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ABSTRACT

Lewis weight is a row leverage score for data matrices. It allows selecting a
small number of important rows to approximate the original matrix with prov-
ably small error. Computing Lewis weights has long been a key problem in opti-
mization, machine learning, and large-scale data analysis. Despite the significant
advancement in the computational efficiency of Lewis Weights, privacy concerns
regarding the weight computation are naturally rising. In this work, we propose
a privacy-preserving Lewis weight computation with high efficiency and a dif-
ferential privacy (DP) guarantee. Our theoretical results clearly demonstrate the
proposed algorithm’s convergence and privacy assurances, providing an effective
solution to the trade-off between utility and privacy in Lewis weight computation.

1 INTRODUCTION

The Lewis weight is a row leverage score for data matrices. It allows selecting a small number
of important rows to approximate the original matrix with provably small error. Computing Lewis
weights has long been a key problem in optimization, machine learning, and large-scale data anal-
ysis. The Lewis weight has a broad range of real-world applications, covering linear program-
ming (Lee & Sidford, 2014)), robotics and control (Dabbene et al., 2017; Tang et al.;[2024)), collision
detection (Rimon & Boyd, [1997), bandit learning (Bubeck et al., 2012a; |Hazan & Karnin, |2016),
Markov Chain Monte Carlo sampling (Chen et al., 2018)), and portfolio optimization costs (Shen &
Wang] [2015). Specifically, computing the Lewis weight involves finding a fixed point of the leverage
score mapping for an arbitrary non—degenerateﬂ matrix A € R™*" which is defined as follows:

Definition 1.1 (Leverage score). For an arbitrary non-degenerate matrix A € R™*", its leverage
score 0(A) € RZ, is defined by

o(A) := Diag(A(ATA)~1AT).

Definition 1.2 (Lewis weights). Let p > 0 and let A € R™*™ be a non-degenerate matrix. The £,
Lewis weights of A are the unique positive vector w,(A) € RZ satisfying the fixed-point equation

wy(A) = o (WP 4),
where W := diag(wy(A)), and o(-) denotes the vector of leverage scores in Definition

Recently, Lee & Sidford|(2019)) introduced an efficient method to compute Lewis weights by running
projected gradient descent in a carefully scaled space and using a homotopy scheme to obtain a good
initialization. As a result, Lewis weights can now be computed in practical time.

Despite the significant advancement in the computational efficiency of Lewis Weights, privacy con-
cerns regarding the weight computation are naturally rising. It is specifically crucial to determine
the value of the Lewis weights with a specific matrix A, keeping useful statistical information while
not revealing sensitive information. For instance, in bandit learning scenarios, our goal is to ensure
the privacy of sensitive pay-off values in each round while still maintaining a policy that results in
minimal regret. Therefore, in this work, we aim to answer this fundamental research question:

'In numerical linear algebra, it is common to assume A is non-degenerate (Brand et al., 2020; |2021; [Fazel
et al.}|2022), avoiding pseudo-inverses. This standard simplification does not restrict our results: any degenerate
A can be reduced to a non-degenerate subproblem and the solution then mapped back.
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Can we preserve the privacy of individual data points in fast Lewis weight computation?

We provide an affirmative answer to this question by employing privacy-preserving Lewis weight
computation from a Differential Privacy (DP) perspective. Specifically, by integrating DP into the
framework, our method achieves an optimal balance between Lewis weight utility and data privacy,
allowing downstream applications to extract meaningful insights from data while ensuring that no
individual data points can be distinguished from the computed weights. Moreover, the strong privacy
guarantees provided by DP enhance compliance with various data protection regulations, including
but not limited to GDPR and CCPA, fostering trust among data-centric technologies, users, and
regulatory agencies.

1.1 OUR CONTRIBUTIONS

We commence by introducing some fundamental concepts in differential privacy (DP). Consider the
case where the Lewis weight wy, (A) is computed for a given matrix A. Replacing a single row of the
matrix can lead to significant variations in the computed weights. Consequently, the standard defini-
tion of neighboring data points in DP may not hold, motivating us to introduce a new formulation—
the €p-closed neighborhood of matrices/datasets. Specifically, we define two matrices/datasets as
neighboring if they are ep-close.

Definition 1.3 (Neighboring matrices). Let A, A’ € R™*"™ be two matrices. We say that A and A’
are €o-close if there exists exact one i € [m] such that || A; . — Aj ,||2 < €g and Aj . = A’}  holds

Sorall j € [m]\ {i}.

Thus, the formal definition of differential privacy is given as follows:

Definition 1.4 (Differential Privacy). A randomized algorithm A : D — R with domain D and
range R satisfies (e, §)-differential privacy if for any two neighboring datasets D, D’ € D and for
any subset of outputs S € R it holds that

Pr[M(D) € 8] = e Pr[M(D’) € S] + 4.

In this work, we present the first algorithm for efficiently computing Lewis weights with a differen-
tial privacy guarantee. Our theoretical results clearly demonstrate the algorithm’s convergence and
privacy assurances, providing an effective solution to the trade-off between utility and privacy in
Lewis weight computation.

Theorem 1.5 (Main Result, Informal Version of Theorem . Under some mild conditions, there
exists a differentially private algorithm that approximately compute the {,-Lewis weight for any
p € (0,4).

Our contributions can be summarized as follows:

* Differentially Private Optimization: We establish the final differential privacy (DP) guar-
antee of the Lewis weight computation algorithm, leveraging a novel DP-optimization an-
alytical framework specifically designed for truncated Gaussian noise.

* Fast DP-LW Convergence: We conduct a convergence analysis of our optimized DP-LW
algorithm (Algorithm [I)), demonstrating its DP guarantee under truncated Gaussian noise
perturbation.

* Generalizable Perturbation Analysis: We present a comprehensive study of weighted
leverage score perturbation, highlighting its applicability to a range of fundamental prob-
lems in machine learning, including kernel regression.

Roadmap. In Section[2] we extensively review the relevant prior works for this paper. In Section[3]

we present the basic notations and background of DP. In Section4] we show our main algorithm and
its corresponding DP guarantee. In Section[5] we conclude our paper.

2 RELATED WORK

John Ellipsoid Algorithm and Its Applications. The John Ellipsoid Algorithm, initially pro-
posed by John| (1948)), provides a powerful method for approximating any convex polytope by its
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maximum volume inscribed ellipsoid. This foundational work has spurred extensive research into
optimization techniques for solving the John Ellipsoid problem within polynomial time constraints.
Among the seminal contributions, [Khachiyan| (1996); |[Kumar & Yildirim| (2005)) introduced first-
order methods, which significantly improved computational efficiency. Furthermore, Nesterov &
Nemirovskii| (1994); [Khachiyan & Todd! (1990); Sun & Freund| (2004) developed approaches utiliz-
ing interior point methods to enhance the precision and speed of solving the John Ellipsoid problem.
Recent advancements have continued to push the boundaries of this algorithm. |[Cohen et al.|(2019)
employed fixed point iteration techniques, leading to the derivation of a more robust solution to the
John Ellipsoid. Moreover, they introduced innovative sketching techniques that accelerated com-
putational processes. Building on this, |Song et al.|(2022c) integrated leverage score sampling into
these sketching techniques, further optimizing the algorithm’s performance, and [L1 et al.| (2024b)
used quantum techniques to further speed up the computation of John Ellipsoids. The implications
of the John Ellipsoid Algorithm extend far beyond theoretical mathematics, impacting various fields.
In the realm of linear bandit problems, research by |Bubeck et al.[(2012b); [Hazan & Karnin| (2016)
has shown significant advancements. Experimental design methods have also seen improvements
due to contributions from|Atwood (1969); Allen-Zhu et al.|(2017). In linear programming, the algo-
rithm has provided enhanced solutions, with notable work by |Lee & Sidford|(2013a)). Control theory
applications have been advanced through research by [Tang et al.| (2024), and cutting plane methods
have been refined as demonstrated by [Tarasov| (1988)). The algorithm’s influence in statistics is also
noteworthy; for instance, it plays a critical role in Markov chain techniques for sampling convex
bodies, as explored by [Huang| (2018)) and developed for random walk sampling by |[Vempalal (2005);
Chen et al.| (2018)).

Differential Privacy Analysis and Applications. Differential privacy has become one of the most
essential standards for data security and privacy protection since it was proposed in [Dwork et al.
(2006). There are plenty of related work focusing on providing a guarantee for existing algorithms,
data structures, and machine learning by satisfying the definition of differential privacy, such as
Esfandiari et al.| (2022); |/Andoni et al.| (2023); [Cherapanamjeri et al.| (2023)); |Cohen-Addad et al.
(2022); Dong et al.| (2024); [Farhadi et al.| (2022); |Gopi et al.| (2023)); [Li et al.| (2022); |Gopi et al.
(2022); Huang & Yi| (2021); Jung et al. (2019); L1 & Li| (2024); [Epasto et al.| (2024); |Chen et al.
(2022); |Farhadi et al.| (2022); Beimel et al.| (2022); Narayanan| (2022} |2023)); [Fan & Li| (2022); |Fan
et al.|(2024);Li & Li/(2023)); Elias et al.[(2020);|Yu et al.|(2024);|Liang et al.[(2024);|Gu et al.[(2024);
Song et al.| (2023b); [Qin et al.[ (2022); Song et al.[ (2023a); (Galli et al.[ (2024); (Chen et al.| (2024);
Romijnders et al.| (2024)); Q1 et al.| (2024)); Ke et al.|(2025); Hu et al.|(2024); |Liu et al.|(2024)). In ad-
dition, recently, there are emerging privacy mechanisms that improve traditional privacy guarantees,
such as Gaussian, Exponential, and Laplacian mechanisms (Dwork et al.} 2014). For example, Geng
et al.[ (2020) introduced a truncated Laplace mechanism, which has been demonstrated to achieve
the tightest bounds among all (e, §)-DP distribution.

Sketching and Leverage Score. Our work improves the efficiency of the John Ellipsoid algorithm
by leveraging sketching and score sampling. Sketching, a widely used technique, has advanced nu-
merous domains, including neural network training, kernel methods (Lee et al., 2020; |Song et al.,
2021)), and matrix sensing (Deng et al.|[2023). It has been applied to distributed problems (Woodruff
& Zhong, 2016; Boutsidis et al., 2016), low-rank approximation (Clarkson & Woodruff], 2017a;
Razenshteyn et al., 2016} Song et al., 2017), and generative adversarial networks (Xiao et al.|[2018).
In addition, projected gradient descent (Xu et al., [2021)), tensor-related problems (Li et al., 2017}
Diao et al., |2018)), and signal interpolation (Song et al., [2022a) have benefited significantly from
sketching. Leverage scores, introduced by [Drineas et al.| (2006alb), are pivotal in linear regression
and randomized linear algebra, optimizing tasks such as matrix multiplication, CUR decompositions
(Mahoney & Drineas},[2009; Song et al.,2019), and tensor decompositions (Song et al.,|2019). More-
over, leverage score sampling can be used in kernel learning (Erdélyi et al.l 2020). Recent research
has further extended the application of leverage score sampling. Studies by |Agarwal et al|(2017);
Charalambides et al.| (2024); Woodruft & Zandieh| (2022)); [Lee et al.| (2020); Rudi et al.| (2018)) have
demonstrated the ability to leverage score sampling to significantly enhance the efficiency of var-
ious algorithms and computational processes. These advancements underscore the versatility and
effectiveness of leverage scores in optimizing performance across diverse fields.
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Linear Programming and Semidefinite Programming Linear programming is a fundamental
computer science and optimization topic. The Simplex algorithm, introduced in [Dantzig| (1951)),
is a pivotal method in linear programming, though it has an exponential runtime. The Ellipsoid
method, which reduces runtime to polynomial time, is theoretically significant but often slower in
practice compared to the Simplex method. The interior-point method, introduced in |[Karmarkar
(1984), is a major advancement, offering both polynomial runtime and strong practical performance
on real-world problems. This method opened up a new avenue of research, leading to a series
of developments aimed at speeding up the interior point method for solving a variety of classical
optimization problems. John Ellipsoid has deep implication in the field of linear programming.
For example, in interior point method, John Ellipsoid is utilized to find path to solutions (Lee &
Sidford, |[2014). The interior point method has a wide impact on linear programming as well as other
complex tasks, such as|Vaidya| (1987); Renegar| (1988)); |Vaidya (1989); Daitch & Spielman| (2008));
Lee & Sidford (2013} [2014; 2019); |(Cohen et al.| (2021); [Lee et al.| (2019)); Brand| (2020)); [Brand
et al.| (2020); Jiang et al. (2021); [Song & Yu! (2021); |Gu & Song| (2022). Moreover, the interior
method and John ellipsoid are fundamental to solving semidefinite programming problems, such as
Jiang et al.|(2020); [Song et al.|(2023c); |Gu & Song|(2022); Huang et al.| (2022alb).

Linear programming and semidefinite programming are widely applied in the field of machine learn-
ing theory, particularly in topics such as empirical risk minimization (Lee et al.| 2019; Song et al.,
2022b;|Qin et al., 2023)) and support vector machines (Gu et al., 2023} |Gao et al., [2023]).

Privacy and Security Data privacy and security have become a critical issue in the field of ma-
chine learning, particularly with the growing use of deep neural networks. As there is an increasing
demand for training deep learning models on distributed and private datasets, privacy concerns have
come to the forefront.

To address these concerns, various methods have been proposed for privacy-preserving deep learn-
ing. These methods often involve sharing model updates (Konecny et al., 2016) or hidden-layer
representations (Vepakomma et al., [2018) rather than raw data. Despite these precautions, recent
studies have shown that even if raw data remains private, sharing model updates or hidden-layer
activations can still result in the leakage of sensitive information about the input, referred to as the
victim. Such information leakage might reveal the victim’s class, specific features (Fredrikson et al.}
2015)), or even reconstruct the original data record (Mahendran & Vedaldi, 2015} Dosovitskiy &
Brox, 2016} Zhu et al., 2019). This privacy leakage presents a significant threat to individuals whose
private data have been utilized in training deep neural networks. Moreover, privacy and security have
been studied in other fields in machine learning, such as attacks and defenses in federated learning
(Huang et al.,|2021; |Arevalo et al.|[2024; Ma et al., 2024} (Gao et al.,|2024)), deep net pruning (Huang
et al., [2020c)), language understanding tasks (Huang et al.| [2020a)), alternating direction method of
multipliers (ADMM) (Chan et al.,[2024), and distributed learning (Huang et al., 2020b).

3 PRELIMINARY

In this section, we commence by presenting the basic notations in differential privacy (DP) and
Lewis Weight computation in Section[3.1} and then show the background of DP in Section[3.2]

3.1 NOTATIONS

In this section, we introduce basic notations. For a full list of all the notations used in this paper,
please refer to Appendix [C.T]

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors z,y € R™, we denote the element-wise vector product zy € R™ with (zy); = x;y;, for
¢ € [n]. In addition, we also x o y to denote the element-wise product. For any vector z € R"™, the
absolute value of z is defined element-wise as |z| := (1], |z2|, -, |zn]).

Basic Notations. We denote all the positive real numbers as R+, and denote m-dimensional
positive real vectors as RT;. We use 10 to denote a real value with magnitude at most 9, e.g.
a = e*°bmeans a € [e~%b, D).
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Matrices. If a matrix A € R™*™ has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B € R™*"™ be a symmetric matrix. B € R"™*"™ is positive semidefinite (PSD) if
' Bz > 0forall z € R™, and positive definite (PD) if x " Bx > 0 for all z € R™. We denote the
kernel (the null space) of the matrix A € R"*"™ as ker(4), i.e., ker(A4) := {x € R" : Az = 0,,}.
We denote the image space (the column space) as im(A), i.e., im(A) := {y e R™ : y = Azx}.

Matrix Operations. Let A, B € R™*" be two symmetric matrices. We use A < B to indicate that
2T Az < 2T Bz for all z € R"™. We define <, >, > analogously. For matrices A, B € R"*™ we
denote the Hadamard product as Ao B, i.e., fori € [n],j € [m], (AoB), ; :== A, j- B; ;. We define
A°% .= Ao A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A, B € R™*™ with scalars 0 < ¢; < ¢, we write A € [c1,¢a] - B to mean that ¢y B < A < ¢3B.

Diagonals. Let A € R" "™ be a matrix. We define Diag(A) € R™ with Diag(A); = A,
for all i € [n]. For a vector x € R"™, we define diag(z) € R™*" as the diagonal matrix with
diag(x);,; = x; for i € [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(z) € R™*" for z € R™.

Norms. For any positive real number p > 0 and vector x € R", we define the vector £, norm as
2|y :== (X, |2:|P)/P. We define the vector £y norm as the number of non-zero elements in z,
ie., [|zllo := > ;—, 1[z; =+ 0]. For a positive definite matrix A € R™*"™ and a vector z € R", we
define ||z||4 := (zT Ax)'/2. For a vector w € RZ, we define |||, := (3, wiz?)'/2. If we
let W := diag(w), then know that ||x||,, = ||«|lw. For any matrix spectral norm || - ||, we define
[ M| := supy,,—1 [[Mz]]2.

3.2 DIFFERENTIAL PRIVACY

In this section, we introduce more preliminaries on differential privacy and collect some useful tools
from prior works.

We begin by defining Rényi divergence, which measures the distance between two probability dis-
tributions.

Definition 3.1 (Rényi Divergence, Definition 3 in Mironov|(2017))). Let o > 1. For two probability
distributions P and Q) defined over R, the Rényi divergence of order « is defined as

nariai= oo 2, [(52)]

Then we define the Rényi Divergence which is a generalization of the concept differential privacy.

Definition 3.2 (Rényi DP, Definition 4 in |Mironov| (2017)). Let o > 1 and ¢ > 0. We say that a
mechanism M is («, €)-RDP if for all neighboring datasets X, X',

Da(M(X)|M(X) < e.

Next, we state the adaptive composition lemma of RDP.

Lemma 3.3 (Adaptive Composition of RDP, Proposition 1 in [Mironov| (2017)). For any input
dataset X, if My is an («, €1)-RDP mechanism that takes X as input and Ms is an («, €2)-RDP
mechanism that takes both X and My (X) as input, then the composition mechanism of My and
My is (a, €1 + €2)-RDP.

The following lemma can be used to convert RDP to DP.
Lemma 3.4 (RDP to DP Conversion, Proposition 3 in |[Mironov| (2017)). Let M be a mechanism
that is («v, €)-RDP. Then M is (e + bi(%, 0)-DP for any § > 0.

The following lemma guarantees that adding a Gaussian noise leads to RDP.

Lemma 3.5 (Gaussian Mechanism, Corollary 3 in|Mironov|(2017)). Let X be the input dataset and
f be a real-valued function with sensitivity L. For Gaussian random variable z ~ N(0,0?) and
a > 1, the Gaussian mechanism G, f defined as G, f(D) = f(D) + z satisfies (« oL )-RDP.

) 20-2




Under review as a conference paper at ICLR 2026

Algorithm 1 Differentially Private Approximate Weight Computation

1: procedure DPCOMPUTEAPXWEIGHT(A € R™*" p € (0,4),w® € R%y, e € (0,2/p — |1 —

2/pl))

2: Lo «+ max{4, 8}1"% (4 p) 5%(425? )

3: T+ [80(5 + 2/p) log(32€)]

4: > T is the number of iterations

5: forj=1,...., T —1do _

6: Differentially privately compute (/) € R” with Lemma such that
eiéa(j)(W(lj/)z_l/pA)i < ol(j) < e‘sa(j)(W(lj/)Q_l/pA)i for all i € [m].

7: w1 = MEDIAN((1 — r)w®), wl) — Lio(w(o) —wW)oW) (1 +7r)w®).

8: end for

9:  return (Diag(A(ATW /S VP)71AT))2.
10: end procedure

4 DIFFERENTIALLY PRIVATE LEWIS WEIGHT COMPUTATION

In Section we present the fundamental perturbation lemmas for Lewis Weight computation. In
Section 4.2} we show the DP guarantee of our proposed Lewis Weight computation algorithm. In
Section[4.3] we present our main results.

4.1 PERTURBATION OF LEWIS WEIGHT COMPUTATION

We first bound the difference between the product of W/2~1/P and two €,-neighboring polytopes.

Lemma 4.1 (Informal Version of Lemma- Let A, A’ € R™*" be two non-degenerate matrices.
Let a; denote the i-th row of A for i € [m]. Suppose A and A’ is only different in j-th row,
and Haj — ajll2 < eo. Suppose that W = diag(w) where w; € [v,1] for every i € [m]. Let

gp(y) = max{l, y1/2=1/P}. Then we have
||W1/2—1/pA _ W1/2—1/pA/|| < gp(’)/) - €0

Then we show that the perturbation of (ATW1=2/PA)~1 and (A’TW'~2/P A’)~! can be bounded.

Lemma 4. 2 (Informal Version of Lemmam Let A, A’ € R™*" be two non-degenerate matri-
ces. Let a denote the i-th row of A for i € [m)]. Suppose A and A’ is different in j-th row, and
la; — a’ ||2 < eg. Suppose that W = diag(w) where w; € [y, 1] for every i € [m]. Suppose that

€ < 0.10’min(A). Let g,(7y) = max{1,7Y/27V/P}. Let ¢; := g,(v)eo. Then we have
H(ATW172/pA)71 _ (A/TW172/pA/)71|| < 8774‘1/271/1)',%(14)0'_?’ (A)€1.

Equipped with previous two lemmas, we can show that the perturbation of each entry of f(w, A)
can be bounded.

Lemma 4.3 (Informal Version of Lemma [A.11] m Let A, A’ € R™*™ be two non-degenerate ma-
trices. Let a; denote the i-th row of A for i € [m]. Suppose A and A’ is different in j-th
row, and |laj — aj|l2 < €o. Suppose that W = diag(w) where w; € [v,1] for every i € [m].

Let f(w,A) == (f(w, A)1,...,f(w,A)). Let f(w,A); = w 7Pa] (ATWI=2/P A)~1q; for
i € [m]. Suppose that €9 < 0.10min(A). Let g,(7) := max{1,7y*/271/P}. Let ¢; := g,(v)eo. Let
g = 8y~ /2=1/Pl(A)o 2 (A)ey. Then we have
e Part 1. Fori # j, we have
|f(w7 A)z - f(wv Al)zl < EZQP(’V)O—max(A)2~
* Part 2. It holds that
|f(wa A)] - f(wv A,)j| < gp(ﬂY)eQ(Umax(A) + 60)2
+ 61772‘1/271/;0'Urnin(A)72(20'max(A) + 6O)-
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Finally, we are ready to prove our main perturbation theorem of Lewis weight computation.
Theorem 4.4 (Informal Version of Theorem [A.12). Let A, A’ € R™*" be two neighbouring
polytopes that are different in the j-th row, ie., |a; — ajlla < €. Let f(w,A) be the Lewis

Weights in Definition where f(w,A) = o(W2~YPA), and we assume that all lever-
age scores in satisfy o; € [v,1] for i € [m]. Thus, for ¢ < 0.lomin(A), there exists
L = poly(n, d,y~1/2=VPl k(A), 0max(A)) such that

1f (w, A) = f(w, Ao < L 0.

Proof. 1t directly follows from Lemma4.3 O

4.2 DIFFERENTIAL PRIVACY GUARANTEE OF LEWIS WEIGHT COMPUTATION
The following Lemma shows that in each round we can approximately compute the Lewis weight
with Rényi differential privacy guarantee.

Lemma 4.5. For i € [m], let o; := o(WY21/PA); denote the i-th leverage score and
i = oi(1 + z), where z; ~ N(0,72) for. If we suppose that o; € [vy,1] for i € [m],
7 > Leoy /T /(e —log(1/6)), and 6¢ai1 € (0,0.1), then the following statements are true:

2.2
* Part 1. For everyi € [m], 7; is (a, %)—RDP.

o Part 2. With probability 1 — 0.3, for every i € [m), we have

o 210g(2n/5fai1)0-1,/ <5 <e 21Og(2n/6fail)a-i'

Proof. Proof of Part 1. Note that when « € [1/+, 1], we have

e
de ' 'z
1

Sf

.

where the first step follows from the derivative of log x, the second step follows from = € [1/7, 1].
Thus log x is 1/~-Lipschitz over = € [y, 1].
For two ep-close polytopes A, A’, by Lemma4.3] we have

lo(WY2YPA) —a(WY2YPAN | < L - € (1)
where L is the Lipschitz constant defined in Lemma[4.3]
By the Lipschitzness of log « over [y, 1] and Eq. (T)), we have

m@mN*erm@mW%WNMS%Q

Let u; := log(o;) + z;. By Lemma u; satisfies (a, %)-RDP. Ifr > %, then it is
(ct, €)-RDP.
Proof of Part 2. Let 5; := ¢% for i € [m]. Now we bound the multiplicative error between &; and
o;. We can show that

o;=e"

_ elog(ai)+zi
=o€, (2)

where the first step follows from the definition of 7, the second step follows from u; := log(o;)+z;,
and the last step is due to basic algebra.
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Since z; ~ N(0,72), for any t > 0, we have

2

t
P >t <2 ——).
Bl 2 1] < 2exp( 5 )

Applying a union bound over all i € [m], we want with probability at least 1 — d¢,; that
jai] < 7+ /210g(2n /), Vi € [m)].
Thus by Eq. (@), with probability at least 1 — dg,;, we have:
VIR ) . g < 5, < oTV/2EE ) g

Thus we complete the proof. O

Theorem 4.6. For i € [m], let o; := o(WY2~YPA); denote the i-th leverage score and
i = o;(1 + z;), where z; ~ N(0,72) for. If we suppose that o; € [v,1] for i € [m] and
7 > Leoy /T /(e —log(1/6)), then Algorithmis (epp, dpp)-DP.

Proof. Lete, := ';,fj:; For each round j, the weight update
Wit = ) = L0y 0)y50)
0

is a function of (w(), 7).

Thus by post-processing, Lemma and Lemma w() satisfies (o, Tes)-RDP.
By Lemma 3.4} we can convert RDP to DP, i.e., w™ is (Teo + %, 0)-DP.
Let

cop < Te, + 081/
a—1

. L3¢l
Since €, = ;27:3, we have

aTL?e3  log(1/6)
2272 a—1"

epp <

Let o = 2 and solve the above inequality for 7, we need
7 > Leoy™'/T/(e —log(1/9))
to guarantee (epp, dpp )-DP.

Thus we complete the proof.

4.3 MAIN RESULT

The following theorem guarantees the utility of the approximate Lewis weight computation.

Theorem 4.7 (Main Result, Formal Version of Theorem [L.5). Let A € R™*" be non-degenerate.
Let T,, and T denote the work and depth needed to compute (AT DA) ™1z for an arbitrary positive
diagonal matrix D and vector z. Let ¢ € (0,1). Let p € (0,4). Define r := 2=2°p%(4 — p). Let

w(0) € RT, with ||w(0)_1(wp(A) — w(0))||oo < r. Let L be defined in Lemmaﬁ Then there is

an algorithm that satisfies the follow guarantees:

* Privacy: The algorithm is (epp, 0pp).
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e Utility: It returns w such that with high probability in ||w,(A) ™ (wp(A4) — w)|le < €

where
(=0 Legy™! T'log(n)
B 4—p \ (epp —log(1/dpp)) |

Moreover, it runs in O(p~*(4 — p)~2¢=2log®(n/(pe))) steps, each of which can be implemented in
O(nnz(A) + To,) work and O(Ty) depth.

Proof. We can set the § as the following:

§ = 7+/2log(2n/dtan)-

Since in Algorithm we have § = =) Thus we have

256

2560

=i »
2
_ 45_6; 5108 (21 dra1)
_ 256[160’}/71 \/QT 10g(2n/5faﬂ)/(6]jp — log(l/(st))
4-p

where the first step follows from rearranging 6 = (42_52)6, the second step follows from that § =

7+/21log(2n/8¢.i1), and the last step follows from that 7 = Legy~1+/T/(e — log(1/6))

Next, we can set dg,; as a sufficiently small constant and apply union bound to make that in every
iteration the guarantee hold successfully. Finally, combining Theorem [4.6] and Theorem we
complete the proof. O

Remark 4.8 (On work and depth). The quantities T, and Ty follow standard usage in numerical lin-
ear algebra. Formally, work T, is the total time needed to perform the computation, while depth Ty
is the inherently sequential part that cannot be parallelized even with unlimited processors. For ex-
ample, matrix multiplication has O(n*) work (where w = 2.37 for the current fastest method) and
O(1) depth (Clarkson & Woodruffi |2017b)), as all entries can in principle be produced in parallel.

Remark 4.9 (Why express complexity using work 7, and depth 7). We write each step of our
algorithm as O(nnz(A) + Ty) work and O(Ty) depth to separate the cost of sparse access to A
from the cost of solving systems such as (ATDA)’lz. This style is standard in theory papers
related to linear programs (Lee & Sidford, 2014} |Clarkson & Woodruff, 2017b); \Dong et al.| [ 2021))
because the best-known runtimes for such solves depend on subtle advances in matrix algorithms.
It keeps the statement adaptable: if future work improves the cost of exact or approximate solvers,
our total runtime bound immediately benefits.

5 CONCLUSION

We have introduced the first algorithm for computing ¢, Lewis weights under a rigorous differential-
privacy guarantee, addressing a key gap at the intersection of numerical linear algebra and data pro-
tection. By redefining adjacency to an eg-closed neighborhood of matrices and injecting carefully
calibrated truncated Gaussian noise into the optimization framework, our method provably con-
verges to an accurate approximation of the true Lewis weights while satisfying (epp, dpp )-privacy.
The resulting procedure runs in O(p~*(4 — p)~2e 2log?(n/(pe))) iterations, each implemented
in O(nnz(A) + 7,,) work and O(7y) depth, making it practical for large-scale datasets. Beyond
its immediate use in private row-sampling and sketching techniques, our perturbation analysis for
weighted leverage scores may be of independent interest in other numerical linear-algebra research,
such as differentially private kernel regression. This work thus offers an effective and efficient solu-
tion to the utility-privacy trade-off in leverage-score computations, paving the way for privacy-aware
applications in optimization, machine learning, and large-scale data analysis.
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Appendix

Roadmap. In Section[A] we present the theoretical results on Lewis Weight computation under
a differential privacy guarantee. In Section|B} we show some backgrounds for differential privacy.
In Section |C| we introduce some basic notations in linear programming. In Section [D} we provide
the basic definitions for the linear program algorithm. In Section [El we describe how to efficiently
compute approximations to Lewis weights.

A  PERTURBATION LEMMA FOR LEWIS WEIGHTS

In Section [A.T] we show some basic facts on matrix norm. In Section [A.2] we present a lemma on
the perturbation of the spectral inverse. In Section we present a perturbation lemma for the
computation of W1/2=1/P A, In Section we present the perturbation lemma for the computaion
of (ATW'=2/P A)~1. In Section[A.5] we show the final perturbation lemma for the Lewis weight
computation.

A.1 BASIC FACTS ON MATRIX NORM

In this section, we list basic facts about matrix norms. Due to the straightforward nature of these
facts, we omit the proofs here.

Fact A.1. Let A € R™*"™ be a matrix. Then we have
[All < lA] 7.
Fact A.2. Let A € R™" be a matrix where a; is the i-th row of A. Then we have
laillz < omax(A)-
Fact A.3. Let A, B € R™*" x € R"™. Then the following two statements are equivalent:
s |BBT — AAT|| <e

s |lz"BBTx —aTAATz|| < e -2

Lemma A.4 (Perturbation of singular value, (Weyl, [1912)). Let A, B € R™*". Let 0,(A) denote
the i-th singular value of A, then we have for any i € [n],

[oi(A) —a:i(B)|| < [|[A - B
Lemma A.5 (Perturbation of pseudoinverse, (Wedin, |1973)). Let A, B € R™*"™. Then we have
|AT — BY|| < 2max{||AT|]%, || BT[]} - |[A - B|.
Fact A.6. Ler A, B € R™*" 1 € R". Then we have
o Part 1. ||A|| = [|AT|| = omax(A) > omin(A).
Part 2. |A7Y = ||A| 7L
o Part 3. o0pax(B) — ||A — B|| < omax(A) < omax(B) + ||A — B
e Part4. opyin(B) — ||A — B|| < omin(4) < omin(B) + ||A — BJ.

Part 5. | Az|ls < ||A]| - ||z]|2.

A.2 PERTURB SPECTRAL INVERSE

Building upon previous facts on matrix norm, we present a perturbation lemma for matrix inverse
and spectral norm.

Lemma A.7 (Lemma C.11 on page 19 of (Li et al.,|[2024a))). If the following conditions hold

* A= B| <e.
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® € < 0']—Umin(A)'
Then we have
[(AAT)™" = (BBT)7!| < 8k(A)opi, (A)er.

We ignore the proofs here.

A.3 PERTURBATION LEMMA FOR W1/2-1/p 4

To construct a perturbation lemma for the Lewis weight, we first examine a part of it, namely
wt /2—1/p A.

Lemma A.8 (Formal Version of Lemma[d.). If the following conditions hold
e Let A, A/ € Rm*n.
s Leta, denote the i-th row of A fori € [m).
* Suppose A and A’ is only different in j-th row, and ||a; — a’j||2 < eo.
* Suppose that W = diag(w) where w; € [y, 1] for every i € [m].
o Let g,(7) := max{1,~'/271/r},

Then we have

||W1/2—1/pA _ W1/2_1/pA'|| < gp(7) - €0

Proof. Let B=W?'2A and B’ = W'/2A’. We have
|B = B = [WHertra - Wit
< ||W1/2—1/pA . Wl/?—l/pA/”F

n
< lwil 7P lai — afl|3)"?
=1

= Jwil /277 |a; — dfl2

|’wi|1/2_1/p60

IN

max{1,7"/>" "},
where the first step comes from the definition of B, B’, the second step is the result of || - || < || - ||,

the third step comes from the definition of Frobenius norm, the fourth step utilizes that A and A’
only differs in j-th row, the fifth step derives from |la; — aj[l2 < €o, and the last step is from

w; € [v,1]. O

A.4 PERTURBATION LEMMA FOR (ATW'-2/P4)~1

In this section, we extend the previous perturbation lemma for W'/2=1/? A to (ATW?=2/PA)~1.
We begin by presenting a basic fact for the eigenvalues of the matrix W.

Fact A9. I[f W = diag(w) where w; € [y, 1] for every i € [m], the following statements are true:
e For1/2 —1/p < 0, we have amm(Wl/2_1/p) > 1and amax(Wl/Q_l/p) < A1/2=1/p,

e For1/2 —1/p > 0, we have Jmin(Wl/zfl/p) > A1/2=1/P and Jmax(Wl/Qfl/p) <1
Proof. This directly follows from Part 3 and Part 4 of Fact[A.6 O

Next, we apply this fact to obtain the following perturbation lemma.
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Lemma A.10 (Formal Version of Lemmad.2)). If the following conditions hold
o Let A, A’ € R™*™,
o Leta, denote the i-th row of A fori € [m).
* Suppose A and A' is different in j-th row, and |la; — a}||2 < €o.
* Suppose that W = diag(w) where w; € [y, 1] for every i € [m].
* Suppose that ey < 0.1oyin(A).
s Let g,(7) := max{1,y/271/P},
» Let €1 := gp(7)eo.
Then we have

H(ATW1—2/pA)—1 _ (A/TW1—2/pA/)—1|| < 87—4\1/2—1/p|H(A)0_73 (A)El.

min

Proof. By Lemma[A8] we have
(W21 g — Wi2=1/p 1| < .
We can show that
JATWI2p 4) =1 — (ATW 2P A7) Y| < 8e(W/2 1P 48 (W21 )y
< Sma{ny V2P ~AL2-Y0l o 4) oS (A)ey
< 8y~ 2=P i (A)o 3 (A)ey,

where the first step is the result of Lemma[A7]and the second step is from Fact[A.9] O

A.5 PERTURBATION LEMMA FOR LEWIS WEIGHTS

In this section, we introduce the perturbation lemma for the full Lewis weights f(w, A). We begin
by establishing both the upper and lower bounds for each element f(w, A); of the Lewis weights.

Lemma A.11. [f the following conditions hold
e Let A, A’ € R™*™,
s Leta, denote the i-th row of A fori € [m).
* Suppose A and A' is different in j-th row, and |la; — a}||2 < €o.
* Suppose that W = diag(w) where w; € [y, 1] for every i € [m].
o Let f(w, A) := (f(w, A)1, ..., fw, A)y).
o Let f(w, A); :=w} *Pa] (ATWI=2/ A) =L, fori € [m].
* Suppose that €y < 0.1oyin(A).
* Let gy(7) == max{1,7'/*~1/7}.
¢ Leter = gy(7)co.
o Let ey = 8y~ /2= 1Pl (A)o 2 (A)ey.
Then we have

e Part 1. Fori # j, we have
|f(w, A)i — f(w, A)i] < €2gp(7)Tmax(A)*.
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e Part 2. It holds that
|f(w7 A)j - f(wv Al)j| < 9p(7)62(0max(A) + 60)2 + 617_2|1/2_1/p‘0—min(14)_2(2Jmax(A) + 60).
Proof. Proof of Part 1. For i # j, we have
£ (w, A)s = flw, A)i] = [w; 2Pl (ATWI2/PA)ta; — w] =70, T (AT WP AN g
< Jw) 7P \aT(ATV[/l’Q/pA)’lai —a; (AW A g,

< g (ATW 22 T (4T
Sgp(’Y)Eg a a;
= gp(ve2 - llail3

< €20p (’7) Omax (A)2 ;

where the first step follows from the definition of f, the second definition comes from basic algebra,
the third step comes from w; € [v, 1], the fourth step derives from Lemma and Fact the
fifth step utilizes basic algebra, and the last step derives from ||a;||2 < omax(A

Proof of Part 2. Next, we define
Cri=a] (ATW2PA)"Ya; — o) (ATWI-2/P 4) 1/
Cyi=d} (ATWIT2/PA)~ a; —d} (ATWITHr ATl
We first bound C;. We can show that
|Cy| = |a (ATW1 2/1’A) a;_T(ATW1—2/pA)—1a;_‘

=la] (ATwl—Q/PA)— aj —a (ATW 2P A) oy o T (ATWEP A ey — o T (ATWRP A

=1(a; — a;)T(ATWkQ/”A)*lai —|—a;T(ATW172/pA)71(ai —aj)|

2203 ::C4

<|Cs| + |Cyl.

where the first step follows from the definition of C', the second and third steps follow from basic
algebra, and the last step follows from the triangle inequality.

For C5, we have
|Ca| = [(a; — af) T (ATW! 2P A) " qy|
< |l(aj = df)llz - [I(ATW!' 2P A) "y
< l(aj = apllz - (ATW 2P A) 7 - lagl
<o Tmin(WY2VPA) 72 00 (A)
< ey PP 0 (A) 72 - omax(A),

where the first step comes from definition of Cj, the second step utilizes Cauchy-Schwarz inequality,
the third step derives from Part 5 of Fact [A.6] the fourth step comes from Fact [A.2] and Part 2 of
Fact[A.6] and the last step follows from that w; € [y,1] fori € [m].

For C4, we have
Cal = la} (ATW'2/74) 7 (a; - a)|
< Jla - I(ATW 27 4) " (a — )|
< e}l AT 4 s —
< (lajllz + €0) - Ornin(W/271/P4) 2
< (Omax(A) + €) - Omin(W/271/P4)2
< (Tma(A) + €0) - 4 2271P g (4)2 g,
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where the first step comes from the definition of C', the second step is from Cauchy-Schwarz in-
equality, the third step derives from Part 5 of Fact and the fourth step is from ||a; — a;- | <eo
and Part 2 of Fact[A.6] and the fifth step comes from Fact[A.2] and the last step follows from that
w; € [7,1] fori € [m].

Combining the bounds of |C3| and |Cy|, we have
C1] < €g -2Vl i (A) 72 - (20max(A) + €o).

We next bound C5. We can show that

|Co| = |a, (ATWIPA) =1 — o (AT WP A
< ega;Tag»

< eol|aj|®

< e2(llay|| + €0)?

< €2(0max(A) + €)?,

where the first step follows from the definition of C5, the second step follows from Lemma and
Fact|A.3] and the third step follows from basic algebra, and the last step follows from [|a; —a’[| < €.

We can show that
|f(w>A)J - f(wa Al)j‘
= |w3_2/Pa;V(ATW1*2/pA)71ai _ w;—2/Pa;T(A/TW172/PA/)71a;‘
= Jw} POy 4w TPy
= ;7] |Cy + o
< gp(7)|C1 + O
< gp(M([C1] +[C2)
< gp(7)€2(0n1aX(A) + 60)2 + gp(7)€0772‘1/271/p|Umin(A)72(2‘7maX(A) + €0))
= 9p('7)52(0maX(A) + 60)2 + 617_2‘1/2_1/p|Umin(A)_Q(ZUmaX(A) + €o),

where the first step stems from the definition of f, the second step comes from the definition of
C'1, Cs, the third step is from basic algebra, the fourth step comes from w; < g,(7) for i € [m], the
fifth step follows from triangle inequality, the sixth step derives from the bounds of |C1| and |Cs|,
and the last step is due to €1 = g,,(7y)eo. O

Next, we combine the element-wise upper and lower bounds to obtain the ¢, global sensitivity of
the Lewis weights.

Theorem A.12 (Formal Version of Theorem[.4). If the following conditions hold:

o Let A, A’ € R™*"™ be two neighbouring polytopes that are different in the j-th row, i.e.,
|a; — a2 < eo.

o Let f(w, A) be the Lewis Weights in Deﬁnition where f(w, A) := o(W/271/P A),
o We assume that all leverage scores in satisfy o; € [y,1] for i € [m)].

o Letep < 0.1omin(A).

Thus there exists L = pOIY(nv d7 77|1/271/p‘ ’ I{(A), UmaX(A)) such that
||f(w7A) - f(w7Al)||oo S L- €0-

Proof. 1t directly follows from Part 1 and Part 2 of Lemma[AT1] O
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B BACKGROUNDS ON DIFFERENTIAL PRIVACY

In Section[B.1] we define the concept of neighboring polytopes. In Section[B.2] we show the funda-
mental definition of differential privacy. In Section[B.3] we present the definition of Rényi differen-
tial privacy. In Section[B.4] we show some basic facts for Rényi differential privacy.

B.1 NEIGHBORING POLYTOPES
In this section, we first define the neighboring polytopes, which are crucial for formalizing the global
sensitivity of Lewis weights.

Definition B.1 (Symmetric convex polytope, Definition 4.1 in (Song et al.,[2022¢)). Let A € R™*"
be a matrix with full rank and a; is the i-th row of A for i € [m]. The symmetric convex polytope
P is defined as

P:={z e R®: [(a;,z)] <1,Vi € [m]}.

Definition B.2 (Neighboring polytopes). Let P, P’ be two polytopes defined by A, A’ € R™*™,
respectively. We say that P and P’ are ey-close if there exists exact one i € [m] such that || A; . —
A 2 < eo, and forall j € [m]\ {i}, Aj. = A .

B.2 DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Differential Privacy (DP).

Definition B.3 (Differential Privacy). A randomized mechanism M : X — R with domain X and
range R satisfies (e, §)-differential privacy if for any two neighboring dataset, X, X' € X and for
any subset of outputs S C R it holds that

PrM(X) € §] < e Pr[M(X') € §] + 6.

B.3 RENYI DIFFERENTIAL PRIVACY

In this section, we introduce the basic definition of Rényi Divergence and then present a correspond-
ing concept, Rényi DP.

Definition B.4 (Rényi Divergence, Definition 3 in (Mironov}[2017)). Let « > 1. For two probability
distributions P and Q) defined over R, the Rényi divergence of order « is defined as

narai= Lo 2, [(5)]

Definition B.5 (Rényi DP, Definition 4 in (Mironov, [2017)). Let o« > 1 and € > 0. We say that a
mechanism M is («, €)-RDP if for all neighboring datasets X, X',

Da(M(X)[IM(X")) < e.

B.4 BASIC FACTS FOR RENYI DIFFERENTIAL PRIVACY

In this section, we review basic facts for the Rényi Differential Privacy.

Lemma B.6 (Adaptive Composition of RDP, Proposition 1 in (Mironov, [2017)). If the following
conditions hold

* Let X be the input dataset.
* M is an («, €1)-RDP mechanism that takes X as input.

* My is an (a, €2)-RDP mechanism that takes X and M1 (X) as input.

Then the composition mechanism of My and My is («, €1 + €2)-RDP.
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Proof. Let My : X — R1and My : X x Ry — R,. We define the domain and range of M as
M : Ry x Ry — Rs. Let Py, P, be the distributions for M; (X) and My (X, M1(X)), and P be
the joint distribution of M (X) w.r.t. both M7 (X) and My (X, M1(X)).

Considering two different inputs X, X € X, if P, P, P; are similarly defined, we have the follow-
ing:
exp((a — 1) Do (M(X) [ M(X7)))

:/ P3(y17y2)apé(y1’y2)1*ady1dy2
R1XRa2
:/R /R(P1(y1)P2(y17y2))“(P1’(y1)p2'(y1’y2))1—ady2dy1

= Py (yl)aP{(yl)l_a(/ Pa(y1,52)* Py (y1,y2)" %) dyn

R1 Ra
</ Py(y1)* P{(y1)"~*dys exp((a — 1)e2)
< exp((a—1)er) - exp((o — 1)e2)

exp((a —1)(e1 + €2)),

where the first step follows from Definition B.5] the second step follows from changing the multiple
integral into iterated integrals, the third step follows from extracting the terms related to P and P,
the fourth and the fifth steps follow from the property of RDP, and the last step follows from basic
algebra.

Thus, we complete the proof. O

Lemma B.7 (RDP to DP Conversion, Proposition 3 in (Mironov, [2017)). Let M be a mechanism
that is («v, €)-RDP. Then M is (e + %, 0)-DP for any § > 0.

Proof. By the probability preservation property in (Mironov, [2017), we can conclude that for two

distributions P, ) defined over R and for any event F/ € R, the following statement is true:

P(E) < exp(Da(P||Q) - Q(A))' 1.

Therefore, considering arbitrary X, X’ € X and subset S C R, we have
PrM(X) € 8] < (e PrIM(X") € S])} 1/, 3)

To further conclude that M is M is (e + %, 0)-DP, we consider two cases.

Case 1. ¢ Pr[M(X') € S] > /(=1 In this case, we have the following:
PrM(X) € 8] < (e PriM(X") € §))} /= (4)
= e Pr[M(X') € 8] - (e Pr[M(X') € §])
< efPrM(X') € §] - oY/ (-

log(1/d
— exp(e + %) PrM(X') € 8],
where the first step follows from Eq. (3), the second step follows from basic algebra, the third step
follows from the fact that e¢ Pr[M(X’) € S] > 61/, and the last step follows from the basic

property of exponential functions.
Case 2. ¢ Pr[M(X') € §] < §°/(@=1)_ In this case, we simply have

Pr[M(X) € 8] < (e°PrM(X’) € S))' 1/ 5)
=,

where the first step follows from Eq. (3)), and the second step follows from e PriM(X’) € S] <
504/((1—1)-
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Combining both cases above, we can obtain the following:

PriM(X) € §] < max{exp(e + %) -PrM(X') € 8], 6}
exp(e + M) -PrIM(X') € 8] + 4,

a—1

IA

where the first step follows from combing Eq. {@) and Eq. (5), and the second step follows from the
basic property of max.

Therefore, we can conclude that M is (e + M, 0)-DP, which completes the proof. O

a—1

Lemma B.8 (Gaussian Mechanism, Corollary 3 in (Mironov, [2017)). If the following conditions
hold

e Leta > 1.
* Let D be the input dataset.

» Let f be a real-valued function with sensitivity L.

Let z ~ N(0,0?) be a Gaussian random variable.

» Let G, f be a mechanism defined as G, f(D) = f(D) + z.

Then G, f satisfies (« aL? )-RDP.

) 20-2

Proof. The Rényi divergence between a zero-mean Gaussian random variable and its offset has a
closed-form solution, which can be computed as follows:

Da(N(0,0%) N (1, 0%))

=(a—1)"tlog /OO o (2m) 72 exp(—0.5a0"22?) - exp(—0.5(1 — a)o 2 (z — p)?)dz

= (a — 1) ' logexp(0.5(a? — a)o 2 u?)

= 0.5a0 22,
where the first step follows from Definition and the probability density function of Gaussian
random variables, the second step follows from the property of Gaussian random variables, and the
last step follows from basic algebra.
Therefore, we can conclude that for a real-valued function f with sensitivity L, the Gaussian mech-

. . 2 . .
anism is (c, ‘2“52 )-RDP, since the offset between z and G, f is at most L.

Thus, we finish the proof.
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C LINEAR PROGRAMMING: NOTATIONS AND BASIC FACTS

In Section|C.I] we introduce basic notations. In Section|C.2] we present basic algebra facts. In Sec-
tion[C.3] we introduce basic derivative fact. In Section|C.4} we introduce basic norm inequalities. In
Section [C.5] we present basic matrix inequalities. In Section [C.6] we present basic real number in-
equalities. In Section[C.7] we present basic inequalities for p. In Section|[C.8] we provide basic PSD
Matrix Facts. In Section|C.9] we provide basic PSD inequalities. In Section[C.I0} we present basic
PSD inequalities with trace. In Section|[C.TT} we provide basic PD inequalities. In Section|C.12] we
introduce commutative property and eigenvalues of A(I — cA)~!. In Section we introduce
basic power calculations. In Section [C.I5] we introduce the simple constrained minimization by
gradient descent method. In Section [C.16] we introduce a fact about the equivalence of objective
functions.

C.1 NOTATIONS

In this section, we introduce basic notations.

Vector Operations. We perform scalar operations to vectors by applying them element-wise, e.g.,
for vectors z, y € R™, we denote the element-wise vector product zy € R™ with (zy); = x;y;, for
i € [n]. In addition, we also x o y to denote the element-wise product. For any vector € R™, the
absolute value of x is defined element-wise as |z| := (|x1], |z2|, -, |Tn]).

Basic Notations. We denote all the positive real numbers as R+, and denote m-dimensional
positive real vectors as R7;. We use 30 to denote a real value with magnitude at most 9, e.g.
a = e*%b means a € [e~%b, eb].

Matrices. If a matrix A € R™*" has full column-rank and no zero rows, the matrix A is non-
degenerate. Let B € R™*™ be a symmetric matrix. B € R"*"™ is positive semidefinite (PSD) if
21 Bz > 0 forall z € R, and positive definite (PD) if 2T Bz > 0 for all 2 € R™. We denote the
kernel (the null space) of the matrix A € R™*™ as ker(A), i.e., ker(A) := {& € R" : Az = 0,,,}.
We denote the image space (the column space) as im(A), i.e., im(A4) := {y € R™ : y = Az}

Matrix Operations. Let A, B € R™*"™ be two symmetric matrices. We use A < B to indicate that
" Az < x7 Bz for all z € R™. We define <, >, > analogously. For matrices A, B € R"*™, we
denote the Hadamard product as Ao B, i.e., fori € [n],j € [m], (AoB); ; :== A, j- B; ;. We define
A°2 := Ao A. We denote the number of nonzero entries in A as nnz(A). For symmetric matrices
A, B € R™*™ with scalars 0 < ¢; < ¢, we write A € [c1,¢o] - B to mean that ¢y B < A < ¢3B.

Diagonals. Let A € R™™ ™ be a matrix. We define Diag(A) € R™ with Diag(A); = A;;
for all i € [n]. For a vector x € R"™, we define diag(z) € R™*"™ as the diagonal matrix with
diag(x);; := z; for i € [n]. Additionally, we use upper case to denote a diagonal matrix to which
the vector transforms, e.g. X := diag(z) € R™*" for z € R™.

Fundamental Matrices. For a non-degenerate matrix A € R™*", we define P(A) :=
A(ATA)"YAT as the orthogonal projection matrix onto A’s image. We define o(4) :=
Diag(P(A)) as A’s leverage scores. We define ¥(A) := diag(c(A)). We define A(A) :=
Y(A) — P°2(A) as a Laplacian matrix and A(A) := 2(A)~2A(A)2(A)~"/? as a normalized
Laplacian matrix.

Norms. For any positive real number p > 0 and vector x € R", we define the vector £, norm as
lzll, == (i, |2i|P?)}/P. We define the vector £y norm as the number of non-zero elements in =,
ie., [|lz]lo := > iy 1[z; =7 0]. For a positive definite matrix A € R™*™ and a vector z € R", we
define ||z]|4 := (z" Az)!/2. For a vector w € RZ, we define |||, = (31, w;z?)Y/2. If we
let W := diag(w), then know that ||z||,, = ||«|lw. For any matrix spectral norm || - ||, we define
[M ]| := supyj, =1 [[ M-
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Calculus. Let g(z,y) € R be a function of two vectors z € R™ and y € R™. We define the
gradient of g with respect to z at (a,b) € R™"*"2 as V,g(a,b) € R", where V,g(a,b); =

d%ig(a,b), and define V,g(a,b); := y%g(a,b), Vyyg(a,b);; = ﬁﬁwg(a,b), Vaag(a,b)ij =

d%id‘—;jg(m b). For h : R™ — R™ and z € R", we use J(z) € R™*™ to denote the Jacobian of h
at x, where Jy,(x); j == %h(x)z fori € [m],j € [n]. For f : R — R and z, h € R"™, we define
the directional derivative of f in direction h at z as D f(x)[h] := lim;—,o(f(z + th) — f(x))/t.

Convex Sets. A set U C R¥is convexift -z + (1 —t)-y € U forallz,y € U,t € [0,1]. A set
U CRFis symmetric if x € U, then —x € U forallz € U. Foralla > 0 and U C R*, we define
aU :={z € R¥ : a~lz € U}. Forall p € [1,00] and r > 0, we call the symmetric convex set
{x € R* : ||z]|, < r} the £, ball of radius 7.

C.2 BASIC ALGEBRA FACTS

Fact C.1. Foranyvectors a,b,c € R™, square matrix M, diagonal matrix D, and symmetric matrix
P € R™*™ we have

* aob = diag(a)b = diag(b)a.
* o' diag(b)c = a' diag(c)b.

. e;raiei = e;r diag(a)e;.

o diag(a) = Y%, e;ef a;.

e e Me; = M.

¢ (diag(a)M) o I = Diag(M)a.

* Diag(diag(b)P) = Diag(P diag(b)) = Diag(P)b.
* Diag(P diag(b)P) = (P o P)b.

m

Proof. Leti € [m]/ For i-th entry of vector, itis )", P?;b;. Thus it’s true. The other parts of the
statement are trivial. O

C.3 BASIC DERIVATIVE FACTS

Fact C.2. Let A denote a positive definite matrix, then we have

e Part1.
dA-1! dA
— A1
de¢ dt
e Part 2.
dlogdet(A) _,dA
—= = tr[AT —].
a oA 7

C.4 BASIC NORM INEQUALITIES
Fact C.3. If the following conditions hold:
e Let a,b € R™ be two vectors.

Then, for any vector norm || - ||, we have

lao bl < laflebll
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Proof. Fori € [m], we have
(@0 b)i| = |aibi| < [lal|oo|bil,
where the first step follows from the definition of Hadamard product, and the second step follows
from |a;| < ||a||so fori € [m].
Since the inequality holds for i € [m], thus we have
llaobll < lalle [0l
The proof is complete. O

Fact C.4 (Folklore). Let x,y € R™ be two vectors. If for all i € [m], |z;| < |y;
statements are true:

, then the following

* Part 1. For any positive real number p > 0, ||z, < ||y]|p-

e Part 2. For any w € R™,

Tllw < [[Yllw-

» Part 3. For any w € R™ and W := diag(w), ||z|lw < ||lyllw-

Fact C.5. Let a,b > 0 be positive real numbers and v € (0,0.5). Let |[a=t(a — b)| < r. We have
+1.57
a=e b.

Proof. Since we have |a~!(a — b)| < r, we can imply by the definition of absolute value that

b
—r<l--<r
a

Thus, we can imply by basic algebra that
I+ma<b< (1-r7)a.

Therefore, if we apply Part 1 of Fact for the lower bound of b and apply Part 2 of Fact for
the upper bound of b, we can conclude that

8—1.5ra S b S el.5ra.

This is equivalent to

a= €i1'5rb.

Thus, we finish the proof. O
Fact C.6. If the following conditions hold:

e Let w,v € RT be two positive vectors.

o Let W := diag(w).

o Letr € (0,0.5).

o We assume |[W=H(w — )| < 7.

Then the following statement is true:

Proof. Since we have ||[W ™! (w — v)||o < r, we have the following for for all i € [m)]:
i (w; — )| <,
where this step follows from the definition of infinity norm.

By Fact|C.3] we can conclude for all i € [m] that
w; = ey,
Thus, we can combine all the entries w; and v; for all ¢ € [m], and directly obtain

w = €i1'5r’U7

which finishes the proof. O
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C.5 BASIC MATRIX INEQUALITIES
Definition C.7. We say matrix P is a projection matrix if PP = P.

Now, we show the basic properties of the projection matrix without proof.
Fact C.8 (Folklore). If P is a projection matrix as defined in Definition|[C.7) we have the following:

 All the eigenvalues of P are either O or 1.
* P 0.

e P<1I

e Pol<1

e P,; €0,1] foralli € [n).

e] Pe; € 0,1] foralli € [n].
Fact C.9 (Folklore). Let A denote a symmetric matrix such that A;; > 0, A;; < 0 and

Z?Zl A; ; > 0 for all i, then we have A = 0.
C.6 BASIC REAL NUMBER INEQUALITIES
Fact C.10 (folklore). If the following conditions hold:
e Letx € (0,1).
e Lety > 0.
o Let f = ($£2)v.
Then, we have f > 1.
Fact C.11. If the following conditions hold:
e Leta > 1.
e Letb>0>c.
e Letx € [0,1].
Then we have

—c

min{az’, 2¢} < at=c.

b

Proof. Case 1. We first consider the extreme case when ax” = x¢. In this case, we can solve for x

1
and obtain that x = a~ <. Thus, we have
min{az’, 2°} = z¢
= (a_ﬁ )C

__c
—=q b-c

b

1
b — ¢, the second step follows from x = a™ =<, and the last

where the first step follows from ax
step follows from basic algebra.

b:a:c'

b

Therefore, the original statement is true when az

Case 2. Now we just need to show that as long as ax” is not equal z¢, then one of them must be at

most a~¢(*=¢)_ This is obviously true since both two functions are monotonically functions. O

Fact C.12. Let ¢ € (0,1) and a > 0. We have e = {{ is the minimizer for function f(e) =
1

(1—e)ex
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Proof. The derivative of the function f is

dr _

e ((1- e)eo‘)_2(—ea +a(l - e)ea_l)

=(1- e)_26_2a(aea_1 — (a+1)e%)
=(1- 6)7267a71(04 — (a+1)e),

where the first step follows from the chain rule, and the second step and the last steps follow from
basic algebra.

Therefore, we let % = 0 and solve for ¢, which directly yields

a
1+a

€ =

Thus, we can conclude that € = u%a is the minimizer for function f. O

C.7 BASIC INEQUALITIES FOR p

Fact C.13. Foranyp € (0,4), we have 1 —p/4 < 2/p — |1 — 2/p|.

Proof. Case 1. Letp € (0,2]. We have |1 — 2/p| = 2/p — 1. Therefore, the original inequality is
equivalent to

1—p/d<2/p-(2/p-1).
Moving the terms, we can obtain
p/4 =0,
which trivially holds since p € (0, 2].

Case 2. Letp € (2,4). We have |1 —2/p| = 1—2/p. Therefore, the original inequality is equivalent
to

1—p/a<2/p—(1-2/p).
Moving the terms, we have
p/A+4/p=2,
which is a true statement since p/4 +4/p > 2,/(p/4) - (4/p) = 2.

Since 1 —p/4 < 2/p — |1 — 2/p| holds for both p € (0,2] and p € (2,4), the proof is finished.
O

Fact C.14. Ifp € (0,4), then we have

pP(4—p)- (4+8/p)- (1+4/p) <2'°(1 —p/4).

Proof. We can show
P*(4—p)(4+8/p)(1+4/p) <(4—p)-(4p+8)-(p+4)
<(4-p)-24-8
<2°-(4-p)
=27 (1-p/4),

where the first step follows from basic algebra, the second step follows from p € (0,4), and the
third step follows from 24 - 8 < 28, and the last step follows from pulling out the factor 4.

O
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Fact C.15. Ifp € (0,4), we have

minl/4,1/Cp)) 1 1
max{4,8/p} T 16 p/2+2/p

Proof. Case 1. For p > 2, we have
min{1,2/p} 1

max{1,2/p} ~ 2/p’
Case 2. For p < 2, we have
min{1,2/p} _2/p 1

max{1,2/p} 1 p/2
Therefore, by combining two cases, We can show that

min{1/4,1/(2p)} _ 1 min{1,2/p}
max{4,8/p} 16 max{1,2/p}
1 1

> .-
—16 p/2+2/p’

(6)

. . 1
where the last step follows from # > 1/a and x > 1/b implies that z > _=. O

C.8 BAsIc PSD MATRIX FACTS

Fact C.16 (Schur product theorem, Theorem VII in page 14 in (Schur [1911). If the following
conditions hold:

o Let A, B € R™*™ be two positive semidefinite matrices.

Then A o B is a positive semi-definite matrix.
Fact C.17 (Folklore). If the following conditions hold:

o Let A € R™*™ be a symmetric matrix.
e Let0 <X A=<

* Fori € [m)], denote the eigenvalue of the matrix A as \;.

Then for i € [m], A\; € [0,1].

C.9 BASsIC PSD INEQUALITIES
Fact C.18 (Folklore). If the following conditions hold:

o Let A e RM™*™,

e Let B € R™*™ be a matrix B = 0.

Then we have AT BA = 0.
Fact C.19. If the following conditions hold

o Let w,v € R, with w; = e%v; for |§;| < 6 forall i € [m).
e Letp > 0.

Then we have

e I1=2/ployyi=2/p < y1-2/p < o1=2/pl0y1-2/p,
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Proof. For any i € [m], we have

(Liyi=2/p = =(1=2/p)3i ¢ [o=I1=2/PI5 [1-2/plé],

wj
Thus, we complete the proof.

Fact C.20. If the following conditions hold:

o Let A € RM™*™,

* Let k € R be an arbitrary real number such that k > 0.

o Let W,V € R"™*™ denote a positive diagonal matrix.

e We have W <k -V.
Then the following statement is true:

« (ATWA)™ = k=1 (ATVA)"L,

« AATWA)IAT = k= TAATVA) AT,

Proof. Since W =< kV, then ATWA < kEATVA. Taking the inverse on both sides, we have

(ATWA)~! = k=L (AVA)~L. Thus, we have A(ATWA)"TAT = k—1A(ATVA)"TAT.

Fact C.21. If the following conditions hold:

e Lete > 0.

O

* Let Iy<< € R™*™ be the diagonal matrix where I.;; = 1 if w; > =~ and I.;; = 0

otherwise.

o Let Iw>ﬁ =1 - Iwg

3

Then the following statement is true:

1
ATW2/P A < 1—ATW1*2/pr>iA.

Proof. Note that

tr[(ATWIT2PA) TP AT, A] =

— €

tr[A(ATW2P A) T AT WL, ]

Z (A(ATW1_2/pA)_1AT)i,i(Wl_z/p-[wgi)i,i

i€[m]

Z w?/p(W172/pr§i )i
i€[m]

2/p 1-2
}: wi/pwi /p

i€[m] : w; <<

—m

>, w
i€[m] : w; <
€

€
m

Sm.—:e7

m

(7

where the first step follows from the cyclic property of the trace, the second step follows from the
fact that W and I, << are diagonal matrices, the third step follows from the definition of Lewis
weight (Definition , Cii = (Wl/z’1/ch1/2’1/p)i7i/w3_2/p = wi/w1*2/1’ = w?/p ), the
fourth step follows from the definition of I,,< <, the fifth step follows from basic algebra, and the

last step follows from w; < =
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‘We have,

AW e A<e- ATWI2/P4,
where the step follows from Eq. (7) and X < tr[Y "1 X]Y (Fact(C.23)
Note that [,,> < = I — I,,<< implies

ATW2lrg, c A ATW 2P, c A= ATW2/P4

The above two equations implies
ATWI2PL, A= (1—€)- ATW!T2/P4,

By rescaling the factor 1 — € on both sides, we get

ATWi=2/rA < %ATWI‘Q/”Iw>iA.

— €

C.10 BASIC PSD INEQUALITIES WITH TRACE
Fact C.22 (Folklore). Let Z be any PSD matrix. The following statement is true:
Z=\2)-1=<+tx[Z]-1.
Fact C.23. If the following conditions hold:
e Let X,Y be any PSD matrices.

Then the following statement is true:

X <ty 1X] Y.

Proof. Due to cyclic property of the trace, we know that

tr[Y 71X = tr[y TV2 XY V2,

Thus, the original statement
X <tr[y'X]-Y
is equivalent to
X < tr[y~V2Xxy 12y,
which is further equivalent to
Y2y V2 <[y TV2Xy V2T,
which is a true statement following Fact[C.22]
Thus, since the equivalent form of the original statement is true, we can complete the proof.

Fact C.24. If the following conditions hold:

o Let A € R™*™
e Let B,C' € R™*™ be non-negative diagonal matrices.

o Let
o= tr[(ATBA)*l(AT|C — B|A)].
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then we have
(1-a)ATBA<ATCA < (1+a)A" BA.
which is equivalent to

ATCAc[l—a,14+a]-A"BA

Proof. Note that

(1-a)ATBA<ATCA=<(1+a)A"BA
is equivalent to

—aATBA< AT(C - B)A < aAT BA.

The following equation implies the above equation

AT|C —B|A<a-A"BA.

Since AT|C — B|A and AT BA are both PSD matrices, we can choose X = A"|C — B|A and

Y = AT BA and then apply Fact to show that the above equation is true.
Thus, we complete the proof.

C.11 BAsic PD INEQUALITIES

Fact C.25 (Folklore). If the following conditions hold:

o Let Q) € R™*™ denote a matrix that Q) > 0.

o Let W € R™*™ be positive diagonal matrix.

Then we have W QW > 0.

C.12 COMMUTATIVE PROPERTY AND EIGENVALUES OF A(] — cA)™!
Fact C.26. If the following conditions hold:

o Let A c R™*™,

» Let (I — cA) be invertible.
Then, we have

(I —cA)™'A=A(I —cA)™.

Proof. 1t is easy to see

(I —cA)A=A—cA® = A(I — cA).

O

Then multiplyling (I —cA)~!- (I —cA)~ on both sides of the above equation, then we can get the

following

A(I —cA)y ™t = (I —cA) A

We remark that an alternative proof of the following claim can use von Neumann series in Claim 8

in (Price et al., [2017)).

O

Fact C.27. For any symmetric A € R"™ ™ and real number ¢ > 0, we have A(I — cA)~! whose

eigenvalues are of the form A/ (1 — c)) for each eigenvalue X of A.
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Proof. Assume A = UAU T here A € R*** is a diagonal matrix, U € R™** has all columns are
orthogonal to each other and each column has ¢ norm equal to 1. Since A might have full rank,
thus £ < m. Itis obvious U T U = I.

Thus, we can show
UANUT(I —cUANU) P =UAUT(UUT — cUAUT)™!
=UANUT(U(I —cNUT)™!
=UANU"(U(I —cA)7UT)
=UNI —cN)UT,

where the first step follows from I = UUT, the second step follows from basic algebra, the third
step follows from the definition of the inverse matrix, and the last step follows from U TU=1. O

C.13 BASIC POWER CALCULATIONS
Before proving the main statement, we first show a fact. Note that e = »7° %,xl
Fact C.28. For any x € (0,0.5], we have
e l_g>e Lo
e 14z <elde
e T <1+ %x
e e T>1-— %x
o e >141— 22
o e <141+ 22
Fact C.29. If the following conditions hold:
e Letz € (0,0.5).
o Let y be any real number such that |y| < 0.5.

Then the following statement is true:

eiw(ey —1)=(e¥ — 1) £ 2z|y|.
Proof.
eET(e¥ — 1) = (1+ %m)(ey -1)

=(e¥-1)+ %x(ey -1)

4 4
=(eV-1)=+ §x§|y|

= (e = 1) £ 2zy|,

where the first step follows from applying Fact on e*®, the second step follows from basic
algebra, the third step follows from applying Fact [C.2§] on e?, the last step follows from basic
algebra. O

Fact C.30. If the following conditions hold

e Let n > 2 denote positive integers.

e Letp > 0.
e Let B:=4-(1+2/p)? /n
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o Let:=2-]1—2/p|-/n.
e Let 6 € (0,0.1/8].
Then we can show

e Part1. (1 —66

( )"
e Part2. (1+606)" 2/1”<1+65.
* Part 3. ( )~
( )"

1—605)"2/P <1+ 6.

e Part 2. (1+66)"2/? >1— j0.

Proof. Note that 36 € (0,0.1]. Also note that 6 < 0.1-8/38 < (0,0.5).
We can show
40/p =4-2[1 —2/p|v/n/p

<4-(1+2/p)-|1=2/plvn

<4-(1+2/p)*Vn

= ﬂ
Thus,

405 /p < 0.1

Proof of Part 1.
We can show
(1—05)72/7 >1
>1-jd,
where first step is trivial, and the last step follows 56 > 0.
Proof of Part 2.
We can show
(14+65)~%7 <1
<1+ 54,
where the first step is trivial, and the last step follows 3§ > 0.
Proof of Part 3.
Using the fact (1 — z) > e~ for all # € (0,0.5) (see Fact|[C.28) , we can show
(1—668) > e 159,
Then, we can show

(1 _ 95)—2/p < (6—1.505)—2/1)
_ 6395/17

<1+466/p
<1+ 36,

where the third step follows from e < 1 + x(see Fact L and the last step follows from
40/p < 8.

Proof of Part 4.

Using the fact (1 + z) < 5% for all = € (0,0.5) (see Fact|C.28), we can show

(14 65) < 299,
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Then, we can show

(1 + 95)—2/p > (61.595)—2/1)

_ 67395/17
>1-466/p
Z 1- 567

where the third step follows from e™* > 1 — %x (see Fact , and the last step follows from
40/p < B.
O
C.14 LEVERAGE SCORE EQUIVALENCE FORMAT
Fact C.31 (Folklore). Let o denote the leverage score. Then, the following quantities are equivalent
o« W2 A(ATWI-2/p A) -1 1/2= ke,
. (Wl/Q—l/pA(ATwl—Q/pA)—1wl/2—1/p)i,i‘

. o (W20 A),

C.15 SIMPLE CONSTRAINED MINIMIZATION BY GRADIENT DESCENT METHOD

Theorem C.32 (Simple Constrained Minimization for Twice Differentiable Function, Theorem 52
in page 50 in (Lee & Sidford, 2019)). If the following conditions hold:

e Let H be a positive definite matrix.
e Let Q C R™ be a convex set.
e Let f: QQ = R™ be a twice differentiable function.

* Suppose that there are constraints 0 < p < L such that for all x € Q, we have - H <
Vif(x) X L-H.

Let 20 € Q.
e Letk > 0.

* Apply the update rule

L .
e+ = argmicrgl Vi) (z—2®) + §||x — )2,
e

Then, we have

la® — 2% < (1= D@ — a3

C.16 EQUIVALENCE OF OBJECTIVE FUNCTIONS
Fact C.33. If the following conditions hold:

e Let B € R™*™ be a diagonal matrix.

e Letw € R™.

* Letb € R™.

* Define f(w) := (w, Bw) — 2(b, w).
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Then we have

arg min f(w) = arg min [w — B~'b||%.

Proof. We have
w—B7'b||%4 =w' Bw—2(B~'b)" Bw + (B~'b) " B(B~'b)
=w Bw—2b"w+b B~
= (w, Bw) — 2(b,w) + b B~'b, (8)

where the first step follows from the definition of || - || 5, the second step follows from basic algebra,
the third step follows from the definition of the inner product.
Thus, we have
arg m]%n |lw— B~ ||} = arg m]'%n (w, Bw) — 2(b,w) +b" B~ b
weR™ weR™
= arg min f(w),

where the first step follows from Eq. (§), the second step follows from the fact that b" B~1b is a
constant. O
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D LINEAR PROGRAMMING: BACKGROUND

In Section [D.T] we introduce the definition of linear program. In Section[D.2] we present the basics
of the self-concordance property. In Section we show the definition of the weighted central
path. In Section[D.4] we introduce the Newton step. In Section[D.5] we present the definition of the
weight function. In Section[D.6] we introduce the concept of centrality. In Section[D.7] we introduce
the derivative computation of the volumetric barrier. In Section we present the derivatives of
the potential function. In Section[D.9] we show some basic properties of the projection matrix.

D.1 DEFINITION OF LINEAR PROGRAM

Definition D.1 (Linear program, Implicit in page 3 in (Lee & Sidford, |2019)). If the following
conditions hold:

o Let A € R™*™ b € R"™ be a non-degenerate matrix.
o For an arbitrary real number y € R, we define set dom(y) :={y e R: l; <y < u;}.

* Forvector x € R™ and all i € [m], the set dom(z;) is neither the empty set nor the entire
real line.

* Fori € [m], l; € RU{—o0} and u; € RU {+0o0}.

o Assume the interior of the polytope Q° := {x € R™ : ATx = b,1; < x; < u;,Vi € [m]}
is not empty.

We define the following linear program:

OPT := min clx.
z€R™ : AT z=b
vie[m] : I;<z;<u;

D.2 SELF-CONCORDANCE
Definition D.2 (Self-concordance, Definition 4 in page 12 in (Nesterov & Nemirovskii,|1994)). Let
foéd{( — R"™ be a convex, thrice continuously differentiable function. If the following conditions
o lim;_, o0 @(x;) — 00 for all sequences x; € K converging to the boundary of K.
o |D3¢(z)[h, h, h]| < 2|D%¢(z)[h, h)|*/? for all x € K and h € R™.
s |Do(x)[h]| < Vv|D?*¢(x)[h, h]|/? forall x € K and h € R™,

Then the function ¢ is a v-self-concordant barrier function for open convex set K C R"™.
Lemma D.3 (Theorem 4.1.6 in page 182 in (Nesterov, 2003)). If the following conditions hold:

* Let ¢! denote the second derivative of ¢; : R™ — R, for all i € [m].

Let s € dom(¢;) fori € [m)].

* Define r := maxX;e[m) v/ ¢} (s)[s — t|.
* Let U denote the maximum diameter of all dom(¢;).

Then, we have

e Part1.r € (0,1).

e Part 2. t € dom(¢;) and (1 —r)\/¢7(s) < /oI (t) < (1 —r)"1/d](s).

» Part 3. \/¢!(s) > 1/U where U is the diameter of dom(¢;).
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Lemma D.4 (Theorem 4.2.4 in page 196 in (Nesterov, |2003), see Lemma 9 in page 10 in (Lee &
Sidford, 2019) as an example). For all x,y € dom(¢;) and i € [m], we have ¢} (x) - (y — x) < 1.

For all z € Q°, we define ¢(x) € R™ by ¢(x); := ¢;(x;) for i € [m], define ¢'(z), ¢"(x) and
¢ (x) analogously, for example ¢(z); := ¢;(x;) and let ' = diag(¢’), " = diag(¢”), " =
diag(¢"") denote their associated diagonal matrices.

D.3 WEIGHTED CENTRAL PATH

Definition D.5 (Weighted central path, Implicit in page 11 in (Lee & Sidford, 2019)). Let ¢; : R —
R. We define the penalized objective function as

fe(z,w) =t -c'z+ Z w; i (2;).

1€[m]

The path-finding algorithm maintains a feasible point x € §1°, weights w € Ry and minimizes the
penalized objective function for increasing t and small w

Jin fi(@, w).

For every fixed set of weights, w € RZ the set of points x,,(t) := argmingecqeo f(z,w) for
t € [0,00) form a path through the interior of the polytope that we call the weighted central path.
We call z,,(0) a weighted center of Q°.

As shown in Theorem 4.2.7 on page 200 of (Nesterov, 2003), lim;_,, z,,(t) is a solution to the
linear program in Definition [D.T]

The above definition (Definition[D.5) can trivially yield the following fact.
Fact D.6 (Folklore). If the following condition holds

e Let fi(z,w) be defined as Definition[D.5]
Then we can show

Vafi(z,w) =t-c+wed' (x)
V2, filz,w) = Wo" ().

Fact D.7. If the following conditions hold

* We have w(v) := arg miny,erm, f(v, w).

* Let f(x,w) be defined as Definition ( We treat t as a fixed parameter in this statement,
thus ignore it).

* The minimizer for function f(v,w) is in the interior of its domain.
Then we have

Ju(v) = (V3w f(0,w(0))) TV, f (w, w(v)).

Proof. Since the optimal for f(v,w) is in the interior and the optimality condition V., f (v, w(v)) =
0 holds, we can take derivative w.r.t. v on both sides and obtain

Vi wf (0, w(0) + V3, o, f(v,0(v)) Jw(v) = 0.
Then, solving for J,,(v) directly yields:
Ju(v) = (V3w f (0,w(0))) 7'V, f (w, w(v)).

This finishes the proof.
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D.4 NEWTON STEP

Lemma D.8 (Lemma 51 in page 49 in (Lee & Sidford, 2019)). If the following conditions hold:
s Define f(z) := vz + 0.5||z|%,.
s Define v, ;= —W lo + W TAATWLA)LATW 1y € R™.

Rmxn

Then, for any vector v € R™, any positive vector w € R™ and matrix A € , we have

arg min T) = Ty.
g min f(z) =2,

Proof. A point 2 € ker(A") is optimal if and only if the gradient V f(x) = v + Wz is orthogonal
to every feasible direction in ker(AT).

Equivalently,
v+ Wz € Im(A).

Then, there exists some vector y € R" such that v + Wz = Ay.
Thus,
r =W Ay —v). )
Let us left multiply A on both sides,
Atz = ATW=1(Ay —v).

Since ATz =0, so

ATWtAy —ATW— v =0.
We have

y=(ATW At ATW 1o
Substituting back to Eq. (9), we have

T,= W o+ WAATWLA)TATW Lo,

The proof is complete. O

Definition D.9. For notation convenience in Hessian computation, we define:
o A, =" (x)"V2A

o Ppoyi=1-— WflAz(AIWAx)*lAI.
Lemma D.10 (Newton step, Implicit in page 11 in (Lee & Sidford, 2019)). If the following condi-
tions hold:

o Let fi(x,w) be defined in Deﬁnition
* Let O(x) € R™*™ denote a diagonal matrix where i-th entry is ¢;(x).
* Let A, and P, ., be defined as Definition[D.9|

Then, the new newton step for x with respect to fi(x,w) is

hi(z,w) = =@ (2) "2 P, , WL0" (2) Y2V, fy (2, w).

Proof. Lemma [D.§| (with replacing the W by W®"(z) and v by gradient in z, definition) shows
that a Newton step for x is given by

ha,w) = — (I — (W& () A(AT (W (2)) " A) " A7) (W (2)) 1V, fu(w,w)
— _ (I)H((E)_1/2Px’wW_1(I)”((E)_I/Qfot(il',U)),

where the second step follows from definition of A, Py .. ]
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D.5 WEIGHT FUNCTION

Definition D.11 ((c;, ¢4, ¢;)-Weight Function, Definition 12 in page 13 in (Lee & Sidford, 2019)).
We say a function differentiable g : Q° — R is a (c;, ¢y, cx)-weight function if the following
conditions hold:

* The size, ¢y, satisfies ¢c; > max{1,|g(z)||1}. This bounds how quickly centrality changes
as t changes.

o The sensitivity, cs, satisfies cs > e] G(z) AL (A]G(2) " A,) YAl G(x)e;. This
bounds how quickly the Hessian changes as x changes. Here e; is the length-m vector
where i-th location 1 and 0 everywhere else.

* The consistency, c, satisfies ||G(z) 1Ty (2)(2"(2)) ™Y 2| ga)400 < 1 —c;' < 1. This
bounds how much the weights change as x changes, thereby governing how consistent the
weights are with changes to x along the weighted central path. For definition of J,(x),
please see Fact|D.7}

D.6 CENTRALITY

Here, we explain how we measure the distance from x to the minimum of f;(z,w) for fixed w,
denoted d;(x, w). As d:(x, w) measures the proximity of z to the weighted central path, we call it a
centrality measure of z and w.

Definition D.12 (Mixed Norm, Implicit in page 12 in (Lee & Sidford, 2019)). We define the mixed
norm for all y € R™ by
[9[lwtoo = [1¥llsc + Crorm [|Y]|w-

Definition D.13 (Centrality Measure, Definition 11 in page 12 in (Lee & Sidford, 2019)). Let P, ,,
be defined as Definition[D.9 For {x,w} € {Q° x RZ\} and t > 0, we let hy(x,w) denote the
projected Newton step for x on the penalized objective f; given by

ht($7’LU) = —;Pm’w(m

9" (x) wy/¢" (x) ’

We measure the centrality of {x,w} by
. vzft(xuw)_An
e /@)

where for all y € R™, let ||y||wtoo := ||Ullco + Cromml||y|lw for Crorm > 0 is defined in Defini-
tion[D.12]

Lemma D.14 (Lemma 10 in page 12 in (Lee & Sidford, [2019)). If the following conditions hold:

||w+oo7

® Deﬁne A;E = q)//(l‘)_l/QA c R’"LXYL.
* Deﬁne Px,w =1- WilAm(A:—trwilAm)ilA;;r € Rmxm,

* Forany norm || - ||, s |yl q := minycpn

Yy — \/WH

Then, we have

* Part 1. [|yllq < [[Peawyll < [[Pewll - lyllQ-
 Part 2. For all {z,w} € {Q° x RT,}, we have

ot w) < [V (@) he (2, W) [luwtoo < ||Px,w||w+oo “O(z,w).

Proof. Proof of Part 1.
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‘We can show
Prawy= (I =W A, (AJW ™ A,) T Ay
=y —W A (AT W A) T ALy
=y — WA (AT WA, TtAy
=y - W 2A .y,
—y- (10)

w /¢”(m)7

where the first step follows definition of P, ,,, the second step follows simple algebra, the third step

follows from definition of A, the forth step follows from letting 7, = (A] W~1A4,)"1Aly, the
last step follows from W is diagonal matrix w, similarly for ®" and ¢".

‘We have
An

= min ||y - ————==
Iolo = pai I~ =

<lly— ——==l

= ||Pr,wy||7

where the first step follows from the definition of ||y||q, the second step follows from 7, can not

achieve a smaller objective function value than the minimizer, the third step follows from P, .,y =
Any

y— o) for some 7, € R™ (see Eq. (I0)).
We have
A
1Pe,wll - l1ylle = 1l Pewll - Iy = WJTH
An

> Pz w - i

> 1Pyl = )|

= ||Pm,’wy||7
where the first step follows from letting 7, be such that ||y|q = ||y — \‘/4%() ||, the second step

follows from the property of spectral norm, and the last step follows from P, , /W ~1(®")~1/2A =
0.

Thus, with y = V. f:(2, w), the proof is complete.

Proof of Part 2.
We choose y = Yalt@w)
Y= o

Then, we have
An

5t('raw) = min Y ||w+oo
=llylla
S ||Px,wy||w+oo

= V" (@)hi (2, W) |wtoo
< NP wllwroclyllq
= || Pr,wllw+ 000t (@, w),
where the first step follows from the definition of d,(x,w), the second step follows from the def-

inition of ||y||q, the third step follows from Part 1, the fourth step follows from the definition of
hi(z, w), the fifth step follows from Part 1, and the last step follows from d;(x, w) = ||y||q-

Thus, the proof is complete. O
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D.7 DERIVATIVE OF VOLUMETRIC BARRIER

Lemma D.15 (Derivative of Volumetric Barrier, Lemma 48 in page 47 in (Lee & Sidford, 2019)).
If the following conditions hold:

» For avector w € R™, let us W := diag(w) denote the m x m size diagonal matrix.
* For a full rank matrix A € R™*", we define
f(w) :=logdet(ATW A).
Then, for any w € RT, we have
Vf(w) =W la(W2A).

Proof. We have that for all i € [m]
df(w)

dwi

1%(ATWA)]

= tr[(ATWA)~
= tr[(ATWA) AT ese] A

= trfe] A(ATWA) 1A e;]

=] A(ATWA)"1ATe,

— eTW_1/2W1/2A<ATWA)_1ATW1/2W_1/26i
= w; lo(W1/2A),

= (w oo (W2A));

= (W la(W1/24)),,

where the first step follows from Fact [C.2] the second step follows from W is a diagonal matrix
and § W = e;e, , the third step follows from the cyclic property of trace (tr[ABC] = tr[C AB)),

the founh step follows from basic algebra, the fifth step follows from basic algebra, the sixth step

follows from the definition of o(TW'/2 A), the seventh step follows from the Hadamard product, and
the last step follows from Fact[C.1]

Therefore, we have

Vf(w) =W la(W2A).

D.8 POTENTIAL FUNCTION DERIVATIVE

Lemma D.16 (Potential Function Derivative, Lemma 50 in page 48 in (Lee & Sidford, |2019)). If
the following conditions hold:

o Let A € R™*™ be a non-degenerate matrix.

* Let A, ; denote the i-th column of A for all i € [n].

o Let q > 0 with q # 2.

e Define A, :== S;1A.

* S; :=diag(Ax — b).

o Letu; = (1/2 —1/q)(e; ow™1).

e Forall v € R" with Az > b and all w € RT, let p(x,w) := logdet(A] W1=2/14,).

* Definecy :=1— %.
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o Let B, = W'/~ 114,

* Opw i=0(By).

o« Yo = 3(By).

o Ay = A(By).

o We recall the preliminary that P°? := P o P.

o We recall the preliminary that P(A) :== A(AT A)71AT.

o We recall the preliminary that A(A) := S(A) — P°2(A).
Then we have

e Part1. ‘é‘;‘f = A,

 Part 2. fi‘zf" = diag(A. ;).

* Part3. 0 = 57 diag(4,..0).

dz;

* Part4. 41 = — diag(A, . ) A

dens g
e Part5 = —diag(Az i) Az % j-

* Part 6 ‘jﬁ; = — diag(Ay ;) B

e Part7 (égﬁ” = diag(u;)B,.
 Part 8. dB B* = 2B, diag(A; «;) By
o Part9 5= 5x dB B: — 9B] diag(u;)B,.

« Part 10. ‘1(373) = 2(B] B,)'B] diag(Aqy.+.;)B.(B] By) ™

e Part 11 % —2(B] B,)~Y(B] diag(u;)By)(B] B,)™
e Part 12 0Pl = _diag(A,.,)P(B,) + 2P(B,)diag(A,.)P(Bs) —

P(Bw) diag(Az)m-).
« Part 13 “52) — diag(u;) P(B,) — 2P(B,) diag(u;) P(B,) + P(B,) diag(u;).

o Part14 9320 — 9N, A,

« Part15. 97z = 27, u;.

e Part 16. V,p(z,w) = —2A] 0, 4.

e Part17. V,p(z,w) = c,W Loy 4.

o Part 18. V2 p(z,w) = A] (25,0 + 4M s 0) Az

e Part19. V2, p(z,w) = —c,W 1 (Ss 0 — Az )WL
e Part 20. V2 p(z,w) = —2c,Al 0y (WL

* Part 21. m% =A((1 - 2/q)W‘1‘3T1; + q%logw).

q
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Proof. Proof of Part 1.

‘We can show

dAzx A dz

~—— mXn o~

mx1 nx1

= A €;
M~

mXn pxl

= A*,i7

where the first step follows from the irrelevance between A and z, the second step follows from
basic algebra, and the last step follows from basic algebra.

Proof of Part 2.

We can show
dS, ddiag(Ax —b)
de; dz;
_ ddiag(Ax)
B dx;
dAzx
dx; )
= diag(4.,;),

= diag(

where the first step follows from the definition of S, the second step follows from the irrelevance
between b and z, the third step follows from the linearity of diag(-), and the last step follows from
Part 1.

Proof of Part 3.
We can show
dSJLf1 _1dSz 4
—— = -5 S
dxi r dﬁl r
_ _odS,
= — S ?diag(A. ;)

= — S_;l diag(Ag «.i),

where the first step follows from Fact[C.2] the second step follows from the fact that S, is a diagonal
matrix, the third step follows from Part 2, and the last step follows from A, = S 1A (implies that
(Aaf:)*,i = (SQ?lA)*,i = S;ZlA*,Z)

Proof of Part 4.
We can show
dA, _ d(S; LA)

ds;!
it 2|
dl’i
= — S 'diag(4,..)A
= —diag(A,.)S; A
= —diag(Aqg «.i)Aq,
where the first step follows from the definition of A, the second step follows from the irrelevance

between A and x, the third step follows from Part 3, the fourth step follows from the fact that .S, is
a diagonal matrix, and the last step follows from the definition of A,..
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Proof of Part 5.

dAg«;  dA,
dJ?i N ( dJJZ )*7]
= (_ diag(Aac,*,i)Ax)*J
= — diag(Az i) Az .50
where the first step follows from selecting the j-th column of the derivative, the second step follows
from Part 4 of the proof, and the last step follows from basic algebra.

Proof of Part 6.
We have
dB, dwl/2-1ay,
— W1/2_1/Q%
d.’l?i

= — WYV diag(Ay . i) As
= = diag(A:c,*ﬂ?)B:w
where the first step follows from the definition of B,, the second step follows from the irrelevance

between W and x;, the third step follows from Part 4, the last step follows from the commutative
property of the products of diagonal matrices and the definition of B,..

Proof of Part 7.
We have
dB, dwl/2-1/a4,
dwi o dwi
— (1/2— 1/q) ding(e,) W /2194,
— (1/2 — 1/q) diag(e; ow™")B,
= diag(ui)Ba,
where the first step follows from the definition of B, the second step follows from 4 d = diag(e;),

and the third step follows from the definition of B, the last step follows from deﬁmtlon of u;.
Proof of Part 8.

‘We can show

ABIB, BI, | -dB
dxi ZT; T4
— B, diag(A, «;)B, — B, diag(Ay.:)Bx

= — 2B diag(A, ;) B,

where the first step follows from the product rule, the second step follows from Part 6, and the last
step follows from basic algebra.

Proof of Part 9.
We have
dB] B, dBI BT dB,
dw; w; ow;
= (diag(ui)BmFBz + B, diag(u;)Bx
= 2B] diag(u;) B,

where the first step follows from the chain rule for products, the second step follows from Part 7,
and the last step follows from the fact that W and diag(e;) can commute.
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Proof of Part 10.
‘We can show

T -1 T

dz; T;
=2(B, B,)"'B, diag(A, .;)B.(B, B.)™*,
where the first step follows from dﬁ: =-A"1 %A‘l (Fact , and the last step follows from
Part 8.
Proof of Part 11.

We have

d(B; B,)"!
dwi

d(B, B.)
dwi
= - 2(3;31)_1(3; diag(ui)Bm)(BIBx)_l,

= = (Ba:TBx)71 (B;Bx)71

;vher9e the first step follows from d‘g;l = _—A"! %A’l (Fact , the second step follows from
art 9.

Proof of Part 12.

We have
dP(B.) _ dB,(B]B.)"'B]
dB _ d(B] B,)™! _,dB]
=—2(B!B,)'B] + B,—=—*_BT + B,(B] B,) ' —=%
= — diag(As,.:)Bo(B, B.) ' B,
d(B] B,)™ !
+BxMBI
d(Ei

— B,(B] B,) ' B/ diag(A, ..

= —diag(Ay.)B.(B] B;) ' B,
+ B, (2(B, B,) ' B/ diag(A, .;)B.(B} B,)"")B}
— By(B, B;)"'B, diag(4;...)

= —diag(As i) P(By) + 2P(B;) diag(As +,;) P(By) — P(By) diag(Ag 1),

where the first step follows from the definition of P(B,), the second step follows from the product
rule, the third step follows from Part 6, the fourth step follows from Part 10, and the last step follows
from the definition of P(B;).

Proof of Part 13
For the convenience of writing proofs, we recall u; = (1/2 — 1/p)(e; ow™1).
We have

dP(B,)  dB.(BJB.)"'B]

dwi dwi
dB, d(B]B,)™* dB;
= 8 (BIB,) Bl + B, 22 BT 4 B,(BIB,) 'S
= diag(u;)B,(B, B;)'B,
d(B] B,)™!
+B‘,L,MB;

dw,;
+ By(B; B,) ™" (diag(u;) By) "
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= diag(u;)By(B, By) 'B,
— B(2(B; B,) ™' (B; diag(ui)B.)(B; B.) ™) B,
+ B,(B, B,) (diag(u;)B.) "
= diag(u;)P(By)
— 2P(B,) diag(u)P(B,)
+ P(B,) diag(us),
where the first step follows from the definition of P(B,), the second step follows from the chain

rule for product, the third step follows from Part 7, the fourth step follows from Part 11, and the last
step follows from the definition of P(B,,).

Proof of Part 14.

‘We can show that
doyw d Diag(P(B,))

dP(B;
= Diag( (B )
dz;

= Diag(— diag(Az ;) P(B;) + 2P(B,) diag(Ays « i) P(By) — P(B,) diag(Az « i)
-2 diag(Ax,*,i)Ux,w + 2 Diag(P(B )diag(Az,*,i)P(Bx))a
— 2diag(Ag «,i)0z,w + 2(P(By) 0 P(By))Ag +.i
- 221,11)14@*@ + Q(P(Bi) © P(Bw))Aiv,*;l

= — 2Az,wA:r,*,i7

where the first step follows from the definition of o ,,,, the second step follows from the linearity of
Diag(-), the third step follows from Part 12, the fourth follows from Fact the fifth step follows
from Fact[C.T] the sixth step follows from Fact|C.I] and the last step follows from the definition of
Ay -

Proof of Part 15.
We have

do,.  dDiag(P(B;))
dw; dw;
dP(B,)
dwi )

Diag(diag(u;) P(B,) — 2P(B,) diag(u;)P(B,) + P(B,) diag(u;))
Ding(diag(u;) P(B,))
— 2 Diag(P(B,) diag(u;) P(B,))
+ Diag(P(B,) diag(u;)

= diag(u;)o4,4 — 2 Diag(P(B,) diag(u;) P(B;)) + diag(u;)oz w

= 2(diag(u;) 0w — Diag(P(B,) diag(u;) P(Bz)))

= 2(diag(ui)ow,w — P(Bz) o P(By)ui)

=2(Z40u; — P(By) o P(By)u;)

= 2A, s, (11)
where the first step follows from the definition of o ,,, the second step follows from the linearity
of Diag(+), the third step follows from Part 13, the fourth step follows from linearity of Diag(-), the
fifth step follows from Fact[C.1] the sixth step follows from basic algebra the seventh step follows

from Fact|C.1] the eighth step follows from basic algebra, and the last step follows from the definition
of Ay -

Proof of Part 16.
We have

= Diag(

dp(z, w) d T
@rw) BTB,
() tog(det(B] B.)
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d
dl‘i
—2tr[(B,) B,) ' B/ diag(A, ..;)B.]
— 24[B,(B] B,) ' B] diag(A,..1)]
— 2tr[diag(oy ) diag(Ag i)
= — 2(0pw, Az xi)

= —24] 0w

T ,%,0

= tr[(Ble)71 (B;Br)}

where the first step follows from the definition of p(x, w), the second step follows from Fact the
third step follows from Part 6, the fourth step follows from the cyclic property of trace, the fifth step
follows the definition of o, ,,, the sixth step follows from basic algebra, and the last step follows
from the definition of vector inner product.

Thus,

dp(z, w)

P —ZAIUJC,U,.

Proof of Part 17.

We have
dp(z, w) d
Tdw;, | dw log(det(B, B;))
d
= tr[(B] B,)"'—(B. B,
r((B, B.) dwz_( + Ba)]

tr[(B, B2) "' (1 —2/q)B, diag(e; ow™")B,)]
(1—2/q) tr[(B, B;) "B, e;e] W' B,]

= (1-2/q)trle] W' By (B, B.) "' B i
=(1-2/q) (W 'By(B,} B;)"'B) )i
=(1=2/Q)(W ' Prw)ii

=(1- 2/(])’“);10'9:,10,2'7

where the first step follows from the definition of B,, the second step follows from Fact [C.2] the
third step follows from Part 9, the fourth step follows from diag(e;) = e;e;’, the fifth step follows
from the cyclic property of the trace, the sixth step follows from basic algebra, the seventh step
follows from the definition of P, ,,, and the last step follows from basic algebra.

Therefore,
va(.’L', w) = (]' - 2/q)W_101,w~

Proof of Part 18.

We have
d*p(z, w) d T T
— = —2e; A T, W
dIJdI7 dﬂjl( 6] @ 9z, )
d
dA] do
_ T T T T, w
= —2e; ( iz, Oz w + Ay dr, )

= —2¢, (—A, diag(Asi)00w + Ay (—200w Az 4.1))
=¢] (24] diag(Azi)0ww + 44:Mp Az i)

e (24, SowAz i + 44 e 0w As i)

=e] (24, Sowls + 44: 0w As)es,
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where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from the chain rule for product, the fourth step follows from Part 4 and Part 14, the fifth step
follows from basic algebra, the sixth step follows from diag(a)b = diag(b)a (Fact|C.1), and the last
step follows from basic algebra.

Therefore,

V2 p(x,w) = Al (2%, .0 + 405 ) Ay

Proof of Part 19.

‘We have
d?p(x, w) _d

((1 - 2/q)w;101,w,j)

dw _ dgww
=(1-2/q)( dw Ozw,j + W, 172w,

d x,w
1= 2/0) (-1 = g5 oy + 0

= (
(1=2/q)(=1[i = jlw; * 00w, +w; (1 —2/q)e] Apw(w ™ 0e;)))

o(=1[i = jlw; 20w+ w; (cge] Apw(w™ 0 €1)))
= cq(—e;wflaw,wﬁiwiflei + wj*l(cqe;'—AgE’w(w_1 0e;)))
= cq(—ej ;i  opwiw; e + (cqlej o w™ ) T Ag (w0 €;)))

Trir—1 1
= —ce; W (Bpw — cqhow)W ™ ey,

where the first step follows from Part 17, the second step follows from the chain rule for the product,
-1

the third step follows from d;”@j, =1} = j] , the fourth step follows from Part 15, the fifth
step follows from ¢, = 1 — 2/g, the sixth step follows from 1[i = j] = ej e;, the seventh step

follows from w; 'e] = (e; ow™')T, the eighth step follows from e[

Tl S v = a;) and (a o b) = diag(a)b = diag(b)a (Fact.

Therefore,

aie; = e diag(a)e; (we treat

Vfuwp(x, w) = —ch_l(ELw — ch$7w)W_1.

Proof of Part 20.
We have

de(x7w) d(—QG;FA;,rO'z’w)

TAT dax w

- 2(1 - 2/q)e;‘|—AIAz,w(wil © ei)
= —2(1-2/q)e] A Ay W

where the first step follows from Part 16, the second step follows from basic algebra, the third step
follows from Part 15, and the last step follows from a o b = diag(a)b (Fact|C.1).

Therefore, by the chain rule
Vowp(,w) = —2c, AN Ay (g W

Proof of Part 21.

We have
d(wl/Q—l/q) de(1/2—1/q)logW

dq N dgq
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d(1/2-1 dw
= w2V g w410 1w )
dg dgq
1 dw
= W2V JogW + (1/2 = 1/q)W 1 ==), (12)
q? dg
where the first step follows from a = elog e the second step follows from the chain rule, and the last
step follows from %2‘1) =-1/¢%

For the convenience of writing proofs, we define a diagonal matrix

1 _dw
U:= 7 logW + (1/2 - 1/q)W i

We have
dB, d(Wl/Q_l/qu)

dgq dgq
1 dW
_ 1/2—-1/q/ ~ _ e
W (q2 log W+ (1/2 = 1/q)W ”

=UB,, (13)

) Az

where the first step follows from the definition of B,, and the second step follows from Eq. (12)),
and the last step follows from the definition of U.

‘We have
T T
dB; B, _ dB; B, BT dB,
dg dg dgq
=B/UB, +B/UB,
= 2B/ UB,, (14)

where the first step follows from the product rule, the second step follows from Eq. (T3), and the
third step follows from basic algebra.

‘We have
d(BTng)_1 T _1d(BTBm) T -1
=% _— _ (BB, z B! B,
dq (B, Bx) dq (B, Bx)
= —2(B)B,)"'B/UB,(B] B,)™*, (15)

where the first step follows from Fact[C.2] the second step follows from Eq. (T4).
For notation simplicity, we define P := P(B,) and A := A, .

Then, we have

dP(B,) _ dB.(B]B.)'B]

dq dq
dB d(B] B,)! dB]
=—B'B,) 'B +B,—=2—%* B" 4+ B,(B'B,) '—=%
G, (BB B+ G Bl B(BIB)
=UP —2PUP + PU, (16)

where the first step follows from the definition of P(B,), the second step follows from the product
rule, and the last step follows from Eq. (T3), Eq. (I3) and the definition of P(B,,).

‘We can show

do,.  dDiag(P)
dg dq
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dP
= Diag(d—q)
= Diag(UP — 2PUP + PU)
= Diag(UP) — 2Diag(PUP) + Diag(PU)

= 2%u — 2(Po P)u

=2(X—PoP)u
=2Au
dw 2
_ —1
=A(1-2/q)W diq + q—Q log w),

where the first step follows from the definition of o, ,,,, the second step follows from the linearity of
Diag(+), the third step follows from Eq. (T6)), the fourth step follows from the linearity of Diag(-),
the fifth step follows from Fact [C.1] the sixth step follows from basic algebra, the seventh step
follows from A = > — P o P, and the last step follows from the definition of w. [

D.9 PROPERTIES OF PROJECTION MATRIX

Lemma D.17 (Projection Matrices, Lemma 47 in page 46 in (Lee & Sidford,[2019)). Ifthe following
conditions hold:

e Let P € R™*™ be an arbitrary orthogonal projection matrix (see Definition .
e LetY:=Pol e R™*™,

Then, for all i, j € [m], we have
. R m 02
Part1. 3, ; = > /", P75
e Part2. 0 X P2 <X <[,(0<%;,; <1).

* Part3. PP < %;,;%; ;.

Part 4. |21 P°%z||o < [z]s.

Part 5. |S 71 P22 0 < |2 co-

e Part6. > " | ¥, ; = rank[P).

* Part7. |[y" XP%y| < ||y[|3 - [lz]s-

« Part8. [yT (P o PXP)y| < |yl |z]s.

Proof. Proof of Part 1.
We have

where the first step follows from ¥, ; is a diagonal entry for ¢ € [m], the second step follows from
the property of matrix, the third step follows from P = PP, the fourth step follows from matrix
product, and the last step follows from the definition of P°2.
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Proof of Part 2.
We observe that since P is a projection matrix, all its eigenvalues are either O or 1. Therefore, > < I.
By part 1, consider the matrix ¥ — P°2 fori € [m], its diagonal entries are
(E o POQ)M _ ZPQ
J#i
And its off-diagonal entries, for i # 7,
(8= P%);; =P

03"

Consequently, we can conclude by Fact that ¥ — P°? = 0. Rearranging terms and using
Fact[C.16]yields Part 2.

Proof of Part 3.

For i, j € [m], we have

P2 = () PirPe;)’
k=1
<O PO P
k=1 k=1

= 242,55

where the first step follows from P = PP, the second step follows from Cauchy-Schwarz, and the
third step follows from Part 1.

Proof of Part 4.

For any index ¢ € [m], we have

‘eZTPo2x|2 ZPOQ

ZE“x ZZJ

" P2y Y

< (Z DN ”27”)

j=1 2,7

m

= (Z ZJj,jl’?) : (Em szzj)
j=1

j=1
= Q%)%
j=1

= Siillzlz)?,
where the first step follows from basic algebra, the second step follows from Cauchy-Schwarz, the
third step follows from Part 3, the fourth step follows from basic algebra, the fifth step follows Part

1, and the last step follows from [|z|s := /377", 3 ja3.
Taking the square root of the above equation, we get

lef PP%x| < Xy il||s-
Proof of Part 5.
We have

e x| = IZP"Q%\
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m
<Y Pzl

= Biillz] oo,

where the first step follows from basic algebra, the second step follows from the triangle inequality,
the third step follows from ong2 > 0 for i,j € [m], the fourth step follows from the definition of

|| - || oo, and the last step follows from Part 1.
Proof of Part 6.
We have

Z 2177 = tr[P]

= rank[P],

where the first step follows from ¥ = diag(Diag(P)), and the second step holds since all the
eigenvalues of P are either O or 1.

Proof of Part 7.
Recall x € R™ and X = diag(z). We have
|y X P2y = [(X Ty, PPy)]

m

= > (@iyi) - (Py)s]

i=1

m
= |inyieZTPO2y|
i=1

m

< Z il - il - e P°%y|
i=1
m

S el -yl - i lylls
i=1

IN

IN

m m
DS [ Tiw? - ylls
=1 =1

= llzllzllylzllylls,

where the first and the second steps follow from basic algebra, the third step follows from selecting
the i-th entry of (P°2y) with e;, the fourth step follows from triangle inequality and |abc| = |a] -
|b] - |c], the fifth step follows from Part 4, the sixth step follows from Cauchy-Schwarz, and the last
step follows from the definition of ||z||x.

Proof of Part 8.
We define

m m
ay = ZZ lyil - lyjl - Piz,jv
i=1j=1

m m

ar:= Y Y luil - |yl - (PXP)Z.

i=1 j=1
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We have

m m

ly"(PoPXP)y| =1Y > yiy;(PoPXP),l

i=1 j=1

=YD vy Piy(PXP)i |

i=1 j=1
S V a - az,

where the first step follows from the fact that " Az = Y"1, Z;nzl x;x;A; 5, the second step

follows from the fact that (A o B); ; = A, ; - B; ;, and the last step follows from Cauchy-Schwarz.

Letting |z| and |y| be the vectors whose entries are the absolute values of the entries of = and y
respectively, we have

a1 = |[[ylll5e2
<lyll%
= ”yH%h

where the first step follows from the definition of |||y||| poz, the second step follows from Part 2, and
the third step holds since X is diagonal.

‘We have

yi |y] PXP)’L]

Zh “ly;l - sz kP ki)’

£V 1Yillek ) (Piey/ lysllee]))?

'Ms uMs uMs \\Mg
Ms

INgE HMS HMS i
MS HMS

< (O Plilyillael) - Z 2lyillzx])
i=1 j=1 k=1
m m

= Q- Iyl Pila))?
i=1 k=1

= (ly|" P2[])

= (lyl, lz) po

< lyllpeelllz ]I Bos
<yl

where the first step follows from the definition of as, the second step follows from basic algebra,
the third step follows from absorbing |y;| - |y;| into (3"}, P xPjxxi)?, the forth step follows
from Cauchy-Schwartz, the fifth step follows from basic algebra, the sixth step follows from basic
algebra, the seventh step follows from the definition of inner product, the eighth step follows from
Cauchy-Schwartz, and the last step follows from Part 2.

Combining these inequalities then yields the desired bound on |y " (P o PX P)y|.
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E LINEAR PROGRAMMING: LEWIS WEIGHT COMPUTATION

In Section [E.T] we introduce the volumetric potential. In Section [E.2} we show that Lewis weights
are the result of solving a particular convex optimization problem. In Section we study the
stability of Lewis weight under rescaling. In Section [E.4] we study the Lewis weight rounding
properties. In Section[E.5] we compute the gradient and Hessian of the volumetric potential. In Sec-
tion [E.6] we present an important lemma for Hessian approximation. In Section[E.7} compute the
weight function. In Section [E.8| we show we can get a multiplicative approximation of w,. In Sec-
tion [E.9] we introduce exact weight computation. In Section[E.T0} we present approximate weight
computation. In Section [E.TT] we introduce the computation of the leverage score. In Section[E.12]
we compute an initial weight. In Section[E.T3] we introduce the theorem of exact weight computa-
tion. In Section we provide the theorem of approximate weight computation. In Section [E.T5]
we introduce a useful theorem for the weight function.

E.1 VOLUMETRIC POTENTIAL

Definition E.1 (Lewis Weight (Lewis| [1978)), see Definition 2.2 in page 3 of (Cohen & Peng| 2015)
as an example). For all p > 0 and non-degenerate A € R™*", we define the {,, Lewis weight wy,(A)

as the vector w € R such that w = o(W/?=1/P A) where W = diag(w).

Fact E.2. If w,, is the Lewis Weight in Deﬁnition that satisfies w, = U(Wpl/zfl/pA), then we
have

W, = Diag(A(ATW=2/P A)=LAT)P/2,

Proof. We have
wp = U(Wpl/zfl/pA)
— Diag(Wl/Q_l/pA(ATW1_2/pA)_IATW1/2_1/p).
The above equation implies
A —1/p AT (AT i71—2 -1 -1
1., = Diag(W, /PAT(ATW,)=2/P A)~1 AW, 1/P),
The above equation is equivalent to
2/p _ 1 T AT71-2 -1
W2/? = Diag(AT(ATW,~2/P4)71 A).
Thus
W, = Diag(A(ATW, ~2/?A)~L A)P/2,
O
Definition E.3 (Volumetric Potential, Definition 21 in page 20 in (Lee & Sidford, 2019)). For non-
degenerate A € R™*™ and p > 0 with p # 2 we define the volumetric potential as

Vz’:‘(w) = log det(ATW=2/P 4).

1
1-2/p
E.2 CONVEX FORMULATION OF LEWIS WEIGHTS

Lemma E.4 (Lemma 22 in page 20 in (Lee & Sidford, 2019)). If the following conditions hold:

o We define
1
A __ Ty71-2
as described in Definition[E-3]
* Forallw € RY,, define f(w) := —1%2/1) logdet(ATWI=2/PA) + 3" w;.

o We recall that the leverage score o is defined as o(A) := Diag(A(ATA)~1AT).
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o Let oy := a(WY27VPA) where W := diag(w).
* Suppose all non-degenerate A € R™*™ its £, Lewis weights exist and are unique for p > 0.
o Letp # 2.

* Let Fy(w) denote the following optimization problem:
m
in V! 3
wrélﬂégbo P (U)) + ; Wi

 Let F»(w) denote the following optimization problem:

i VA(w).
wG]RQLO:HZn;I"il w;=n p (UJ)

Then, the following statements are true:
* Part 1. The minimizer of Problem Fy(w) is in the interior of its feasible region.
* Part 2. The Lewis Weight w,(A) is the minimizer of Problem Fy(w).
* Part 3. Problem F\(w) is strictly convex.
* Part 4. The minimizer of Problem Fy(w) is unique.
* Part 5. Problems F(w) and Fz(w) are equivalent.

Proof. Proof of Part 1.
For all w € RT if w; > 1 then

df(w) o o Uw,i
dwi B Ww;
>1-
w;
>0,

where the first step follows from Lemma the second step follows from o, ; € [0, 1] (Part 2 of
Lemma [D.17), and the last step follows from w; > 1.

The above derivative computation implies that f(w) is monotonically increasing when w; > 1 (this
is range on the right side of extreme point).

Hence, we have inf,,,~0 f(w) = inf154,>0 f(w).
Case 1. p > 2.
Now if p > 2 and w; € [0, 1] for all ¢ € [m] then since 1 — 2/p > 0,
Ow,i = O‘(Wl/2_1/pA)i
= (WY2-1p g(ATWI=2/p A) =1 AT W 1/2-1/p), |
— w3*2/p(A(ATW1—2/pA)—1AT)i)i
>w; P(AATA) AT,
=w; o (A);, (17)

where the first step follows from the definition of o,,, the second step follows from the definition of
o(W1/2=1/P A), the third step follows from the fact that W = diag(w) is a diagonal matrix and M
is a square matrix so (WMW);; = w;M; ;w;, the fourth step follows from W'=2/? < [, (and
then applying Fact[C.20)), the fifth step follows from the definition of o(A).
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Since A is non-degenerate, o (A4); € (0, 1] for all 4.

p/2
J

Therefore for any j € [m] with w; < o(A)."~, we have

df(w) =1— O—wvj
dwj w;

<0,
where the first step follows from Lemma [E.9] the second step follows from Eq. (I7), and the last

step follows from w; < 0(A)§/2.

The above derivative computation implies that f(w) is monotonically increasing when w; <
O'(A)? /2 (this is range on the left of extreme point).
Consequently, inf,,, o f(w) = inf154,>0 f(w) = inf1>wi>U(A)f/2 fw).
Case 2. p < 2.
Similarly, if p < 2, w; € [0, 1] for all i € [m], and Win = Min;ep,) w;. Then since 1 —2/p <0,
we have W1=2/P < o} 2/Pp
Consequently, by analogous derivation to Eq. (7)), we can show
Owi = a(WY/21P ),

_ w3—2/p(A(ATW1—2/pA)—1AT)M

> (i /wWimin) ' P(A(ATA) AT,

= (w;/winin)' P (A);,
where the first step follows from the definition of o,,, the second step follows from the definition of

o(W1/2=1/P ), the third step follows from W1=2/P < w!~2/PT  (and then applying Fact ,
the fourth step follows from the definition of o(A).

If j € argmin,epy,) w;, this implies that 0., ; > o(A); and therefore if w; < o(A); we have
df(w)

o <0.

dwj
Therefore, if we let 0, 1= mingepy,) o; > 0, we have inf,,, ~o f(w) = inf150,> 00, f(W).

In either case, since f is continuous, the above reasoning argues that f achieves its minimum on the
interior of the domain.

Proof of Part 2. Therefore, we have that the minimizer of w, of f(w) satisfies VF; (w.) = 0. By
Part 1 of Lemmal[E.9] we further have

W low, + 1, = 0,,.

Therefore, we can conclude that w, ; = 0, ; forall i € [n].

This proves that the minimizer of f(w) exists on w € RZ, and equals to the Lewis weights in
Definition [ETl

Proof of Part 3. Further, for all w > 0,
V2 f(w) = VY (w) +0
2
~ max{p, 2}
=0,

Wiy, wt

where the first step follows from relationship between f(w) and VY (w), the second step follows
from Part 3 of Lemma [E.9] and the last step follows from Fact since >, and W are positive
definite matrices and W is diagonal.
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Therefore f is strictly convex where 1 > w; > min{o;, o7 / 2} for all 4.

Proof of Part 4. Consequently, the minimizer of F} is unique and it is the unique point satisfying
V f(w) = 0 for w € RZ,,.

Proof of Part 5. Further, since Y ;- ¥,,;; = rank[A] = n by Part 6 of Lemma we have
o wy(A); = n and we have the equivalence of the two objective functions. O

E.3 STABILITY OF LEWIS WEIGHTS UNDER RESCALING
Lemma E.5 (Lemma 24 in page 21 in (Lee & Sidford, 2019)). If the following conditions hold:
* For all non-degenerate A € R™*™,
e Letp > 0 withp # 2.
* Let wy(-) be defined as Definition
» Letv € R™, define w(v) := w,(VA) where V := Diag(v).
o We recall that the leverage score o is defined as o(A) := Diag(A(ATA)~1AT).
* We recall that ¥(A) := diag(c(A)).
s We recall that A(A) := S(A) — P°2(A).
* Define A, := A(W'/2=1/PV/ A).
* Define W, := diag(w(v)).

* Forw(v) : R™ — R™ and v € R™, we use J,(v) € R™*"™ to denote the Jacobian of w

at v, where Jo,(v); ; == d%]w(v)ifori € [m],j € [m].

Then, we have

Ju(v) = 2W, (W, — (1 —2/p)A,) A VL

Proof. We define

log det(ATVIW' =PV A) +> " w;.
i=1

1
f(’U/LU) ::_1_2/]7

Let us applying Lemma[E.4]to the above equation by treating V' A as A. Lemma|E.4|shows that
w(v) = arg min f(v,w)
weRY,

and that the optimum is in the interior.

Hence, the optimality conditions yield V., f (v, w(v)) = 0. Taking the derivative with respect to v
on both sides, we have

VoV f(v,w(v)) = V,0.

We further expand the left side of the above equation, then we have

Vi of (0,0(0)) + V2, f (0, w(v)Ju(v) = 0.
Therefore, we have that
Ju (V) = =(Vi, o f(0,w(0))) 'V, f(0,w(v)). (18)
And we have

V2 wf,w) =W (S, — (1 —2/p)Aw)W 1, (19)
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where the step follows from Part 19 of Lemma [D.16] (We remark that in the future, when we use
the above equation, we need to replace f(v,w) by f(v,w(v)), thus all the W and w should be W,
and w(v))

For V3, , f(v,w(v)), we note that

Vo f(v,w) = —Wlg(W/2-1/Py A),
where the step follows from Part 17 of Lemma[D.16|
The Part 15 of Lemma[D.16| with ¢ = oo, we can be re-stating as follows

d
—o(WY2A) = A(w™ L oey).
wj
Replacing W'/2 by V, we obtain
d
—a(VA) =2Av"" o). (20)
vj

Taking derivative with respect to v gives that
d df(v,w)
d’Uj dwz
d
Uj
d

= —(—(eiow™ ) Ta(W/21/PV 4))
d’Uj

v%u,vf(vv w)i,j =

—w; to(WY2-1/Py A)))

= - ejW‘lga(Wlﬂ_l“’VA)

Uj
= - eIW*lia(le/H/PA)
dv;
= — 2] WIA(VWY27PA) . (v o ey)
— 2e] WIA(WY 2PV A) - (vt o ¢y)
= —2e, WL A(WEVPY A) vV ey,

where the first step follows from basic algebra, the second step follows from Part 17 of Lemma[D.16]
the third step follows from Fact[C.I] and the fourth steps follow from Fact)@ the fifth step follows
from the fact that the product between diagonal matrices V and W'/2~1/? can commute, the sixth
step follows from Eq. (20) (by treating V' as W1/2 and W1/2-1/P A as A when applying Eq. 20)),
the seventh step follows from the fact that the product between diagonal matrices V and W1/2-1/p
can commute, and the last step follows from Fact @

Thus, we have

V2 fo,w) = —2W AW 2Py A)y L, (21)

‘We can show
Yo = diag(c(W/271/Py A))
— diag(w(v))
=W, (22)

where the first step follows from Lemma[D.16] by treating VA = A,, the second step follows from
the definition of w(v), and the last step follows from W,, = diag(w(v)).

‘We can show
Ay = A(W/27/PY A)
=A,, (23)
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where the first step follows from Lemma[D.16| by treating VA = A,, the second step follows from
the definition of A,,.

‘We further have
Juw(0) = = (Vi f(0,0(©) Ve, fv,w(v))
= 2VV1)(£U) - (1 - 2/10)/\11;)71/\1;‘/71
= 2W, (W, — (1 = 2/p)Ay) 1AV
= 2W, (W, — (1 —2/p)A,) *A, VL,

where the first step follows from Eq. (I8), the second step follows from Eq. (T9) and Eq. (1)) (with
reparamertize w by w(v) in f(v, w)), the third step follows from Eq. (22)), and the last step follows
from Eq. (23). O

Lemma E.6 (Lemma 25 in page 22 in (Lee & Sidford, 2019)). If the following conditions hold:
* Under the setting of Lemmal[E.3]

Let wy(-) be defined as Definition
» Letv € R™, define w(v) := w,(VA) where V := Diag(v).

e Letv € R,
o Leth € R™.
We have
* Part 1.
W5 T () llwy < 2 11V Bllauge)-
* Part 2.

(W T (v) = pV ™ Hhllo < p - max{p/2,1} - [V Al

Proof. Proof of Part 1.
Fixing an arbitrary v € R7 and h € R™.
According to the definition of w;,(A) (Definition E.I), we know wj,(V A) is the unique solution to

w=o(W/271/Py 4).
Thus, if we define w := w,(V A), then have w = o(W/2=1/PV A).
Since w(v) := w,(V A) (see Lemma statement), we also have w = w(v).
Thus, we can further define > notation,
Y= N(WY2-ry 4),
it is obvious that
¥ = diag(o(W/27 VPV A)) = diag(w) = W = W, = diag(w(v)). (24)
We further define
o A= A(W/2=1/PV A) (recall that A < )
o A:= A(W/2=1/PV A) where A = ©-1/2An-1/2
o PO2._ Po2(w1/271/pVA)
cQi=1-(1-2/pA
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From Q = I — (1 — 2/p)A, we can multiply p on both sides, we get
pQ = pI — pA + 24,
which is further equivalent to

2A — pQ = pA —pl. (25)

We have that
Jw(0)h = 2W, (W, — (1 = 2/p)A) AV 1h

=2%(Z — (1 —-2/p)A)'AV 1A

=25V — (1 —=2/p)A)"tuV2AV 1

—onl/2Q- 112z 1y,

— o120~ 1Ax 2y 1y,

— oW 2Q AW/ 2Yy—1p,

= 2W'EAQTI W2V ~1h, (26)
where the first step follows from Lemma[E-3] the second step follows from W, = ¥ (Eq. (24)), the
third step follows from A = X1/2A%.1/2  the fourth step follows from definition of @, the fifth step

follows from A = ¥ ~1/2A%~1/2  the sixth step follows from W = % (Eq. 24)), and the last step
follows from QYA = AQ ! (Fact[C.26).

Using Fact|C.27} we can conclude that A(I — (1 — 2/p)A)~! is a matrix whose eigenvalues are of
the form A\/(1 — (1 — 2/p))), where \ represents an arbitrary eigenvalue for A.

Thus, we have

1QAll =[I(1 — (1 —2/p)A) " A||
< A
max ———————
Toa11l—(1-2/p)A
p
_P 27
1 (27)
where the first step follows from the definition of matrix @, the second step follows from Fact[C.17]
(for 0 < A < 1) and Fact (for the form of eigenvalues), and the last step holds since the
maximum of the function occurs at A = 1.

Consequently, Part 1 follows from

W T @)l = T (0) TW 1 (o)
= W2 T, (v)R]|2
=2||Q AW/ 2V ||,
<2Q7MA| - W2V,
<p|W'2V " h|,
=V 2w,

where the first step follows from the definition of || - ||.,, the second step follows from the definition
of || - ||2, the third step follows from Eq. (26), the fourth step follows from the property of matrix
spectral norm, the fifth step follows from Eq. (27), and the last step follows from the definition of

I Il and w(v) = w (see Eq. @24)).
Proof of Part 2.
Next,
I—A= 271/2(2 _ 21/2K21/2)2*1/2
= 271/2(2 _ A)E’l/Q
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— n-1/2 po2ya—1/2
—Wl/2peyy -1/, (28)
where the second step follows from A = X ~1/2AX~1/2 the third step follows from A = 3 — P°2,
and the last step follows from > = .
Then we have
(W= (v) —pVHh
_ (W‘12W1/2KQ_1W1/2V_1 —pVYh
— w2, 2A - pQ)Q" - wl/2y-1p,
=W12 . (pA—pI)- Q' WAV h
— WP 2w 2y 1y, (29)

where the first step follows from Eq. (26), the second step follows from @ is invertible, the third step
follows from Eq. (23)), and the fourth step follows from Eq. (28).

However, we know that for all z,
127 P22 ]|o < lz|lx
= |2z, (30)

where the first step follows from Part 4 of Lemma|[D.17] the second step follows from the definition
of ||+ 2.

Note that
QI =11 = (1 —=2/p)A)~ 1|

1
< .
= 02as11— (1—2/p)A

- Inax{l,g}, G1)
where the first step follows from the definition of (), the second step follows from Fact (for

0 < A <1) and Fact (for the form of eigenvalues), and the last step follows from computing
the maximum value.

And therefore
W (0) = pV " Dhl|oo = [pW T PEWT2QTIW2Y T Ao
=p- ||W71P°2W71/2Q71W1/2V71h||oo
<p- ”W1/2W—1/2Q—1W1/2V—1h”2
=p QWA
<p-llQTH - WAV A2
<p-max{L, 2} W2V,

<p-max{l, £} [V,

where the first step follows from Eq. (29), the second step follows from the linearity of the norm,
the third step follows from Eq. (30), the fourth step follows from WY2W=1/2 = [, the fifth step
follows from property of the matrix spectral norm, the sixth step follows from Eq. (31)), and the last
step follows from the definition of || - ||4,.

Thus, we complete the proof. O

E.4 LEWIS WEIGHT ROUNDING PROPERTIES

Lemma E.7 (Lemma 28 in page 24 in (Lee & Sidford,|2019)). If the following conditions hold:
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o Let Ac R™ ™ p> 0.
* Define w := w,(A).
* Define a:=2/p—2/r.
e Letr > p.
o Letgo = (1+a)(1+1/a)
We have
ATWI2IMA L ATWI 2P A 2 g -m™ - ATW! 27 A,

Proof. We have
ATW172/TA < ATw172/pA,

1-2/r

i < wil_2/p for

where the step holds since » > p and w; € (0, 1] for all ¢ € [m] we have that w
all i € [m).

To prove the other direction, let € € (0, 1) be a positive real number.

Let Iwgﬁ € R™*™ be the diagonal matrix where I ; ; = 1 if w; > —and I ;; = 0 otherwise.
Let Iy> < =1 — Iy<c.

Using Fact[C.21] we have

1
ATW2/r A < 1714T14/1—2/p1w>i,4, (32)

— €

Since 7 > p > 0 and w € RT, we have (2)~2/PW=2/P < (2)=2/"}y=2/" which further implies
that

(ﬂ)72/pATW172/pr>%A =< (ﬂ)72/TATW172/TIw>%A.

€ €

Thus, multiplying (12,/€)?/P on the both sides of the above equation, we have

ATWI 2Ly e A (PP AT s AL 33

€
Combining Eq. (32) and Eq. (33), we can obtain that

ATwi=2/rp < iATWH/PIwiA
1 m
(i

< )2/p—2/rATW1—2/TA

—_

€ €
m

)aATwl—2/rA

mozATW172/rA
= o - me . ATW172/TA’

where the first step follows from Eq. (32), the second step follows from Eq. (33), the third step
follows from v = 2/p — 2/, the fourth step follows from choosing € = 1 to be the minimizer

of function f(¢) = (1—# (see Fact , and the last step follows from the definition of g, and
basic algebra.

O
Lemma E.8 (Lemma 26 in page 23 in (Lee & Sidford, 2019)). If the following conditions hold:
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o Let A € R"™*™ be a non-degenerate matrix.
* Define w := wy(A) for0 < p < r.

* Define a:=2/p—2/r.

o Let go := (1+ a)(1 + 1/a)™

* Define cp rm == (ga)ﬁ .mTia,

Then we have

U(Wl/Q_l/rA)iwi_1 < cprm < 2mTre .

Proof. We have
ATW172/TA - (gama)fl . ATW172/pA,
where the step follows from Lemma[E.7}

Taking the inverse of the above equation on both sides, we get
(ATW172/TA)71 < (gama) . (ATW172/pA)71.
For all i € [m] it follows that
eZTA(ATW172/TA)71ATeiwi—2/7'

< gama) . eZTA(ATWI—2/pA)—IATeiwi—Q/r
T 2/10*1w'1/271/pA(ATwl—Q/pA)—lATw_l/zfl/peiw'fQ/r

T € Wy 7
.Q/P—lo_i(Wl/Qfl/pA)wa/T’
2/p=1 e w2

P (34)

where the first step follows from multiplying e; - ew; 2/" on both sides of previous equation, the
second step follows from w?/? _1wz-1 /2-1/p wzl /24P — 1 the third step follows from Fact , the

%

fourth step follows from w = o(W1'/2=1/P A), and the last step follows definition of o = 2/p—2/r.

g8 8

For any fixed index i € [m)],

m

AW A= 3wl T ATejel A
=1

"ATee] A, (35)

where the first step follows from > wjl._Q/ "eje] = W'=2/" (see Fact , the second step
follows from wjl.f%AT eje; Alis positive semidefinite for j € [m].
Thus, we have
wil*%eiTA(ATwl—%A)—lATei — (W2 A(ATWI= 3 A) W21 AT,
— o (W21 g
<1,

where the first step follows from Fact[C.8] the second step follows from the definition of leverage
score o(+), and the last step follows from Part 2 of Lemma

Therefore, for ¢ € [m)],

eIA(ATwl_%A)_lATeiw;% < w;l, (36)
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For i € [m], we have
U(Wl/g_l/TA)iwi—l _ e;rA(ATwl_z/TA)_lATeiwi_Q/r
< min{gom®w$, w; '}
1
< (goc’rna)LTY
= Cp,r,m» G

where the first step follows from definition of o(TW'/271/" A) and basic algebra, the second step
follows from combining Eq. (34) and Eq. (36), the third step follows from Fact[C.11] and the last
step follows from the definition of ¢, ;. .

The fact that if we let

then for all o > 0,
_log(14 a) N a-log(l+ (1/a))

log f(a) == Ta
1 -(1 1
< gLt @ (L (1/a),
14+« 1+«
= log 2,

where the first step follows from basic algebra, the second step follows from the concavity of log
(vf(a)+ (1 —~)f(b) < f(ya+ (1 —~)b) for any concave function f), and the last step follows
from basic algebra.

Therefore, we have
Cp,r,m S 2mTHa )

where the step follows from Eq. and f(a) < 2. O

E.5 GRADIENT AND HESSIAN OF VOLUMETRIC POTENTIAL

Lemma E.9 (Gradient and Hessian of Volumetric Potential, Lemma 24 in page 20 in (Lee & Sidford,
2019). If the following conditions hold:

* For all non-degenerate A € R™*™,
* Letw € RY,,.

o Letp > 0 with p # 2.

* Define W := diag(w) € R™*™,

Define o, := o(W'/2=1/P 4),

Define ¥, := S(W1/2-1/p A),
* Define A, := A(W1/2-1/P A),

Define

1
Ay e Tyirl-2/p
Vy (w) : =2/ logdet(A' W A).

Then, we have

e Part 1.
VYA (w) = — W oy,
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¢ Part 2.
V2V (w) = WSy — (1 - 2/p)Ay) W

e Part 3. V;‘ is convex in w and

2

2
WIS W < VA () <
max{p, 2} P SV w)

- _ wly, WL
~ min{p, 2}

Proof. Proof of Part 1.
The formula for VVZ‘;‘ (w) follow from Part 17 of Lemma

Proof of Part 2.
The formula for V2V, (w) follow from Part 19 of Lemma
Proof of Part 3.

Recall that A := ¥ — P°2,
We have 0 < A,, < X,, by Part 2 of Lemma[D.T7]
If p < 2 then (1 — 2/p) < 0, then we have
Y — (1 =2/p)Ay = Ty
where the first step follows A, = 0.

And, we also have
2
Y —(1=2/p)Ay 23y — (1 -2/p)By = =Xy,
p

where the first step follows A, < 3.

Applying the Fact|[C.25|to above two equations, then we have

2
WS, W VvV (w) 2 WIS, W
p

If p > 2 then (1 — 2/p) > 0, then we have
2
Y — (1 - 2/p)Aw = 5211”

where the first step follows from X, = A,,.
Then we also can show

Y — (1 =2/p)Ayw X,
where the first step follows from A,, > 0.

Applying the Fact[C.25]to above two equations, then we have

2
WS, W 2 VAV (w) = W, WL
p

Thus, we complete the proof.

E.6 HESSIAN APPROXIMATION
Fact E.10. If the following conditions hold:
* Define € € (0,1).

+ Define f(p) = (F2)11-2/7,
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* Foralli € [m], we assume that v;, w; > 0.
o Foralli € m), let (1 —€)v; <w; < (14 ¢€)v;

Then we have

S(WY VP A) € [f(p), f(p) Y] - B(V/21/PA).

Proof. For i € [m], We have
E(W1/271/pA)l_ - Wl/Qfl/pA(ATW172/pA)71ATW1/271/p)1_i
)|1 2/p\(V1/271/pA<ATW172/pA)71ATV1/271/p)ii

1
1+ ¢)lt=2/7l
1 —e)lt=2/pl

(p)(VI/Q 1/pA(ATV1 2/pA) 1ATV1/2_1/p)ii
(P2 A),

—~

_|_
_|_

IN

—~—~

(V1/2 1/pA(ATwl 2/pA) 1ATV1/2_1/p)7;i
<f
=f

where the first step follows from the definition of X(WW1/2-1/P A), the second step follows from
(1 —ev; < w; < (14 €e)y; fori € [m], the third step follows from Fact |C.20} the fourth step

follows from the definition of f(p), and the last step follows from the definition of ¥(V1/2-1/7 4),

Similarly, we can show

SWEPA) > f(p) TSV A)

Thus, the proof is complete. O

Lemma E.11 (Hessian Approximation, Lemma 53 in page 50 in (Lee & Sidford, 2019)). If the
following conditions hold:

* Denote the optimal point of Lewis weight as w,,.
* Define ¢ := %. (it implies that € € (0,0.125)).
¢ Letw € RY satisfies ||W ™ (w, — w)||oo < € for the matrix W := diag(w).
* Define V := diag(wp).
Then, we have

min{1/2,1/p}W =" = VY (w) = max{2,4/p}W "

Proof. Since we V' := diag(w,), then it is obvious that V = $(V1/2-1/P A),
For i € [m], we have

(1 — E)U)pﬂ' § w; § (1 + e)'wp’i,

where the step follows from [[W =" (w), — w)|[ec < € (it implies [=27—| < ¢).
By definition of V' = diag(wy,) in lemma statement, we have
(1—e)v; <w; <1+ €)vy, (38)
where € € (0, 0.2) (see condition in Lemma statement).
We define
(1+ 5% ))Il 2/pl
f(p) = 1- — +2))|1 2/p|*

Using Fact|C. 10} we know that f(p) > 1.
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Then, we have
S, = S(W/271/P )
< f(p)S(V2HPA)

=f(p)V
<V
=2W,

where the first step follows from the definition of 3J,,, the second step follows from Eq. (38) and
Fact[E.10] the third step follows from V = %(V1/2=1/7 A), the fourth step follows from Fact[C.10
(it gives f(p) < 1), and the last step follows from Eq. (38).

And

= S(W/21/P Q)
f(p)~ 12(‘/1/2 /rA)
fp
=V

Y

)~

= 0.5W,

where the first step follows from the definition of 3,,, the second step follows from Eq. (38), the third
step follows from V = %(V1/2=1/7 A), the fourth step follows from Fact|C.10] (it gives f(p) < 1),
and the last step follows from Eq. (38).

Then the result follows from Lemmal[E.9] O

E.7 COMPUTE THE WEIGHT FUNCTION
Lemma E.12 (Lemma 54 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:

e Definer := 720(5+2).

e Let w(0) € R7y such that ||W(0) ™" (w, — w(0))]|so < 7.

o Let w(0) satisfy that (w(0),1,,) = n.

* Use MEDIAN(z, y, z); to denote the median of x;, y; and z; for all i € [m)].
* Define L := max{4,8/p}.

» Forall k > 0,

w(k + 1) := MEDIAN((1 — r)w(0), w(k) — %(w(O) - Z}E%J(W(k)l/z_l/p/l)), (14 r)w(0)).
Then, for all k, we have
o) = wpllyr < 2v/m - (1= mwnmoﬂ% — w(0))].

Proof. We define
Q:={w eR™: [W(0) ™ (w — w(0))[|oo <r}.

Recall Theorem [C.32] we have the following iterative step for an arbitrary positive definite matrix
H:

w(k+1) = arg min ¥ f(w(k) " (w = w(k)) + 2w = w(B) (39)

We consider the optimization problem min,,, o V, (w) + >0 w;.
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Using Part 1 of Lemma we know VVA (w) = =W 1o,

It is obvious that we should choose H = W (0)~! when applying Theoremm
Thus, let f(w) = Vit (w) + Y7%, w;, we have V f(w) = =W o + 1y,
We use 1,, € R™ to denote the vector whose all entries are 1.
We define
a:=1, —w(k) L oo(W(k)/271/PA).

It is easy to see that
(Vf(w(k)), w —w(k))
= (L —w(k) ™ o o (W (k)77 A),w — w(k))
= (L — w(k) ™ oo (W (k)27 A) w) — (L — w(k) ™" o o (W (k)V/21/PA), w(k))
= (a,w) — (L, — w(k) ™ o o(W(k)/271/P A) w(k)).

Because the second term in above equation does not depend on w. Thus taking the argmin of the
both side, we have

arg ngn(Vf(w(k)), w —w(k)) = arg Irql}}n(a, w).

Then, we have
) L 2
w(k+1) = arg min{a, w) + 5 flw — w(k) [

(w(k), W (0) ™ w(k))

= arg min(a, w) + §<w, W(0)"\w) — Liw, W(0) (k) +

. L -1 —1
— arg min(a, w) + 5 (w, W(0)""w) = L{w, W(0) "w(k)

. L _ _
= arg min o (w, W(0) fw) = LW (0) Mw(k) — A

. — a
— argmin [l W(OV(O) (k) = FLn) o)

w)

1 0
= argmi o~ w(k) + 7 (w(O) - (W (1) /2)
where the first step follows from the previous equation and Eq. (39), the second step follows from
expanding the inner product, the third step follows from the fact that the last term is constant with
respect to w, the fourth step follows from basic algebra, the fifth step follows from Fact [C.33] (by
treating B = W (0)~! and b = W (0)'w(k) — %1,,), and the last step follows from the definition
of a.

We have

2
”W(O)—la

V23V (w)

IA

4
max{2, — }W !
p

IA

8
max{4, ];}W(O)_l, (40)
where the first step follows from Lemma|E.11| the second step follows from that w; = (1£0.2)w,;
and Wp,; = (1 + 02)11}(0)Z
And
VAV (w)

1Y

min{1/2,1/p}W !
Do), @1

min{ 1

Y

' 2p
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where the first step follows from Lemma|E. 11| the second step follows from that w; = (1£0.2)w,;
and Wp,; = (1 + 02)w(0)1)

Then we have

.11 1 8 1
mln{z, %}W(O) =< V2V (w) < max{4, E}W(O) ,

where the step follows from Eq. @0) and Eq. @I).

Hence, we have

~ min{1/4,1/(2p)}
max{4,8/p}

(k) = w, )+ < (1
1 k 2

where the first step follows from Theorem [C.32} the second step follows from Fact[C.13]

Vo l[(0) — w120y

—1
[|w(0) wp||2w(o)*1 = (w(0) — wp)TW(O) (w(0) — wp)
_ 0wy
= )
_\ (w(0) = wp)i\o
i=1
< D w(0)i|W(0) ™ (w, — w(0)]%
i=1
< 20/|W(0) ™ (wp — w(0)|I%, (43)
where the first step follows from the definition of || - ||y, the second step follows from 1 (0) is
diagonal matrix, the third step follows from multiplying and dividing same factor, the fourth step
follows from the definition of || - ||, and the last step follows from > " | w;(0) = n (see Lemma
statement).
Combining Eq. (42) and Eq. (43) gives
1

(k) = w2, < 4n - (1 I (0) " (wp — w(O)) .

~ 16(p/2 +2/p)

Thus, taking the square root of both sides completes the proof.

E.8 MULTIPLICATIVE APPROXIMATION OF Wp

Lemma E.13 (Lemma 55 in page 51 in (Lee & Sidford, 2019)). If the following conditions hold:
* Given w € R™ such that [|W,; ! (wy, — w)||so < m.

o Let 3 := 4(1 + 2/p)?\/n denote a local variable only be used in this lemma.

* Given w € R™ such that |jw — wp||Wg1 <0.1/8.

o Let 0 := ||lw — prWp_l.

Lot := (Diag(A(ATW-2/0 A)"1AT))2/r,

Let wy, be defined as wy, := (Diag(A(ATWI}_Q/pA)’1AT))2/1’.
e Let:=2-]1—2/p|-/n.
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Then, we have
Wy H (@ — wp)lloo < B+ [lw — wplyp-1-
Proof. To show @ is multiplicative close to w, (i.e., W; = (1 £ 0.1)wy;), it suffices to prove that
ATW;_WPA is multiplicatively close to ATW!'=2/P A,
Firstly, to simplify computation, we define

a = tr[(ATWEPA) T AT W2/ — W2/ 4)).

Using Fact[C.24] then we have
ATWI2PA e [(1-a),(1+a)]- ATW, 274, (44)
Taking the inverse of the above equation
AW e[+ ) (L—a) ] (ATWE2/PA) L
Multiplying e, A - ATe;, we have
(AATW2PA)TAT e [T+ )™ (1 — o) (AATWE 2P A) T AT ).
Taking the power of 2/p on both sides

(AATWE 2P )" LATYIP € [(1+a)"/7, (1 — a) 2P| (A(ATWL2/PA)~1AT)2/P.
Re-organizing the above equation, we get

(A(ATW172/pA)71AT)?/P
S e [(1+a)7?P, (1—a)™?7). (45)
(A(ATWZ}*Q/PA)—lAT)?/P

X

Next, we can rewrite « as follows:

a= tr[(ATWE 2P A)TH AT WP — Wl e )]
— tr[(ATW;_WPA)_lAT W21y —1+2/p |W1—2/p _ Wp1—2/p| LWl/2=1/p . Al
1/2—1 Typrl—2 —1 4 Tyr1/2-1 —142 1-2 1-2
= tr[Wp/ PA(A W, /P A)TTA Wp/ /p.Wp +2/pwt-2/e - W, /7]
= tr[P(WL/271PA) - Wt H2/e W =2/e =2/

(p(W;/Q—l/pA)Wp—l-s-?/p|W1—2/p — W;—2/p‘)i’i

o

=1
_ iP(Wg/Q_l/pA)i,i ll 2P _ 12/
a 1-2/p "W Wi
i=1 Wy, 5
m Wl/Q—l/pA ; B B
D DAL e (46)
—2/p % Py
i=1 Wy, 4

where the first step follows from definition of «, the second step follows from WW ! = I and
W ,W,, are diagonal matrices, the third step follows from trace cyclic property, the fourth step follows

definition of P(W, /2=1/p A), the fifth step follows from the definition of trace, the sixth step follows
from the (P diag(w));; = P; ;w;, and the last step follows from P(X); ; = o(X); fori € [m].

Since [|[W, ! (wp — w)||co < 5553y, We have that for all i € [m],

1-2 1-2 Wy — Wp 4
2P =y PP < 20 L —2/p| |, 7)
w. !
pi

where the step follows from the mean-value theorem |f(z) — f(y)| < |f'(z)|- |z — y|-
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Therefore, we obtain

i U(W,}/Qfl/pA)i Wi — Wp,i

a§2.\1—2/p|.z —r y 2/p1|
i=1 wp, wp,’
m oo w/2=1/p m
o A)? —w
<2-11-2/p|- Z— )2 Z P 1/2
=1 i=1
=21 -2/p|- Vo
= 69, (48)

where the first step follows from Eq. @6) and Eq. 7)), the second step follows from Cauchy-
o(WL/2"1/P4)2
Weight), and definition of § = Hw—pr;VIP = (Z?:l(wi—wp}i)g/wp,i)lﬂ (see Lemma Statement),
and the last step follows from definition of 6.

Note that for all § < (0,0.1/3] where 3 = 4(1 + 2/p)?\/n.
Using Fact[C.30] we have

(1—00)"%P <1+ B5and (1+68)"2/P >1— 3. (49)

2

m W, . . .

=Y., &L =n (since w, is a Lewis
=1 wyp ;

Schwarz, the third step follows from )",

Then we have

W, (@ — wp) oo = max w,, i (B = wp,i)]

(A(ATW1—2/pA)—1AT)?/P
= max | 1—2 57—
i€ml (A(ATW, /pA)_lAT)i/ip
max{(1 —a) 27 = 1,1 — (1+«a)~2/?}
max{(1 —05)"2/? — 1,1 — (1 + 65)~2/7}
B-o

=B lw— wp”wp—l’

<
<

where the first step follows from the definition of the infinity norm, the second step follows from the
definition of @, the third step follows from Eq. (@3), the fourth step follows from Eq. (48), the fifth
step follows from Eq. (@9), and the last step follows from the definition of 4.

O

E.9 EXACT WEIGHT UPDATES
Algorithm 2 Exact weight computation

1: procedure COMPUTEEXACTWEIGHT(A € R™*™ p € NT,w(0) € RZ,, e € (0,1))

2: T « [32(p/2 +2/p) log(8n(1 +2/p)e 1], 7 + m, L + max{4, %}

3: fork=1,..., 7 —1do

4: wtHD e MEDIAN((1 = r)w(0), w(k) — +(w(0) — LB o (W (k)/2-PA)), (1 +

r)w(0))

5: end for

6:  return (Diag(A(ATW(T)'=2/PA)=LAT))?/p > W(T) = diag(w(T))

7: end procedure

The goal of this section is to prove Theorem [E.T4]

Theorem E.14 (Exact Weight Updates, Theorem 56 in page 52 in (Lee & Sidford, 2019)). If the
following conditions hold:

e Lete € (0,1).
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o Let w(0) € R7 with ||w(0) ™! (wy(A) — w(0))]|eo < PR

* T'=0((p+1/p)log(n(1+1/p)e1)).
* [IW(0) ™" (wp, — w(0))||o < poly(n).
Then we can show

* Part 1. Then the algorithm COMPUTEEXACTWEIGHT(A, p, w(0), €) (Algorithm[2)

— outputs w € R7 with ||w,(A) ™! (w,(A) — w)||eo < €in T iterations.

— Each iteration involves computing o (V A) for diagonal matrix V' and extra linear time
work and O(1) depth.

Proof. We define 6 := [|[W(0) " (w,, — w(0))]|oo-
Then we have
W, (@ = wp) oo < 4(1+2/p)*Vnllw(k) = wpll

<8(1+2/p)’n(1 - m

where the first step follows from Lemma[E:T3] the second step follows from Lemma[E-12]

)k/Q(SQ,

For conveinent of writing proofs, we define
aq = 8(1 + 2/p)27
ag = 16(p/2+2/p).

Thus, we need to choose k to make the following happen
o1 (1 —1/ag)*28y < €/n.

which is equivalent to

1—1/an)/2 < &
( /062) - 50a1n’

Note that
(1 _ l/az)k/Q S 6—04516/(12’

where the first step follows from the fact that 1 —x < e™® forxz € R.
Thus, as long as we can show

€
6—0.5]{}/012 <

- 500&171,
then we’re done.

We can just choose

k > 2as9log(dparn/e).

Note that, recall the definition of a1, ae and §p < poly(n), thus we can show the number iterations
T to be

O((p+1/p)log(n(1+1/p)e")).
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Algorithm 3 Approximate weight computation

1: procedure COMPUTEAPXWEIGHT(A € R™ ™ p € (0,4),w(0) € RZy,e € (0,2/p — |1 —
2/pl))
L + max{4, %},7‘ — 7[)2(242317),5 — %.
T + [80(5 +2/p)log(L52)].
> T' is the number of iterations
forj=1,..., T —1do
Compute o(j) € R™ such that

SR A R

e oW 2P A) < 0(j), < oW ()21 A), for alli € [m].

;t d@;(j +1) = MEDIAN((1 — 7)w(0), w(j) — 7 (w(0) — w(j))o(j), (1 + r)w(0)).
: end for

9:  return (Diag(A(ATW(T)1/2=1/P)=1ATY), .

10: end procedure

E.10 APPROXIMATE WEIGHT COMPUTATION

In this section, we introduce how to use approximate leverage scores instead of exact leverage
scores in computing gradient. First, we give a lemma showing that the optimality condition
o(W1/2=1/P A), Jw; is stable under changes to w.

Lemma E.15 (Lemma 57 in page 53 in (Lee & Sidford, [2019)). If the following conditions hold:
o Let w,v € R, with w; = e%v; for |6;| < 6 foralli € [m).
Then, for all i € [m],

,Ui—lo_(vl/271/pA)i c [e%6i7|172/p|67e%5i+|172/p|6] . wi—lo_(Wl/271/pA)i.

Proof. We have
o e (V2P AY, = o7 2P0 (ATVIZ2/P 4) g,
_ B 2T ATV 4) g,
< erditlI=2/pl0y 2P T AT I=2/p g) =1,

where a; is the i-th row of A, the first step follows from the definition of o(-), the second step fol-
lows from w; = e%v;, the third step follows from (AT V1=2/PA)=1 < l1=2/PIS (AT 1-2/p 4)~1

(implied by Fact and Fact[C.20).

For the lower bound,
U;lo_(vl/Q—l/pA)i _ v;2/pa;r(ATV1_2/pA)_1ai
= e%éiwi_2/paiT(ATV172/pA)71ai
> e%5i—|1—2/P\5wf2/paT(ATW172/pA)71a'
- 1 K3 (3]

where a; is the i-th row of A, the first step follows from the definition of o (), the second step follows
from w; = e%wv;, the third step follows from (ATV1=2/PA)~1 = e~ [1=2/pPI6(ATW1-2/p 4)~1
(implied by Fact|C.19]and Fact|[C.20).

Theorem E.16 (Approximate Weight Computation, Theorem 58 in page 53 in (Lee & Sidford,
2019)). If the following conditions hold:

» Letp € (0,4).
» Definer := 71’2(2‘%2;”).

e Let w(0) € R7 satisfy [ w(0) " (wp(A) — w0(0))]|ao < 7.
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o Lete € (0,2/p—|1—2/p|).
* Define L := max{4,8/p}.

* Define § := U2 (it implies § € (0,0.1))

Then we have

* Part 1. The algorithm COMPUTEAPXWEIGHT (2, w(0), €) return w

— such that ||wy(A) ™! (wp(4) — w) || < €in O(p~ ' log(np~te™t)) steps.

— Each step involves computing o up to £0((4 — p) - €) multiplicative error with some
extra linear time work.

Proof. Consider an execution of COMPUTEAPXWEIGHT(x, w(0), €) where there is no error in com-

puting leverages scores, i.e. 0(j) = J(W(j)l/zfl/pA)

this idealized execution of COMPUTEAPXWEIGHT.

, and let v(j) denote the w computed during

We will show that w(j) and v(j) are multiplicatively close.

Suppose that for i € [m], w;(j) = e‘sij)v(j)i with [67)] < 6@ for some 5@ > 0.
We use £4 to denote a real value with magnitude at most 4.

Define 7(j + 1), w(j + 1) € RZ; tobe v(j + 1) and w(j + 1) before taking the median, i.e.

W+ 1) = 0) = 0(0) - S B (V)27 a)
W +1) = (i) ~ 7 0(0) - at). (50)

We have
w(j+1), -0 +1),
w(0) oW A o (V(H) 2 A)

s w(0) eFa(W() PV (V)PP A)

B AT o)

o) _ w(0)  _250)41_2/pl60) o(V()Y* 1P 4)

= (& = Do) + = (T EITAITE ). 22T = 6D

where the first step follows from Eq. (30), the second step follows from w; = €6§j>’U( J);» the third
step follows from Lemma [E.T5]

Since
IW(0) ™ (w(0) = v(j))llow < 7
will imply that w(0) = eF15(j) (see Fact and that
IW(0) ™ (w(0) = wp(A)) e < 7
will imply that w(0) = e*!->"w,,(A) (see Fact|C.6).
Combining the above two equations, we get the following

wy(A) = e v(j). (52)

Recall Lemma for w; = e%v; with |§;] < 4,
vifla(vl/Z—l/pA% c [e—(2/p+|1—2/p|)5, 6(2/p+|1—2/p|)5] ~w;10(W1/2_1/”A)i. (53)
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Then, rename the variables in Eq. (53)) for w = w,(A) and v = v(j) with § = 3r (due to Eq. (52)),
we have

(U(j)i)_lo'(V(j)1/271/pA)i c [6—3(2/P+\1—2/P\)T’ 63(2/p+|1—2/p|)r] . w;lg(W1/2_1/pA)i.
Further, using 2/p + |1 — 2/p| < 1+ 4/p (Vp > 0), the above equation will imply that
(U(j)i)710(‘/(3-)1/2—1/?14)2, c [673(1+1/P)T’ 63(1+4/P)r] . w;la(Wl/zfl/pA)i- (54)
We have

. . ) . w(0), _256) 11 ) r
W +1), -0 +1); = (" 71>v<a>i+%)<e PO/ ) O/,

where the step follows from combining Eq. (51) and Eq. (54).

The truncation means, that w is taking the median of w, (1 — r)w(0) and (1 4 r)w(0). So if w is
not inside 1 — r and 1 + r range, this can be viewed as a truncation. Since w(j + 1) and v(j + 1)
are just truncation of w(j + 1) and ©(j + 1), we have the same bound for w(j + 1), — v(j + 1),

i

We get that

j j 0 ©) J
QS Doi(j + 1) = (65§J> — (), + M(e—gag £1-216D ks 1)et30+4/p)r

where the step follows from w;(j + 1) = €6§j+1)1},‘(j +1).

Finally,
AR ei‘”(e‘sy) -1+ l(efg‘sgj)i“*%“smié —1)e3E+4/p)r
= A1 + Ag, (55)

where the first step follows from v(j + 1) = e*?"w(0) and v(j) = e*? w(0), the second step
follows from we define A; and As in that way to simplify the proof.

Due to definition of L, we can show

L = max{4,8/p} > 2max{1,4/p} > 1+ 4/p. (56)

Bound A;. We can bound
A = ei‘”(e‘sy) -1)
(@ —1) + 86
=69 + (692 £ 8167
=69 +2760) + 85
=09 £ 1076, (57)

where the first step follows from the definition of A;, the second step follows from e**(e¥ — 1) =
(e¥ — 1) £ 2z|y| (see Fact|C.29), the third step follows from e® — 1 = x + 22 (see Fact|C.28)), the

fourth step follows from 5§j ) < §() < 27, and the last step follows from 6? ) < 60,

Bound A;. For the convenience of writing proofs, we first define

2 2,
yi=—=69 £ 11— 2160) £ 4.
p p

Then, we can show
lyl < (1+4/p)sY) +5, (58)

where the step follows from |6§j)| < 6, § > 0 and triangle inequality.
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‘We can bound
y> < ((1+4/p)sD +6)
2((1 4 4/p)69))? 4 262
2((1 +4/p)s9)? + 6
4(1 4 4/p)?ré) 44, (59)

IN A

IN

where the first step follows from Eq. (58)), the second step follows from (a + b)? < 2a? + 2b?, the
third step follows from & € (0,0.1), and the last step follows from §U) < 2.

Then we have
Ay = —(e¥ — 1)eT3@F4/p)r

- %(ey ~ 1)+ %(2+4/p)r’ [yl

= Ao + Ao,

where the first step follows from the definition of A5, the second step follows from Fact[C.29] and
the last step follows from we define A ; and Aj 5 to simplify the proof.

We have

1
A271 = z(ey — 1)

= T )
2

1.2 ) . .
= (=267 £ 11— 2169 £ 20 £ 4(1 + 4/p)*r6W)
7! 0 | pl (1+4/p) )
2 4, 1 2y, 20 4 o (i
==+ 12V + —(1+4 )

A AL Ul S AT N

2 g 1. 2 2 ,
- _ ﬁ(sgw + (1 ];|5<J> + f‘s +4(1 +4/p)ré), (60)

where the first step follows from the definition of As 1, the second step follows from e —1 = x £ 22
forall z € (0,0.5) (see Fact|C.28)), the third step follows from Eq. (39), the fourth step follows from
basic algebra, and the last step follows from L > 1 + 4/p (see Eq. (56)).

‘We have

Az =—(24+4/p)rly|
< —({1+4/p)rly|

< =1 +4/p)r((1+4/p)6) + )

(I1+4/p)r(1+ 4/p)(5(j) + %(1 +2/p)ro

|

N 12
<12(1 +4/p)réV) + f(l +2/p)ré
N
<12(1+4/p)rét) + o 61)
where the first step follows from the definition of A; o, the second step follows from basic algebra,

the third step follows from Eq. (58), the fourth step follows from basic algebra, the fifth step follows
from (1 +4/p) < L (see Eq. (56)), and the last step follows from 12(1 + 2/p)r < 1.

‘We have
Ay =As 1+ Aso
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2 (i 1 2 34 )
= — =69 1 21— 2169 £ 22 £ 20(1 + 4/p)ré@ 62
oL 7! pl 7 (1+4/p)ré', (62)
where the first step follows from the definition of A; ; and Aj 5, and the second step follows from
substituting A ; and A » with Eq. (60) and Eq. (61).

We have
6§§j+1> -
=A+ Ay
=69 £10r69) + Ay
2 ., 1 2 30 i
= (1= )69 4 11— 2160 £ 20 £ 40(1 + 4/p)rs@
( pL)6’ z! p|5 p A0+ 4/p)ro, ©9

where the first step follows from Eq. (33), the second step follows from Eq. (37), the third step
follows from Eq. (62).

For the first two terms in Eq. (63), for i € [m)],

2 G) 1 . 2 1 .
1— )W = j1—2/pl- 6V <(1— =+ = [1—2/p|)sW) 64
(1= )80 L= 2/p] -89 < (1= =+ 7 -[1 = 2/pl)o"), (64)
where the step follows from triangle inequality.
For the last two terms in Eq. (63)), we have
) 4 30 (4) 4 30
| £40(1+4/p)ro ifl <40(1+4/p)rd + (65)
where the step follows from triangle inequality.
We have
SUFD < 8TV
< LHS of Eq. (64) + LHS of Eq. (63)
2 1 , N30
<(1—=+=-11-2/p)6W) +40(1 4 4/p)réV) + =
(= 1= 2080 4001+ 4/p)ro) 4
1 G) L 30
= (1= £ 2/p— 1= 2/p]) + 4001 + 4/p)r)s) + 2, (66)

where the first step follows from & < e — 1, the second step follows from triangle inequality and
Eq. (63), the third step follows from Eq. (64) and Eq. (63)), the fourth step follows from merging the
terms related to 6.

We can show that
r-L-(1+4/p) =r -max{4,8/p}(1+4/p)
<r-(4+8/p)(1+4/p)
< PO (s +agp)

1
< i (L=p/9), (67)

where the first step follows from choice of L (see Lemma statement), the second step follows from
max{a,b} < a+bfora,b > 0, the third step follows from choice of r (see Lemma statement), and
the last step follows from Fact[C.14]

We have
1
40(1+4/p)r < oL (1-p/4)
1
Sﬁ-(Q/p—‘l—Q/pD, (68)
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where the first step follows from Eq. (67), and the second step follows from Fact[C.13]
And hence

. 1 - 36
G+1) « (1 - — —_11 = ) L 22

S0 < (1= = (2fp - 1= 2/p))6P + 22, (69)
= =0

where the step follows from Eq. (68) and Eq. (66).
Recursively applying the above equation, we can show
§W < (1- a)(;(j—l) +8
<-4+ (1-a)f+8
< ..

j—1
<(1-a) 60 +> (1-0a)B
i=0

Jj—1

= (1-a)'8
=0
_1- (1- oz)jﬂ
(0%
<2
(67

where the first step follows from using Eq. (68) for j, the second step follows using Eq. (68) for
§ — 1, the fifth step follows from 6(°) (in that O-th iteration, we can trivially think v(0) = w(0)), the
sixth step follows geometric sum, and the last step follows from simple algebra.

Using a = 57(2/p— |1 —2/p|) and 3 = 36/ L to substitute o and /3 in the bound above, we further
have

50) < ! 30
s (2/p—11=2/pl) L
< 86
~2/p—[1-2/p|
< 16
<16
where the first step follows from Eq. (69), the second step follows from basic algebra, and the third
step follows from § = 5oz <€ (1 —p/4) < 35 -€- (2/p— |1 —2/p]) (Fact.
Recalling that
pn
k= [80(2/p + 2)plog(£3)],
€
we have

W, (wp — w(k))lloo < Wy (wp — v(k))lloo + [IW, ™ (v(k) — w(k))]|o
<4(1+2/p)*vVn - |lw = wp|ly 1 + 260

1 kD
<4(1+2/p)2/n-2vn-(1— ——— )z . = 1 25k
<4(1+2/p)*vn-2v/n - ( 16(2/“2)) TR

where the first step follows from triangle inequality, the second step follows from Lemma[E.T3] the
third step follows from Lemma the fourth step follows from choice of k, and the last step
follows from §(%) < ¢/4.

O
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E.11 COMPUTE LEVERAGE SCORE

We provide an algorithm and theorem statement below most closely resembling the one from (Spiel-
man & Srivastaval [2008)).

Algorithm 4 Compute leverage score

1: procedure COMPUTELEVERAGESCORES(A € R™*" ¢ € (0, 1))
2: Let ¢U) be k random 41/+/k vectors of length m with k = O(log(m)/€?)
3:  Compute [) < (AT A)~1¢q\) and pU) + A1)
. .
4 return} ()2
5. end procedure

Lemma E.17 (Lemma 59 in page 56 in (Lee & Sidford, 2019)). If the following conditions hold:
* For e € (0,1) with probability at least 1 — —3r.

The algorithm COMPUTELEVERAGESCORES returns o®) such that for all i € [m],(1 —
€)o(A); < agapx) < (14 €)a(A);, by solving only O(e~2logm) linear systems.

E.12 INITIAL WEIGHT

Algorithm 5 Compute initial weight

1: procedure COMPUTEINITIALWEIGHT(A € R"*"™, piarger € (0,4),€ € (0,1))

2: P2

3: while p # pearget do

4: Let r be defined as in COMPUTEAPXWEIGHT or COMPUTEEXACTWEIGHT
5

} < _min 2,p} . r
2
n log ™=
6 pe™) < median(p — h, prarget, p + h)
. (new)
7: Either w <~ COMPUTEAPXWEIGHT(p("*) | 12 )
(new)
8: Or w < COMPUTEEXACTWEIGHT (p(™*"), wh——, 1)
9: p p(“ew)
10: end while
11: return COMPUTEAPXWEIGHT (Dtarget, W, €)

12: end procedure

Lemma E.18 (Lemma 60 in page 57 in (Lee & Sidford, 2019)). If the following conditions hold:
e Letm > n.
e Letq > 0.
» Let wy € RT, denote the vector with Wq ; = wp(A)g/pfor alli € Im].

. o _min{2p}
Let |p —q| < miogimer -

Then we have

2o < max{1/2,1/p}vilog ().

1
[[log( ,
Proof. For notational convenience, let w := w,(A), W := diag(w) and A := A(W'/271/P A).

We have
dw dwy,(A)
dp  dp
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3 A((1/2 - 1/p)w71/271/p% + w1/2’1/p1% logw)
- wl/2=1/p

_dw 2
=A(1-2/p)W 1@ + Z? log w),

(70)

where the first step follows from w = w,(A), the second step follows from taking the derivative
with respect to p on both sides and Part 21 of Lemma and the last step follows from basic

algebra.
We define J := Jy, (1,).

Since Eq. (70) is an equation about %’, we can solve for ‘é—z and obtain the following:

dw 1, logw
— =2W(W — (1-2/p)A) A
T, = WOV = (1= 2/p)n) A
log w
:J B
p?

where the first step follows from Eq. (70), the second step follows from Lemma
And for all h € R™,
[(W=1T = p)hllc < p-max{p/2,1} - [A]lw,
where the step follows from LemmaE.6|
We have
1 dwp(A)
dp

logw _, Jdogw  logw
. g p”oo:HW 1J g2 _ g p”oo
p p p

w=

< p-max{p/2,1} - [[p~ log w|lw
< max{1/2,1/p} - |[log w||w,

(71)

(72)

(73)

where the first step follows from Eq. (71)), the second step follows from Eq. and h = p~2logw,

and the last step follows from basic algebra.

We define
ai = Z w; log2 Wy,
wiE(O,%]
as 1= Z w; log2 w;.
wie(é,l]
Finally,

m
Hogwl[fy = w;log?w;
i=1

= a1 + ag,

where the first step follows from the definition of || - ||y, and the second step follows from splitting

the sum.
For the first term,

a; = Z w; 10g2 w;
w; €(0,1/€]

1 2
=m- — Z w; log”™ w;
w; €(0,1/¢€]

1
=m:— Z f(w;)

m
w; €(0,1/¢€]
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IA
3
=

IA
3
=

=n log2 @7 (74)
n

where the first step follows from definition of ay, the second step follows from basic algebra, the
third step follows from f(z) := zlog® z, the fourth step follows from that f is concave, the fifth
step follows from Zwie(m Je] Wi < n, the sixth step follows from the definition of f, the seventh

step follows from log(1/x) = — log(x), and the last step follows from basic algebra.

For the second term,

az < Z w;

wie(évl]

<n, (75)

where the first step follows from log2 w; < 1 forw; € (%, 1], the second step follows from
Zwle[n] w; <.

Thus, we have
logw||?, <nlo 2@—1—71
|| g Wllw g "
Snlog2@,
n

where the first step follows from Eq. (74) and Eq. (73), and the second step follows from (z +y)? >
22+ y?forz,y €R

We can compute

d _ d
& log(wy) = dfq(q/p) log(wp(A))
= P_l log(wp(A))
=q""(q/p) log(wy(A4))
= qil log(wy)-
Thus, for all ¢, w, := wy(A), and W, := diag(w,), we have

d - dlog(w,y)  dlog(wg)
| = -
I3 108wy /) = =5 B

. d _ -
= ||Wq 1@“@ —q 110g(wq)Hoo

1 d _ _ _ -
= ||, 1@% — ¢ log(wy) + g~ log(wg) — ¢ log(@y) |l

4 d - - _ "
W, 1Iqwq — ¢ " log(wy)lloo + lg™" log(wy) — ¢~ log(wy)|
max{1/2,1/g}v/nlog(—) + ¢~ || log(wg/Wq) |

max{1/2, 1/q}\/ﬁ10g(%) +q7!

IN

me
(o

IA

IN

max{1/2, 1/61}\/510%(%)’
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where the first step follows from basic algebra, the second step follows from computing the deriva-
tive, the third step follows from adding a term and removing the same term, the fourth step fol-
lows from triangle inequality, the fifth step follows from Eq. (73), the sixth step follows from
[l log(wq/wWq)||ee < 1(the reason is letting ¢ be the largest number for which g satisfying [p—q| < d,
it will imply that equation), and the last step follows from ¢~ < max{1/2,1/q}+/n and merging
the logarithm.

Therefore, it must be the case that

m62
0 < (max{1/2,1/g}v/nlog(=—)) ™!

and the result follows. O

E.13 THOEREM OF EXACT WEIGHT COMPUTATION

Theorem E.19 (Exact Weight Computation, Theorem 45 in page 40 in (Lee & Sidford, 2019)). If
the following conditions hold:

o Let A € R™*™ be a non-degenerate matrix.
* Lete € (0,1).
e Letp € (0,00).
— -1
* Let w(0) € RZ with ||w(0)” " (wp(A) — w(0))|leo < m.
Then, we have

* Part 1. The algorithm COMPUTEEXACTWEIGHT(A, p, w(0), €) (Algorithm can be im-
plemented to return w

— so that w satisfies ||wy,(A) ™ (wp(4) — w)| <€
— the algorithm uses O(mn*~1(p + 1/p)log(n(1 + 1/p)e~1)) work,
— O((p + 1/p) log(m)log(n(1 + 1/p)e~1)) depth.

* Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, €) (Algorithm
can be implemented to achieve the same guarantee

= with O(mn®~1/2(p+ p~1)2log 2 log(ne~* (p + p~1))) work,
- O((p+p1)?log(2)log(m) log(ne*(p + p~')))depth.

Proof. From Lemma[E.T8] we know each step of p lies within the requirement of Theorem [E.T4]
Furthermore, Lemma [E.18] shows that it takes

O(/n(p+1/p) log())

steps in the COMPUTEINITIALWEIGHT.

Each call of COMPUTEEXACTWEIGHT involves
O((p+1/p)log(ne (1 +1/p))

iterations and each iteration takes O(mn*~1) work and O(log m) depth to compute leverage score.
O

E.14 THOEREM OF APPROXIMATE WEIGHT COMPUTATION

Theorem E.20 (Approximate Weight Computation, Theorem 39 in page 58 in (Lee & Sidford,
2019)). If the following conditions hold:

o Let A € R™*™ be non-degenerate.
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s Let T,, and T denote the work and depth needed to compute (AT D A)™'z for an arbitrary
positive diagonal matrix D and vector z.

Lete € (0,1).

Let p € (0,4).

s Define r := 2720p%(4 — p).

* Let w(0) € RY, with [w(0) ™ (wy(A) — w(0))]|eo < 7
Then we have

 Part 1. The algorithm COMPUTEAPXWEIGHT(x, w(0), €) can be implemented to return
w such that

— with high probability in ||wy,(A)" H(wy(4) — wW)|[lee < € in O(p~1(4 —
P2 log? (n/ (pe)) steps,
— each of which can be implemented in O(nnz(A) + T,,) work and O(Ty) depth.

* Part 2. Without w(0), the algorithm COMPUTEINITIALWEIGHT(A, p, €) (Algorithm
can be implemented to have the same guarantee

- with O(y/n(4 — p)~*p~3) log(2) log®(n/(pe)) steps of the same cost.
Proof. From Lemma[E.T8] we know each step of p lies within the requirement of Theorem
Furthermore, Lemma [E.18] shows that it takes
_ _ m
O(Wn((4=p)~" +p7*)log —)
steps in the COMPUTEINITIALWEIGHT. Each call of COMPUTEAPXWEIGHT involves

O(p~ " log(n/(pe)))

iterations and each iteration involves computing leverage score up to accuracy

=06((4-p)-e).

32(2/p — [1—2/pl)

Finally, Lemma shows this involves solving
O((4 —p) =2 *logm)

linear systems. O

E.15 WEIGHT FUNCTION THEOREM
Theorem E.21 (Theorem 29 in page 25 in (Lee & Sidford, 2019)). If the following conditions hold:
s Define A, := (9" (z))"/2A.
» Letp € (0,1).
e Letcy > 0.
* Define the weight function g : Q° — RZ, for all x € R as g(x) := wy(Az) + co.
Then we have,

e Part 1. c;(g) < n+com,cs(g) < 2mi=P, and ci(g) < %.

_n_
2m’

e Part2. Forp=1— ) and cy = we have

1
log(4m
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- a(g) < §nycag) <4
— and c;(g) < 2log(4m).

Proof. To bound the size, c;(g), recall that w,(A,) = o(W'/271/P A, and therefore Lemma
implies for i € [m],

We define o := 2(1 — p).
To bound the sensitivity ¢, (g), then for ¢ € [m],
T Gx) AL (AT G (@) 1 A4,) AT G (@) e = glw)7 Mo (Gla) /2 A,);
<2m’s"
<2m'~P,

where the first step follows from the definition of leverage score, and the second step follows from
Lemma(with choosing r = c0), the third step follows from & = 222 <] _p,

1+a = 2-2p+p —

Using the following two equations,

dg(a); _ duwy;(Ay)

_ d’LU]'
dxi
and
dw; B dﬂ dx;
Ao (@) 2 Az der(a);
—1/2
— % . (q)//(m)i / )—1
dw:
- d—Z? (~0.5- 0" (2); HP 0" (x);) "
3

Then, we can show

Ty ) (B (2))H(=2)(@" (2)) ™1 = (B (2)) 7/2).

Multiplying G(z)~! - () - z on the both sides of above equation, we get
Ga) 1y (2) (" (2)) " (=2)(@"(2)) "'z = Glx) " Ju (2" () /)2,

which is equivalent to for an arbitrary h € R™

Ga) ™ g(2)(@" ()" 2h = Gla) " Tu (2" (2))71/?)z, (76)
where 2z = —0.5(®"(z)) ~2®" (x)h.
We have that

I1G(2) ™ (2" (2)) %)zl gy < PI(@" (@) 22| g(a) 7

where the step follows from Part 1 of Lemma|[E.¢

We can show
I1G ()™ T (@ ()72l
<pll(®”"(2)) 22|00 + | G(2) T (8" (2))712)z — p(@” (2))?2] 0
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< pll(®" ()220 + p - max{p/2, L}|(®" ()" 22| g(a)
< plI(@"(2))" 200 + pI(@" (2)) 2]l o), (78)

where the first step follows from triangle inequality, the second step follows from Part 2 of
LemmalE.6] and the last step follows from p € (0, 1).

We have
1G(2) ™ Ty (@) (2" () 72Dl g ()00 = 1G(@) T (B” ()™ 2) 2| g2 400
Then, we can show
I1G () T (" ()™ %) 2] ()00
= [|G(2) " T (@ (2)) /%) 2]l o + Crorm | G(x) ™" T (2" (2)) 72) 2l g
< pH@)”(x))l/QZ”oo +p(1 + Coorm) - ||(<I>”(x))1/2z||g(z), (79

where the first step follows from || - || g(z)+00 = || [loo + Cuorm - || - [|¢(x) (see Definition|D.12)), and
the second step follows from Eq. (76).

Note that
(@ (2))!/%2]; = 0.5]®" () ~*/*®" (x)hl;

< |hls, (80)
where the first step follows from choice of z, the second step follows from property of ® (see
Definition [D.2).

Therefore,

G ()™ T (")) 72) 2]l g@) 400 < PR (2))?2ll00 + (L + Crorm) + (2" (2))'/?2] ()
< p”h”oo +p(1 + Cnorm) : ”hHg(r)

1

Sp(lJr C )Hh”oc +p(1+cnorm) : Hh”g(iK)
1

=p(l+ C )UIAlloo + Crorm - ”hHg(z))
1

:p(l =+ Cnorm) ' Hh||g(w)+c>07

where the first step follows from Eq. (79), the second step follows from Eq. and Fact[C.4] the
third step follows from Ciy > 0, the fourth step follows from basic algebra, and the last step
follows from the definition of || - ||4(;)+cc (see Definition|D.12).

Thus, following Eq. (76), we further have

- _ 1
1G(2) " g (2)(@" (2)) ™2l gy 00 < P(1+ o) llge)+oo-

norm

The bound of ¢, (g) = ﬁ follows from

norm

1
24+/cs(g)ex(g)
1
<Pt
P 24c¢k(g)
2 1

T alg) T en(y)
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1
cr(g)

where the first step follows from p € (0, 1), the second step follows from Chorm = 24+/¢s(g)ck(9),
the third step follows from c,(g) > 1, the fourth step follows from p = 1 — %2@, and the last step
follows from simple algebra. O

<1-

)

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
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