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Abstract

Large Language Models (LLMs) have demonstrated remark-
able capabilities for reinforcement learning (RL) models,
such as planning and reasoning capabilities. However, the
problems of LLMs and RL model collaboration still need to
be solved. In this study, we employ a teacher-student learn-
ing framework to tackle these problems, specifically by of-
fering feedback for LLMs using RL models and providing
high-level information for RL models with LLMs in a coop-
erative multi-agent setting. Within this framework, the LLM
acts as a teacher, while the RL model acts as a student. The
two agents cooperatively assist each other through a process
of recursive help, such as “I help you help I help.” The LLM
agent supplies abstract information to the RL agent, enabling
efficient exploration and policy improvement. In turn, the RL
agent offers feedback to the LLM agent, providing valuable,
real-time information that helps generate more useful tokens.
This bi-directional feedback loop promotes optimization, ex-
ploration, and mutual improvement for both agents, enabling
them to accomplish increasingly challenging tasks. Remark-
ably, we propose a practical algorithm to address the problem
and conduct empirical experiments to evaluate the effective-
ness of our method.

1 Introduction

Large Language Models (LLMs) (OpenAl 2023; Chang
et al. 2023) have shown exceptional performance across
various domains. Notably, LLMs are useful for appli-
cations like robot planning (Singh et al. 2023), ma-
chine translation (Zhang, Haddow, and Birch 2023) and
medicine (Thirunavukarasu et al. 2023). In parallel, RL has
demonstrated remarkable capabilities in various domains,
including achieving human-level performance in games
such as the game of Go (Silver et al. 2016) and multi-player
poker (Brown and Sandholm 2019). LLMs have been in-
creasingly incorporated to enhance the performance of RL
(Du et al. 2023; Szot et al. 2023). Likewise, RL has also been
employed to augment the capabilities of LLMs, furthering
their effectiveness (Ouyang et al. 2022; Gu, Knoll, and Jin
2024). Nevertheless, the effective harnessing of LLMs’ la-
tent potential in solving complex tasks, through the syner-
gistic integration with powerful RL frameworks (Sutton and
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Barto 2018), remains a formidable challenge. Therefore, a
critical question that emerges in this field is: How does an
RL model cooperate with LLMs to perform a given task ef-
fectively?

Facilitating cooperation between RL models and LLMs
requires mutually beneficial actions, leading to enhanc-
ing each model’s performance. However, it is challenging
to meet these needs due to RL models’ and LLMs’ dis-
tinct decision-making characteristics. Specifically, the ca-
pabilities of LLMs generally exceed those of RL mod-
els, indicating the importance of developing methodologies
for instructing RL models to acquire high-level knowledge
and ensuring RL models can deliver real-time feedback to
LLMs.

In this study, to address the above challenge, we propose
a teacher-student learning framework in a cooperative game,
where the integration of RL models (students) and LLMs
(teachers) with bi-directional feedback (Gu et al. 2023) may
be an effective solution. The two models cooperatively carry
out complex tasks, which can be considered a win-win col-
laboration, where the RL model and the LLM act as two
agents, cooperating to complement, assist, and provide feed-
back to each other, ultimately solving the problem together.

2 Related Work

The relation between RL models and language representa-
tion is investigated in several methods (Chen et al. 2023;
Gu, Knoll, and Jin 2024; Yang et al. 2021; Ouyang et al.
2022; Jiang et al. 2019; Uc-Cetina et al. 2023; Shinn et al.
2023; Zhao et al. 2023; Akyiirek et al. 2023). For instance,
in the work of Chen et al. (2023), they deploy LLMs as
an optimization objective in an RL decision-making loop.
Then, they further make LLMs reflect their decision results
to refine LLMs’ output using prompt engineering tips. In
the work of (Yang et al. 2021), they leverage text as safety
constraints for RL safe exploration. In the work of (Ouyang
et al. 2022), they train LLMs to align with human values in
an RL process, where the reward model is a supervised label
to teach LLMs to follow human instructions.

The research most related to our study includes the works
of Carta et al. (2023) and Tran and Le (2023). In the work
of Carta et al. (2023), they employ LLMs as RL policies to
acquire task-solving capabilities while learning new knowl-
edge through interactive experiences. Their experimental



findings suggest that their method outperforms baseline ap-
proaches. However, a potential limitation of their work is
the absence of instruction feedback from RL models, which
may impact the overall effectiveness of their method. In the
work of Tran and Le (2023), they deploy RL to train a con-
versational agent using a simulator and an initial text gen-
erated by a generative chat agent. Subsequently, they input
the data from the RL-trained agent to the generative chat
agent. Although their experiment results demonstrate that
their method performs better than baselines, a concern of
this approach may be the potential time consumption as-
sociated with RL training for multi-turn conversations, as
each conversation may necessitate RL training requests. Ad-
ditionally, achieving self-online learning for task execution
could be challenging in this framework.

3 Method

In this section, we introduce a teacher-student learning
framework with bi-directional feedback, wherein a syner-
gistic partnership between an LLM and an RL model is em-
ployed to tackle tasks collaboratively. As illustrated in Fig-
ure 1, these two models operate in tandem, with mutual sup-
port, ultimately enabling successful task completion .

LLMs (teachers) help RL models (students): LLMs of-
ten struggle to generate instructions that fully capture de-
tailed and precise environmental information. However, they
can still provide approximate guidance to RL models, aiding
the exploration process. By narrowing the exploration space
and accelerating policy discovery, such guidance improves
the efficiency of RL training. This highlights the potential
of LLMs to mitigate challenges arising from imperfect in-
structions, thereby enhancing RL performance in policy op-
timization.

RL models (students) help LLMs (teachers): During
policy execution in the RL framework, RL models benefit
from the guidance provided by LLMs. In this collaborative
process, RL models not only utilize but also evaluate the
outputs generated by LLMs. This reciprocal interaction en-
ables RL models to provide constructive feedback, facilitat-
ing the iterative refinement of LLM performance. As iter-
ations progress, LLMs can better understand the environ-
ment, allowing them to generate increasingly effective guid-
ance. This, in turn, enhances the ability of both RL models
and LLMs to tackle complex tasks with greater efficiency.
The iterative relationship between RL models and LLMs
highlights their potential for continuous improvement and
optimization. The corresponding algorithm is presented in
Algorithm 1.

4 Experiments

Our experimental study is conducted within the BabyAl
benchmark (Chevalier-Boisvert et al. 2019), utilizing the
Lamorel framework (Carta et al. 2023) to support our in-
vestigation. Within this framework, we integrate RL instruc-
tion feedback into LLMs, establishing a feedback loop to
enhance LLM performance. Specifically, we focus on the
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Figure 1: An LLM and an RL model collaboratively engage
with an environment to accomplish complex tasks, facilitat-
ing bi-directional feedback throughout the process.

Algorithm 1: Onling Learning to make decisions with RL
and LLMs.

1: Initial Q value Qg,, V value V;,, and advantage func-
tion value AL = Qo, — Vg, state sp, action ag, token
Zo.

2: fort=0,1,...,7 do

3:  Conduct tasks with an RL model Py, (a; | x4, s¢) and
an LLM M (¢ | s¢).

4:  LLM M(x; | s¢) provides decision information to
RL model Py, (a; | x4, s:) by leveraging comsense
capabilities and environment information.

5.  Estimate new RL A/ based on new Q value Qp, and

V value Vi,
6: if AT > AP’ then
7: Provide negative instruction feedback to LLM, the
token is worse than the last one.
8: else
9: Provide positive instruction feedback to LLM, the
token is better than the last one.
10:  end if
1. AP = AP
12: end for

GoToRedBallNoDists-v0 planning task, conducting experi-
ments under two conditions: one with 40 iteration steps and
another with 2100 iteration steps. We perform a compara-
tive analysis between our proposed method and the base-
line for evaluation. Our approach incorporates bidirectional
interaction, where RL models provide feedback to LLMs,
and LLMs supply information to RL models. In contrast, the
state-of-the-art baseline, represented by the original Lamorel
method, lacks this feedback mechanism from RL models to
LLMs.

It is noteworthy that for our experiments, we employ
the “google/flan-t5-small” model (Chung et al. 2022) as
the LLM, characterized by a parameter count of 80 mil-
lion. The experimental results are presented in Figure 2.
These findings clearly illustrate the superior performance of
our method, as quantified by the performance value metric
(where higher values indicate better performance). Further-
more, our method demonstrates notably expedited conver-
gence (one-shot/few-shot learning) when compared to the
Lamorel baseline. This empirical evidence highlights the
effectiveness of our approach in harnessing bi-directional



feedback between RL models and LLMs to improve perfor-
mance in the context of the BabyAl benchmark.
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Figure 2: Experiments on BabyAl tasks (Chevalier-Boisvert
et al. 2019) with 40 (a) and 2100 (b) iteration steps.

5 Conclusion

In this study, we developed a teacher-student learning frame-
work for unlocking LLMs’ powerful capabilities by leverag-
ing an RL model with bi-directional feedback mechanisms
in a cooperative game setting. To empirically assess the ef-
fectiveness of our method, we conducted experiments us-
ing the BabyAlI benchmark as an assessment platform. The
results of these experiments demonstrate the superior per-
formance of our approach in comparison to the state-of-
the-art baseline, highlighting its potential for substantially
enhancing learning outcomes. Notably, our approach holds
promise for fostering safe and robust learning systems (Gu
et al. 2022), particularly in environments characterized by
imperfect information. Furthermore, we hope that our find-
ings inspire novel research directions at the intersection of
LLMs and RL. As part of future work, we plan to extend
our method to more challenging tasks and assess its effec-
tiveness in complex real-world applications.
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