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Abstract

Vision Language Models (VLMs) have001
achieved remarkable success in a wide range002
of vision applications of increasing complex-003
ity and scales, yet choosing the right VLM004
model size involves a trade-off between re-005
sponse quality and cost. While smaller VLMs006
are cheaper to run, they typically produce re-007
sponses only marginally better than random008
guessing on benchmarks such as MMMU.009

In this paper, we propose Cache of Thought010
(CoT), a master–apprentice framework for col-011
laborative inference between large and small012
VLMs. CoT manages high-quality query re-013
sults from large VLMs (master) in a cache,014
which are then selected via a novel multi-015
modal retrieval and in-context learning to016
aid the performance of small VLMs (appren-017
tice). We extensively evaluate CoT on vari-018
ous widely-recognized and challenging general019
VQA benchmarks, and show that CoT increases020
overall VQA performance by up to 7.7% un-021
der the same budget, and specifically boosts022
the performance of apprentice VLMs by up to023
36.6%.024

1 Introduction025

Recent Vision Language Models (VLMs) (Ope-026

nAI, 2024b; Anthropic, 2024; Gemini, 2024) have027

shown tremendous promise in a wide range of real-028

world applications, such as autonomous driving029

(Zhou et al., 2024; Yuan et al., 2024), robotics030

(Brohan et al., 2023; Duan et al., 2024; Gao et al.,031

2024a), personalized virtual assistants (Nguyen032

et al., 2024), search engines (Zhang et al., 2024)033

and recommendation (Liu et al., 2024). However,034

the ever-growing size of these recent VLMs has035

made at-scale deployment and operation challeng-036

ing due to high consumption of cloud computing037

resource, high latency, and expensive API calls.038

In response to this, there has been research focus-039

ing on developing smaller VLMs for on-device ca-040
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Figure 1: Model Performance Comparison on
MMMU(Val) as of Nov. 30, 2024(Yue et al., 2024).

pabilities or cheap inference, such as MobileVLM- 041

1.7B (Chu et al., 2023, 2024), GPT-4o-mini (Ope- 042

nAI, 2024a) and Qwen-VL 7B (Wang et al., 2024) 043

etc. Unfortunately, one could not simply replace 044

the larger VLM with a smaller one and expect the 045

result to be within some practical tolerance, as the 046

performance gap between large and small VLMs 047

is still too huge (Figure 1): compared to the im- 048

pressive performance of large VLMs, some smaller 049

VLMs offer only marginal improvements over ran- 050

dom guessing on challenging benchmarks such as 051

MMMU (Yue et al., 2024). 052

In this paper, we seek a middle ground between 053

smaller and larger models through collaboration 054

between models of different sizes. To enhance on- 055

the-fly performance of smaller models for a cost- 056

effective system, we propose Cache of Thought 057

(CoT), a master-apprentice framework that enables 058

small (apprentice) VLMs to generate responses 059

of significant closer quality versus large (mas- 060

ter) VLMs via a novel design of dynamic Cache. 061

The Cache stores historical high-quality answer re- 062

sponses generated by master VLMs, which serves 063

as a guidance for apprentice VLM query answer- 064

ing. Inspired by the principle of well-established 065

case-based reasoning (Aamodt and Plaza, 1994), 066

CoT performs this guidance from master to appren- 067

tice via a specialized form of Retrieval-Augmented 068

Generation (RAG): when CoT selects apprentice 069

VLMs for question answering, it retrieves the most 070
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similar historical queries and responses in the cache071

to provide to the apprentice VLM as in-context ex-072

amples. Through in-context learning, apprentice073

can benefit from the accumulated cached history074

of master, and become more capable of handling075

new queries. Notably, since the cache is allowed to076

grow, it is expected that the quality and relevancy077

of in-context samples should grow as well, leading078

to further improved capabilities of the apprentice079

VLM and the overall system. From the practicality080

perspective, CoT’s in-context learning incurs negli-081

gible cost: it prepends the retrieved queries to the082

inference prompt of apprentice VLMs without in-083

troducing any extra training workloads, additional084

data annotations, nor recomputation expenses. CoT085

is also complementary to other VLM serving strate-086

gies and highly adaptable: as VLM routing and087

selection strategies mature, CoT can be easily in-088

tegrated, continuing to offer significant benefits to089

smaller VLMs.090

To the best of our knowledge, CoT is the091

first framework that demonstrates VLM in-context092

learning, combined with multimodal retrieval, can093

be applied effectively to real-world VQA tasks with094

lengthy question prompts (e.g., MMMU (Yue et al.,095

2024)). In comparison, previous works explored096

VLM in-context learning under more constrained097

conditions, such as short textual image descrip-098

tions or questions of several words (e.g. "what is099

in the image") (Alayrac et al., 2022; Jiang et al.,100

2024), purely visual contexts (Zhang et al., 2023),101

or synthetic datasets with short, simple questions102

(Zong et al., 2024). These works often relied on103

straightforward top-k image embeddings (or even104

random selection) for selecting in-context exam-105

ples and utilized ground-truth (rather than model-106

generated) responses. Prior to this work, it was107

unclear which retrieval methods were most appro-108

priate for dual-modality similarity, especially for109

complex VQA questions and in-context learning110

scenarios. CoT proposes and systematically evalu-111

ates various retrieval techniques (e.g., CLIP-based112

text+image embeddings, keyword extraction, key-113

word clustering), and maintains a dynamic cache114

of master VLM-generated responses, thereby ex-115

panding the scope and effectiveness of in-context116

learning for general, real-world VQA tasks without117

using ground truths.118

In summary, we contribute (1) CoT, a general119

master-apprentice framework for multi-VLM infer-120

ence with a cache, (2) an effective multi-modal re-121

trieval and in-context learning approach that boosts122

apprentice VLM performance on the fly without 123

training, and (3) extensive experiments demon- 124

strating the effectiveness of CoT’s multi-modal 125

in-context learning and desirability of CoT’s cost- 126

response quality trade-off for general VQA. 127

2 Related Work 128

RAG and Multi-modal RAG. RAG was originally 129

proposed for language tasks (Lewis et al., 2020). In 130

RAG, a retriever is designed to extract relevant doc- 131

ument chunks by similarity, and then these chunks 132

are prepended to question prompts. RAG can re- 133

duce hallucinations, support knowledge-intensive 134

tasks (Gao et al., 2024b), and improve capability of 135

small models (Mialon et al., 2023). Recent research 136

has expanded RAG’s capabilities beyond text. Mul- 137

timodal RAG (Chen et al., 2024; Lin et al., 2024a,b; 138

Hu et al., 2022; Yasunaga et al., 2023) retrieves 139

world knowledge from relevant multimodal doc- 140

uments and improves knowledge-seeking or fact- 141

based VQA tasks (Wang et al., 2018; Marino et al., 142

2019; Chen et al., 2023; Mensink et al., 2023). CoT 143

differs from multi-modal RAG in that its cache is 144

dynamic, and all stored responses are generated by 145

a large master VLM rather than factual documents. 146

In-context Learning and Multi-modal In- 147

context Learning. In-context learning emerged 148

with large auto-regressive models like GPT-3 149

(Brown et al., 2020), which adapt to new tasks by 150

observing a few in-context demonstrations. This 151

success motivated research into VLMs. Flamingo 152

(Alayrac et al., 2022) demonstrated significant 153

gains in VQA by providing random demonstra- 154

tions in context, while Zhang et al. (2023) extended 155

these benefits to tasks like image segmentation and 156

classification. More recently, Zong et al. (2024) 157

validated in-context learning for VLMs ranging 158

from 4B to 70B parameters using synthetic VQA. 159

CoT makes unique contribution in multi-modal in- 160

context learning, with we detail in Section 4.2. 161

3 Cache-of-Thought Framework 162

CoT (Figure 3) is a query serving framework for 163

VLM queries that interleaves large (master) and 164

small (apprentice) VLM calls for significant perfor- 165

mance boost and cost savings: query results from 166

master VLM calls are cached, which are then used 167

to enhance apprentice VLM calls via multi-modal 168

retrieval and in-context learning. 169

Master VLM. CoT’s master VLM (often with sev- 170

eral hundred billion parameters and serves with 171
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Stage 1

Master VLM

Search

In-context Example

Now you should answer the following question given the 
above example:

Top-k
Retrieve

Stage 2

Apprentice VLM

Groups of men from three different areas of the country are to be 
tested for mean weight. The entries in Table 12.13 are the 
weights for the different groups. <image 1> What is the Mean 
Square Factor?
A. 2,309.6  B. 2,325.6  C. 2,328.1 D. 2,469.6

Answer: ?

Girls from four different soccer teams are to be tested for mean 
goals scored per game. The entries in Table 12.14 are the goals 
per game for the different teams. <image 1> What is the df for 
the numerator?

A. 2     B. 3      C. 4      D. 5

Answer:  B. <Thoughts>

Groups of men from three different areas of the country are to be 
tested for mean weight. The entries in Table 12.13 are the weights 
for the different groups. <image 1> What is the Mean Square 
Factor?

A. 2,309.6     B. 2,325.6    C. 2,328.1    D. 2,469.6

Answer: D

Girls from four different soccer teams are to be tested for mean 
goals scored per game. The entries in Table 12.14 are the goals per 
game for the different teams. <image 1> What is the df for the 
numerator?

A. 2     B. 3      C. 4      D. 5

Answer:  B. <Thoughts>

Cache

Apprentice VLM

Insert

Team 1 Team 2 Team 3 Team 4

1 2 0 3

2 3 1 4

… … … …

Team 1 Team 2 Team 3 Team 4

1 2 0 3

2 3 1 4

… … … …

Group 1 Group 2 Group 3

216 202 170

198 213 165

… … …

Group 1 Group 2 Group 3

216 202 170

198 213 165

… … …

Figure 2: Apprentice VLM answers new query with help of past similar cases answered by the master VLM:
Multi-modal Retrieval and In-context learning. Images and prompt examples cited from MMMU (Yue et al., 2024)
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Figure 3: The Cache-of-Thought (CoT) framework.

per-token charge), under the assumption that it pro-172

duces high-quality answers, acts as the generator173

of the QA-pairs stored in the cache.174

Apprentice VLM. CoT’s apprentice VLM (of-175

ten with less than 7 billion parameters) is used176

to answer queries via augmentation with various177

in-context examples fetched from the cache.178

Model Multiplexer. The Model Multiplexer routes179

incoming VLM queries by choosing one of two180

serving methods: use the master VLM to directly181

answer the query, or use the apprentice VLM to182

answer the query augmented with in-context ex-183

amples fetched from the Cache (described shortly).184

The multiplexer balances cost and quality by con-185

trolling how often CoT calls the master and appren-186

tice VLMs: frequently calling the master VLM187

increases the rate of populating examples into the188

cache (hence more effective in-context learning)189

but incurs a higher cost, and vice versa.190

Cache. CoT’s cache stores high-quality QA pairs191

from the master VLM. When the multiplexer routes192

a new query to the master VLM, the question asked,193

image prompt, and resulting answer (QA-pair) is194

stored into the cache, which then computes its dual-195

modality embedding from the question and image196

and inserts it into a HNSW index (Malkov and197

Yashunin, 2020) to facilitate accurate retrieval as198

an in-context example. CoT’s cache can also be pre-199

loaded with QA-pairs to efficiently warm-start on200

query serving, and can incorporate common evic- 201

tion policies (e.g., LRU or LFU) for more resource- 202

constrained settings.1 203

Retrieval Module. The Retrieval Module retrieves 204

relevant in-context examples (i.e., QA-pairs) from 205

the Cache to augment queries routed to the ap- 206

prentice VLM by the Multiplexer. It performs an 207

efficient ANN vector search with the dual-modality 208

embedding of the incoming query in the Cache’s 209

HNSW index, retrieving examples similar to the 210

query in terms of both the question asked and im- 211

age prompt. 212

4 Methodology 213

This section describes CoT’s methodology. Sec- 214

tion 4.1 overviews CoT’s formulation, Section 4.2 215

describes CoT’s multi-modal in-context learning, 216

and Section 4.3 covers how CoT retrieves relevant 217

examples for in-context learning. 218

4.1 Formulation 219

This section formulates CoT’s notations. Without 220

loss of generality, CoT deploys two VLM instances 221

with frozen weights, the master VLM f and ap- 222

prentice VLM g, where deployment cost of g is 223

significantly lower than F . CoT’s workload is a 224

set of (finite) queries Q ⊂ Rd: At each round 225

t, the system receives a query from the workload 226

(xt, qt) ∈ Q consisting of the visual input xt and 227

the textual question qt (about the content of xt e.g., 228

’how many ducks are there in the picture?’). 229

For each query (xt, qt) from round t, CoT’s 230

model multiplexer J determines which VLM to 231

use (the master f or apprentice g) with the mul- 232

1We defer concrete explorations on CoT’s eviction pol-
icy to future work when real-world dual modality user query
benchmarks are available.
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tiplexer function: J : Q 7→ {f, g}, which routes233

the query according to J((xt, qt)). Then, the se-234

lected VLM will serve the query by generating an235

answer from an answer space A with the respec-236

tive function f : Q 7→ A or g : Q 7→ A, e.g.,237

g((xt, qt)) = at ∈ A. xt, qt, and the answer from238

the master/apprentice VLM at will then comprise239

the QA-pair Pt = {(xi, qi), ai}.240

CoT’s cache, denoted as Lt ⊂ Q, will store241

|Lt| ≤ L QA-pairs Pt generated with g, i.e., Pt242

s.t. J((xt, qt)) = g, where L is the cache capac-243

ity. CoT inserts into Lt whenever g is invoked;244

however, due to the bounded size L, insertions245

performed when |Lt| = L will trigger evictions.246

Initially, L0 can either be empty (cold start) or a247

prepopulated set of QA-pairs (warm start) from the248

master VLM g. Hence, the cache Lt serves as an249

external knowledge base to support the apprentice250

VLM f during inference via multi-modal retrieval251

and in-context learning (Section 4.2).252

For retrieval from the Cache Lt, CoT uses a253

retrieval mechanism R to retrieve the top-k relevant254

QA-pairs Lk from the cache: R(Lti , (xtj , qtj )) 7→255

Lk ⊆ Lti , j > i, which we describe in Section 4.3.256

4.2 Multi-modal In-context learning257

CoT performs multi-modal in-context learning by258

transferring knowledge from the cache to the ap-259

prentice VLM. Given the pre-trained apprentice260

VLM f with frozen parameters θ and a query261

(xt, qt) ∈ Q, CoT retrieves a set of QA-pairs from262

the cache M = {(xi, qi), ai} from Lt used to263

aid inference. The apprentice VLM f then gen-264

erates an answer at in one forward pass: at =265

fθ ((xt, qt),M).266

Flexibility for Dynamic Systems. Compared to267

finetuning apprentice VLM instances with Lora268

using cached content (Hu et al., 2021), CoT’s in-269

context learning offers several advantages in dy-270

namic systems: (1) CoT pre-computes QA-pairs271

and stores them in the cache for reuse, incurring272

no extra data annotation and/or recomputation ex-273

penses during retrieval; hence, CoT’s performance274

will steadily improve with minimal costs as it an-275

swers more high-quality queries with the master276

VLM. (2) CoT’s self-improvement via in-context277

learning does not require weight updates for its278

VLMs, hence there are no extra training overheads279

or delays (e.g., waiting for model convergence).280

Prompt Construction. For each query routed281

to the apprentice VLM, CoT performs in-context282

learning by retrieving one or more demonstration283

examples to prepend to the inference prompt. CoT 284

utilizes special tokens for prompt formatting, in- 285

terleaving support QA-pairs in the form of (im- 286

age,text): "{support image}, Question: {support 287

question}, Answer: {ground truth answer}, {query 288

image}, Question: {query question}, Answer:" In 289

CoT, {ground truth answer} is replaced by stored 290

VLM responses from the cache Lt. Beyond this 291

core prompt structure, additional components— 292

such as n-shots and system prompts required by the 293

VLM’s input format—are incorporated in the final 294

prompt. For effective prompt construction, CoT 295

explicitly instructs the master VLM to "include 296

reasoning steps" when using it to serve queries to 297

obtain complete responses (to prepend to prompts 298

sent to the apprentice VLM) rather than just short 299

answers or multiple-choice selections. This allows 300

the apprentice VLM to better leverage the master 301

VLM’s reasoning capabilities. Full prompts details 302

can be found in the Appendix A. 303

4.3 Multi-modal Retrieval 304

In this section, we describe CoT’s multimodal re- 305

trieval of in-context examples from its Cache, on 306

which performance on downstream tasks is highly 307

sensitive to (Zhang et al., 2023). Much to our sur- 308

prise, existing works on VLM in-context learning 309

present ungrounded design choices without further 310

experiments in the following aspects: 311

Choice of Retrieval. Recent works (Zong et al., 312

2024; Jiang et al., 2024) randomly select in-context 313

examples for all test instances. Flamingo (Alayrac 314

et al., 2022) attempts retrieval-based in-context ex- 315

ample selection, which retrieves top-k similar sam- 316

ples using frozen pre-trained vision encoder em- 317

beddings from CLIP (Radford et al., 2021). While 318

Flamingo verifies that its image-driven retrieval is 319

better than random selection in test cases with short, 320

few-word questions, it remains unclear whether 321

this method can be extend to general VQA systems 322

where questions can be long and complicated, as 323

seen in benchmarks like MMMU (Yue et al., 2024). 324

Choice of Support Set. All of the aforementioned 325

studies randomly partition the dataset into a sup- 326

port set and test set offline. However, in-context 327

performance can heavily depend on the distribution 328

of support examples. A setting where the support 329

set is dynamic (i.e., continuously growing as in 330

CoT’s case) has not been explored. 331

Assumption of Ground-Truth Availability. Pre- 332

vious studies often use in-context examples with 333

human-annotated ground truth answers, which can 334
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be inpractical for real-world, online data streams.335

In contrast, CoT targets a more challenging and336

general VQA setting, and makes significant con-337

tributions to multi-modal retrieval for in-context338

learning in terms of the aforementioned 3 aspects:339

(1) CoT proposes a retrieval method that leverages340

both CLIP image and text embeddings, supple-341

mented by keyword-based techniques for long or342

complex queries. CoT also introduces a hierar-343

chical keyword clustering approach tailored to the344

query distribution (Section 4.3.1). (2) CoT’s in-345

context example is performed over a dynamically346

updating (as opposed to static in previous works)347

knowledge base Lt, where new items (that align348

more closely with recent queries) are continuously349

added to the cache. (3) CoT directly utilizes re-350

sponses from the master VLM as in-context exam-351

ples rather than the human-labeled ground truth352

answers strongly assumed by all prior works. This353

allows CoT to incorporate more diverse examples354

as long as they have been seen by the master VLM,355

rather than relying on human annotators.356

4.3.1 Dual-Modality Dense Retrieval357

We begin with a simple dense-retrieval method that358

uses a unified embedding vector to identify the359

top-k matches. A natural starting point is CLIP360

(Radford et al., 2021), which has proven effec-361

tive in multimodal retrieval (Yasunaga et al., 2023;362

Vendrow et al., 2024) and is pretrained to align im-363

age and text embeddings on internet-scale (image,364

text) pairs. Recognizing CLIP as a well aligned365

dual-modality representation, we use its image and366

text encoders to separately embed each image and367

text, then average these embeddings to form a uni-368

fied vector that is stored in our cache index and use369

for query embeddings.370

However, CLIP embeddings also have limita-371

tions. They are pretrained primarily on short tex-372

tual descriptions of images (e.g., “a photo of a373

cat”) and support a relatively small text context374

window—often fewer than 20 tokens effectively375

(Zhang et al., 2025). This limitation makes CLIP376

less ideal for lengthy, sentence-like questions. To377

mitigate this issue, we break down long ques-378

tions before encoding them with CLIP. Specifi-379

cally, we employ a small auxiliary LLM, denoted380

as Extractor to extract keywords from the long381

sentence-like query. Details of how we prompt the382

Extractor can be found in the Appendix.383

In some cases, the question text alone may not384

be sufficiently informative for retrieval (e.g. a ques-385

tion like "what is in the image"); Fortunately, CoT’s 386

cache also stores responses from the master VLM, 387

allowing us to extract text embeddings from these 388

richer responses instead of relying solely on the 389

original question. For new queries, we can even 390

make a single pass with the apprentice VLM to 391

generate a text answer response, extract keywords 392

from that response, then feed them into CLIP text 393

encoder to enhance retrieval. Because these aux- 394

iliary or apprentice LLM calls are much cheaper 395

than invoking the master VLM, we can use them to 396

achieve significantly better retrieval results without 397

noticeably increasing inference cost. This strategy, 398

which combines embeddings from both the text re- 399

sponse and the corresponding image, significantly 400

improves the robustness of our dense-retrieval pro- 401

cess, particularly in VQA scenarios where the ques- 402

tion alone lacks sufficient context. 403

4.3.2 Multi-stage Hashtag Retrieval 404

In real-world scenarios, the streaming data distri- 405

bution Q is highly complex and diverse, varying 406

across different contexts. When the cache is large, 407

directly performing dense retrieval from the entire 408

knowledge base Lt may fail to locate the relevant 409

contexts due to the limited expressiveness of CLIP 410

embeddings even if they are carefully designed 411

(Section 4.3.1). A straightforward approach to im- 412

prove retrieval accuracy is to restrict retrieval to a 413

specific knowledge domain. However, without a 414

predefined distribution for Q, categorizing stream- 415

ing data under fixed domains is often difficult. 416

To enable more granular unsupervised retrieval, 417

we design a two-stage hashtag tree where Level 1 418

hashtags H1 capture high-level, task-oriented rep- 419

resentations, and Level 2 hashtags H2 provide finer, 420

concept-specific details. Each data entry in Lt is 421

assigned at least one Level 1 hashtag and one Level 422

2 hashtag. We use hi,j to denote the jth hashtag at 423

Level i, where Hi = {hi,j}, i = 1, 2. 424

Initially, both the hashtag tree and the cache 425

Lt are empty. The master VLM g is tasked 426

with inferring at given each new-coming data 427

(xt, qt) during the cold start stage, after which 428

the Level 2 hashtag h2,t is obtained as: h2,t = 429

CLIPTextEncoder(Extractor(at)). Once 430

|H2| > τ or the cold start ends, we use K-Means 431

to cluster H2 into K groups {Ck}Kk=1, where each 432

cluster is assigned a Level 1 hashtag h1,k, com- 433

puted as the mean embedding of its corresponding 434

Level 2 hashtags. 435

Given new data t′, when the master VLM g is se- 436
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lected for inference, the generated answer is stored437

in Lt and assigned to the closest Level 1 hashtag438

h1,j∗ based on Euclidean distance. The Level 1439

hashtag is then updated as the weighted average of440

its current Level 2 hashtag children. Otherwise, if441

the apprentice VLM f is selected to infer on t′, R442

first retrieves all examples from Lt that shares the443

same Level 1 hashtag as dt. It then selects top-k444

results as the k-shot in-context examples for f .445

5 Experiment446

This section describes our experimental evaluation447

of CoT. We design our experiments as follows: (1)448

We evaluate the performance gains on general VQA449

tasks achieved by CoT’s applying of in-context450

learning to apprentice VLMs via multi-modal re-451

trieval. (2) We evaluate the sensitivity of CoT to452

different system configurations such as cache size453

and choice of retrieval methods. (3) We evaluate454

CoT in both static and dynamic configurations (ex-455

plained shortly). (4) We study CoT’s trade-offs456

between performance and cost advantage (metric457

defined by (Ding et al., 2024)) by adjusting the458

ratio of master and apprentice VLM usage.459

Specifically, for (3), in the static configuration,460

We pre-construct Lt using offline data, which re-461

mains unchanged in each round t. We also fix462

the model multiplexer J to only select the appren-463

tice VLM. These settings allow us to evaluate how464

much the apprentice VLM potentially benefits from465

CoT under a static cache. In the dynamic config-466

uration, CoT processes a continuous data stream467

and uses a dynamic cache Lt (explained shortly)468

which may start either empty or containing offline469

data. The model multiplexer randomly selects be-470

tween the apprentice and master VLM according471

to a specified probability (e.g., a 10% apprentice472

VLM rate means that it is selected for query serving473

10% of the time). After each round, CoT inserts474

into the cache with the new QA-pair (when the475

master VLM is used) and may perform eviction476

(when the cache is at capacity) to maintain cache477

effectiveness for downstream tasks. This setup al-478

lows us to evaluate both CoT’s performance-cost479

trade-offs and capability to adapt over time.480

5.1 Experiment Datasets481

MMMU (Yue et al., 2024) is a widely recognized482

and challenging multi-disciplinary VLM bench-483

mark that organizes subjects into a hierarchical484

structure. It evaluates VLMs on both breadth and485

Table 1: Qwen7B MMMU Score vs. Retrieval Strategy

Method Cache Dev
Test Val

Cache Dev
Test Val

No in-context 24.66 34.42
Hierarchical Cluster based 39.04 39.44

GPT-4o 58.90 64.87
Cache Query Cache size

Image Image+
Text Full 35.62 39.20

Image Image+
Text Half 34.25 38.74

Image+
Text

Image+
Text Full 34.90 38.39

Image Image Full 37.67 37.92

depth of subject knowledge, as well as on their 486

expert-level reasoning and understanding. MMMU 487

covers complex VQA tasks across six major fields, 488

ranging from art to science and businesses. The 489

dataset consists of 11.5K questions, divided into 490

development (dev), validation (val), and test sets 491

(the test set does not include ground truth answers). 492

To ensure fair evaluation of in-context learning, we 493

filter out instances containing multiple images, as 494

most off-the-shelf VLMs are less capable of han- 495

dling multi-image questions, which could interfere 496

with their in-context learning capabilities. After 497

filtering, the sizes of the dev, val and test set are 498

146, 857, 9702 respectively. 499

VL-ICL (Zong et al., 2024) is a pioneering syn- 500

thetic benchmark designed to measure the broader 501

capabilities and limitations of multi-modal in- 502

context learning. We employ this dataset to exam- 503

ine whether CoT retains the benefits of in-context 504

learning even when only responses generated by 505

the master VLM instead of ground-truth annota- 506

tions are used. We specifically adopt the TextOCR 507

and Clevr subtasks, as the remaining subtasks lack 508

meaningful question prompts in general language 509

settings. The data set is divided into two subsets of 510

200 and 800 samples, which we refer to as dev and 511

val, respectively, in this paper. 512

5.2 Models 513

We choose between the open-source Qwen-VL-2 514

7B (Wang et al., 2024) model as a representative 515

of recent VLMs, and open-flamingo 3B and 9B 516

(Alayrac et al., 2022) (from an earlier generation of 517

VLMs) as CoT’s apprentice VLM in various exper- 518

iments, to evaluate whether CoT can benefit older 519

VLMs and newer, well-instruction tuned VLMs 520

alike. We run all apprentice models with 4 A100 521

GPUs of 40GB. We use GPT4-o (OpenAI, 2024b) 522

as CoT’s master VLM. 523
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Table 2: OpenFlamingo w. Cache Val Test Dev Setting

Model OpenFlamingo-3B
(CLIP ViT-L/14, MPT-1B-Dolly) OpenFlamingo-9B

Cache size N/A Full Cache Size Half Cache Size Full Cache Size

Dataset
N-shot 0-shot 1-shot 2-shot 1-shot 2-shot 0-shot 1-shot

mmmu 15.75 17.12 17.12 20.55 25.34
clevr 7.50 20.50 28.00 22.50 26.50

textocr 0.00 6.50 5.50 6.50 5.50

Table 3: OpenFlamingo w. Cache Dev Test Val Setting

Model OpenFlamingo-3B
(CLIP ViT-L/14, MPT-1B-Dolly) OpenFlamingo-9B

Cache size N/A Full Cache Size Half Cache Size Full Cache Size

Dataset
N-shot 0-shot 1-shot 2-shot 1-shot 2-shot 0-shot 1-shot

mmmu 22.75 23.92 24.04 24.97 26.25
clevr 6.88 21.50 21.75 19.38 19.38

textocr 0.00 5.00 3.38 4.63 2.13
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Figure 4: Ablation Study of Hierarchical Retrieval.

5.3 Evaluation524

We use accuracy as the evaluation metric. We525

note that the main purpose of our evaluations is to526

present a holistic picture of how CoT would work527

for end users, thus the absolute performance of528

the models are not the priority. For both multiple-529

choice answers in MMMU and open responses530

in VL-ICL, we allow the VLMs to produce inter-531

mediate steps before generating the final answer.532

We prompt the VLMs to produce the final answer533

in a specific format, and use a rule-based parser534

to determine the VLMs’ choice. More specifi-535

cally, for multipe-choice answers, we extract the536

VLMs’ choice, and for open responses, we check537

whether there exists an exact match of the label in538

the VLMs’ response. If the parser fails to deter-539

mine the VLMs’ choice, we assign a None value540

instead, since in reality, an randomly generated541

choice is misleading if not detrimental.542

6 Analysis543

6.1 Static Performance544

This section preliminarily validates the effective-545

ness of CoT’s multi-modal in-context learning in546

the static cache setting. We present our findings547

in Table 1, which reports Qwen-7B’s performance548

on the challenging MMMU dataset when enhanced549

by CoT’s various multi-modal retrieval strategies.550

Tables 2 and 3 report OpenFlamingo’s performance551

on both MMMU and VL-ICL benchmarks when552

similarly enhanced by CoT. We experiment with553

two caching strategies on these datasets: storing a554

larger validation set (Val) while testing on a smaller 555

development set (Dev), and vice versa. 556

More Benefits with Larger Cache. As shown 557

in Table 1, caching a larger split while testing on 558

a smaller split leads to greater performance gains 559

when applying in-context learning on smaller mod- 560

els. A similar trend is observed when we manually 561

restrict the cache size to half its original capacity. 562

Hierarchical Retrieval Outperforms Dense Re- 563

trieval, but at a Cost. Our experiments aim to 564

determine which retrieval method performs bet- 565

ter and is more promising for in-context exam- 566

ple selection. As shown in Table 1, the hierar- 567

chical retrieval method slightly outperforms the 568

dual-modality dense retrieval approach. However, 569

this marginal advantage can only be achieved af- 570

ter fine-tuning a sensitive hyperparameter (cluster 571

number). Figure 4 details more related ablations. 572

Best Dense Retrieval Strategy. We find that 573

caching image embeddings, and querying with the 574

average of image and text embeddings encoded 575

from keywords extracted from VLM responses is 576

the most effective dense retrieval strategy. Interest- 577

ingly, (1) pure image retrieval, as reported in the 578

OpenFlamingo paper (Alayrac et al., 2022), also 579

performs reasonably well, and (2) when the test 580

set is relatively small (potentially introducing bias), 581

pure image retrieval can even outperform other 582

dense retrieval methods. In Table 1, all presented 583

text-based dense retrieval results utilize our LLM 584

keyword extractor (Section 4.3.1), as the CLIP em- 585

bedding context window is often too small to en- 586

compass complete VLM responses. 587

Based on these findings, we choose to evalu- 588

ate our hierarchical retrieval method and the best- 589

performing dense retrieval strategy in our following 590

more important dynamic experiments (Section 6.2). 591

Openflamingo-3B and 9B Receive Significant 592

Benefits from CoT. We present results for Open- 593

Flamingo combined with the best dense retriever 594

in Tables 2 and 3. CoT achieves high performance 595

gains across the OpenFlamingo series, on both 596

datasets, varying cache capacities, and the num- 597

ber of in-context examples. In MMMU, Open- 598

Flamingo struggles to accommodate two-shot GPT- 599

4o responses due to shorter context length, which 600

limits the effectiveness of in-context learning. 601

6.2 Dynamic Performance 602

This section studies CoT’s trade-offs between per- 603

formance and cost advantage in the dynamic cache 604

setting with various cache sizes. Figure 5 reports 605
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Figure 5: MMMU Score w. cache under various retrieval configurations and various apprentice VLM usage levels.
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Figure 7: Apprentice VLM MMMU score increases vs.
Stage and Usage

the MMMU score versus cache and retrieval con-606

figurations (within each sub-plot) and percentage607

of apprentice VLM usage (between each sub-plot).608

For NoStart, ColdStart and WarmStart, we initial-609

ize CoT’s cache as an empty set, the dev set, and the610

test set, respectively. The Hierarchical setting uses611

the hierarchical retrieval method with CoT’s cache612

startting with the dev set. Figure 6 presents the613

performance gains of CoT’s apprentice VLM ver-614

sus different cache initialization methods. Figure 7615

shows the MMMU score increase of CoT’s appren-616

tice VLM on the first, second, and third (temporal,617

equal-sized) splits of the validation set.618

Disparity Between Higher and Lower Use of619

Apprentice VLMs. The less frequently appren-620

tice VLMs are used, the better the overall perfor-621

mance. However, CoT mitigates this performance622

loss: as shown in Figure 5, with WarmStart and623

CoT enabled, the MMMU score with 90% appren-624

tice VLM usage matches the performance without625

CoT with only 70% apprentice VLM usage.626

Performance gains from CoT in the dynamic set-627

ting. CoT consistently provides performance gains628

in all settings, with higher gains in settings with629

higher ratio of apprentice VLM usage. Most no-630

tably in Figure 5’s WarmStart setting, the MMMU631

score gain increased from 0.007 to 0.77 as the ap-632

prentice VLM usage increased sfrom 10% to 90%.633

Hierarchical vs. Dense Retrieval. Unlike in static634

settings, hierarchical cluster-based retrieval under-635

performs vs. dense retrieval, primarily due to its636

hyperparameters remaining fixed while the cache 637

content evolves. We defer exploration of dynamic 638

hyperparameter tuning to future work. 639

Apprentice VLM performance gains. CoT con- 640

sistently achieves performance increases for the 641

apprentice VLM no matter how much it has been 642

used. As shown in Figure 6, when the usage of 643

apprentice VLM is between 30% and 70%, the 644

performance gains are between 10% and 23%. 645

Apprentice VLM performance gain vs. cache 646

usage. As CoT’s cache grows as its multiplexer 647

routes queries to the master VLM, the effective- 648

ness of CoT’s in-context learning will improve over 649

time: as seen in Figure 7), at 10%-30% apprentice 650

VLM usage, the MMMU score increased between 651

the first and third dataset splits, showing that the ap- 652

prentice VLM was able to perform better as more 653

entries were added to the CoT’s cache. 654

7 Conclusion 655

We proposed CoT, a VLM query serving frame- 656

work that achieves an effective cost-quality trade- 657

off for general VQA. CoT interleaves large (mas- 658

ter) and small (apprentice) VLM usage for query 659

serving, caching high-quality responses generated 660

from master VLMs to significantly boost the per- 661

formance of apprentice VLMs via a novel multi- 662

modal retrieval and in-context learning technique. 663

CoT features a multiplexer to balance master VLM 664

calls for cached example generation, and appren- 665

tice VLM calls, which uses a dual-modality dense 666

retrieval mechanism to fetch the most relevant ex- 667

amples from the cache for in-context learning. We 668

evaluate CoT on various challenging VQA bench- 669

marks and show that CoT’s techniques can increase 670

overall VQA performance by up to 7.7% under the 671

same budget constraint, and specifically boosts the 672

performance of apprentice VLMs by up to 36.6%. 673

In the future, we plan to explore generalizing 674

CoT’s techniques to models handling other modali- 675

ties (e.g., code, audio) where similar accuracy-cost 676

trade-offs are present. 677
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8 Limitations678

First, we conduct extensive experiments in a setup679

featuring one master model and one apprentice680

model, and CoT also has potential to extend this681

approach to a multi-level master-apprentice frame-682

work (e.g., incorporating a 7B model, a 72B model,683

a 405B model, and a GPT4-o). Second, while684

our current focus is on image and text modalities,685

the framework can be extended to include addi-686

tional modalities, such as video data, acoustic data,687

code data or other sensory inputs, given more multi-688

modal large models are ready to use.689
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A Example Appendix936

Open-Flamingo Prompts

MMMU In-context Learning Prompt:
<image> <shot-1> <|endofchunk|> ... <image> <shot-n> <|endofchunk|> <question>
<image> The options are the following: <option> There is only one option possible. The answer
is

MMMU N-shot Cache Sample:
Human: <question> The options are the following: <option>. Please include your reasoning
steps, then answer your choice in this format: ANSWER: LETTER CHOICE. The letter choice is
strictly in alphabetical order, and there is only one option possible.
Assistant: <gpt4-o response>

MMMU Auxiliary VLM Prompt for Response:
<image> <question> The options are the following: <option> There is only one option possible.
The answer is

CLEVR In-context Learning Prompt:
<image> <shot-1> <|endofchunk|> ... <image> <shot-n> <|endofchunk|> <image> How
many <question> objects? The answer is

CLEVR N-shot Cache Sample:
Human: How many objects in the image have the <question>? Please include your reasoning
steps, then answer your choice in this format: ANSWER: NUMBER.
Assistant: <gpt4-o response>

CLEVR Auxiliary VLM Prompt for Response:
<image> How many <question> objects? The answer is

TextOCR In-context Learning Prompt:
<image> <shot-1> <|endofchunk|> ... <image> <shot-n> <|endofchunk|> <image> What text
is shown in the red box? Only answer with the largest text. The answer is

TextOCR N-shot Cache Sample:
Human: What text is shown in the red box? Only answer with the largest text. Please include your
reasoning steps, then answer your choice in this format: ANSWER: TEXT.
Assistant: <gpt4-o response>

TextOCR Auxiliary VLM Prompt for Response:
<image> What text is shown in the red box? Only answer with the largest text. The answer is

937

Qwen Prompts

MMMU In-context Learning Prompt:
This is a chat between a curious human and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the human’s questions. If a question does not make any
sense, or is not factually coherent, explain why instead of answering something not correct. If you
don’t know the answer to a question, please don’t share false information. The assistant will have
one similar in-context example provided by another powerful assistant:
<shot-1>...<shot-n>

938
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Now you should answer the following question given the image below and you can use GPT4
Assistant’s case for reference:
Human:
<question> <option> Please include your reasoning steps, then answer your choice in this format:
ANSWER: <LETTER CHOICE>. The letter choice is strictly in the alphabetical order, and there is
only one option possible.
Assistant(you):

MMMU N-shot Cache Sample:
Human: <question> <option> Please include your reasoning steps, then answer your choice in
this format: ANSWER: <LETTER CHOICE>. The letter choice is strictly in the alphabetical order,
and there is only one option possible.
Assistant: <gpt4-o response>

MMMU Auxiliary VLM Prompt for Response:
Now you should answer the following question:
Human:
<question> <option> Please include your reasoning steps, then answer your choice in this format:
ANSWER: <LETTER CHOICE>. The letter choice is strictly in the alphabetical order, and there is
only one option possible.
Assistant(you):

939

Llama Auxiliary Keyword Extractor Prompts

MMMU Prompt
You are a helpful chatbot that assists users in generating keywords from conversations. You have
been given a piece of text and need to generate keywords from it. Please give me 10 keywords
that are present in this question-option context and separate them with commas. Make sure you to
only return the keywords and say nothing else. Make sure to exclude the words "question" and
"options" as keywords I have the following multiple choice question and its options: <query>

CLEVR and TextOCR Prompt
You are a helpful chatbot that assists users in generating keywords from conversations. You have
been given a piece of text and need to generate keywords from it. Please give me 10 keywords
that are present in this context and separate them with commas. Make sure you to only return the
keywords and say nothing else. Make sure to exclude the word "ANSWER" as keywords I have
the following contexts: <query>

940

GPT4-o Prompts

MMMU Prompt
<question> The options are the following: <option>. Please include your reasoning steps, then
answer your choice in this format: ANSWER: <LETTER CHOICE>. The letter choice is strictly in
alphabetical order, and there is only one option possible.

CLEVR Prompt
How many objects in the image have the <question> Please include your reasoning steps, then
answer your choice in this format: ANSWER: <NUMBER>.

TextOCR Prompt
What text is shown in the red box? Only answer with the largest text. Please include your reasoning

941
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steps, then answer your choice in this format: ANSWER: <TEXT>.
942
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