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Abstract

Semantic Parsing focuses on converting sen-001
tences into structured forms. While previ-002
ous studies show its benefits for smaller mod-003
els, the impact on Large Language Models004
(LLMs) remains under explored. Our paper005
explores whether integrating Semantic Pars-006
ing can enhance LLMs’ performance in down-007
stream tasks. Unlike prior approaches, we pro-008
pose SENSE , adding semantic parsing hint009
instead results into prompt and find that this010
approach consistently improves performance011
across tasks, highlighting the potential of se-012
mantic information integration in enhancing013
LLM capabilities.014

1 Introduction015

Semantic Parsing is a fundamental and crucial task016

in Natural Language Processing (NLP), which in-017

volves converting a natural language sentence into018

a logical form, including tasks such as Seman-019

tic Role Labeling (SRL), Frame Semantic Pars-020

ing (FSP) and Abstract Meaning Representation021

(AMR) (Gildea and Jurafsky, 2002; Baker et al.,022

2007; Banarescu et al., 2013; Palmer et al., 2010).023

The goal of semantic parsing is to capture the mean-024

ing of the sentence in a structured representation025

that can be used for various tasks such as Question026

Answering (Khashabi et al., 2022), Machine Trans-027

lation (Rapp, 2022), Dialogue Systems (Xu et al.,028

2020; Bonial et al., 2020) and so on.029

Previous works like Bonial et al. (2020); Rapp030

(2022); Khashabi et al. (2022) demonstrate that031

the introduction of semantic information from SRL032

or AMR can effectively enhance the ability of the033

model to grasp illocutionary and linguistic abstrac-034

tions, and thereby improve the performance of035

downstream tasks. However, these findings have036

been predominantly limited to smaller-scale mod-037

els like BERT (Devlin et al., 2019). With the038

emergence of Large Language Models (LLMs),039

researchers are more willing to evaluate the perfor-040
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Figure 1: Different methods for introducing Semantic
Parsing into LLMs. (a) and (b) directly incorporate
semantic parsing results into input or output, while (c),
our SENSE, just adds the semantic parsing hint into the
prompt and avoids the direct perception of the result.

mance of downstream tasks on LLMs. Even though 041

LLMs achieve remarkable performance in an end- 042

to-end manner, it remains an interesting question 043

to explore the potential contribution of integrating 044

Semantic Parsing into LLMs. Ettinger et al. (2023) 045

shows that even though LLMs have acquired suf- 046

ficient knowledge of AMR parsing and semantic 047

structure for reliable generation of basic AMR for- 048

mat, however, the model are not currently sufficient 049

out-of-the-box to yield reliable and accurate anal- 050

yses of abstract meaning structure. Furthermore, 051

Jin et al. (2024) investigates the role of semantic 052

representation in the era of LLMs by proposing the 053

AMR-driven chain-of-thought, adhere to in Fig. 1 054

(a). Consistent with Ettinger et al. (2023), they find 055

that AMRCOT generally hurts the performance 056

more than it helps, and explain that it is caused by 057

AMR is not yet a representation immediately fit for 058

LLMs. 059

In our paper, we seek to explore the follow- 060

ing question: Can Semantic Parsing Still Con- 061
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Please translate this {src_lang}
sentence into {tgt_lang} by 
utilizing its semantic parsing 
result which helps to understand its 
grammatical structures and semantics:
sentence: {src}
translation:

Translation

Please use semantic parsing result 
which can enhance comprehension of 
sentence's structure and semantic to 
paraphrase this English sentence:
sentence: {src}
paraphrase: 

Paraphrase

With the help of sentence's semantic 
parsing result which provides its 
grammatical structures and semantics, 
simplify this English sentence:
sentence: {src}
simplification: 

Simplification

Given the sentence pair {sent1} and 
{sent2}, please utilize semantic 
parsing to fully understand them, 
and check if these two sentences 
have the same semantics.
The answer should be exact 'yes' or 
'no'.

GLUE

Figure 2: Illustration of SENSE designed for downstream tasks. We list the instruction we use for GLUE (QQP),
Machine Translation, Paraphrase and Simplification.

tribute to the Improvement of Downstream Tasks062

on LLMs? Different from Jin et al. (2024), we063

propose a novel prompting schema, SENSE , just064

shown in Fig. 1 (c) we do not directly introduce065

the semantic parsing result into the input or output,066

instead we only suggesting LLMs should utilize067

their semantic parsing capabilities to help them-068

selves in downstream tasks. The prompt schema069

is just as simple as “please use semantic parsing070

result which can enhance comprehension of the071

sentence’s structure and semantic”. We evaluate072

SENSE on both understanding and generation tasks073

and test the generation task on linguistic metrics.074

By directly infusing semantic parsing information075

into the prompt, SENSE consistently yields perfor-076

mance gains and better semantic evaluation metrics.077

We examine the impact of varying depths of seman-078

tic parsing and discover that more comprehensive079

parsing encapsulates wider sentence information080

and achieves superior performance. In addition, to081

thoroughly assess the influence of semantic pars-082

ing, we contrast the effects of incorporating parsing083

results into prompts. Our findings indicate that the084

direct integration of higher-quality semantic infor-085

mation correlates with degraded task performance.086

2 Realted Work087

From small language models on, a large of works088

utilize semantic parsing results to help models bet-089

ter grasp the structure and illocutionary of the text,090

including Question Answering (Shen and Lapata,091

2007; Khashabi et al., 2022), Machine Translation092

(Bazrafshan and Gildea, 2013; Rapp, 2022), Dia-093

logue Systems (Chen et al., 2013; Xu et al., 2020;094

Bonial et al., 2020), and gain great performance. 095

With the widespread of LLMs, prompt engineering 096

has received widespread attention. The effective- 097

ness of a language model in performing a task is 098

significantly influenced by how the input prompt is 099

structured and researchers now concentrate on the 100

optimization of discrete prompts, utilizing such as 101

model feedback (Zhou et al., 2022; Pryzant et al., 102

2023), reinforcement learning (Deng et al., 2022) 103

or evolutionary algorithms (Guo et al., 2023) to 104

search for better prompts. However, while smaller 105

models indicate that semantic parsing can improve 106

model performance, highlighting a significant op- 107

portunity in this field, we explore the role of se- 108

mantic parsing for LLMs. Different from Jin et al. 109

(2024), we do not investigate the role of seman- 110

tic representations by directly inputting the result 111

of AMR into input, we are investigating the role 112

of semantic parsing in the helpfulness of down- 113

stream tasks, as the smaller models do. By incor- 114

porating semantic parsing hints into the prompt, 115

our SENSE can achieve consistent improvement on 116

downstream tasks. 117

3 Semantic Parsing → LLMs 118

In this section, we delve into answering the ques- 119

tion: Can Semantic Parsing Still Contribute to the 120

Improvement of Downstream Tasks on LLMs? We 121

first introduce the methodology of SENSE , then 122

give the experiment details, and at last show the 123

experimental results of our method. 124

3.1 Methodology 125

As Ettinger et al. (2023); Jin et al. (2024) shown, 126

it is difficult for LLMs to better grasp the schemes 127
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SST-2 MRPC QQP MNLI QNLI RTE CoLA
System Acc Acc Acc Acc Acc Acc Mcc Average

BERTLARGE (2018) 93.20 88.00 91.30 86.60 92.30 70.40 60.60 83.20
RoBERTaLARGE (2019) 96.40 90.90 92.20 90.20 94.70 86.60 68.00 88.43
GPT-3.5-turbo 91.86 73.28 73.40 61.80 82.40 81.81 63.50 75.44

+ CoT (2022) 89.11 73.28 77.07 56.20 82.70 82.54 64.32 75.03
+ SENSE 92.20 75.49 77.19 64.60 83.20 84.12 64.57 77.34

Table 1: Experiment results on GLUE benchmark.

and symbols of semantic parsing results. From their128

conclusions, directly ingesting the semantic parsing129

result will hurt the model performance. Since LLM130

itself is able to achieve good performance in an131

end-to-end manner, we propose to add the semantic132

parsing hint into the instruction to remind LLM to133

use its semantic parsing capabilities to complete134

the tasks.135

As Fig. 2 shows, our SENSE directly adds hints136

like “utilize semantic parsing result” to “fully un-137

derstand the input” or “capture the grammatical138

structures and semantics” to complete downstream139

tasks. We propose the flow in Fig. 1 (c) to utilize140

semantic parsing to improve the performance of141

downstream tasks.142

3.2 Datasets and Evaluation143

In our experiments, we select 7 understanding tasks144

from GLUE and 3 representative generation tasks145

including Machine Translation, Paraphrase, and146

Simplification. We summarize the details of each147

dataset, including source, number, and metrics for148

each task in Table 5 and test our SENSE on GPT-3.5149

(OpenAI, 2023) with temperature of 0 and top_p150

of 1.151

GLUE We test on seven tasks from GLUE 1152

benchmark and report the Matthews Correlation153

Coefficient (MCC) for CoLA and Accuracy (Acc)154

for the left tasks.155

Machine Translation For machine translation,156

we evaluate our method on the WMT22 2 dataset,157

focusing on two language pairs: EN-DE (English158

to German) EN-ZH (English to Chinese) and report159

COMET22 (Rei et al., 2022), CHRF, and BLEU160

scores.161

Paraphrase We evaluate on the Quora Question162

Pairs (QQP) 3 dataset. To validate that semantic163

1https://gluebenchmark.com/
2https://machinetranslate.org/wmt22
3https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

parsing helps the model output, we follow Huang 164

et al. (2024) and report three linguistic evaluation 165

metrics across lexical, syntactic, and semantic lev- 166

els. 167

Simplification For text simplification, we eval- 168

uate on TurkCorpus and GoogleComp and use 169

BLEU, SARI, and SAMSA as the evaluation met- 170

rics. Specifically, SARI 4 (System output Against 171

References and against the Input sentence) is 172

used to compare the predicted simplified sentences 173

against the reference and the source sentences and 174

SAMSA (Sulem et al., 2018) is a metric specifi- 175

cally designed for text simplification that evaluates 176

structural simplification and meaning preservation. 177

3.3 Experimental Results 178

Results on Understanding Tasks From Table 179

1, we can see that GPT-3.5 falls behind the small 180

models. When enhanced with our proposed SENSE 181

, it shows a significant improvement, achieving an 182

average accuracy of 77.34%, which is a notable 183

gain over the vanilla GPT-3.5 of 75.44% and also 184

higher than GPT-3.5 with CoT (75.03Specifically, 185

SENSE consistently enhances performance in sev- 186

eral tasks, such as MNLI (from 61.80% to 64.60%), 187

RTE (from 81.81% to 84.12%), and so on. This 188

demonstrates the effectiveness of SENSE in im- 189

proving the model’s ability to understand sentences. 190

While CoT might degrade the performance on SST- 191

2 and MNLI, we find that CoT tends to generate 192

ambiguous or unsure answers at that time. 193

Results on Machine Translation We compare 194

the performance of GPT-3.5 with vanilla prompt- 195

ing, our SENSE , and other state-of-the-art (SoTA) 196

systems in Table 2. The results indicate that our 197

SENSE consistently improves the performance of 198

GPT-3.5 across all evaluated metrics and language 199

pairs. For DE-EN, SENSE achieves the highest 200

scores: COMET22 (86.44), ChrF (59.08), and 201

4https://huggingface.co/spaces/
evaluate-metric/sari
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DE-EN EN-DE
System COMET22 ↑ ChrF ↑ BLEU ↑ COMET22 ↑ Chrf ↑ BLEU ↑

WMT-Best 85.00 58.50 33.40 87.20 64.60 38.40
GPT EVAL (2023) 84.80 58.30 33.40 84.20 59.60 30.90
DTG 5-shot (2023) 85.40 58.20 33.20 86.30 61.60 33.40
BayLing (2023) 85.47 58.65 32.94 86.93 62.76 34.12
GPT-3.5-turbo 85.71 58.19 33.15 84.60 60.48 33.42

+ SENSE 86.44 59.08 33.75 86.65 62.84 34.18

Table 2: Experiment results on WMT22.

Prediction–Source

System Semantic
Similarity ↑

Lexical
Overlap ↓

Syntactic
Diversity ↑

GPT-3.5-turbo 85.79 46.37 8.76
+ SENSE 85.79 25.33 10.24

Table 3: Experiment results on Paraphrase. We evaluate
the linguistic metrics between the source and prediction
to validate the advantage of utilizing semantic parsing.

BLEU (33.75), outperforming the WMT-Best sys-202

tem and other baselines. Similarly, in the EN-DE203

task, SENSE enhances GPT-3.5, yielding scores204

close to the WMT-Best system: COMET22 (86.65),205

ChrF (62.84), and BLEU (34.18). And we present206

the results of ZH-EN and EN-ZH in Table 6. The207

consistent improvements across different language208

pairs highlight the effectiveness of SENSE .209

Results on Paraphrase Table 3 indicates that our210

SENSE can generate more linguistic paraphrases211

compared with the source sentence. We can see212

that while SENSE retains the semantic similarity at213

85.79, it significantly reduces the lexical diversity214

from 46.37 to 25.33 and enhances the syntactic di-215

versity from 8.76 to 10.24, suggesting the semantic216

parsing hint helps to improve more lexical variety217

and better syntactic variation. These improvements218

demonstrate the effectiveness of SENSE in enhanc-219

ing paraphrase by keeping the semantic informa-220

tion while diverse lexical and syntactic structures.221

Results on Simplification Table 4 illustrates that222

LLM demonstrates better performance across both223

simplification datasets, surpassing existing meth-224

ods such as MUSS. Specifically, SENSE signif-225

icantly improves performance, achieving BLEU226

scores of 63.42 on TrukCorpus and 14.31 on227

GoogleComp. SARI scores improve to 42.42 and228

35.67, while SAMSA scores show notable improve-229

ment to 37.03 and 30.52 respectively, proving that230

incorporating the semantic parsing hint into the231

System BLEU ↑ SARI ↑ SAMSA ↑

TrukCorpus
MUSS (2020) 63.76 40.85 -
GPT-3.5-turbo 58.16 42.25 31.42

+ SENSE 63.42 42.42 37.03

GoogleComp
GPT-3.5-turbo 13.12 35.53 28.14

+ SENSE 14.31 35.67 30.52

Table 4: Experiment results on Simplification. We add
two metrics, SARI and SAMSA to evaluate the semantic
structure of the output.

prompt can help the model keep the original struc- 232

ture for simplification task. 233

Analysis of Directly Digesting Semantic Parsing 234

Result into Input From Table 7, we can see that 235

directly digesting semantic parsing results into in- 236

put does hurt the model performance with a sharp 237

degradation to 72.48%. The reason exists that di- 238

rectly incorporating specific schemes and symbols 239

of semantic parsing is hard for LLMs to follow, and 240

thus perform worse. 241

Analysis of Varying Depths of Semantic Parsing 242

Table 8 shows the impact of varying depths of se- 243

mantic parsing and more comprehensive parsing 244

like FSP encapsulates wider sentence information 245

and achieves superior performance. 246

4 Conslusion 247

In our paper, we investigate the potential of Se- 248

mantic Parsing to enhance Large Language Mod- 249

els in various NLP tasks. Through our pro- 250

posed SENSE approach, which prompts LLMs 251

to leverage internal semantic parsing capabilities, 252

we have demonstrated consistent performance im- 253

provements across understanding and generation 254

tasks. This underscores the value of integrating se- 255

mantic hints in enhancing LLMs’ ability to compre- 256

hend and generate language with greater semantic 257

fidelity. 258
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Limitations259

As we validate the effectiveness of our SENSE on260

both understanding and generation tasks, it still has261

some limitations for future research :262

Firstly, the effectiveness of SENSE is validated263

within the capabilities and constraints of GPT-3.5.264

Generalizing these findings to other LLMs can fur-265

ther validate our approach.266

Secondly, while SENSE demonstrates promising267

results across a spectrum of NLP tasks, its general268

ability across diverse datasets and applications re-269

quires further exploration. We just test tasks that270

previous works validate the effectiveness of seman-271

tic parsing. More tasks need to be verified.272

Moreover, the interpretability of how semantic273

parsing information influences LLM decisions re-274

mains an ongoing issue. Clarifying and controlling275

these interactions are essential for ensuring trans-276

parent and reliable model behavior in practical ap-277

plications.278

References279

Collin Baker, Michael Ellsworth, and Katrin Erk. 2007.280
SemEval-2007 task 19: Frame semantic structure ex-281
traction. In Proceedings of the Fourth International282
Workshop on Semantic Evaluations (SemEval-2007),283
pages 99–104, Prague, Czech Republic. Association284
for Computational Linguistics.285

Laura Banarescu, Claire Bonial, Shu Cai, Madalina286
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin287
Knight, Philipp Koehn, Martha Palmer, and Nathan288
Schneider. 2013. Abstract meaning representa-289
tion for sembanking. Linguistic Annotation Work-290
shop,Linguistic Annotation Workshop.291

Marzieh Bazrafshan and Daniel Gildea. 2013. Semantic292
roles for string to tree machine translation. Meet-293
ing of the Association for Computational Linguis-294
tics,Meeting of the Association for Computational295
Linguistics.296

Claire Bonial, Lucia Donatelli, Mitchell Abrams,297
Stephanie Lukin, Stephen Tratz, Matthew Marge,298
Ron Artstein, David Traum, and Clare Voss. 2020.299
Dialogue-amr: abstract meaning representation for300
dialogue. In Proceedings of the Twelfth Language301
Resources and Evaluation Conference, pages 684–302
695.303

Yun-Nung Chen, William Yang Wang, and Alexander I304
Rudnicky. 2013. Unsupervised induction and filling305
of semantic slots for spoken dialogue systems using306
frame-semantic parsing. In 2013 IEEE Workshop on307
Automatic Speech Recognition and Understanding,308
pages 120–125. IEEE.309

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan 310
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P 311
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing 312
discrete text prompts with reinforcement learning. 313
arXiv preprint arXiv:2205.12548. 314

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 315
Kristina Toutanova. 2018. Bert: Pre-training of deep 316
bidirectional transformers for language understand- 317
ing. arXiv preprint arXiv:1810.04805. 318

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 319
Kristina Toutanova. 2019. BERT: Pre-training of 320
deep bidirectional transformers for language under- 321
standing. In Proceedings of the 2019 Conference of 322
the North American Chapter of the Association for 323
Computational Linguistics: Human Language Tech- 324
nologies, Volume 1 (Long and Short Papers), pages 325
4171–4186, Minneapolis, Minnesota. Association for 326
Computational Linguistics. 327

Allyson Ettinger, Jena Hwang, Valentina Pyatkin, Chan- 328
dra Bhagavatula, and Yejin Choi. 2023. “you are 329
an expert linguistic annotator”: Limits of LLMs as 330
analyzers of Abstract Meaning Representation. In 331
Findings of the Association for Computational Lin- 332
guistics: EMNLP 2023, pages 8250–8263, Singapore. 333
Association for Computational Linguistics. 334

Daniel Gildea and Dan Jurafsky. 2002. Automatic la- 335
beling of semantic roles. Computational Linguistics, 336
28(3):245–288. 337

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao 338
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yu- 339
jiu Yang. 2023. Connecting large language models 340
with evolutionary algorithms yields powerful prompt 341
optimizers. arXiv preprint arXiv:2309.08532. 342

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, 343
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita, 344
Young Jin Kim, Mohamed Afify, and Hany Hassan 345
Awadalla. 2023. How good are gpt models at ma- 346
chine translation? a comprehensive evaluation. arXiv 347
preprint arXiv:2302.09210. 348

Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu 349
Shen, Yong Xu, Chaoyun Zhang, and Yuzhong Qu. 350
2024. Queryagent: A reliable and efficient reasoning 351
framework with environmental feedback based self- 352
correction. 353

Zhijing Jin, Yuen Chen, Fernando Gonzalez, Jiarui Liu, 354
Jiayi Zhang, Julian Michael, Bernhard Schölkopf, 355
and Mona Diab. 2024. Analyzing the role of se- 356
mantic representations in the era of large language 357
models. arXiv preprint arXiv:2405.01502. 358

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and 359
Dan Roth. 2022. Question answering as global rea- 360
soning over semantic abstractions. Proceedings of 361
the AAAI Conference on Artificial Intelligence, 32(1). 362

Bei Li, Rui Wang, Junliang Guo, Kaitao Song, Xu Tan, 363
Hany Hassan, Arul Menezes, Tong Xiao, Jiang Bian, 364
and JingBo Zhu. 2023. Deliberate then generate: 365

5

https://aclanthology.org/S07-1018
https://aclanthology.org/S07-1018
https://aclanthology.org/S07-1018
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
https://doi.org/10.18653/v1/2023.findings-emnlp.553
http://arxiv.org/abs/2403.11886
http://arxiv.org/abs/2403.11886
http://arxiv.org/abs/2403.11886
http://arxiv.org/abs/2403.11886
http://arxiv.org/abs/2403.11886
https://doi.org/10.1609/aaai.v32i1.11574
https://doi.org/10.1609/aaai.v32i1.11574
https://doi.org/10.1609/aaai.v32i1.11574


Enhanced prompting framework for text generation.366
arXiv preprint arXiv:2305.19835.367

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-368
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,369
Luke Zettlemoyer, and Veselin Stoyanov. 2019.370
Roberta: A robustly optimized bert pretraining ap-371
proach. arXiv preprint arXiv:1907.11692.372

Louis Martin, Angela Fan, Éric De La Clergerie, An-373
toine Bordes, and Benoît Sagot. 2020. Muss: Multi-374
lingual unsupervised sentence simplification by min-375
ing paraphrases. arXiv preprint arXiv:2005.00352.376

OpenAI. 2023. Chatgpt: Optimizing language mod-377
els for dialogue. https://openai.com/blog/378
chatgpt. Accessed: 2023-04-01.379

Martha Palmer, Ivan Titov, and Shumin Wu. 2010. Se-380
mantic role labeling.381

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-382
guang Zhu, and Michael Zeng. 2023. Automatic383
prompt optimization with" gradient descent" and384
beam search. arXiv preprint arXiv:2305.03495.385

Reinhard Rapp. 2022. Using semantic role labeling to386
improve neural machine translation. In Proceedings387
of the Thirteenth Language Resources and Evalua-388
tion Conference, pages 3079–3083.389

Ricardo Rei, José GC De Souza, Duarte Alves,390
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,391
Alon Lavie, Luisa Coheur, and André FT Martins.392
2022. Comet-22: Unbabel-ist 2022 submission for393
the metrics shared task. In Proceedings of the Sev-394
enth Conference on Machine Translation (WMT),395
pages 578–585.396

Dan Shen and Mirella Lapata. 2007. Using semantic397
roles to improve question answering. In Proceedings398
of the 2007 Joint Conference on Empirical Meth-399
ods in Natural Language Processing and Computa-400
tional Natural Language Learning (EMNLP-CoNLL),401
pages 12–21, Prague, Czech Republic. Association402
for Computational Linguistics.403

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.404
Semantic structural evaluation for text simplification.405
arXiv preprint arXiv:1810.05022.406

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten407
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,408
et al. 2022. Chain-of-thought prompting elicits rea-409
soning in large language models. Advances in neural410
information processing systems, 35:24824–24837.411

Kun Xu, Haochen Tan, Linfeng Song, Han Wu, Haisong412
Zhang, Linqi Song, and Dong Yu. 2020. Semantic413
role labeling guided multi-turn dialogue rewriter. In414
Proceedings of the 2020 Conference on Empirical415
Methods in Natural Language Processing (EMNLP),416
pages 6632–6639.417

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, Zhen- 418
grui Ma, Yan Zhou, Langlin Huang, Mengyu Bu, 419
Shangtong Gui, Yunji Chen, Xilin Chen, et al. 420
2023. Bayling: Bridging cross-lingual alignment 421
and instruction following through interactive trans- 422
lation for large language models. arXiv preprint 423
arXiv:2306.10968. 424

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 425
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 426
Ba. 2022. Large language models are human-level 427
prompt engineers. arXiv preprint arXiv:2211.01910. 428

6

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://aclanthology.org/D07-1002
https://aclanthology.org/D07-1002
https://aclanthology.org/D07-1002


A Supplementary Details about Dataset429

Table 5 shows the statistics of the dataset we use,430

and we sample a subset of data if the original431

dataset is huge to reduce the API cost.

Dataset Num. Metrics

SST-2 872 Acc
MRPC 408 Acc
QQP 1000 Acc
MNLI 1000 Acc
QNLI 1000 Acc
RTE 277 Acc
CoLA 1053 Mcc
WMT DE-EN 1984 BLEU, COMET22, Chrf
WMT EN-DE 1875 BLEU, COMET22, Chrf
WMT ZH-EN 1875 BLEU, COMET22, Chrf
WMT EN-ZH 1875 BLEU, COMET22, Chrf
QQP 2500 Lexical, Syntactical, Semantic
TurkCorpus 359 BLEU, SARI, SAMSA
GoogleComp 1000 BLEU, SARI, SAMSA

Table 5: Statistics of the dataset we use in our experi-
ment.

432

B Supplementary Experimetal Results433

B.1 Results on WMT22434

For the ZH-EN translation task, SENSE improves435

GPT-3.5-turbo’s ChrF (58.50) and BLEU (27.04)436

scores, though the COMET22 score (80.47) is437

slightly lower than the baseline. In the EN-ZH task,438

SENSE achieves the highest COMET22 (88.06)439

and enhances ChrF (39.86) and BLEU (44.40) com-440

pared to the baselines.441

B.2 Directly Digesting Semantic Parsing442

Result into Input443

Table 7 shows the results of directly giving the444

semantic parsing results into the input.445

B.3 Varying depths of Semantic Parsing446

Table 8 shows the results of incorporating varying447

depths of semantic parsing hints.448
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ZH-EN EN-ZH
System COMET22 ↑ ChrF ↑ BLEU ↑ COMET22 ↑ Chrf ↑ BLEU ↑

WMTBest 81.00 61.10 33.50 86.70 41.10 44.80
GPT EVAL (2023) 81.20 56.00 25.90 84.40 36.00 40.30
DTG 5-shot (2023) 81.70 55.90 25.20 86.60 39.40 43.50
BayLing (2023) 82.64 57.90 26.13 86.81 40.32 44.99
GPT-3.5-turbo 80.60 58.40 26.93 81.48 37.80 42.85

+ SENSE 80.47 58.50 27.04 88.06 39.86 44.40

Table 6: Experiment results on WMT22.

SST-2 MRPC QQP MNLI QNLI RTE CoLA
System Acc Acc Acc Acc Acc Acc Mcc Average

GPT-3.5-turbo 91.86 73.28 73.40 61.80 82.40 81.81 63.50 75.44
+ SP Result 87.50 74.26 74.27 50.50 78.40 84.11 58.37 72.48
+ SENSE 92.20 75.49 77.19 64.60 83.20 84.12 64.57 77.34

Table 7: Extensive experiment results on GLUE benchmark.

Not Specific SRL FSRL
Dataset BLEU SARI SAMSA BLEU SARI SAMSA BLEU SARI SAMSA

GoogleComp 14.31 35.67 30.52 16.31 36.13 34.00 16.55 35.43 34.94

Table 8: Extensive experiment results of incorporating varying depths of semantic parsing hints into the prompt.
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