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ABSTRACT

We introduce the Entropy-Driven Uncertainty Process Reward Model (EDU-
PRM), a novel entropy-driven training framework for process reward modeling
that enables dynamic, uncertainty-aligned segmentation of complex reasoning
steps, eliminating the need for costly manual step annotations. Unlike previous
Process Reward Models (PRMs) that rely on static partitioning and human label-
ing, EDU-PRM automatically anchors step boundaries at tokens with high pre-
dictive entropy, effectively capturing intrinsic logical transitions and facilitating
efficient exploration of diverse reasoning paths. On the ProcessBench benchmark,
EDU-PRM outperforms strong public PRM baselines, such as Math-Shepherd
PRM and Omega PRM, and EDU-PRM achieves comparable results with SOTA
models while only using 1.5% training data. Furthermore, by leveraging our pro-
posed EDU sampling strategy, we observe accuracy boosts from 64.7% to 67.3%
for generative reasoning tasks, accompanied by a reduction of 32% in token us-
age. These findings underscore the potential of EDU-PRM as a scalable and
annotation-efficient paradigm for process supervision in mathematical reasoning,
paving the way for more efficient and robust approaches to complex mathematical
problem solving.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4o (OpenAl et al) [2024) and Deepseek-
V3 (DeepSeek-Al et al.,2024), have achieved remarkable performance across a wide range of tasks,
particularly in natural language understanding and generation. Despite these successes, LLMs still
struggle with complex multi-step reasoning problems, where verifying each intermediate reasoning
step is essential to producing reliable solutions (Wei et al., 2022)). To address these challenges, re-
cent approaches adopted reinforcement learning (RL) (Murphyl 2024) with reward models, moving
from supervision focused solely on final answers to more granular and step-level evaluations using
LLM judges.

Process Reward Models (PRMs) (Lightman et al.| 2024) represent a significant step forward by
providing stepwise feedbacks, improving both the reliability and the interpretability for model rea-
soning. However, the deployment of PRMs introduces two critical challenges. First, obtaining
high-quality step-level data is difficult: defining what constitutes a “correct” intermediate step is
often ambiguous, and large-scale human annotation, as used in datasets like PRM800OK (Lightman
et al.| [2024), is time-consuming and costly. Though recent methods, such as Qwen2.5-PRM (Zheng
et al.,[2025;2023), employ LLM-based judgment or Monte Carlo estimation (Xie et al.|[2024;Zhang
et al.|[2024)) to scale supervision, these approaches still demand substantial computational resources.
Second, the reliability of intermediate evaluation remains limited: PRMs can be “cheating”, as high
step scores do not always guarantee a correct final answer (DeepSeek-Al et al.| 2024). This under-
mines the effectiveness of stepwise supervision and poses a significant barrier to robust reasoning.

To overcome these challenges, we propose Entropy-Driven Uncertainty Process Reward Model
(EDU-PRM), a novel framework for scalable and efficient step-level supervision without the need
for expensive human or LLM annotation. Our approach leverages entropy-driven sampling to auto-
matically generate diverse and informative intermediate steps, addressing the data scarcity problem.
Furthermore, by explicitly modeling uncertainty, EDU-PRM improves the alignment between step-
wise evaluation and final answer correctness, thereby mitigating the “cheating” issue.
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Figure 1: Comparison of sampling methods in Process Reward Models (PRMs). High Temperature
(HT) sampling performs exhaustive sampling and selects the best answer from NV candidates (Best-
of-N), yet incurs substantial computational overhead O(NN) and and risks overlooking high-quality
solutions due to random sampling. OmegaPRM mitigates this by integrating Monte Carlo Tree
Search (MCTS) for localized trajectory assessment and pruning, thereby reducing search complex-
ity. However, these sampling methods rely on rule-based partitioning and random initial candidate
generation. Entropy-Driven Uncertainty (EDU) Sampling strategically generates candidates via
high-entropy words (e.g., “is”, “on”), thereby achieving reduced complexity O(log(N)) and en-
abling a more deterministic exploration of reasoning paths. Pruning-EDU Sampling, incorporates
targeted pruning mechanisms to minimize "cheating" vulnerabilities—such as premature conver-
gence on low-PRM-score trajectories—while further optimizing token efficiency for EDU.

Our main contributions are as follows.

EDU Sampling for PRM Training: We propose an entropy-driven uncertainty (EDU) sampling
strategy to automatically generate diverse and informative step-level data, which is directly used
to train Process Reward Models. This approach eliminates the need for costly human or LLM
annotation and enables scalable and high-quality supervision.

Reliable Stepwise Supervision: PRMs trained with EDU sampling achieve substantially better
alignment between stepwise evaluation and final answer correctness, effectively mitigating the
“cheating” issue and enhancing the reliability of step-level supervision.

Efficient and Accurate Solution Generation: Applying EDU sampling during inference leads to
higher accuracy and lower token consumption compared to conventional high-temperature sampling
methods.

In summary, EDU-PRM enables scalable, annotation-efficient, and reliable step-level supervision
for complex reasoning tasks.

2 RELATED WORKS

Methods for evaluating LLM outputs have evolved from early rule-based heuristics to sophisticated
model-based reward frameworks. Initial approaches (Mu et al.| 2024)) relied on keyword matching,
which limited their generalizability when domain transferring. The LLM-as-judge paradigm (Zheng
et al., 2023) enabled self-evaluation but introduced self-verification biases, as well as increased
computational costs (Wang et al., 2023)).

Output-Reward Models (ORMs; [Wang et al.[(2024a); |Yuan et al.|(2024); [Luo et al.|(2024b)) assign
scores to final outputs based on human annotation. However, ORMs often neglect intermediate
reasoning steps, risking misjudgment when flawed processes yield correct results. To address this,
Process Reward Models (Lightman et al.,[2024; [Zhang et al.}|2025) score reasoning chains at the sub-
step level, using either soft labels (LLM-generated scores) or hard labels (expert binary judgments).
Soft labels enable scalable annotation but may introduce bias, while hard labels offer reliability
at a higher cost. PRMs improve reliability in tasks such as mathematical reasoning by penalizing
erroneous intermediate steps.
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Despite progress, key challenges remain, including the difficulty of obtaining high-quality labels and
the limited effectiveness of current PRM approaches (DeepSeek-Al et al.| 20255 Wu et al., 2024} Sun
et al.,[2024; |Yin et al., 2025). Addressing these issues has inspired diverse PRM architectures.

Math-Shepherd PRM (Wang et al.| [2024c) employs a two-stage process: the base model generates
solution traces via self-consistency sampling, and a symbolic checker verifies answers and propa-
gates binary labels to intermediate steps. This automatic chain annotation reduces manual effort and
supports efficient PRM training.

Omega PRM (Luo et al.| 2024a)) frames problem-solving procedure as a search tree, using Monte-
Carlo Tree Search to decompose tasks and explore promising branches. PRM predictions guide tree
exploration and serve as rewards during policy optimisation, enhancing exploration efficiency and
reasoning capability.

3 METHOD

3.1 MOTIVATION AND OVERVIEW

As discussed in Section[2] existing PRMs have made substantial progress but still face several critical
challenges, such as the difficulty of obtaining high-quality labels and the limited effectiveness of
predicting final answers. In particular, many conventional PRMs rely on superficial textual cues
such as blank lines or punctuation to segment reasoning steps and to assign rewards. However, these
heuristics fail to capture the underlying logical transitions in complex solution traces, resulting in
suboptimal supervision and limited generalization.

Recent advances in reasoning with LLMs have highlighted the importance of stepwise exploration
during solution generation. In particular, Chain-of-Thought (CoT) Decoding (Wang & Zhou, [2024)
demonstrates that branching at token positions where the model exhibits uncertainty, specifically
the probability gap between the top-1 and top-2 candidates is small, can reveal alternative reason-
ing paths and improve overall solution quality. Building on this insight, studies such as [Cheng
et al.| (2025) further establish that high-entropy tokens serve as natural anchors for meaningful ex-
ploration. These tokens often correspond to logical pivots or transitions in the reasoning process,
making them ideal candidates for step segmentation and branching.

Motivated by these findings, we propose placing token-level entropy at the core of our segmentation
and sampling strategy to build PRMs. By dynamically identifying and branching at positions of
maximal uncertainty, our Entropy-Driven Uncertainty Process Reward Model (EDU-PRM) is able
to generate logically coherent, diverse, and informative step-level data. This approach not only
enhances the quality of process supervision but also reduces reliance on manual annotation and
rigid heuristics, paving the way for more robust and scalable reward modeling.

Furthermore, although soft labels may introduce more noise compared to hard labels, Omega
PRM (Luo et al.| [2024a) has empirically demonstrated that using soft labels achieves a signifi-
cantly higher accuracy (70.1%) than hard labels (63.3%) in process supervision accuracy. There-
fore, despite the potential for increased noise, all of our experiments consistently adopt soft labels
for step-level reward assignment in this paper.

3.2 ENTROPY-DRIVEN UNCERTAINTY SAMPLING

Token-level entropy quantifies the model’s uncertainty in predicting the next token at each decoding
step. High entropy indicates that the model’s probability distribution over possible next tokens is
more dispersed, reflecting greater ambiguity or indecision. In contrast, low entropy suggests the
model is confident, with most probability mass assigned to a single token.

During the reasoning process, increased entropy often signals points where the model is less certain
about how to proceed. EDU sampling leverages these high-entropy tokens as uncertainty anchors,
guiding the segmentation of reasoning steps to better reflect the underlying logical structure of the
solution trace, rather than relying on superficial textual cues.

Formally, we apply the softmax function to the output logits of an autoregressive model at each
decoding step, yielding a probability distribution P, over possible next tokens v (Kwon et al.,2023;
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Aminabadi et al.||2022). Then, the entropy at the next position v is calculated as:

Hy=-Y P,-log(P, +e¢) (1)

where ¢ is a small constant for numerical stability.

We define position v as an uncertainty anchor when H(") exceeds an adaptive threshold 7 (H),
which is dynamically adjusted according to the maximum sampling branch number in the sampling
process (see Section 5] for further analysis).

Overall, as illustrated in Figure |1} our EDU sampling workflow consists of two main stages: 1)
entropy-based anchor detection and branching, and 2) fragment-level evaluation and labeling.

EDU Sampling at Anchor Position To balance solution diversity and quality, EDU sampling re-
peats branching an anchor position of only top-2 logits at the first token and each anchor position

afterwardsm with subsequent tokens generated greedily (i.e. argmaxy Pq(,t)) until the next anchor
position is reached. This strategy efficiently samples alternative reasoning paths without excessive
computational overhead. To avoid artifacts caused by mathematical symbols (e.g., >, [), we ex-
clude tokens in the symbol set S (see Appendix from entropy calculations. In our experiments,
we observed that branching at these tokens often leads to garbled outputs.

Monte Carlo Estimation Scoring After performing the EDU sampling, each answer is segmented
into multiple fragments at anchor positions. For each fragment, we assign a correctness label ([0, 1])
based on the final solution’s validity using Monte Carlo Estimation (MCE; (Katzgraber, [2011))). This
fragment-level approach enables a fine-grained assessment of reasoning steps, as shown in Figure[T}
where each segment is mapped to its corresponding correctness label.

3.3 ENTROPY-DRIVEN UNCERTAINTY PRM

Consequently, we can perform the EDU sampling workflow to construct the EDU-PRM training
dataset, where each instance consists of a triple: a question, a solution or a solution fragment, and an
associated label indicating the correctness of the solution. This structure allows the model to learn
not only from complete solutions but also from partial reasoning steps, thereby enhancing its ability
to generalise and identify robust reasoning patternsE] We then train EDU-PRM via a classification-
oriented cross-entropy loss, £ = f% Zfil Z}li:o Yik log pik, where NN is the number of examples,
yir, are the target labels, and p;; = softmax(z; ), denotes the predicted probabilities from logits z;.
This framework enables EDU-PRM to learn to discriminate between correct and incorrect reasoning
steps effectively.

4 EXPERIMENTS

In this section, we report the experimental results of the proposed EDU-PRM. In general, we per-
form two evaluation setups, a direct accuracy evaluation over PRM benchmarks and applying PRMs
as a BoN results selector over a series of math reasoning tasks. In addition, we also experiment with
the proposed EDU sampling strategy, comparing with the traditional high-temperature (HT) sam-
pling method, focusing not only on accuracy but also on token efficiency, offering a more nuanced
perspective beyond traditional metrics.

4.1 IMPLEMENTATIONS OF EDU-PRM

We first describe the implementation and training details of the proposed EDU-PRM, as well as
the compared methods. Our EDU-PRM implementation follows the methodology established in
Math-Shepherd PRM (Wang et al.| |2024c) and Omega PRM (Luo et al., 2024a), with consistent
experimental settings and parameter configurations.

'Experiments with top-3 and other schemes yielded similar results.
2For the sake of clarity and brevity, unless explicitly stated otherwise, all references to EDU-PRM or Greedy
EDU-PRM in this paper refer to the specific method described in the Method section.
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Figure 2: Accuracy comparison on ProcessBench for four 72B-parameter PRMs: Math-Shepherd
PRM, Omega PRM, EDU PRM, and Qwen2.5-Math-PRM. As a competitive PRM method, our
proposed EDU PRM attains the highest accuracy on the MATH test dataset. On GSMS8K and OLY
datasets, EDU PRM matches the performances of Qwen2.5-Math-PRM.

For detailed model training, we use data from the MATH training set (Hendrycks et all, [2021),
selecting 7,500 problems as the base query set and sampling up to 100 candidate solutions per
problem. After using the EDU sampling (token-level predictive entropy threshold = 1.0), the training
dataset comprises approximately 1.42M instances, with a label distribution of 52% hard and 48%
soft labels.

We train PRMs based on Qwen2.5-72B-Base and Qwen2.5-7B-Base (Qwen et al, [2025). All the
details of the training frameworks, dataset statistics, and inference hyperparameters are listed in
Appendix [A.3] and the prompts used for solution verification are also provided in Appendix [A.5]

4.2 EVALUATION BENCHMARKS AND COMPARISON BASELINES

We evaluate the effectiveness of PRMs from two aspects, directly evaluating the accuracy of PRMs
and a best-of-N (BoN) selection via PRM scoring on real tasks. For accuracy evaluation, we utilise
the ProcessBench (Zheng et al, [2025)), containing questions, responses, and correctness labels,
where PRMs aim to predict whether the response is correct or not. For the BoN selection evalu-
ation, we choose several math reasoning benchmarks, including OlympiaBench (OLY) (He et al.
2024), MATH (Hendrycks et al.|[2021), GSM8K (Cobbe et al.,2021)), and CollegeMath (Tang et al.
2024). For each query, we generate 128 candidate solutions using Qwen2-7B-Instruct (Yang et al.
2024a)), and each response is scored by the PRMs, determining the best responses to the question.

We compare with sota PRMs, including Math-Shepherd-Mistral-7B-PRM (Wang et al., [2024b),
Qwen2.5-Math-7B-PRM800K, Qwen2.5-Math-PRM-7B, Qwen2.5-Math-PRM-72B, and Qwen2.5-
Math-RM-72B (Yang et al] 2024b). Note that the open-sourced versions of these baselines are
trained on much larger datasets than ours. For fair comparison, we re-implement these baselines
based on the same data and base models as EDU-PRM, except the Qwen2.5-Math-PRM series. We
report the performance of the original version of Qwen2.5-Math-PRMs as strong sota baselines.

4.3 PROCESSBENCH EVALUATION OF PRM ACCURACY

Figure [2] demonstrates that EDU-PRM-72B achieves outstanding performance in solution correct-
ness judgment across multiple benchmarks. On the MATH dataset, EDU-PRM-72B attains the high-
est judgment accuracy of 88.4%, outperforming Qwen-2.5-math-PRM-72B (87.8%) by a margin of
0.6%. Additionally, EDU-PRM-72B exhibits robust judgment accuracy on GSM8K (94.2%) and
OlympicBench (77.2%), further highlighting its effectiveness in verifying mathematical solutions.
Notably, EDU-PRM-72B consistently surpasses Math-Shepherd PRM and Omega PRM across all
evaluated benchmarks. Detailed experimental results are provided in Appendix [A.2}
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Figure 3: Comparison of PRM performance on the MATH, OLY, and GSMS8K benchmarks for Qwen
7B and 72B models. Evaluated methods: Math-Shepherd, Omega-PRM, Sample-EDU,
, Majority Vote serves as a non-PRM baseline. Markers show raw scores; curves are Gaussian-

smoothed (trend visualisation only). consistently leads or matches the best results
across datasets and model scales.
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Figure 4: Comparison of sample strategies under the EDU-PRM 72B model on the MATH and OLY
test sets: High-Temperature (HT) Sampling, EDU Sampling. Markers denote raw measurements;
curves are Gaussian-smoothed trends. Points nearer the upper-left frontier indicate a better accu-
racy—token trade-off. It can be observed that on both the OLY and MATH test sets, EDU Sampling
achieves an overall higher accuracy compared to HT Sampling while consuming fewer tokens.

4.4 EVALUATING PRMS viA BON

Figure [3] summarises the performance of different models across three datasets, highlighting the
superior results of Greedy-EDU PRM (i.e. EDU-7B and EDU-72B respectivly). We observed
that EDU-72B achieves up to a 3.7% lead on MATH and a 5.7% lead on OLY consistently across
different sampling sizes, compared with SOTA baselines. When compared with majority voting,
usually considered as a strong baseline of BoN, our PRM-based method can consistently achieve

better accuracy of response selection, especially when the model size increases. Full experimental
results are detailed in Table 3

4.5 SAMPLING STRATEGY COMPARISON: EDU SAMPING VS. HT SAMPLING

After establishing the superior performance of EDU-PRM, we further investigate different sampling
strategies during the inference. Specifically, we compare proposed EDU sampling on its accuracy
and token efficiency with the traditional HT Sampling (temperature = 0.7).
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Figure 5: Comparison of sample strategies under the EDU-PRM 72B model on the MATH and
OLY test sets: , P-EDU Sampling (with a threshold of 0.2), and MCTS (with ex-
ploration depth not exceeding 3 steps rollout). Markers denote raw measurements; curves are
Gaussian-smoothed trends. The x-axis represents token counts, and the y-axis represents accuracy
(%). Points nearer the upper-left frontier indicate a better accuracy—token trade-off. P-EDU Sam-
pling achieves a measurable lead on both the OLY and MATH test sets, yet exhibits
a more pronounced advantage under high token counts across both test sets.

Experimental results on the MATH and OLY test sets (see Figure ) show that EDU sampling con-
sistently outperforms HT sampling in both accuracy and token efficiency. On MATH, EDU sam-
pling achieves 57.4% accuracy with 2,988 tokens, while HT sampling achieves 57.2% accuracy
with 4, 338 tokens on average. On OLY, EDU sampling attains 21.7% accuracy with 1,107 tokens,
compared to 19.4% of HT sampling with 1, 655 tokens.

Both methods initially show increasing accuracy with more tokens, however at higher token counts,
EDU sampling maintains a steep upward trajectory in accuracy, while HT sampling improves
plateaus, indicating diminishing returns. This highlights EDU sampling’s superior capability to
leverage additional tokens for sustained accuracy gains.

Overall, these results indicate that the EDU sampling not only achieves higher accuracy but also
utilizes tokens more efficiently, making it a preferable strategy for mathematical reasoning tasks
under computational constraints.

4.6 PRUNING-EDU SAMPLING VS MCTS wiTH EDU SAMPLING

To further enhance solution generation efficiency, we introduce two advanced sampling strate-
gies: Pruning-EDU (P-EDU) sampling, which applies a pruning threshold of 0.2 to filter out low-
confidence branches, and Monte Carlo Tree Search (MCTS) with a rollout depth of 3 steps for
strategic exploration. The motivation for pruning is that if the initial PRM score for a branch is very
low, continued reasoning along this path is unlikely to yield correct solutions, so it is preferable to
prune such branches early—provided at least one promising path is retained to ensure coverage. In
contrast, MCTS leverages forward-looking exploration. By simulating future reasoning steps, it can
make more informed decisions about which current paths are worth pursuing, rather than relying
solely on immediate scores.

Table [6] and Figure [5] summarize the distinct performance profiles of these strategies on both the
MATH and OLY test sets. EDU sampling’s accuracy steadily increases with more tokens, while
P-EDU sampling achieves a balanced trade-off between accuracy and token usage, reaching 32.1%
accuracy at 15, 050 tokens on OLY, comparable to EDU sampling in the mid-token range, benefited
from the effective pruning of low-confidence paths. On MATH dataset, MCTS performs well in
the low-token regime, achieving 51.2% accuracy at 946 tokens, similar to P-EDU sampling, which
achieves 51.1% using 937 tokens on average.

Overall, these results demonstrate that the P-EDU sampling can outperform the standard EDU sam-
pling, particularly when the PRM is able to accurately identify and prune low-confidence branches
early in the reasoning process. Meanwhile, the performance ceiling of MCTS is inherently con-
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Figure 6: This figure illustrates the relationship between token count and accuracy on the MATH test
set under a Max Branch Number of 8, with the performance of (High-Temperature) HT Sampling
across varying token counts fitted as the baseline. On the MATH test set, most data points for both
EDU Sampling and lie above this baseline. Notably, as the entropy threshold
increases, token counts decrease alongside a corresponding drop in accuracy. Additionally, MCTS
also surpasses the HT Sampling baseline when the entropy threshold is reduced.

strained by its rollout depth. When the number of rollout steps is limited, further increasing the
token budget does not yield additional accuracy gains. In practice, the optimal strategy should be
chosen according to the computational budget and the PRM’s ability to reliably score candidate
paths, with pruning used to focus resources on the most promising solution trajectories, and MCTS
providing additional foresight through simulated future exploration.

4.7 ABLATION

To further investigate the impact of decoding strategies, we introduce a variant called Sample-EDU
PRM. Different from the Greedy-EDU PRM, which utilizes a deterministic greedy decoding ap-
proach, Sample-EDU PRM employs stochastic sampling (with temperature ¢ = 0.7) during the
decoding phase whenever no anchor is detected, while keeping all other parameters unchanged,
including training methods and the base model.

Our experimental results indicate that Greedy-EDU PRM consistently achieves higher accuracy as
the sample size increases (Figure [I). This improvement can be largely attributed to the determin-
istic nature of greedy decoding, which helps maintain reasoning consistency throughout the EDU
segmentation process. When combined with entropy-thresholded branching, this method strikes
a balance between solution diversity and stability, effectively avoiding the additional noise often
associated with stochastic sampling.

In contrast, Sample-EDU leverages stochastic decoding to enhance diversity among candidate so-
Iutions. However, this increased diversity comes at the cost of greater variability and noise, which
tends to weaken the model’s inductive bias and makes performance evaluation less reliable. Over-
all, these findings highlight the trade-offs between diversity and consistency in reasoning, suggesting
that a deterministic approach may be better suited for maintaining robust performance in EDU-PRM.

5 ANALYSIS: ENTROPY THRESHOLD, ACCURACY, AND TOKEN COUNT

5.1 DEFINITION AND RELATIVE BRANCH DEPTH

For a solution trace with L tokens, let a branch occur at token index d (1 < d < L). We define
the relative depth as r = %. Aggregating r across traces into a heat map (Figure i provides a
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normalized view of where branching tends to concentrate along the trajectory. This metric serves as
the foundation for our subsequent analyses on branch timing and behavior.

5.2 EFFECT OF ENTROPY THRESHOLD ON BRANCH TIMING

With the relative branch depth metric established, we next examine how the entropy threshold in-
fluences the timing of branch points. Figure [I2] and Table ] and Table [5] show that lowering the
entropy threshold shifts branch points earlier in the sequence. A stricter threshold induces earlier
branching by pruning diffuse exploratory branches, focusing the search on high-probability paths.
Figure E] further demonstrates that, under selected thresholds, EDU sampling often branches near
the very start, resulting in a sharply peaked distribution of relative depths. These results indicate that
entropy-based control can effectively modulate when and where branching occurs.

5.3 LEXICAL CHARACTERISTICS OF BRANCH NODES

Having identified where branching tends to occur, we now investigate the lexical nature of branch-
point tokens. We examine the full-word forms of branch-point tokens and rank words by their
branch-point frequency (Figures [§H9] MATH and OLY test sets). High-frequency items are pre-
dominantly function words (e.g., “then”, “if”’) or light discourse operators (e.g., “thus”, “so”). This
observation supports our hypothesis that high-entropy tokens act as structural pivots, forming natural
boundaries for controlled branching in EDU PRM. The prevalence of such words at branch points
suggests that semantic structure guides the branching process.

5.4 ACCURACY-TOKEN TRADE-OFF

These insights into branch timing and lexical characteristics inform our understanding of the trade-
offs involved in branching strategies. Figure[6|reports accuracy versus total generated tokens under
varying entropy thresholds on MATH (OLY shown in Figure [I3). As shown in Figure 6] lowering
the entropy threshold from 2.4 to 0.8 increases accuracy from 49.4% to 58.1%, but also raises the
average token count from 1, 880 to 3, 047 per sample. This suggests that practitioners must balance
accuracy gains against computational overhead when selecting entropy thresholds. Notably, the
EDU sampling begins to outperform the High-Temperature (HT) sampling only when the thresh-
old is sufficiently low to curtail diffuse early exploration. This trade-off highlights the practical
importance of threshold selection in balancing computational cost and solution quality.

Furthermore, lowering the entropy threshold tends to produce longer and more detailed reasoning
paths, which may improve solution robustness but also increase resource consumption and poten-
tially affect interpretability. Therefore, the optimal threshold may vary depending on the specific ap-
plication scenario and resource constraints. Future work could explore adaptive or dynamic thresh-
olding strategies to further enhance the efficiency and flexibility of branching methods.

6 CONCLUSION

We propose EDU-PRM, an entropy-guided sampling method for training process reward models
that significantly advances mathematical reasoning. Our approach consistently outperforms existing
baselines and, on some test sets, even matches the performance of the state-of-the-art Qwen2.5-
Math-PRM. Moreover, EDU sampling improves token efficiency in solution generation. EDU-PRM
demonstrates exceptional data efficiency, attaining new state-of-the-art results with minimal training
data. By integrating pruning strategies like P-EDU sampling for rapid, cost-effective exploration,
our framework provides complementary tools tailored to diverse task demands. Overall, EDU-PRM
establishes a principled methodology for balancing accuracy, efficiency, and search depth in complex
reasoning tasks, with promising avenues for future research in scaling to larger datasets, refining
intermediate scoring, and developing adaptive generation strategies to extend its applicability across
broader domains.
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ETHICS STATEMENT

We present a technical framework that enhances model accuracy and efficiency while preserving
performance integrity on publicly available models, datasets and benchmarks. No ethical or neg-
ative impacts are specifically designed in our approach, as we optimize existing models without
altering their core capabilities or introducing harmful content. Our method may democratize ac-
cess to advanced reasoning models by reducing computational requirements and improving data
efficiency, potentially benefiting resource-constrained environments and mitigating environmental
impact through more sustainable deployments.

REPRODUCIBILITY STATEMENT

We follow the standard experimental setup and details established in baselines such as Math-
Shepherd and Omega PRM. For all reported results, we conduct eight experimental runs with the
same random seeds and report the average performance. We use a fixed seed (1234) for the main ex-
periments presented in the paper. Detailed experimental configurations are provided in Section .1}
Our implementation is designed with modularity in mind, facilitating adaptation to different partial
reasoning model architectures beyond those tested in this work. We will open-source our complete
implementation.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used in this work solely as writing assistance tools. Specifi-
cally LLMs were employed to check for spelling errors, grammatical mistakes, and to improve the
fluency and precision of expression in the paper. The LLMs did not contribute to research method-
ology experimental design, or data analysis. All scientific content, ideas, and conclusions presented
in this paper are entirely the authors’ own work.

A.2 PROCESSBENCH

Table [T] provides a comprehensive comparison of various PRM models, including Math-Shephred,
Omega, EDU variants, and Qwen-series, across three ProcessBench subsets: GSM8K, MATH, and
OlympiaBench. For each dataset, we report results for both 7B and 72B model scales, including
accuracy, F1 score, precision, and recall. The best performance for each metric is highlighted in
bold. This detailed breakdown enables a more granular understanding of each model’s strengths and
limitations across different reasoning benchmarks and evaluation metrics.

A.3 EXPERIMENTAL ENVIRONMENT, TRAINING CONFIGURATION AND DATASET DETAILS

This appendix provides detailed information on the experimental platform, framework selection,
model training settings, and evaluation datasets used in this study, ensuring the reproducibility of
the experiments.

A.3.1 EXPERIMENTAL PLATFORM AND FRAMEWORK

All experiments were conducted on the Ascend 910B platform to ensure stable computing perfor-
mance. Different frameworks were adopted for specific experimental phases to optimize efficiency:

* PRM Training Data Production: Employed the DeepSpeed inference framework to ac-
celerate data processing and generation.

* Solution Generation Phase: Utilized the VLLM inference framework, which is optimized
for high-throughput and low-latency text generation tasks.

* PRM Training: Adopted the Mindspeed framework, selected for its efficiency in training
large-scale models for preference learning.

A.3.2 MODEL TRAINING CONFIGURATION

Comparative experiments were conducted on two base models with different parameter scales (7B
and 72B), using identical training configurations to ensure result consistency and comparability:

1. Initial learning rate: 10~°
2. Minimum learning rate (lower bound): 10~7

3. Warmup mechanism: Applied with a warmup ratio of 0.01 to stabilize parameter updates
in the early training stage.

4. Cosine Annealing: Adopted a cosine strategy for subsequent learning rate adjustment, bal-
ancing late-stage convergence and overfitting prevention.

5. Training Cycle and Checkpoint Management:

* Total training epochs: 5 (uniformly set for both models).

* Checkpoint (ckpt) saving: Automatically saved at the end of each epoch to facilitate
subsequent result screening and experiment reproducibility.

* Optimal Checkpoint Selection: Compared the core metrics (e.g., accuracy, perplexity)
of checkpoints from 5 epochs on the validation set; the checkpoint with the best per-
formance was selected as the basis for final result reporting, ensuring objectivity and
representativeness.
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Task Accuracy F1 Precision Recall
GSMSK
Math-Shephred PRM 57.2 0.682 0.545 0.91
Omega PRM 57.5 0.31 0.844 0.19
7B Sample EDU PRM 52.5 0.677 0.513 0.995
Greedy EDU PRM 55.2 0.218 0.862 0.125
Qwen2.5-Math-PRM-7B 88.8 0.895 0.838 0.96
Math-Shephred PRM 74.5 0.803 0.671 1
Omega PRM 90.5 0.908 0.882 0.935
72B  Sample EDU PRM 71 0.778 0.637 1
Greedy EDU PRM 94.2 0.95 0.909 0.995
Qwen2.5-Math-PRM-72B 96 0.961 0.938 0.985
MATH
Math-Shephred PRM 62.9 0.659 0.615 0.71
Omega PRM 58 0.295 0.917 0.176
7B Sample EDU PRM 59.2 0.689 0.559 0.898
Greedy EDU PRM 56.2 0.229 0.956 0.13
Qwen2.5-Math-PRM-7B 82.4 0.82 0.839 0.802
Math-Shephred PRM 77.8 0.805 0.727 0.902
Omega PRM 79.8 0.763 0.923 0.65
72B  Sample EDU PRM 76.4 0.795 0.709 0.906
Greedy EDU PRM 88.4 0.882 0.904 0.862
Qwen2.5-Math-PRM-72B 87.8 0.872 0.918 0.83
OlympiaBench
Math-Shephred PRM 53.6 0.539 0.541 0.536
Omega PRM 51.3 0.079 0.724 0.042
7B Sample EDU PRM 53.8 0.636 0.528 0.798
Greedy EDU PRM 51.7 0.083 0.815 0.004
Qwen2.5-Math-PRM-7B 74.1 0.721 0.785 0.666
Math-Shephred PRM 71 0.74 0.691 0.796
Omega PRM 66.1 0.553 0.816 0.418
72B  Sample EDU PRM 69.7 0.723 0.67 0.786
Greedy EDU PRM 77.2 0.762 0.801 0.726
Qwen2.5-Math-PRM-72B 79.8 0.779 0.86 0.712

Table 1: Performance comparison of different PRM models (Math-Shephred, Omega, EDU, Qwen-
series) on three ProcessBench subsets: GSM8K, MATH, and OLY. For each dataset, results are
reported for both 7B and 72B model sizes, including metrics for accuracy, F1 score, precision, and

recall. The best results for each metric are highlighted in bold.

A.3.3 DETAILS OF EVALUATION DATASETS

Five datasets covering different difficulty levels (from elementary to university-level) and task types
(math reasoning, multi-step problem-solving) were used to comprehensively evaluate the model’s
generalization and reasoning abilities. The key details of each dataset are presented in Table 2]

A.4 EDU SAMPLING WHITELIST

LS s SNGAL NG o\ DAL LG GAL AL NG {0\ )
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Dataset Description Usage in Evaluation

OlympiadBench Bilingual, —multimodal dataset with Used the
8,952 math/physics questions (from “OE_TO_maths_en_COMP”
Olympiads, college entrance exams); sub-  subset (675 problems) to evaluate
set “OE_TO_maths_en_COMP” contains the model’s performance on com-
675 problems. petitive/advanced math tasks.

GSMS8K 8,500+ grade school math word problems Used 1,319 test data points to eval-
(linguistically diverse, requiring 2-8 steps  uate the model’s elementary math-
of basic arithmetic reasoning); solutions in ~ ematical reasoning and multi-step
natural language; 1,319 test data points. natural language-based problem-

solving skills.

MATH Consists of 12,500  challenging Used the selected 5,000-test-sample
competition-level — mathematics  prob- subset to systematically evaluate
lems, each with detailed step-by-step the model’s reasoning process,
solutions. We selected 5,000 problems step-by-step solution generation,
as our test set to evaluate the model’s and overall accuracy on advanced
abilities in complex mathematical rea- math problems.
soning, solution derivation , and answer
generation. The MATH dataset serves
as a rigorous benchmark for assessing
advanced mathematical problem-solving
skills.

CollegeMath ~1100 university-level math problems Used all test data to assess the
(covering 6 college math areas; 20% with  model’s proficiency in complex, ad-
images). vanced mathematical concepts (rel-

evant to industry and higher educa-
tion scenarios).

ProcessBench Three selected subsets: MATH (1,000 Used to evaluate the model’s overall

samples), OlympiaBench (1,000 samples),
GSMB8K (400 samples); each sample in-
cludes step-by-step error position annota-
tions and final solution correctness labels;
balanced positive/negative samples in each
subset.

solution correctness.

Table 2: Key details of evaluation datasets used in our experiments.

A.5 EVALUATION PROMPT

We use the following prompt to evaluate the solution, with Qwen3-32B-instruct (Yang et al., [2025))
as the underlying model. For each test instance, the model is provided with the problem statement
and instructed to generate a step-by-step solution. The prompt is designed to encourage detailed
reasoning and explicit justification at each step, ensuring the model’s output is both accurate and

interpretable.

You are a high school math teacher who is correcting homework. You need to check whether
the result from Response is consistent with the Answer. If the result is consistent, you
should reply Yes, otherwise you should reply No. You only need to compare the result from
Response to the Answer. If the content in the Response does not give the final result, answer

No.
Here are some examples
[Question]
2 3 _ 3 2
If z = 3 and y = 2, then what is the value of LoV ?
[Response]
223 — 3y

To find the value of the expression given z = 3 and y = 2, we substitute the

values of  and y into the expression and simplify step by step.
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1. Substitute x = 3 and y = 2:
2(3)° —3(2)?
6
2. Simplify the expression inside the numerator:
3% =27, 22 =4
So,
2(27) — 3(4)
6

3. Further simplify:
2 x 27 =54, 3x4=12

Hence
54 — 12

6

4. Subtract in the numerator:

54—12:42:%

5. Simplify the fraction:
42+-6=17

Therefore the value is .

[Answer]

7

[Evaluation]

Yes

[Question]

Find cos~!(3). Express your answer in radians.
[Response]

To find cosfl(%), we need the angle whose cosine is
) = 3. Therefore cos™(1) = %. So the answer is

From the 30-60-90 triangle,

jus

6
[Answer]
Vs

COS(

HN‘H

[?iivaluation]

No

[Question]

Consider two lines: line [ parameterized as

=1+ 4t, y=4+3t
and the line m parameterized as
x = —5+4s, y =6+ 3s.

Let A be a point on line I, B be a point on line m, and let P be the foot of the perpendicular
from A to line m.

—
Then ﬁ is the projection of BA onto some vector (Z;) such that v; + v9 = —7. Find

U1

(%) ’
[Response]
(Working leading to)

17
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[Answer]
—4
-3
[Evaluation]
Yes
[Question]
Consider two lines: line [ parameterized as

=1+ 4t y=4+3t
and the line m parameterized as
Tz = —5+4s, y =6+ 3s.

Let A be a point on line [, B be a point on line m, and let P be the foot of the perpendicular
from A to line m.

—
Then ﬁ is the projection of BA onto some vector (Z;) such that v; + v9 = —7. Find

U1
(%) ’
[Response]

(An unrelated distance-to-plane calculation producing 4.)
[f?)nswer]

[l%lvaluation]

No

Note: You only need to compare the result from Response to the Answer.
[Question]

{( question )

[Response]

{( Response ))

[Answer]

{(correctanswer))

[Evaluation]

A.6 COMPARISON OF PRMs

Table [3] presents a comprehensive comparison of various PRMs across four benchmark datasets:
OLY, MATH, GSMS8K, and Collegemath. The models evaluated include Qwen2.5-Math-PRM,
Math-Shepherd (ours), Omega, Sample-EDU, and EDU, with parameter sizes ranging from 7B to
72B. For each dataset, models are grouped according to their parameter sizes to facilitate a fair com-
parison. The evaluation is conducted under different sample sizes (2, 4, 8, 16, 32, 64, and 128),
allowing for an analysis of performance scaling as the sample size increases. Bolded values in the
table highlight the best-performing model for each sample size within the respective dataset. This
table serves as a supplementary resource for section4.4]

A.7 PERFORMANCE COMPARISON OF EDU-BASED SAMPLE METHODS

Table 4 and Table [5]summarize the performance of EDU sampling, P-EDU, and MCTS-EDU meth-
ods on the MATH and OLY datasets, respectively, under varying entropy thresholds with a fixed
maximum branch number of 8. Each table reports both the accuracy (%) and the average number of
tokens consumed for each method and entropy setting.

The results illustrate several key trends:

* For both datasets, increasing the entropy threshold generally leads to a reduction in average
token usage, but this is often accompanied by a decrease in accuracy.
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* The P-EDU Sampling, which incorporates entropy-based pruning, can sometimes outper-
form the standard EDU Sampling depending on the underlying PRM’s ability to identify
and prune low-confidence branches.

* The accuracy improvement of MCTS-EDU is constrained by the rollout depth; with limited
rollout steps, its accuracy does not continue to increase with higher token counts.

These tables provide a comprehensive overview of how entropy-based branching and pruning strate-
gies affect the balance between accuracy and token efficiency across different reasoning methods.

A.8 COMPREHENSIVE COMPARISON OF EDU SAMPLING ON MATH AND OLY DATASETS
BY DIFFERENT MAXIMUM BRANCH

Table [6] presents a detailed comparison of several branching strategies—HT Sampling, EDU Sam-
pling, P-EDU Sampling, and MCTS Sampling—on both the MATH and OLY datasets as the max-
imum allowed number of branches varies from 1 to 64. The table includes three main metrics:
accuracy (%) using the 72B model, total tokens consumed (in millions), and average tokens per
problem for each method and branch setting.

Key observations include:

* Increasing the maximum branch number generally leads to higher accuracy for most meth-
ods, but also significantly increases token usage.

* EDU Sampling and P-EDU Sampling demonstrate better token efficiency compared to HT
Sampling, especially at higher branch limits.

* MCTS Sampling’s accuracy plateaus or even drops at higher branch numbers, but its token
usage remains relatively low due to its targeted search mechanism.

* OLY dataset results show lower overall accuracy compared to MATH, but similar scaling
trends in token usage and efficiency.

This table provides a comprehensive overview of how different branching and sampling strategies
scale with computational resources, highlighting the trade-offs between accuracy gains and token
consumption.

A.9 MULTI-LEVEL PRUNING IMPACT ON PRM SCORE DISTRIBUTION

This figure[7]illustrates the effects of multi-level threshold-based pruning on PRM scores for a large
model. The visualization covers six pruning levels (from 1 to 6), showing how the distribution of
PRM scores changes as nodes are either retained or deleted. For each level, the panels display
the cumulative distribution functions (CDFs) comparing retained and deleted nodes, as well as fre-
quency histograms indicating their counts. Additionally, the mean PRM scores for both groups are
presented, providing insight into the impact of pruning on model performance and node character-
istics.

A.10 WORD FREQUENCY ANALYSIS ACROSS DATASETS AND BRANCH CONFIGURATIONS

Figure 8| presents word cloud visualizations for the MATH and OLY datasets under different entropy
conditions, with the maximum branch number set to 8. In these visualizations, the size of each word
corresponds to its frequency within the dataset, allowing for an intuitive comparison of commonly
used terms across different entropy settings.

Figure [0] shows word cloud visualizations for OLY and MATH samples under varying maximum
branch numbers. The font size of each word indicates its frequency, with larger fonts representing
words that appear more frequently in the samples. These figures provide insights into the distribution
of key terms in educational samples, highlighting differences in word usage patterns across datasets
and branching configurations.
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Multi-level Pruning Effects on PRM
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Figure 7: Multi-level Pruning Effects on PRM. This visualization presents the distribution of PRM
scores across six levels (1 to 6) for a large model, illustrating the effect of threshold-based prun-
ing on node retention and deletion. Each panel includes a cumulative distribution function (CDF)
comparing retained and deleted nodes, along with frequency histograms showing their counts, and
displays the mean PRM scores for both groups.

A.11 ILLUSTRATIVE EXAMPLE OF AN EDU SAMPLING

Figure [T0] presents a real example of an EDU Sampling, illustrating the process of branch selection
and token evaluation. In this example, a specific branch is highlighted for clarity. The segments
shown in red represent tokens whose entropy values fall below the predefined threshold, indicating
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MATH Dataset - Word Frequency Analysis

OLY Dataset - Word Frequency Analysis
Entropy = 0.8 Entropy = 1.0 Entropy = 1.2 Entropy = 0.8 Entropy = 1.0

need can irst we solve

welet's t need™ need" ne solvéts need™ need’s
Entropy = 1.4 Entropy = 1.6 Entropy = 1.8 Entropy = 1.4 Entropy = 1.6 Entropy = 1.8
can can
need need"t The® need’ need need"®
Entropy = 2.0 Entropy = 2.2 Entropy = 2.4 Entropy = 2.0 Entropy = 2.2 Entropy = 2.4
the Since the We The The
understand
We @ Le Thethe i Théince can thaeed Given Weince i th&ince
(a) Math@8 (b) Oly@8

Figure 8: Word cloud visualizations for the MATH and OLY datasets under different entropy con-
ditions by EDU Sampling, where the maximum branch number is set to 8. The size of each word
reflects its frequency in the dataset, with more frequent words shown in larger font.

OLY Dataset - Word Frequency Analysis (EDU Samples) MATH Dataset - Word Frequency Analysis (EDU Samples)
.................... - cousampiess cousampiesz [rap— p——

The

need™" need can the"e® can “s¢ We need

need " the T need the "

(a) Oly EDU (b) Math EDU

Figure 9: Word cloud visualizations for Oly and MATH samples under different maximum branch
numbers by EDU Sampling. The font size of each word indicates its frequency, with more frequently
occurring words shown in larger font.

points of higher confidence during the reasoning process. At each step, the Label is determined
through backpropagation from the final solution outcome, providing insight into the contribution
of each token to the overall result. This visualization demonstrates how entropy-based selection
and backpropagation labeling work together to guide the reasoning trajectory in the EDU Sampling
framework.

A.12 HEATMAP ANALYSIS OF NODE BRANCH POINT DISTRIBUTIONS

Figure[TT]and Figure[I2]provide heatmap visualizations of node and branch point distributions under
different experimental conditions on the OLY and MATH test sets.

Figure [[T] shows the concentration of nodes within the initial 0-20% interval of solution steps for
varying Maximum Branch Number settings. Red regions indicate a higher concentration of nodes,
while blue regions represent lower concentrations. Compared to MATH, the OLY test set displays a
more front-loaded distribution, with nodes concentrated earlier in the solution process.

Figure [T2] illustrates branch point distributions at a fixed Maximum Branch Number of 8 under
different entropy thresholds, focusing on the 1-20% segment. Lower entropy thresholds result in
earlier branching, and for any given threshold, OLY consistently shows branch points occurring
earlier than MATH. These observations highlight structural differences in reasoning trajectories and
branching dynamics between the two datasets.
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singular, which means its determinant is 0. We can calculate the determinant as follows:
N \begin{align*}
Question: Let$ a$, $ b$, $ c$,$ x$, $ y$, and $
z$ be real numbers that satisfy the three \Dfrac{bcla(a - 13)} = 65.\]
equations\n\\beginfalign*\n 13x + by + cz&=0 Similarly, we can show that
W0 ax + 23y + cz&= 0\\n ax + by + 42z \\fracfackb(b - 23)} = 65 \quad \text{and} \quad \frac{ab}c(c - 42)} = 65\]
&= 0.n\\end{align*}Suppose that $ a \\ne 13$ Adding these equations, we get
and § x \\ne 03. What is the value of\n\\[ \\frac(a} > is \Mfracfa)a - 13) + \frac(bl(b - 23) + \frac(chc - 42} = \boxed(65)\]
fa - 13} + \\frac{b}{b - 23} + \\frac{c}{c - 42}\\ 2\{ The answer is $\boxed{65}$. X
invertible: Therefore, we can multiply both sides of the equation by the inverse of the
label: 1/2 matrix to get:
\ 4 \\frac{aja - 13} + \frac{b}{b - 23} + \frac{cHc - 42} = \frac{a - 13 + 13}{a - 13} + \frac{b -
Ans: Let's meticulously deconstruct this question. 23 + 23Kb - 23} + \frac{c - 42 + 42}{c - 42} = \frac{13Ha - 13} + \frac{23}b - 23} +
We can rewrite the given equations as a matrix \frac{42}{c - 42} = \boxed{1}\] "
equation: The answer is $\boxed{1}$
\Dbegin{pmatrix} 13 &b & c \\a &23 & c\a &b & | | thg o;ly soll{tion i§ $x = y = z = 0$.\n\nThis means that the matrix on the left is invertible,
42 \end{pmatrix} \begin{pmatrix} x \\ y \\ z so its determinant is nonzero.
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0
N : $abc \\neq 966$.\n\nTherefore,\n\\\frac{al{a - 13} + \\frac{b}{b - 23} + \\frac{c}{c - 42} =
\end{pmatrix}.\] on the left is N v
Since $x \neq 08, the matrix label: 3/4 invertible. Therefore, \boxedf{1}.\nThe answer is s\\b‘MU }$. _ _
we can multiply both sides of the equation by the inverse of the matrix to get:\n\\[\
\begin{pmatrix} x \\\\ y \\\\ z \\end{pmatrix} = \\begin{pmatrix} 0 \\\\ 0 \\\\ 0 \\end{pmatrix}
label: 2/2
and $c$ are the coefficients of the matrix, we can rewrite this as\n\\\frac{a}{a - 13} + \
\frac{b}{b - 23} + \\frac{cHc - 42} = \\frac{13}{a - 13} + \\frac{23}{b - 23} + \\frac{42}{c -
= \\boxed{1}\\nThe answer is $\\boxed{1}$.

Figure 10: This is a real example of an EDU Sampling, where a selected branch is presented for il-
lustration. The red-colored segments correspond to tokens with entropy values below the predefined
threshold. For each step, the Label is derived from the results obtained through backpropagation
based on the final outcome.

Effect of Maximum Branch Number on Node Distribution on OLY Effect of Maximum Branch Number on Node Distribution on MATH
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Figure 11: Heatmaps of node distribution under different Maximum Branch Number settings on
the OLY and MATH test sets, restricted to the 0-20% interval of solutions. Red denotes a higher
concentration of nodes in that percentile range, whereas blue denotes a lower concentration. Relative
to MATH, OLY exhibits a more front-loaded (early-range) concentration.

A.13 TOKEN COUNT VS. ACCURACY ANALYSIS ACROSS SAMPLING METHODS WITH
DIFFERENT ENTROPY
Figure [T3]illustrates the relationship between token count and accuracy on the OlympiaBench and

MATH test sets under a Max Branch Number of 8. The performance of HT Sampling across different
token counts is fitted as the baseline for comparison. On the MATH test set, most data points for both
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Node Distribution under Varying Entropy Thresholds on OLY Node Distribution under Varying Entropy Thresholds on MATH

E=0.8~|
E=1.0-

E=1.2-
£=1.4] 0.020
0.015
E=1.6
0.010
E=1.8
0.005
E=2.0 0.000

E=2.2

E=2.4
0.00 0.02 0.04 0.06 0.08 0.0 012 0.4 016 0.18 0.20 0.00 0.02 0.04 0.06 0.08 0.10 0.2 0.14 0.6 0.18 0.20

Figure 12: Heatmaps of branch point distribution on the OLY and MATH test sets at a Max Branch
Number of 8 under varying entropy thresholds (only the 1-20% segment shown). Lower entropy
thresholds trigger earlier branching, and for any fixed threshold, OLY exhibits earlier branch points
than MATH.

EDU Sampling and P-EDU(0.2) Sampling are positioned above this baseline, indicating superior
performance in terms of accuracy relative to token count. As the entropy threshold increases, the
number of tokens required decreases, but this reduction is accompanied by a corresponding drop
in accuracy. Additionally, the MCTS method also exceeds the HT Sampling baseline when the
entropy threshold is set lower, further highlighting the impact of entropy-based branching strategies
on solution efficiency and accuracy.
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Token Number vs Accuracy on OlympiaBench
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Figure 13: This figure illustrates the relationship between token count and accuracy on the
OlympiaBench test set under a Max Branch Number of 8, with the performance of HT Sampling
across varying token counts fitted as the baseline. On the MATH test set, most data points for both
EDU Sampling and P-EDU(0.2) Sampling lie above this baseline. Notably, as the entropy threshold
increases, token counts decrease alongside a corresponding drop in accuracy.
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Samples
2 4 8 16 32 64 128

Math-Shepherd-Mistral-7B-PRM 159 163 17.5 17.6 182 188 17.9
Qwen?2.5-Math-7B-PRM800K 16 182 193 199 203 213 227

Datasets Models

Qwen2.5-Math-PRM-7B 179 207 23 236 246 258 289
Math-Shephred-7B 169 164 151 151 154 139 138
Omega-7B 145 153 16 175 175 169 179
Sample-EDU-7B 175 181 187 182 191 191 20.1
EDU-7B 16 194 184 182 197 194 20
oLy Qwen2.5-Math-RM-72B 194 218 244 255 274 292 304
Qwen2.5-Math-PRM-72B 188 219 247 258 27 286 293
Math-Shephred-72B 188 204 219 224 236 247 267
Omega-72B 187 207 2101 225 246 244 255

Sample-EDU-72B 188 21 222 224 236 241 27
EDU-72B 194 224 255 267 276 302 327
Math-Shepherd-Mistral-7B-PRM 437 450 456 463 465 462 465

Qwen2.5-Math-7B-PRMSO0K 458 482 500 507 51 512 51
Qwen2.5-Math-PRM-7B 474 513 548 582 609 625 64.6
Math-Shephred-7B 438 448 452 455 462 462 46.1
Omega-7B 434 437 445 456 468 476 485
Sample-EDU-7B 44 465 476 484 497 501 504
EDU-7B 44 463 477 489 496 506 513
MATH Qwen2.5-Math-RM-72B 486 54 578 620 654 679 700
Qwen2.5-Math-PRM-72B 472 515 548 579 605 617 636
Math-Shephred-72B 47 509 544 571 59 604 617
Omega-72B 48 521 547 574 597 614 624
Sample-EDU-72B 469 504 538 565 588 603 618
EDU-72B 489 539 572 613 629 647 655
Math-Shepherd-Mistral-7B-PRM 847 852 854 86 847 848 8438
Qwen2.5-Math-7B-PRMSOOK 843 861 87 872 87.6 881 878
Qwen2.5-Math-PRM-7B 856 87 88.6 88.6 88.9 89.3 89.3
Math-Shephred-7B 833 83 832 834 83 831 826
Omega-7B 820 832 834 837 85 85 857
Sample-EDU-7B 826 825 823 826 83 834 835
EDU-7B 839 84 837 848 854 865 867

GSMSK

Qwen2.5-Math-RM-72B 873 897 OL1 919 923 926 927
Qwen2.5-Math-PRM-72B 864 87.7 887 889 893 899 903
Math-Shephred-72B 861 87.6 883 881 88 88.6 89.5
Omega-72B 854 863 876 886 892 90 90.1
Sample-EDU-72B 855 87.1 876 876 879 882 881
EDU-72B 87 898 90.6 918 921 92 915
Math-Shepherd-Mistral-7B-PRM 118 118 118 116 117 118 1138
Qwen2.5-Math-7B-PRMSOOK 117 119 118 116 116 115 116
Qwen2.5-Math-PRM-7B 119 123 127 130 132 136 141
Math-Shephred-7B 115 118 119 119 118 119 119
Omega-7B 17 116 117 118 12 119 121
Sample-EDU-7B 16 12 12 123 123 125 126
EDU-7B 16 117 116 116 121 12 122
Collegemath Qwen2.5-Math-RM-72B 121 126 133 139 145 151 157
Qwen2.5-Math-PRM-72B 12 123 126 129 131 13 132
Math-Shephred-72B 12125 132 138 138 143 148
Omega-72B 12 124 132 135 139 143 148
Sample-EDU-72B 118 125 129 134 137 141 145
EDU-72B 123 129 134 141 144 149 155

Table 3: Comparison of performance across different datasets (OLY, MATH, GSM8K, and College-
math) and various PRMs (including Qwen2.5-Math-PRM, Math-Shephred (ours), Omega, Sample-
EDU, and EDU with 7B and 72B parameters, Qwen2.5-Math-7B-PRM800K, Qwen2.5-Math-72B-
PRM, Math-Shepherd-Mistral-7B-PRM) under different sample sizes (2, 4, 8, 16, 32, 64, and 128).
Models are grouped by parameter size within each dataset. The bold values indicate the highest
performance score in each column for the corresponding dataset, and the underlined values denote
the second highest score.
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Method Entropy
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
EDU-7B 477 478 475 472 461 46.0 457 428 42.0
EDU-72B 58.1 57.8 572 571 562 544 51.1 51.1 494
P-EDU-0.2 574 57.1 567 563 559 544 536 503 482
P-EDU-0.3 55.6 555 555 551 552 53.8 532 498 48.6
P-EDU-0.4 522 527 535 524 531 520 525 489 48.0
MCTS-EDU (1-step) 48.7 488 483 487 479 4677 487 456 455
MCTS-EDU (2-step) 532 532 53,6 529 525 522 518 487 478
MCTS-EDU (3-step) 572 56,6 56.6 559 556 543 53.6 507 492
EDU Average Token 3047 3012 2988 2927 2818 2650 2082 2147 1880
P-EDU-0.2 Average Token 3024 2988 2966 2898 2769 2598 2026 2074 1815
P-EDU-0.3 Average Token 2434 2533 2611 2610 2537 2393 1904 1935 1705
P-EDU-0.4 Average Token 1711 1780 1875 1888 1896 1835 1594 1577 1405

MCTS-EDU (1-step) Average Token 1026 1010 1009 997 998 975 937 920 869
MCTS-EDU (2-step) Average Token 1863 1849 1834 1818 1782 1710 1464 1482 1347
MCTS-EDU (3-step) Average Token 3046 3012 2979 2915 2788 2616 2030 2098 1880

Table 4: Accuracy and Average Token Usage of EDU Sampling, P-EDU, and MCTS-EDU Methods
on the MATH Dataset Across Different Entropy Thresholds (Max Branches = 8). Higher entropy
values correspond to later branching and fewer tokens. The table reports both accuracy (%) and
average token count for each method and threshold.

Method Entropy
0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 2.4
EDU-7B 215 208 200 188 183 200 213 200 194
EDU-72B 269 265 255 269 251 254 267 262 257
P-EDU-0.2 27.0 276 252 248 254 252 259 254 265
P-EDU-0.3 255 264 244 242 242 246 256 247 258
P-EDU-0.4 233 241 225 221 231 222 251 244 244
MCTS-EDU (1-step) 21.8 228 206 216 21.0 202 217 202 217
MCTS-EDU (2-step) 248 246 238 242 237 229 238 247 235
MCTS-EDU (3-step) 260 261 243 245 243 246 251 249 250
EDU Average Token 3973 3961 3980 4030 4010 4013 3924 3801 3576
P-EDU-0.2 Average Token 3948 3930 3937 3979 3946 3926 3853 3702 3492
P-EDU-0.3 Average Token 3122 3227 3352 3417 3474 3488 3499 3399 3236
P-EDU-0.4 Average Token 2260 2721 2844 2916 2962 3016 3082 3095 2936

MCTS-EDU (1-step) Average Token 1449 1430 1437 1437 1451 1428 1432 1388 1347
MCTS-EDU (2-step) Average Token 2567 2543 2561 2573 2576 2574 2541 2532 2389
MCTS-EDU (3-step) Average Token 2972 3961 3981 4025 4014 4009 3909 3792 3547

Table 5: Accuracy (%) Comparison of EDU Sampling, P-EDU Sampling, and MCTS-EDU on OLY
Dataset under Different Entropy Values (Max Branches = 8)
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MATH Dataset

OLY Dataset

Method 1

2

4 8 16 32 64

1 2 4 8

16 32 64

Performance (%) - 72B Model

HT Sampling 42.2
EDU Sampling 41.8
P-EDU (0.2) 41.8
P-EDU (0.3) 41.8
P-EDU (0.4) 41.8
MCTS (1) 41.8
MCTS (2) 41.8
MCTS (3) 41.8

48.9
50.7
46.3
46.3
46.3
46.3
46.3
46.3

539
55.0
51.1
51.1
50.8
50.4
511
51.2

57.2
57.4
57.1
55.5
52.7
48.8
53.2
56.6

61.3
62.4
60.8
59.7
56.0
48.6
53.7
57.2

62.9
64.7
63.2
61.8
574
47.6
54.2
559

64.7
67.3
65.2
63.7
59.2
47.8
534
56.8

14.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2

194
21.7
21.5
21.5
21.5
21.5
21.5
21.5

224
24.8
25.1
24.7
23.1
22.7
253
25.3

255
26.7
25.9
25.6
25.1
21.7
23.8
25.1

26.7
28.9
28.8
28.1
24.4
20.5
23.1
25.0

27.6
31.7
32.1
30.9
26.2
21.2
23.0
24.8

30.2
33.2
322
30.0
27.8
22.1
25.5
26.4

Token Usage Statistics

Total Tokens (M)

HT Sampling 2.65 5.28 10.7
EDU Sampling 0.49 0.93 1.80

21.7
3.66

433
7.38

86.5
14.8

173
29.9

Average Tokens per Problem
BON Sampling 530 1,056 2,146 4,338 8,650 17,306 34,623

0.58 1.12 2.23 4.45
0.49 093 1.80 3.66

8.92
7.38

17.9
14.8

35.7
29.9

853 1,655 3,298 6,591 13,213 26,489 52,848

EDU Sampling 511 700 9462,988 5,980 11,88223,546 643 1,107 2,034 3,749 7,153 15,050 30,524
P-EDU (0.2) 511 700 9372,0313,777 7,75322,867 643 1,107 2,034 3,930 7,570 15,050 30,524
P-EDU (0.3) 511 700 9191,9083,415 6,824 15,174 643 1,107 1,938 3,227 6,365 11,710 18,565
P-EDU (0.4) 511 700 8741,5972,569 4,591 6,896 6431,107 1,6602,323 3,804 5,827 8,540
MCTS (1) 511 700 787 936 933 955 1,053 6431,1071,3391,432 1,475 1,480 1,489
MCTS (2) 511 700 6391,4651,666 1,681 2,038 6431,1072,0462,541 2,762 2,825 2,931
MCTS (3) 511 700 9462,0372,633 2,959 3,963 6431,1072,0483,909 4,932 5,423 5,683

Table 6: Accuracy and Token Usage Statistics for HT Sampling, EDU Sampling, P-EDU Sampling,
and MCTS Sampling across Different Maximum Branch Numbers (1-64) on the MATH and OLY
Datasets. The table reports accuracy (%) for the 72B model, total tokens consumed (in millions),
and average tokens used per problem for each configuration, illustrating the trade-offs between per-
formance and computational cost as the branch limit increases.
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