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Abstract

Semantic Parsing focuses on converting sen-
tences into structured forms. While previ-
ous studies show its benefits for smaller mod-
els, the impact on Large Language Models
(LLMs) remains under explored. Our paper
explores whether integrating Semantic Pars-
ing can enhance LLMs’ performance in down-
stream tasks. Unlike prior approaches, we pro-
pose SENSE , adding semantic parsing hint
instead results into prompt and find that this
approach consistently improves performance
across tasks, highlighting the potential of se-
mantic information integration in enhancing
LLM capabilities.

1 Introduction

Semantic Parsing is a fundamental and crucial task
in Natural Language Processing (NLP), which in-
volves converting a natural language sentence into
a logical form, including tasks such as Seman-
tic Role Labeling (SRL), Frame Semantic Pars-
ing (FSP) and Abstract Meaning Representation
(AMR) (Gildea and Jurafsky, 2002; Baker et al.,
2007; Banarescu et al., 2013; Palmer et al., 2010).
The goal of semantic parsing is to capture the mean-
ing of the sentence in a structured representation
that can be used for various tasks such as Question
Answering (Khashabi et al., 2022), Machine Trans-
lation (Rapp, 2022), Dialogue Systems (Xu et al.,
2020; Bonial et al., 2020) and so on.

Previous works like Bonial et al. (2020); Rapp
(2022); Khashabi et al. (2022) demonstrate that
the introduction of semantic information from SRL
or AMR can effectively enhance the ability of the
model to grasp illocutionary and linguistic abstrac-
tions, and thereby improve the performance of
downstream tasks. However, these findings have
been predominantly limited to smaller-scale mod-
els like BERT (Devlin et al., 2019). With the
emergence of Large Language Models (LLMs),
researchers are more willing to evaluate the perfor-
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Figure 1: Different methods for introducing Semantic
Parsing into LLMs. (a) and (b) directly incorporate
semantic parsing results into input or output, while (c),
our SENSE, just adds the semantic parsing hint into the
prompt and avoids the direct perception of the result.

mance of downstream tasks on LLMs. Even though
LLMs achieve remarkable performance in an end-
to-end manner, it remains an interesting question
to explore the potential contribution of integrating
Semantic Parsing into LLMs. Ettinger et al. (2023)
shows that even though LLMs have acquired suf-
ficient knowledge of AMR parsing and semantic
structure for reliable generation of basic AMR for-
mat, however, the model are not currently sufficient
out-of-the-box to yield reliable and accurate anal-
yses of abstract meaning structure. Furthermore,
Jin et al. (2024) investigates the role of semantic
representation in the era of LLMs by proposing the
AMR-driven chain-of-thought, adhere to in Fig. 1
(a). Consistent with Ettinger et al. (2023), they find
that AMRCOT generally hurts the performance
more than it helps, and explain that it is caused by
AMR is not yet a representation immediately fit for
LLM:s.

In our paper, we seek to explore the follow-
ing question: Can Semantic Parsing Still Con-
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Figure 2: Illustration of SENSE designed for downstream tasks. We list the instruction we use for GLUE (QQP),

Machine Translation, Paraphrase and Simplification.

tribute to the Improvement of Downstream Tasks
on LLMs? Different from Jin et al. (2024), we
propose a novel prompting schema, SENSE , just
shown in Fig. 1 (c¢) we do not directly introduce
the semantic parsing result into the input or output,
instead we only suggesting LLMs should utilize
their semantic parsing capabilities to help them-
selves in downstream tasks. The prompt schema
is just as simple as “please use semantic parsing
result which can enhance comprehension of the
sentence’s structure and semantic”. We evaluate
SENSE on both understanding and generation tasks
and test the generation task on linguistic metrics.
By directly infusing semantic parsing information
into the prompt, SENSE consistently yields perfor-
mance gains and better semantic evaluation metrics.
We examine the impact of varying depths of seman-
tic parsing and discover that more comprehensive
parsing encapsulates wider sentence information
and achieves superior performance. In addition, to
thoroughly assess the influence of semantic pars-
ing, we contrast the effects of incorporating parsing
results into prompts. Our findings indicate that the
direct integration of higher-quality semantic infor-
mation correlates with degraded task performance.

2 Realted Work

From small language models on, a large of works
utilize semantic parsing results to help models bet-
ter grasp the structure and illocutionary of the text,
including Question Answering (Shen and Lapata,
2007; Khashabi et al., 2022), Machine Translation
(Bazrafshan and Gildea, 2013; Rapp, 2022), Dia-
logue Systems (Chen et al., 2013; Xu et al., 2020;

Bonial et al., 2020), and gain great performance.
With the widespread of LLMs, prompt engineering
has received widespread attention. The effective-
ness of a language model in performing a task is
significantly influenced by how the input prompt is
structured and researchers now concentrate on the
optimization of discrete prompts, utilizing such as
model feedback (Zhou et al., 2022; Pryzant et al.,
2023), reinforcement learning (Deng et al., 2022)
or evolutionary algorithms (Guo et al., 2023) to
search for better prompts. However, while smaller
models indicate that semantic parsing can improve
model performance, highlighting a significant op-
portunity in this field, we explore the role of se-
mantic parsing for LLMs. Different from Jin et al.
(2024), we do not investigate the role of seman-
tic representations by directly inputting the result
of AMR into input, we are investigating the role
of semantic parsing in the helpfulness of down-
stream tasks, as the smaller models do. By incor-
porating semantic parsing hints into the prompt,
our SENSE can achieve consistent improvement on
downstream tasks.

3 Semantic Parsing — LLMs

In this section, we delve into answering the ques-
tion: Can Semantic Parsing Still Contribute to the
Improvement of Downstream Tasks on LLMs? We
first introduce the methodology of SENSE , then
give the experiment details, and at last show the
experimental results of our method.

3.1 Methodology

As Ettinger et al. (2023); Jin et al. (2024) shown,
it is difficult for LLMs to better grasp the schemes



SST-2 MRPC QQP MNLI QNLI RTE CoLA
System Acc Acc Acc Acc Acc Acc Mcc Average
BERT . arGE (2018) 93.20 88.00 91.30 86.60 9230 70.40 60.60 83.20
_ RoBERTararge (2019) 9640 90.90  92.20  90.20_ 94.70 86.60 _68.00  88.43
GPT-3.5-turbo 91.86 7328 7340 61.80 8240 81.81 63.50 75.44
+ CoT (2022) 89.11 7328 77.07 5620 82770 8254 64.32 75.03
+ SENSE 9220 7549 77.19 64.60 8320 84.12 64.57 77.34

Table 1: Experiment results on GLUE benchmark.

and symbols of semantic parsing results. From their
conclusions, directly ingesting the semantic parsing
result will hurt the model performance. Since LLM
itself is able to achieve good performance in an
end-to-end manner, we propose to add the semantic
parsing hint into the instruction to remind LLM to
use its semantic parsing capabilities to complete
the tasks.

As Fig. 2 shows, our SENSE directly adds hints
like “utilize semantic parsing result” to “fully un-
derstand the input” or “capture the grammatical
structures and semantics” to complete downstream
tasks. We propose the flow in Fig. 1 (¢) to utilize
semantic parsing to improve the performance of
downstream tasks.

3.2 Datasets and Evaluation

In our experiments, we select 7 understanding tasks
from GLUE and 3 representative generation tasks
including Machine Translation, Paraphrase, and
Simplification. We summarize the details of each
dataset, including source, number, and metrics for
each task in Table 5 and test our SENSE on GPT-3.5
(OpenAl, 2023) with temperature of 0 and top_p
of 1.

GLUE We test on seven tasks from GLUE !
benchmark and report the Matthews Correlation
Coefficient (MCC) for CoLA and Accuracy (Acc)
for the left tasks.

Machine Translation For machine translation,
we evaluate our method on the WMT?22 2 dataset,
focusing on two language pairs: EN-DE (English
to German) EN-ZH (English to Chinese) and report
COMET?22 (Rei et al., 2022), CHRF, and BLEU
scores.

Paraphrase We evaluate on the Quora Question
Pairs (QQP) 3 dataset. To validate that semantic

lhttps://gluebenchmark.com/

2https://machinetranslate.org/wmt22

3https://quoradata.quora. com/
First-Quora-Dataset-Release-Question-Pairs

parsing helps the model output, we follow Huang
et al. (2024) and report three linguistic evaluation
metrics across lexical, syntactic, and semantic lev-
els.

Simplification For text simplification, we eval-
uate on TurkCorpus and GoogleComp and use
BLEU, SARI, and SAMSA as the evaluation met-
rics. Specifically, SARI # (System output Against
References and against the Input sentence) is
used to compare the predicted simplified sentences
against the reference and the source sentences and
SAMSA (Sulem et al., 2018) is a metric specifi-
cally designed for text simplification that evaluates
structural simplification and meaning preservation.

3.3 Experimental Results

Results on Understanding Tasks From Table
1, we can see that GPT-3.5 falls behind the small
models. When enhanced with our proposed SENSE
, it shows a significant improvement, achieving an
average accuracy of 77.34%, which is a notable
gain over the vanilla GPT-3.5 of 75.44% and also
higher than GPT-3.5 with CoT (75.03Specifically,
SENSE consistently enhances performance in sev-
eral tasks, such as MNLI (from 61.80% to 64.60%),
RTE (from 81.81% to 84.12%), and so on. This
demonstrates the effectiveness of SENSE in im-
proving the model’s ability to understand sentences.
While CoT might degrade the performance on SST-
2 and MNLI, we find that CoT tends to generate
ambiguous or unsure answers at that time.

Results on Machine Translation We compare
the performance of GPT-3.5 with vanilla prompt-
ing, our SENSE , and other state-of-the-art (SoTA)
systems in Table 2. The results indicate that our
SENSE consistently improves the performance of
GPT-3.5 across all evaluated metrics and language
pairs. For DE-EN, SENSE achieves the highest
scores: COMET?22 (86.44), ChrF (59.08), and

*https://huggingface.co/spaces/
evaluate-metric/sari
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DE-EN EN-DE
System COMET221 ChfF1 BLEU{T COMET221 Chrft BLEU?
WMT-Best _ _ _ _ _ 8500 ~_ 58.50 _ 3340 8720 = 64.60 _ 3840
GPT EVAL (2023) 84.80 58.30 33.40 84.20 59.60 30.90
DTG 5-shot (2023) 85.40 58.20 33.20 86.30 61.60 33.40
_ BayLing (2023) = _ 8547 _ _ 5865 _ 3294 8693 = 6276 _ 3412
GPT-3.5-turbo 85.71 58.19 33.15 84.60 60.48 33.42
+ SENSE 86.44 59.08 33.75 86.65 62.84 34.18
Table 2: Experiment results on WMT22.
Prediction—Source System BLEU T SARIT SAMSA T
System Semantic Lexical Syntactic TrukCorpus
Similarity T Overlap |  Diversity T ~ MUSS (2020)  63.76 4085 -
GPT-35-wrbo 8579 46.37 8.76 RS s S e
+ SENSE 85.79 25.33 10.24 : : .
,,,,,,,,,, GoogleComp .
Table 3: Experiment results on Paraphrase. We evaluate GPT-3.5-turbo  13.12 35.53 28.14
+ SENSE 14.31 35.67 30.52

the linguistic metrics between the source and prediction
to validate the advantage of utilizing semantic parsing.

BLEU (33.75), outperforming the WMT-Best sys-
tem and other baselines. Similarly, in the EN-DE
task, SENSE enhances GPT-3.5, yielding scores
close to the WMT-Best system: COMET22 (86.65),
ChrF (62.84), and BLEU (34.18). And we present
the results of ZH-EN and EN-ZH in Table 6. The
consistent improvements across different language
pairs highlight the effectiveness of SENSE .

Results on Paraphrase Table 3 indicates that our
SENSE can generate more linguistic paraphrases
compared with the source sentence. We can see
that while SENSE retains the semantic similarity at
85.79, it significantly reduces the lexical diversity
from 46.37 to 25.33 and enhances the syntactic di-
versity from 8.76 to 10.24, suggesting the semantic
parsing hint helps to improve more lexical variety
and better syntactic variation. These improvements
demonstrate the effectiveness of SENSE in enhanc-
ing paraphrase by keeping the semantic informa-
tion while diverse lexical and syntactic structures.

Results on Simplification Table 4 illustrates that
LLM demonstrates better performance across both
simplification datasets, surpassing existing meth-
ods such as MUSS. Specifically, SENSE signif-
icantly improves performance, achieving BLEU
scores of 63.42 on TrukCorpus and 14.31 on
GoogleComp. SARI scores improve to 42.42 and
35.67, while SAMSA scores show notable improve-
ment to 37.03 and 30.52 respectively, proving that
incorporating the semantic parsing hint into the

Table 4: Experiment results on Simplification. We add
two metrics, SARI and SAMSA to evaluate the semantic
structure of the output.

prompt can help the model keep the original struc-
ture for simplification task.

Analysis of Directly Digesting Semantic Parsing
Result into Input From Table 7, we can see that
directly digesting semantic parsing results into in-
put does hurt the model performance with a sharp
degradation to 72.48%. The reason exists that di-
rectly incorporating specific schemes and symbols
of semantic parsing is hard for LLMs to follow, and
thus perform worse.

Analysis of Varying Depths of Semantic Parsing
Table 8 shows the impact of varying depths of se-
mantic parsing and more comprehensive parsing
like FSP encapsulates wider sentence information
and achieves superior performance.

4 Conslusion

In our paper, we investigate the potential of Se-
mantic Parsing to enhance Large Language Mod-
els in various NLP tasks. Through our pro-
posed SENSE approach, which prompts LLMs
to leverage internal semantic parsing capabilities,
we have demonstrated consistent performance im-
provements across understanding and generation
tasks. This underscores the value of integrating se-
mantic hints in enhancing LLMs’ ability to compre-
hend and generate language with greater semantic
fidelity.



Limitations

As we validate the effectiveness of our SENSE on
both understanding and generation tasks, it still has
some limitations for future research :

Firstly, the effectiveness of SENSE is validated
within the capabilities and constraints of GPT-3.5.
Generalizing these findings to other LLMs can fur-
ther validate our approach.

Secondly, while SENSE demonstrates promising
results across a spectrum of NLP tasks, its general
ability across diverse datasets and applications re-
quires further exploration. We just test tasks that
previous works validate the effectiveness of seman-
tic parsing. More tasks need to be verified.

Moreover, the interpretability of how semantic
parsing information influences LLLM decisions re-
mains an ongoing issue. Clarifying and controlling
these interactions are essential for ensuring trans-
parent and reliable model behavior in practical ap-
plications.
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A Supplementary Details about Dataset

Table 5 shows the statistics of the dataset we use,
and we sample a subset of data if the original
dataset is huge to reduce the API cost.

Dataset Num. Metrics
SST-2 872 Acc
MRPC 408 Acc
QQP 1000 Acc
MNLI 1000 Acc
QNLI 1000 Acc
RTE 277 Acc
CoLA 1053 Mcc

WMT DE-EN 1984 BLEU, COMET22, Chrf
WMT EN-DE 1875 BLEU, COMET22, Chrf
WMT ZH-EN 1875 BLEU, COMET22, Chrf
WMT EN-ZH 1875 BLEU, COMET22, Chrf

QQP 2500 Lexical, Syntactical, Semantic
TurkCorpus 359 BLEU, SARI, SAMSA
GoogleComp 1000 BLEU, SARI, SAMSA

Table 5: Statistics of the dataset we use in our experi-
ment.

B Supplementary Experimetal Results

B.1 Results on WMT22

For the ZH-EN translation task, SENSE improves
GPT-3.5-turbo’s ChrF (58.50) and BLEU (27.04)
scores, though the COMET?22 score (80.47) is
slightly lower than the baseline. In the EN-ZH task,
SENSE achieves the highest COMET?22 (88.06)
and enhances ChrF (39.86) and BLEU (44.40) com-
pared to the baselines.

B.2 Directly Digesting Semantic Parsing
Result into Input

Table 7 shows the results of directly giving the

semantic parsing results into the input.

B.3 Varying depths of Semantic Parsing

Table 8 shows the results of incorporating varying
depths of semantic parsing hints.



ZH-EN EN-ZH

System COMET221 ChrF{ BLEU{T COMET221 Chrf{ BLEU?
_WMTBest 8100 ~ 61.10 3350 8670  41.10 _ 44.80
GPT EVAL (2023) 81.20 56.00 ~ 25.90 8440 36.00 ~ 40.30
DTG 5-shot (2023) 81.70 5590  25.20 86.60 3940  43.50
_ BayLing (2023) 8264 5790 2613 8681 4032 4499
GPT-35-turbo 80.60 5840 ~ 26.93 8148 3780 ~ 42.85
+ SENSE 80.47 5850  27.04 88.06 39.86  44.40
Table 6: Experiment results on WMT22.
SST2 MRPC QQP MNLI QNLI RTE CoLA
System Average

Acc Acc Acc Acc Acc Acc Mcc

GPT-3.5-turbo  91.86 7328 7340 61.80 8240 81.81 63.50 75.44
+SP Result 87.50 7426 7427 50.50 7840 84.11 58.37 72.48
+ SENSE 9220 7549 77.19 64.60 8320 84.12 64.57 77.34

Table 7: Extensive experiment results on GLUE benchmark.

Not Specific SRL FSRL
BLEU SARI SAMSA BLEU SARI SAMSA BLEU SARI SAMSA
GoogleComp  14.31  35.67 30.52 16.31  36.13 34.00 16.55 35.43 34.94

Dataset

Table 8: Extensive experiment results of incorporating varying depths of semantic parsing hints into the prompt.



