p ▷ W (T ) = diag(w(T ))
7: end procedure

The goal of this section is to prove Theorem E.14.
Theorem E.14 (Exact Weight Updates, Theorem 56 in page 52 in (Lee & Sidford, 2019)). If the
following conditions hold:

• Let ϵ ∈ (0, 1).
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• Let w(0) ∈ Rm
>0 with ∥w(0)−1(wp(A)− w(0))∥∞ ≤ p

20(p+2) .

• T = O((p+ 1/p) log(n(1 + 1/p)ϵ−1)).

• ∥W (0)
−1

(wp − w(0))∥∞ ≤ poly(n).

Then we can show

• Part 1. Then the algorithm COMPUTEEXACTWEIGHT(A, p,w(0), ϵ) (Algorithm 2)

– outputs w ∈ Rm
>0 with ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ in T iterations.

– Each iteration involves computing σ(V A) for diagonal matrix V and extra linear time
work and O(1) depth.

Proof. We define δ0 := ∥W (0)
−1

(wp − w(0))∥∞.

Then we have

∥W−1
p (ŵ − wp)∥∞ ≤ 4(1 + 2/p)2

√
n∥w(k)− wp∥W−1

p

≤ 8(1 + 2/p)2n(1− 1

16(p/2 + 2/p)
)k/2δ0,

where the first step follows from Lemma E.13, the second step follows from Lemma E.12

For conveinent of writing proofs, we define

α1 := 8(1 + 2/p)2,

α2 := 16(p/2 + 2/p).

Thus, we need to choose k to make the following happen

α1(1− 1/α2)
k/2δ0 ≤ ϵ/n.

which is equivalent to

(1− 1/α2)
k/2 ≤ ϵ

δ0α1n
,

Note that

(1− 1/α2)
k/2 ≤ e−0.5k/α2 ,

where the first step follows from the fact that 1− x ≤ e−x for x ∈ R.

Thus, as long as we can show

e−0.5k/α2 ≤ ϵ

δ0α1n
,

then we’re done.

We can just choose

k ≥ 2α2 log(δ0α1n/ϵ).

Note that, recall the definition of α1, α2 and δ0 ≤ poly(n), thus we can show the number iterations
T to be

O((p+ 1/p) log(n(1 + 1/p)ϵ−1)).
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Algorithm 3 Approximate weight computation

1: procedure COMPUTEAPXWEIGHT(A ∈ Rm×n, p ∈ (0, 4), w(0) ∈ Rm
>0, ϵ ∈ (0, 2/p − |1 −

2/p|))
2: L← max{4, 8

p}, r ←
p2(4−p)

220 , δ ← (4−p)ϵ
256 .

3: T ← ⌈80(p2 + 2/p) log( pn
32ϵ )⌉.

4: ▷ T is the number of iterations
5: for j = 1, . . . , T − 1 do
6: Compute σ(j) ∈ Rn such that

e−δσ(W (j)
1/2−1/p

A)i ≤ σ(j)i ≤ eδσ(W (j)
1/2−1/p

A)i for all i ∈ [m].

7: w(j + 1) = MEDIAN((1− r)w(0), w(j)− 1
L (w(0)− w(j))σ(j), (1 + r)w(0)).

8: end for
9: return (Diag(A(A⊤W (T )1/2−1/p)−1A⊤))2/p.

10: end procedure

E.10 APPROXIMATE WEIGHT COMPUTATION

In this section, we introduce how to use approximate leverage scores instead of exact leverage
scores in computing gradient. First, we give a lemma showing that the optimality condition
σ(W 1/2−1/pA)i/wi is stable under changes to w.
Lemma E.15 (Lemma 57 in page 53 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let w, v ∈ Rm
>0 with wi = eδivi for |δi| ≤ δ for all i ∈ [m].

Then, for all i ∈ [m],

v−1
i σ(V 1/2−1/pA)i ∈ [e

2
p δi−|1−2/p|δ, e

2
p δi+|1−2/p|δ] · w−1

i σ(W 1/2−1/pA)i.

Proof. We have

v−1
i σ(V 1/2−1/pA)i = v

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

= e
2
p δiw

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

≤ e
2
p δi+|1−2/p|δw

−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai,

where ai is the i-th row of A, the first step follows from the definition of σ(·), the second step fol-
lows from wi = eδivi, the third step follows from (A⊤V 1−2/pA)−1 ⪯ e|1−2/p|δ(A⊤W 1−2/pA)−1

(implied by Fact C.19 and Fact C.20).

For the lower bound,

v−1
i σ(V 1/2−1/pA)i = v

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

= e
2
p δiw

−2/p
i a⊤i (A

⊤V 1−2/pA)−1ai

≥ e
2
p δi−|1−2/p|δw

−2/p
i a⊤i (A

⊤W 1−2/pA)−1ai,

where ai is the i-th row of A, the first step follows from the definition of σ(·), the second step follows
from wi = eδivi, the third step follows from (A⊤V 1−2/pA)−1 ⪰ e−|1−2/p|δ(A⊤W 1−2/pA)−1

(implied by Fact C.19 and Fact C.20).

Theorem E.16 (Approximate Weight Computation, Theorem 58 in page 53 in (Lee & Sidford,
2019)). If the following conditions hold:

• Let p ∈ (0, 4).

• Define r := p2(4−p)
220 .

• Let w(0) ∈ Rm
>0 satisfy ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ r.
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• Let ϵ ∈ (0, 2/p− |1− 2/p|).

• Define L := max{4, 8/p}.

• Define δ := (4−p)ϵ
256 . (it implies δ ∈ (0, 0.1))

Then we have

• Part 1. The algorithm COMPUTEAPXWEIGHT (x,w(0), ϵ) return w

– such that ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ in O(p−1 log(np−1ϵ−1)) steps.
– Each step involves computing σ up to ±Θ((4− p) · ϵ) multiplicative error with some

extra linear time work.

Proof. Consider an execution of COMPUTEAPXWEIGHT(x,w(0), ϵ) where there is no error in com-
puting leverages scores, i.e. σ(j) = σ(W (j)

1/2−1/p
A), and let v(j) denote the w computed during

this idealized execution of COMPUTEAPXWEIGHT.

We will show that w(j) and v(j) are multiplicatively close.

Suppose that for i ∈ [m], wi(j) = eδ
(j)
i v(j)i with |δ(j)i | ≤ δ(j) for some δ(j) ≥ 0.

We use ±δ to denote a real value with magnitude at most δ.

Define v(j + 1), w(j + 1) ∈ Rm
>0 to be v(j + 1) and w(j + 1) before taking the median, i.e.

v(j + 1) := v(j)− 1

L
(w(0)− w(0)

v(j)
e±δσ(V (j)

1/2−1/p
A))

w(j + 1) := w(j)− 1

L
(w(0)− w(0)

w(j)
σ(j)). (50)

We have

w(j + 1)i − v(j + 1)i

= w(j)− v(j) +
w(0)

L
(
e±δσ(W (j)

1/2−1/p
A)

w(j)
− σ(V (j)

1/2−1/p
A)

v(j)
)

= (eδ
(j)
i − 1)v(j)i +

w(0)

L
(
e±δσ(W (j)

1/2−1/p
A)

w(j)
− σ(V (j)

1/2−1/p
A)

v(j)
)

= (eδ
(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1−2/p|δ(j)±δ − 1) · σ(V (j)

1/2−1/p
A)

v(j)
, (51)

where the first step follows from Eq. (50), the second step follows from wi = eδ
(j)
i v(j)i, the third

step follows from Lemma E.15.

Since

∥W (0)
−1

(w(0)− v(j))∥∞ ≤ r

will imply that w(0) = e±1.5rv(j) (see Fact C.6) and that

∥W (0)
−1

(w(0)− wp(A))∥∞ ≤ r

will imply that w(0) = e±1.5rwp(A) (see Fact C.6).

Combining the above two equations, we get the following

wp(A) = e±3rv(j). (52)

Recall Lemma E.15 for wi = eδivi with |δi| ≤ δ,

v−1
i σ(V 1/2−1/pA)i ∈ [e−(2/p+|1−2/p|)δ, e(2/p+|1−2/p|)δ] · w−1

i σ(W 1/2−1/pA)i. (53)
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Then, rename the variables in Eq. (53) for w = wp(A) and v = v(j) with δ = 3r (due to Eq. (52)),
we have

(v(j)i)
−1σ(V (j)

1/2−1/p
A)i ∈ [e−3(2/p+|1−2/p|)r, e3(2/p+|1−2/p|)r] · w−1

i σ(W 1/2−1/pA)i.

Further, using 2/p+ |1− 2/p| ≤ 1 + 4/p (∀p > 0), the above equation will imply that

(v(j)i)
−1σ(V (j)

1/2−1/p
A)i ∈ [e−3(1+1/p)r, e3(1+4/p)r] · w−1

i σ(W 1/2−1/pA)i. (54)

We have

w(j + 1)i − v(j + 1)i = (eδ
(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1−2/p|δ(j)±δ − 1)e±3(1+4/p)r,

where the step follows from combining Eq. (51) and Eq. (54).

The truncation means, that w is taking the median of w, (1 − r)w(0) and (1 + r)w(0). So if w is
not inside 1 − r and 1 + r range, this can be viewed as a truncation. Since w(j + 1) and v(j + 1)
are just truncation of w(j + 1) and v(j + 1), we have the same bound for w(j + 1)i − v(j + 1)i.

We get that

(eδ
(j+1)
i − 1)vi(j + 1) = (eδ

(j)
i − 1)v(j)i +

w(0)

L
(e−

2
p δ

(j)
i ±|1− 2

p |δ
(j)±δ − 1)e±3(1+4/p)r,

where the step follows from wi(j + 1) = eδ
(j+1)
i vi(j + 1).

Finally,

eδ
(j+1)
i − 1 = e±4r(eδ

(j)
i − 1) +

1

L
(e−

2
p δ

(j)
i ±|1− 2

p |δ
(j)±δ − 1)e±3(2+4/p)r

:= A1 +A2, (55)

where the first step follows from v(j + 1) = e±2rw(0) and v(j) = e±2rw(0), the second step
follows from we define A1 and A2 in that way to simplify the proof.

Due to definition of L, we can show

L = max{4, 8/p} ≥ 2max{1, 4/p} ≥ 1 + 4/p. (56)

Bound A1. We can bound

A1 = e±4r(eδ
(j)
i − 1)

= (eδ
(j)
i − 1)± 8rδ

(j)
i

= δ
(j)
i ± (δ

(j)
i )2 ± 8rδ

(j)
i

= δ
(j)
i ± 2rδ(j) ± 8rδ

(j)
i

= δ
(j)
i ± 10rδ(j), (57)

where the first step follows from the definition of A1, the second step follows from e±x(ey − 1) =
(ey − 1)± 2x|y| (see Fact C.29), the third step follows from ex − 1 = x± x2 (see Fact C.28), the
fourth step follows from δ

(j)
i ≤ δ(j) ≤ 2r, and the last step follows from δ

(j)
i ≤ δ(j).

Bound A2. For the convenience of writing proofs, we first define

y := −2

p
δ
(j)
i ± |1−

2

p
|δ(j) ± δ.

Then, we can show

|y| ≤ (1 + 4/p)δ(j) + δ, (58)

where the step follows from |δ(j)i | ≤ δ(j), δ > 0 and triangle inequality.
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We can bound

y2 ≤ ((1 + 4/p)δ(j) + δ)2

≤ 2((1 + 4/p)δ(j))2 + 2δ2

≤ 2((1 + 4/p)δ(j))2 + δ

≤ 4(1 + 4/p)2rδ(j) + δ, (59)

where the first step follows from Eq. (58), the second step follows from (a + b)2 ≤ 2a2 + 2b2, the
third step follows from δ ∈ (0, 0.1), and the last step follows from δ(j) ≤ 2r.

Then we have

A2 =
1

L
(ey − 1)e±3(2+4/p)r

=
1

L
(ey − 1) +

6

L
(2 + 4/p)r · |y|

:= A2,1 +A2,2,

where the first step follows from the definition of A2, the second step follows from Fact C.29, and
the last step follows from we define A2,1 and A2,2 to simplify the proof.

We have

A2,1 =
1

L
(ey − 1)

=
1

L
(y ± (y)2)

=
1

L
(−2

p
δ
(j)
i ± |1−

2

p
|δ(j) ± 2δ ± 4(1 + 4/p)2rδ(j))

= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 2δ

L
± 4

L
(1 + 4/p)2rδ(j)

= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 2δ

L
± 4(1 + 4/p)rδ(j), (60)

where the first step follows from the definition of A2,1, the second step follows from ex−1 = x±x2

for all x ∈ (0, 0.5) (see Fact C.28), the third step follows from Eq. (59), the fourth step follows from
basic algebra, and the last step follows from L ≥ 1 + 4/p (see Eq. (56)).

We have

A2,2 =
6

L
(2 + 4/p)r|y|

≤ 12

L
(1 + 4/p)r|y|

≤ 12

L
(1 + 4/p)r((1 + 4/p)δ(j) + δ)

=
12

L
(1 + 4/p)r(1 + 4/p)δ(j) +

12

L
(1 + 2/p)rδ

≤ 12(1 + 4/p)rδ(j) +
12

L
(1 + 2/p)rδ

≤ 12(1 + 4/p)rδ(j) +
δ

L
, (61)

where the first step follows from the definition of A2,2, the second step follows from basic algebra,
the third step follows from Eq. (58), the fourth step follows from basic algebra, the fifth step follows
from (1 + 4/p) ≤ L (see Eq. (56)), and the last step follows from 12(1 + 2/p)r ≤ 1.

We have

A2 = A2,1 +A2,2
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= − 2

pL
δ
(j)
i ±

1

L
|1− 2

p
|δ(j) ± 3δ

L
± 20(1 + 4/p)rδ(j), (62)

where the first step follows from the definition of A2,1 and A2,2, and the second step follows from
substituting A2,1 and A2,2 with Eq. (60) and Eq. (61).

We have

eδ
(j+1)
i − 1

= A1 +A2

= δ
(j)
i ± 10rδ(j) +A2

= (1− 2

pL
)δ

(j)
i ±

1

L
|1− 2

p
|δ(j) ± 3δ

L
± 40(1 + 4/p)rδ(j), (63)

where the first step follows from Eq. (55), the second step follows from Eq. (57), the third step
follows from Eq. (62).

For the first two terms in Eq. (63), for i ∈ [m],

|(1− 2

pL
)δ

(j)
i ±

1

L
· |1− 2/p| · δ(j)| ≤ (1− 2

pL
+

1

L
· |1− 2/p|)δ(j), (64)

where the step follows from triangle inequality.

For the last two terms in Eq. (63), we have

| ± 40(1 + 4/p)rδ(j) ± 3δ

L
| ≤ 40(1 + 4/p)rδ(j) +

3δ

L
, (65)

where the step follows from triangle inequality.

We have

δ(j+1) ≤ eδ
(j+1)
i − 1

≤ LHS of Eq. (64) + LHS of Eq. (65)

≤ (1− 2

pL
+

1

L
· |1− 2/p|)δ(j) + 40(1 + 4/p)rδ(j) +

3δ

L

= (1− 1

L
(2/p− |1− 2/p|) + 40(1 + 4/p)r)δ(j) +

3δ

L
, (66)

where the first step follows from x ≤ ex − 1, the second step follows from triangle inequality and
Eq. (63), the third step follows from Eq. (64) and Eq. (65), the fourth step follows from merging the
terms related to δ(j).

We can show that

r · L · (1 + 4/p) = r ·max{4, 8/p}(1 + 4/p)

≤ r · (4 + 8/p)(1 + 4/p)

≤ p2(4− p)

220
· (4 + 8/p)(1 + 4/p)

≤ 1

210
(1− p/4), (67)

where the first step follows from choice of L (see Lemma statement), the second step follows from
max{a, b} ≤ a+ b for a, b ≥ 0, the third step follows from choice of r (see Lemma statement), and
the last step follows from Fact C.14.

We have

40(1 + 4/p)r ≤ 1

2L
· (1− p/4)

≤ 1

2L
· (2/p− |1− 2/p|), (68)
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where the first step follows from Eq. (67), and the second step follows from Fact C.13.

And hence

δ(j+1) ≤ (1− 1

2L
(2/p− |1− 2/p|)︸ ︷︷ ︸

:=α

)δ(j) +
3δ

L︸︷︷︸
:=β

, (69)

where the step follows from Eq. (68) and Eq. (66).

Recursively applying the above equation, we can show

δ(j) ≤ (1− α)δ(j−1) + β

≤ (1− α)2δ(j−2) + (1− α)β + β

≤ · · ·

≤ (1− α)j · δ(0) +
j−1∑
i=0

(1− α)iβ

=

j−1∑
i=0

(1− α)iβ

=
1− (1− α)j

α
β

≤ β

α
,

where the first step follows from using Eq. (68) for j, the second step follows using Eq. (68) for
j − 1, the fifth step follows from δ(0) (in that 0-th iteration, we can trivially think v(0) = w(0)), the
sixth step follows geometric sum, and the last step follows from simple algebra.

Using α = 1
2L (2/p− |1− 2/p|) and β = 3δ/L to substitute α and β in the bound above, we further

have

δ(j) ≤ 1
1
2L (2/p− |1− 2/p|)

· 3δ
L

≤ 8δ

2/p− |1− 2/p|

≤ 1

4
ϵ,

where the first step follows from Eq. (69), the second step follows from basic algebra, and the third
step follows from δ = 4

256 · ϵ · (1− p/4) ≤ 1
32 · ϵ · (2/p− |1− 2/p|) (Fact C.13).

Recalling that

k = ⌈80(2/p+ 2)p log(
pn

32ϵ
)⌉,

we have

∥W−1
p (wp − w(k))∥∞ ≤ ∥W−1

p (wp − v(k))∥∞ + ∥W−1
p (v(k)− w(k))∥∞

≤ 4(1 + 2/p)2
√
n · ∥w − wp∥W−1

p
+ 2δ(k)

≤ 4(1 + 2/p)2
√
n · 2
√
n · (1− 1

16(2/p+ 2)
)

k
2 · p

160
+ 2δ(k)

≤ ϵ/2 + 2δ(k)

≤ ϵ,

where the first step follows from triangle inequality, the second step follows from Lemma E.13, the
third step follows from Lemma E.12, the fourth step follows from choice of k, and the last step
follows from δ(k) ≤ ϵ/4.
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E.11 COMPUTE LEVERAGE SCORE

We provide an algorithm and theorem statement below most closely resembling the one from (Spiel-
man & Srivastava, 2008).

Algorithm 4 Compute leverage score

1: procedure COMPUTELEVERAGESCORES(A ∈ Rm×n, ϵ ∈ (0, 1))
2: Let q(j) be k random ±1/

√
k vectors of length m with k = O(log(m)/ϵ2)

3: Compute l(j) ← (A⊤A)−1q(j) and p(j) ← Al(i)

4: return
∑k

j=1(p
(j)
i )2

5: end procedure

Lemma E.17 (Lemma 59 in page 56 in (Lee & Sidford, 2019)). If the following conditions hold:

• For ϵ ∈ (0, 1) with probability at least 1− 1
mO(1) .

The algorithm COMPUTELEVERAGESCORES returns σ(apx) such that for all i ∈ [m], (1 −
ϵ)σ(A)i ≤ σ

(apx)
i ≤ (1 + ϵ)σ(A)i, by solving only O(ϵ−2 logm) linear systems.

E.12 INITIAL WEIGHT

Algorithm 5 Compute initial weight

1: procedure COMPUTEINITIALWEIGHT(A ∈ Rm×n, ptarget ∈ (0, 4), ϵ ∈ (0, 1))
2: p← 2
3: while p ̸= ptarget do
4: Let r be defined as in COMPUTEAPXWEIGHT or COMPUTEEXACTWEIGHT
5: h← min{2,p}√

n log mϵ2

n

· r

6: p(new) ← median(p− h, ptarget, p+ h)

7: Either w ← COMPUTEAPXWEIGHT(p(new), w p(new)

p , r
4 )

8: Or w ← COMPUTEEXACTWEIGHT(p(new), w p(new)

p , r
4 )

9: p← p(new)

10: end while
11: return COMPUTEAPXWEIGHT(ptarget, w, ϵ)
12: end procedure

Lemma E.18 (Lemma 60 in page 57 in (Lee & Sidford, 2019)). If the following conditions hold:

• Let m ≥ n.

• Let q > 0.

• Let w̃q ∈ Rm
>0 denote the vector with w̃q,i = wp(A)

q/p
i for all i ∈ [m].

• Let |p− q| ≤ min{2,p}√
n log(me2/n)

.

Then we have

∥ log(wq(A)

w̃q
)∥∞ ≤ max{1/2, 1/p}

√
n log(

me2

n
).

Proof. For notational convenience, let w := wp(A), W := diag(w) and Λ := Λ(W 1/2−1/pA).

We have
dw

dp
=

dwp(A)

dp
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= 2Λ(
(1/2− 1/p)w−1/2−1/p dw

dp + w1/2−1/p 1
p2 logw

w1/2−1/p
)

= Λ((1− 2/p)W−1 dw

dp
+

2

p2
logw), (70)

where the first step follows from w = wp(A), the second step follows from taking the derivative
with respect to p on both sides and Part 21 of Lemma D.16, and the last step follows from basic
algebra.

We define J := Jw(1m).

Since Eq. (70) is an equation about dw
dp , we can solve for dw

dp and obtain the following:

dw

dp
= 2W (W − (1− 2/p)Λ)−1Λ

logw

p2

= J
logw

p2
, (71)

where the first step follows from Eq. (70), the second step follows from Lemma E.5.

And for all h ∈ Rm,

∥(W−1J − p)h∥∞ ≤ p ·max{p/2, 1} · ∥h∥W , (72)

where the step follows from Lemma E.6.

We have

∥W−1 dwp(A)

dp
− logwp

p
∥∞ = ∥W−1J

logw

p2
− logwp

p
∥∞

≤ p ·max{p/2, 1} · ∥p−2 logw∥W
≤ max{1/2, 1/p} · ∥ logw∥W , (73)

where the first step follows from Eq. (71), the second step follows from Eq. (72) and h = p−2 logw,
and the last step follows from basic algebra.

We define

a1 :=
∑

wi∈(0, 1e ]

wi log
2 wi,

a2 :=
∑

wi∈( 1
e ,1]

wi log
2 wi.

Finally,

∥ logw∥2W =

m∑
i=1

wi log
2 wi

= a1 + a2,

where the first step follows from the definition of ∥ · ∥W , and the second step follows from splitting
the sum.

For the first term,

a1 =
∑

wi∈(0,1/e]

wi log
2 wi

=m · 1
m

∑
wi∈(0,1/e]

wi log
2 wi

=m · 1
m

∑
wi∈(0,1/e]

f(wi)
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≤m · f( 1
m

∑
wi∈(0,1/e]

wi)

≤m · f( n
m
)

≤m · n
m

log2(n/m)

=m · n
m

log2(m/n)

= n log2
m

n
, (74)

where the first step follows from definition of a1, the second step follows from basic algebra, the
third step follows from f(x) := x log2 x, the fourth step follows from that f is concave, the fifth
step follows from

∑
wi∈(0,1/e] wi ≤ n, the sixth step follows from the definition of f , the seventh

step follows from log(1/x) = − log(x), and the last step follows from basic algebra.

For the second term,

a2 ≤
∑

wi∈( 1
e ,1]

wi

≤ n, (75)

where the first step follows from log2 wi ≤ 1 for wi ∈ ( 1e , 1], the second step follows from∑
wi∈[n] wi ≤ n.

Thus, we have

∥ logw∥2W ≤ n log2
m

n
+ n

≤ n log2
em

n
,

where the first step follows from Eq. (74) and Eq. (75), and the second step follows from (x+y)2 ≥
x2 + y2 for x, y ∈ R

We can compute

d

dq
log(w̃q) =

d

dq
(q/p) log(wp(A))

= p−1 log(wp(A))

= q−1(q/p) log(wp(A))

= q−1 log(w̃q).

Thus, for all q, wq := wq(A), and Wq := diag(wq), we have

∥ d
dq

log(wq/w̃q)∥∞ = ∥d log(wq)

dq
− d log(w̃q)

dq
∥∞

= ∥W−1
q

d

dq
wq − q−1 log(w̃q)∥∞

= ∥W−1
q

d

dq
wq − q−1 log(wq) + q−1 log(wq)− q−1 log(w̃q)∥∞

≤ ∥W−1
q

d

dq
wq − q−1 log(wq)∥∞ + ∥q−1 log(wq)− q−1 log(w̃q)∥∞

≤ max{1/2, 1/q}
√
n log(

me

n
) + q−1∥ log(wq/w̃q)∥∞

≤ max{1/2, 1/q}
√
n log(

em

n
) + q−1

≤ max{1/2, 1/q}
√
n log(

me2

n
),
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where the first step follows from basic algebra, the second step follows from computing the deriva-
tive, the third step follows from adding a term and removing the same term, the fourth step fol-
lows from triangle inequality, the fifth step follows from Eq. (73), the sixth step follows from
∥ log(wq/w̃q)∥∞ ≤ 1( the reason is letting δ be the largest number for which q satisfying |p−q| ≤ δ,
it will imply that equation), and the last step follows from q−1 ≤ max{1/2, 1/q}

√
n and merging

the logarithm.

Therefore, it must be the case that

δ ≤ (max{1/2, 1/q}
√
n log(

me2

n
))−1

and the result follows.

E.13 THOEREM OF EXACT WEIGHT COMPUTATION

Theorem E.19 (Exact Weight Computation, Theorem 45 in page 40 in (Lee & Sidford, 2019)). If
the following conditions hold:

• Let A ∈ Rm×n be a non-degenerate matrix.

• Let ϵ ∈ (0, 1).

• Let p ∈ (0,∞).

• Let w(0) ∈ Rm
>0 with ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ p
20(p+2) .

Then, we have

• Part 1. The algorithm COMPUTEEXACTWEIGHT(A, p,w(0), ϵ) (Algorithm 2) can be im-
plemented to return w

– so that w satisfies ∥wp(A)−1(wp(A)− w)∥∞ ≤ ϵ,
– the algorithm uses O(mnw−1(p+ 1/p) log(n(1 + 1/p)ϵ−1)) work,
– O((p+ 1/p) log(m) log(n(1 + 1/p)ϵ−1)) depth.

• Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, ϵ) (Algorithm 5)
can be implemented to achieve the same guarantee

– with O(mnw−(1/2)(p+ p−1)2 log m
n log(nϵ−1(p+ p−1))) work,

– O((p+ p−1)2 log(mn ) log(m) log(nϵ−1(p+ p−1)))depth.

Proof. From Lemma E.18, we know each step of p lies within the requirement of Theorem E.14.

Furthermore, Lemma E.18 shows that it takes

O(
√
n(p+ 1/p) log(

m

n
))

steps in the COMPUTEINITIALWEIGHT.

Each call of COMPUTEEXACTWEIGHT involves

O((p+ 1/p) log(nϵ−1(1 + 1/p))

iterations and each iteration takes O(mnw−1) work and O(logm) depth to compute leverage score.

E.14 THOEREM OF APPROXIMATE WEIGHT COMPUTATION

Theorem E.20 (Approximate Weight Computation, Theorem 39 in page 58 in (Lee & Sidford,
2019)). If the following conditions hold:

• Let A ∈ Rm×n be non-degenerate.
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• Let Tw and Td denote the work and depth needed to compute (A⊤DA)−1z for an arbitrary
positive diagonal matrix D and vector z.

• Let ϵ ∈ (0, 1).

• Let p ∈ (0, 4).

• Define r := 2−20p2(4− p).

• Let w(0) ∈ Rm
>0 with ∥w(0)−1

(wp(A)− w(0))∥∞ ≤ r.

Then we have

• Part 1. The algorithm COMPUTEAPXWEIGHT(x,w(0), ϵ) can be implemented to return
w such that

– with high probability in ∥wp(A)−1(wp(A) − w)∥∞ ≤ ϵ in O(p−1(4 −
p)−2ϵ−2 log2(n/(pϵ))) steps,

– each of which can be implemented in O(nnz(A) + Tw) work and O(Td) depth.

• Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, ϵ) (Algorithm 5)
can be implemented to have the same guarantee

– with O(
√
n(4− p)−3p−3) log(mn ) log2(n/(pϵ)) steps of the same cost.

Proof. From Lemma E.18, we know each step of p lies within the requirement of Theorem E.16.

Furthermore, Lemma E.18 shows that it takes

O(
√
n((4− p)−1 + p−2) log

m

n
)

steps in the COMPUTEINITIALWEIGHT. Each call of COMPUTEAPXWEIGHT involves

O(p−1 log(n/(pϵ)))

iterations and each iteration involves computing leverage score up to accuracy
ϵ

32(2/p− |1− 2/p|)
= Θ((4− p) · ϵ).

Finally, Lemma E.17 shows this involves solving

O((4− p)−2ϵ−2 logm)

linear systems.

E.15 WEIGHT FUNCTION THEOREM

Theorem E.21 (Theorem 29 in page 25 in (Lee & Sidford, 2019)). If the following conditions hold:

• Define Ax := (Φ′′(x))−1/2A.

• Let p ∈ (0, 1).

• Let c0 ≥ 0.

• Define the weight function g : Ω◦ → Rm
>0 for all x ∈ Rm

>0 as g(x) := wp(Ax) + c0.

Then we have,

• Part 1. c1(g) ≤ n+ c0m, cs(g) ≤ 2m1−p, and ck(g) ≤ 2
1−p .

• Part 2. For p = 1− 1
log(4m) and c0 = n

2m , we have
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– c1(g) ≤ 3
2n, cs(g) ≤ 4

– and ck(g) ≤ 2 log(4m).

Proof. To bound the size, c1(g), recall that wp(Ax) = σ(W 1/2−1/pAx) and therefore Lemma D.17
implies for i ∈ [m],

m∑
i=1

wp(Ax)i = n.

We define α := 2(1− p).

To bound the sensitivity cs(g), then for i ∈ [m],

e⊤i G(x)−1Ax(A
⊤
x G(x)−1Ax)

−1A⊤
x G(x)−1ei = g(x)−1

i σ(G(x)−1/2Ax)i

≤ 2m
1+α
α

≤ 2m1−p,

where the first step follows from the definition of leverage score, and the second step follows from
Lemma E.8 (with choosing r =∞), the third step follows from α

1+α = 2−2p
2−2p+p ≤ 1− p.

Using the following two equations,

dg(x)j
dxi

=
dwp,j(Ax)

dxi

=
dwj

dxi

and

dwj

dΦ′′(x)
−1/2
i

=
dwj

dxi
· dxi

dΦ′′(x)
−1/2
i

=
dwj

dxi
· (Φ

′′(x)
−1/2
i

dxi
)−1

=
dwj

dxi
· (−0.5 · Φ′′(x)−1.5

i Φ′′′(x)i)
−1.

Then, we can show

Jg(x)(Φ
′′(x))1.5(−2)(Φ′′′(x))−1 = Jw((Φ

′′(x))−1/2).

Multiplying G(x)−1 · () · z on the both sides of above equation, we get

G(x)−1Jg(x)(Φ
′′(x))1.5(−2)(Φ′′′(x))−1z = G(x)−1Jw((Φ

′′(x))−1/2)z,

which is equivalent to for an arbitrary h ∈ Rm

G(x)−1Jg(x)(Φ
′′(x))−1/2h = G(x)−1Jw((Φ

′′(x))−1/2)z, (76)

where z = −0.5(Φ′′(x))−2Φ′′′(x)h.

We have that

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x) ≤ p∥(Φ′′(x))1/2z∥g(x), (77)

where the step follows from Part 1 of Lemma E.6.

We can show

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥∞

≤ p∥(Φ′′(x))1/2z∥∞ + ∥G(x)−1Jw((Φ
′′(x))−1/2)z − p(Φ′′(x))1/2z∥∞
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≤ p∥(Φ′′(x))1/2z∥∞ + p ·max{p/2, 1}∥(Φ′′(x))1/2z∥g(x)
≤ p∥(Φ′′(x))1/2z∥∞ + p∥(Φ′′(x))1/2z∥g(x), (78)

where the first step follows from triangle inequality, the second step follows from Part 2 of
Lemma E.6, and the last step follows from p ∈ (0, 1).

We have

∥G(x)−1Jg(x)(Φ
′′(x))−1/2h∥g(x)+∞ = ∥G(x)Jw((Φ

′′(x))−1/2)z∥g(x)+∞

Then, we can show

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x)+∞

= ∥G(x)−1Jw((Φ
′′(x))−1/2)z∥∞ + Cnorm∥G(x)−1Jw((Φ

′′(x))−1/2)z∥g(x)
≤ p∥(Φ′′(x))1/2z∥∞ + p(1 + Cnorm) · ∥(Φ′′(x))1/2z∥g(x), (79)

where the first step follows from ∥ · ∥g(x)+∞ = ∥ · ∥∞ +Cnorm · ∥ · ∥g(x) (see Definition D.12), and
the second step follows from Eq. (76).

Note that

|(Φ′′(x))1/2z|i = 0.5|Φ′′(x)−3/2Φ′′′(x)h|i
≤ |h|i, (80)

where the first step follows from choice of z, the second step follows from property of Φ (see
Definition D.2).

Therefore,

∥G(x)−1Jw((Φ
′′(x))−1/2)z∥g(x)+∞ ≤ p∥(Φ′′(x))1/2z∥∞ + p(1 + Cnorm) · ∥(Φ′′(x))1/2z∥g(x)

≤ p∥h∥∞ + p(1 + Cnorm) · ∥h∥g(x)

≤ p(1 +
1

Cnorm
)∥h∥∞ + p(1 + Cnorm) · ∥h∥g(x)

= p(1 +
1

Cnorm
)(∥h∥∞ + Cnorm · ∥h∥g(x))

= p(1 +
1

Cnorm
) · ∥h∥g(x)+∞,

where the first step follows from Eq. (79), the second step follows from Eq. (80) and Fact C.4, the
third step follows from Cnorm > 0, the fourth step follows from basic algebra, and the last step
follows from the definition of ∥ · ∥g(x)+∞ (see Definition D.12).

Thus, following Eq. (76), we further have

∥G(x)−1Jg(x)(Φ
′′(x))−1/2h∥g(x)+∞ ≤ p(1 +

1

Cnorm
) · ∥h∥g(x)+∞.

The bound of ck(g) = 2
1−p follows from

p(1 +
1

Cnorm
)

≤ p+
1

Cnorm

= p+
1

24
√
cs(g)ck(g)

≤ p+
1

24ck(g)

= 1− 2

ck(g)
+

1

24ck(g)
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≤ 1− 1

ck(g)
,

where the first step follows from p ∈ (0, 1), the second step follows from Cnorm = 24
√
cs(g)ck(g),

the third step follows from cs(g) ≥ 1, the fourth step follows from p = 1− 2
ck(g)

, and the last step
follows from simple algebra.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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