
Under review as submission to TMLR

LINOCS: Lookahead Inference of Networked Operators for
Continuous Stability

Anonymous authors
Paper under double-blind review

Abstract

Identifying hidden interactions within complex systems is key to unlocking deeper insights
into their operational dynamics, including how their elements affect each other and con-
tribute to the overall system behavior. For instance, in neuroscience, discovering neuron-
to-neuron interactions is essential for understanding brain function; in ecology, recognizing
interactions among populations is key to understanding complex ecosystems. Such sys-
tems, often modeled as dynamical systems, typically exhibit noisy high-dimensional and
non-stationary temporal behavior that renders their identification challenging. Existing
dynamical system identification methods typically yield operators that accurately capture
short-term behavior but fail to predict long-term trends, suggesting an incomplete capture
of the underlying process. Methods that consider extended forecasts (e.g., recurrent neural
networks) lack explicit representations of element-wise interactions and require substantial
training data, thereby failing to capture interpretable network operators. Here we introduce
Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS),
a robust learning procedure for identifying hidden dynamical interactions in noisy time-
series data. LINOCS integrates several multi-step predictions with adaptive weights during
training to recover dynamical operators that can yield accurate long-term predictions. We
demonstrate LINOCS’ ability to recover the ground truth dynamical operators underlying
synthetic time-series data for multiple dynamical systems models (including linear, piece-
wise linear, time-changing linear systems’ decomposition, and regularized linear time-varying
systems) as well as its capability to produce meaningful operators with robust reconstruc-
tions through various real-world examples.

1 Introduction

Uncovering the dynamics underlying high-dimensional time-series data is crucial for deciphering the fun-
damental principles that govern temporally evolving systems. This is apparent across significant scientific
domains, including neuroscience (where neurons or ensembles interact over time (Vaadia et al., 1995; D’Aleo
et al., 2019; Mudrik et al., 2023)), immunology (where cells regulate immune responses (Savill et al., 2002)),
and ecology (where understanding population interactions yields insights into ecosystem dynamics (Stein
et al., 2013)). Hence, scientific research necessitates the development of procedures adept at learning dy-
namic operators that can accurately capture the non-linear and non-stationary evolution of real systems.

Existing approaches for dynamical systems identification, though, often rely on either “black-box” deep
learning methods, which while powerful, yield uninterpretable representations, or on simple learning pro-
cedures that maximize reconstruction between consecutive samples, and thus fail to accurately predict the
system’s behavior for long scales. Specifically, common dynamical system identification models regularly
rely on optimizing dynamics by minimizing the prediction error for each time point based on projecting
the preceding one through dynamics. Consequently, when using such procedures to learn the operators,
post-learning long-term predictions of the system’s values (by iteratively estimating the system’s state at the
next time point) usually result in undesired divergence away from the system. This difficulty in long-term
predictions, importantly, implies that operators recovered by these models based on local cost functions may
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not capture the underlying system correctly. The challenge in identifying such underlying operators, there-
fore, lies in the need to incorporate long-term predictions directly into the learning procedure, which can be
especially challenging in cases where the dynamics are non-stationary, non-linear, or otherwise constrained
in ways that reflect real-world system behavior.

To address this challenge, we present a learning procedure that introduces Lookahead Inference of Networked
Operators for Continuous Stability (LINOCS). LINOCS bridges the gap between minimizing reconstruction
costs based on single time-step projections (which typically result in operators that quickly diverge in long-
term forecasts), and optimizing multi-step training that relies on reconstructions from a past time point(which
can lead to unstable predictions). LINOCS achieves this by integrating adaptively re-weighted multi-step
reconstructions into the dynamics inference. LINOCS also avoids relying on massive amounts of data (like
RNNs, for example, require). LINOCS’ re-weighting progressively builds up the cost over training iterations,
simultaneously considering several multi-step reconstruction terms for identifying operators that enable sta-
ble, long-term reconstruction post-training. We demonstrate the effectiveness and adaptability of LINOCS
across a range of dynamical systems models, including linear, switching linear, decomposed systems, and
smoothly linear time-varying systems, achieving significantly improved accuracy in operator identification
and long-term predictions compared to 1-step optimization (Fig. 4E, 3A).

The main advantages of LINOCS over existing approaches is its integration of adaptive weights for dif-
ferent reconstruction orders. This adaptive nature allows LINOCS to stably regulate noisy measurements
and extract highly accurate dynamics that can predict far into the future. Moreover, while other methods
primarily focus on specific dynamical system architectures (e.g., RNNs), LINOCS can be implemented into
various dynamic structures, as we demonstrate through applications to switching linear systems and decom-
posed linear systems. Finally, LINOCS improves the identification of operators that expose pairwise element
interactions, which is important for scientific interpretation.

Our contributions in this paper notably include:

• We propose LINOCS, a novel learning procedure that incorporates re-weighting multi-step predic-
tions into the cost for operator identification.

• We demonstrate that applying LINOCS improves the ability to recognize ground-truth operators.

• We show LINOCS’ efficacy across a diverse range of dynamical systems, including linear, periodically
linear, linear time-varying (LTV), and decomposed linear.

• Finally, we demonstrate LINOCS’ ability to work on real-world brain recordings, resulting in better
long-term reconstruction compared to baselines.

2 Background and Terminology

Consider a system with p interacting elements (e.g., neurons in the brain) whose time-changing state X ∈
Rp×t evolves over discrete time points t = 1 . . . T as xt+1 = g(xt, bt, t), where xt ∈ Rp refers to the state at
time t, bt ∈ Rp represents an offset at time t, and g is a function g : Rp × Rp × Z→ Rp. For example, xt can
represent the time-evolving activity of p recorded neurons over T time points in neuroscience applications,
or xt can represent the activation levels of p immune cells when modeling the immune system.

In this paper we focus on linear, piece-wise linear, and linear time-varying systems. Specifically, we limit our
analysis to functions g(·) that can be written as:

xt+1 = g(xt, bt, t) := Atxt + bt, (1)

where At ∈ Rp×p represent the transition matrices at each time t. Our focus on locally linear dynamics
is supported by the fact that even highly nonlinear functions can be well approximated over small time
intervals using local linearization (Khalil, 2001; Sastry, 2013). Importantly, this formulation’s advantage
lies in its “network interpretability”—the retention of the ability to easily extract the system’s pairwise
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interactions, including non-stationary changes in At and bt over time. Specifically, any operator entry
[At]i,j for i, j = 1 . . . p at every t = 1 . . . T can be interpreted as the effect of element j on element i at time
t.

In practice, however, robustly recovering operators that can accurately describe the system’s evolution in
non-stationarity and non-linear settings, faces numerous computational challenges. Chiefly, if we adopt a
naive approach to identify the operators as: Ât, b̂t = arg minAt,bt

∥xt −Atxt − bt∥2
2 for every t = 1 . . . T ,

this problem is statistically unidentifiable. Specifically, the problem has p2 +p unknowns for each time point,
but only p equations.

One approach to improve inference in these settings is to introduce additional structure via a prior over At

and bt, that constrains the solution space and is commonly grounded in application-driven assumptions. For
instance, in many scientific settings, it is reasonable to assume that interactions change smoothly over time.
Therefore, adding a temporal smoothness constraint on A and b (e.g., ∥At −At−1∥2

F and ∥bt − bt−1∥2
2) can

be beneficial for both interpretability and accuracy. Additionally, the inclusion of such constraints can be
crucial, particularly in noisy settings, to prevent overfitting. The addition of such constraints transforms the
problem to:

Ât, b̂t = arg min
At,bt

∥xt+1 −Atxt − bt∥2
2 +R(At, bt), (2)

where R(At, bt) can represent regularization on the dynamics operators.

While these solutions may offer good short-term predictions (i.e., predicting xt from xt−1) with minor errors,
they often struggle to fully reconstruct the dynamics over longer time-scales due to the build-up of estimation
errors over multiple predictions.

This issue of multiple potential solutions for the operators is further complicated by the practical consider-
ation that we typically can only observe noisy observations of xt:

x̃t = xt + ϵt where ϵ ∈ Rp×T represents some noise, e.g.,ϵ ∼ N (0, σ2)

. Noisy observations further complicate the accurate identification of robust dynamics since if Ât is obtained
from arg minAt ∥xt+1−Atx̂t∥2

2, the distance between the real and the estimated operators {∥At−Ât∥2
F }T

t=1
may increase with ϵt. For instance, if ϵ ∼ N (0, σ2) is an i.i.d Gaussian noise, i.e., x̃t|x̃t−1 has a covariance
of σ2I. Then x̃t+1 = Ax̃t + ϵ = A(Ax̃t−1 + ϵ) + ϵ = A2x̃t−1 + Aϵ + ϵ, meaning the new noise term is
Aϵ + ϵ ∼ N (0, σ2(AAT + I)). For higher orders, the accumulated noise variance over K steps will result in:∑K−1

k=0 σ2Ak(AT )k, which can quickly increase based on the eigenspectra of A.

As the accuracy of the fit of a dynamical system to the data is often evaluated based on its ability to
accurately predict future values (Tabar, 2019), the inability to capture long-term prediction suggests that
the learned operators may have limited capacity to fully describe the system. Consequently, we define below
three prediction styles for dynamical systems assessment that we will adhere to throughout this work:

• 1-Step Prediction (xt+1|xt): 1-Step Prediction involves using the state at each time point t to
estimate the state at the next time point (t + 1).

• Iterative Multi-Step Prediction (IMS) of order K ∈ R (xt+k|xt): IMS involves iteratively
forecasting one-step ahead values and using these forecasts as inputs for further one-step ahead
forecasts for K times (i.e., ∀k ∈ [0, K − 1], x̂t+k|x̂t+k−1, where x̂t−1 := x̃t−1). Here, we will
notate an IMS prediction of order K by x̂K

t . We chose to name this term IMS as to be consistent
with the literature (Chevillon, 2007).

• Full Lookahead Prediction (xk|x0): This method enhances IMS by forecasting the state at
each time point xt starting from the initial observations (x̃0). It achieves this by sequentially
applying transition matrices to the estimation from the previous time point x̂t|x̂t−1, starting from
x̃0, resulting in: x̂t = Ât−1 . . . Â0x̃0 ∀t = 1 . . . T.
(Note: the formula above is presented without bt for simplicity, though they may be included).
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Importantly, IMS Prediction and Full Lookahead Prediction typically result in instability due to the accu-
mulation of errors in the sequential reconstructing process (Fig. 1A).

3 Prior relevant approaches:

Theoretical literature on long-term prediction instability traces back to Cox (1961) and Klein (2019), who
respectively introduced exponential smoothing and direct estimation of distant future states. Subsequent
studies, including Findley (1983; 1985); Weiss (1991); Tiao and Xu (1993); Lin and Granger (1994); Kang
(2003), evaluated the effectiveness of dynamical system identification methods in producing long-term pre-
dictions. Specifically, the first approach focuses on identifying dynamical operators by minimizing the re-
construction error of projecting the state from one time point to the next, which can subsequently be used
for long-term predictions through IMS. The second method, direct forecasting, aims to identify a mapping
function Fkt : Rp → Rp that predicts states further into the future by xt+k = Fkt(xt), thus bypassing
explicit identification of intermediate dynamic operators.

Markov and Hidden Markov Models Florian et al. (2011); Ou et al. (2013); Bilmes (2006) are widely used
to model time series data and capture temporal dependencies in dynamical systems. However, HMMs
struggle with long-term predictions due to their reliance on the Markovian assumption, and require extensions
for modeling non-stationary systems (e.g. Sin and Kim (1995)). Other models, including low-rank auto-
aggressors Harris et al. (2021); Basu et al. (2019) and other low-dimensional linear models (e.g.,DMD and
its variants Tu (2013); Askham and Kutz (2018); Sashidhar and Kutz (2022); Ferré et al. (2023); Kutz et al.
(2016) are widely used for capturing and predicting complex dynamical systems in various fields such as
fluid dynamics, neuroscience, and financial modeling. However, they do not specifically address the issue of
long-term divergence.

While direct estimation of future states naturally results in more stable long-term predictions compared to
1-step optimization, such approach fails to provide an interpretable “network” meaning to the operators,
i.e., the ability to interpret each entry (i, j) of the operator (Ai,j) as the effect of element j on element
i. This is important e.g., in neuroscience, where understanding the brain’s interactions entails discerning
the time-changing fast interactions of neurons Sussillo (2014), or in epidemiology where tracking disease
spread dynamics matters Aguiar et al. (2020). In addition, when Marcellino et al. (2006) compared between
iterated and direct estimates using macroeconomic data, they found that in contrast to previous assumptions,
iterated forecasts outperform direct forecasts, especially when models can select long-lag specifications—
raising questions about the appropriate approach for learning dynamical operators.

More recently, Venkatraman et al. (2015) proposed a general approach called DAD that reuses training
data to build a no-regret learner with multi-step prediction. However, DAD includes “fixing” and updating
the model itself based on every step within the multi-step prediction. Moreover, the authors presented
it as a general abstract non-specific approach to consider without specific implementation details. More
importantly, DAD does not discuss the possibility for priors over the operators (e.g. temporal smoothness)
during the training nor did they consider the need to find operators that are not only expressive but also
interpretable.

Other approaches are based on multiple shooting, include, e.g. Jordana et al. (2021), who proposed proposed
learning dynamics with multiple shooting and multi-step training under each sub-trajectory (i.e., between
shooting nodes). However, their method requires matching boundary conditions as they start only from the
shooting nodes, which can be prone to noise sensitivity. Additionally, they give similar weights to different
multi-step orders, which may be hard to tune if some orders present high errors at different periods during
training.

Generalized Linear Model (GLM) with multi-step inference were proposed in the context of learning neural
spikes from spiking data (Hocker and Park, 2017). Their Poisson GLM model maximizes a log-likelihood
cost that incorporate the spiking multiple steps ahead in the future, thus addressing runaway self-excitation
of neuron activity. However, their idea is specific to the Poisson GLM model and is not designed for non-
stationary systems, thus limiting its applicability under varying applications.
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Other learning procedures, including full forward and/or backward passes through e.g., Backpropagation
Through Time (BPTT) as in Recurrent Neural Networks (RNNs), can partially handle long-term prediction
instability, however may prone to the vanishing or exploding gradient. RNN models that incorporate future
steps integration to improve RNN forecasting include “Generalized Teacher Forcing for Learning Chaotic
Dynamics” (Hess et al., 2023), that address the vanishing/exploding gradients through a modification in
RNN training to promote bounded gradients in training on chaotic system and in piecewise linear RNNs.
Pal et al. (2021) proposed using particle flow to approximate the posterior distribution of future RNN states
using a spatial graph of element similarities. Other RNN models, including Unni et al. (2023); Xiao
et al. (2023); Yeung et al. (2019), leverage the Koopman operator for improved long-term prediction, yet,
while powerful, they yield operators that cannot be directly interpreted as pairwise interactions between our
elements of interest.

All above RNN models are currently limited by their architecture and do not support handling more nuanced
dynamics found in decomposed systems Mudrik et al. (2024) or effectively capturing smoothly-changing non-
stationary behaviors. Additionally, while these models do not inherently offer constraints on the transition
matrix, e.g., enforcing sparse connections, integrating such features could enhance the interpretability of
network operations

Reinforcement learning with future steps learning, include Hafner et al. (2019), who proposed a Deep Plan-
ning Network (PlaNet) as a model-based agent that learns the environment dynamics and chooses actions
through online planning in a latent space. For the dynamics, they use both stochastic and deterministic
components based on a generalized variational objective that encourages multi-step predictions. It achieves
this by observing the outcomes of actions and using those observations to inform future plans. However, their
latent model is action-based and does not explicitly limit the dynamics to locally linear functions, potentially
complicating the understanding of evolution in the latent space. Additionally, they use gradient descent to
learn the parameters, which may be prone to convergence local minima.Moreover, their method integrates
multi-step predictions by repeatedly applying the transition model and integrating out intermediate states,
assigning similar weights to different delays. This can lead to sensitivity in highly non-stationary conditions.

An additional approach to understanding dynamical systems involves identifying a sparse set of functions
that jointly decompose the observations. For example, SINDy (Sparse Identification of Nonlinear Dynam-
ics, Brunton et al. (2016)) utilizes a data-driven approach to discover governing fundamental equations from
data using sparse regression. Although SINDy and its extensions (e.g., Kaheman et al. (2020)) are promis-
ing for discovering governing data equations, such representation does not provide explicit insight into the
time-changing interactions between the state elements.

4 Specific models considered in this work:

Of particular interest in this work is improving the model fit of a core set of linear dynamical systems
with different temporal constraints on the system evolution: 1) Time-Invariant Linear Dynamical Systems
(LDS), 2) Switching Linear Dynamical Systems (SLDS) (Ackerson and Fu, 1970; Bar-Shalom and Li, 1990;
Hamilton, 1990; Ghahramani and Hinton, 1996; Murphy, 1998; Fox et al., 2008; Linderman et al., 2017),
3) decomposed Linear Dynamical Systems (dLDS, Mudrik et al.; Yezerets et al. (2024)), and 4) regularized
Linear Time-Varying (LTV) Dynamical Systems.

Time-Invariant Linear Dynamical Systems (LDS). In linear systems analysis, the evolution of a
general state X over T + 1 time points can be typically represented as xt+1 = Axt + b, where A ∈ Rp×p

is the time-invariant dynamics matrix and b ∈ Rp×1 remain constant over time. One common method for
determining A (and b if it is assumed that an unknown offset exists) involves a 1-step optimization approach
that includes applying least squares across all time points. This entails solving

Â, b̂ = arg min
A,b
∥X̃[:,1:T ] −AX̃[:,0:T −1] − [1]1×T ⊗ b∥2

F , (3)

where X̃[:,1:T ] and X̃[:,0:T −1] represents the noisy observations of the state from the second time point (t = 1)
up to the last time point (T ) and from the first time point (t = 0) up to T − 1, respectively, and [1]1×T ⊗ b
represents the horizontal concatenation of the column vector b horizontally T times. Here, A captures
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the average influence from xt−1 to xt for all t = 1 . . . (T + 1). This setting is advantageous in terms of
“network” interpretability, however frequently cannot capture the complexity of real-world time-series which
is non-linear and non-stationary.

Switching Linear Dynamical Systems (SLDS). SLDS models (Ackerson and Fu, 1970; Bar-Shalom and
Li, 1990; Hamilton, 1990; Ghahramani and Hinton, 1996; Murphy, 1998; Fox et al., 2008; Linderman et al.,
2017) along with other piece-wise stationary models (e.g., (Song et al., 2021)) aim to provide interpretable
representations of dynamics by identifying operators that govern periods of stationary behavior, with the
system transitioning between these operators over time. Variations of SLDS include, e.g., recurrent SLDS
(rSLDS), which introduces an additional dependency between discrete switches and the previous state’s
location in space (Linderman et al., 2017); and tree-structured recurrent SLDS, which extends rSLDS by
incorporating a generalized stick-breaking procedure (Nassar et al., 2018).

While SLDS models usually involve transitioning from an observed to a latent low-dimensional space, here
we chose to focus on the case where switches occur within the observation space, essentially enforcing the
transition to the latent space to be the identity operator. If we denote X̃ ∈ RN×T as the noisy observations
subjected to i.i.d Gaussian noise, SLDS models the evolution of x̃t using a set of J discrete states (j = 1 . . . J),
each state j associated with its own linear dynamical system fj . These discrete states switch between them
abruptly at certain time points following an HMM model. During each inter-switch period, if the system is
in the j-th discrete state, SLDS models the evolution of the state linearly as xt = fjxt−1 + bj , where fj

represents the linear transition matrix for the j-th discrete state and bj denotes a constant offset term for
that discrete state. SLDS can be trained by an alternating set of steps between dynamic learning and the
HMM update of the operators. SLDS tackles the crucial task of capturing non-stationarities while preserving
interpretability, but it inherently lacks the capability to distinguish between multiple co-occurring processes
or overlapping subsystems. More information about the model assumptions, limitations, and parameter
selection can be found in (Linderman et al., 2016; 2017).

decomposed Linear Dynamical Systems (dLDS). The Decomposed Linear Dynamical Systems
(dLDS, Mudrik et al. (2024)) model relaxed the time-invariant or piece-wise constant limitation of LDSs
and SLDSs to support the discovery of co-occurring processes while maintaining interpretability. Here, for
simplicity, we focus on the case where the dynamics evolution is described directly in the observation space,
while the full model presented in (Mudrik et al., 2024) supports learning the dynamics within an identified
latent state. Specifically, dLDS models the dynamics evolution x̃t = Atx̃t−1 using a sparse time-changing
decomposition of linear dynamical operators such thatAt =

(
ΣJ

j=1fjcjt

)
, resulting in x̃t =

(
ΣJ

j=1fjcjt

)
x̃t−1.

These dynamical operators ({fj}J
j=1) are global, i.e., not time dependent, and hence are interpretable glob-

ally. However, their time-changing weights (ct) enable modeling non-stationary and non-linear dynam-
ics (Fig. 2 right). Notably, dLDS is trained through an Expectation-Maximization (EM) procedure where
the global dynamics operators {fj}J

j=1 and their time-changing coefficients {cjt}T
t=1 are updated iteratively

to maximize the posteriors as:

{ĉt}T
t=1 = arg max

{c}
P ({ct}t|X̃, {fj}) (4)

{f̂j}J
j=1 = arg max

{fj}
P ({fj}|X̃, {ct}). (5)

Interestingly, dLDS can also capture linear or switching behaviors described earlier, by fixing the dLDS
coefficients over time (for linear behavior, Fig. 2 far left) or supporting abrupt change of coefficients in specific
time points (for switching behaviors, Fig. 2 middle left). As dLDS estimates the parameters for each time t
solely based on the values of the preceding state at time t−1, it does not address the issue of inaccurate long-
term prediction due to accumulated deviations. More information about the model assumptions, limitations,
and parameter selection can be found in (Mudrik et al., 2024).

Smooth or Sparse Linear Time-Varying Systems (LTV). In this paper, we refer to LTV systems that
can be described by: xt+1 = Atxt for all t = 1 . . . T . We further assume that a regularization R(At) may be
applied to the operators {At}T

t=1. This regularization can be inspired by the application (e.g., smoothness
of operators over time, ∥At−At−1∥2

F < ϵ2 or operator sparsity ∥vec(At)∥0 < ϵ1) and mitigates the ill-posed
nature of finding At separately for each time point.
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Figure 1: Schematic of the problem and approach. A: Models that perform well on 1-step predic-
tion (i.e., prediction order 0, in red), commonly fail in higher orders reconstruction (e.g., order-T , in green).
B: LINOCS (e.g., for training order K = 3) integrates weighted multi-step reconstructions for all k = 0 . . . K
orders. It adapts the weights of these reconstruction orders to prioritize minimizing large errors at lower
orders before addressing higher orders. The system gradually increases the weight of the most effective
lookahead reconstruction until convergence conditions are met. C: LINOCS improves long-term reconstruc-
tion during training iterations, such that the predictions during training are expected to increasingly align
with the real system. Green color indicates full-lookahead predictions across different iterations. D: Weights
of different lookahead training orders (k). wk : R2 → R is a function of the order k and the k-th order
reconstruction error e. Top: Illustration of an exemplary effect of e on w when fixing k. Bottom: Illustration
of an exemplary effect of k on w when fixing e.

5 LINOCS

In LINOCS we aim to learn the unknown dynamic operators {Ât}T
t=1 by integrating several multi-step

predictions simultaneously into the inference procedure. This approach yields not only a more accurate
full-lookahead post-learning reconstruction but also operators that are more closely aligned with the ground
truth. Particularly, for every t = 1 . . . T , LINOCS finds the most likely estimate of {At, bt} given K+1
(K ∈ Z≥0 hyper-parameter) multi-step reconstructions of orders k = 0...K with different weights {wk}K

k=0:

Ât = arg min
At

K∑
k=0

wk∥x̃t+1 −Atx̂
k
t ∥2

F , (6)

where x̃t, x̃t+1 are the observations at time t and t + 1, respectively. Let x̂k
t+1 (k = 0 . . . K) denote the

recursive rule for predicting the state at time t + 1, starting from the observations at t−k, where x̂t−k is set
to the observations at time t− k, i.e., x̂t−k := x̃t−k. Particularly, the (k + 1)-th order multi-step prediction
is defined by:

x̂k
t+1 = ÂtÂt−1Ât−2 . . . Ât−kx̃t−k. (7)

The weights {wk}K
k=0 associated with the orders k = 0 . . . K are dynamically adjusted throughout the infer-

ence process (Fig. 1B). This adjustment considers both the order number (k) and the current reconstruction
error related to that order, ek (e.g., the ℓ2 norm, ek = ∥x̃t − x̂k

t ∥2
2). Unlike other multi-step methods

(e.g., Venkatraman et al. (2015)), LINOCS adapts the weights of the reconstruction orders to prioritize the
minimization of large errors in lower orders before considering higher orders (Fig. 1B). Specifically, it grad-
ually increases the weight of the best lookahead reconstruction until convergence conditions are satisfied. In
our implementations, the weights can be chosen from a list of built-in choices such as uniform, linearly de-
creasing, and exponentially decreasing weights. Additionally, our framework allows custom weight functions
that suit their specific needs. In the experiments presented in this paper, we concentrate on showcasing
three specific options for the weights:

• Adapting the weights to sequentially introduce higher multi-step reconstruction orders once the
error for each preceding order falls below a designated threshold, while continuing to maintain the
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Figure 2: Example time-varying LDS systems A: The baseline linear time-invariant dynamical system
will present dynamical operator constant over time. B: Switching linear dynamical systems (SLDS) jump
between different linear operators that are time-invariant between jumps. C: “Pseudo-Switching” dynamics
is similar to SLDS with the inclusion of smoother transitions between periods of constant linear dynamics.
D: The decomposed linear dynamical systems (dLDS) model is a generalization of SLDS to sparse time-
changing linear combinations of linear operators. dLDS can also model negative coefficients.

activation of lower orders. Specifically, in the initial iterations, only w0 > 0, with all other weights
wj = 0 for j ∈ [1, K]. As the error of each step’s reconstruction falls below this threshold, the
subsequent weight wj+1 is activated. For instance, if w0 is the last activated weight and the error
for the first (1-step) reconstruction falls below the threshold, w1 becomes active (w1 > 0), and
this sequence of activation continues for higher-order weights as each subsequent step achieves the
required accuracy.

• Constant weights over iterations with an exponential decay over k, defined as wk = exp−σk for some
scalar σ ∈ R>0.

• A weight function that considers both k and ek, exhibiting a monotonic decrease in k and an increase
in e, with k decreasing faster than e increases (Fig. 1 D).

Importantly, throughout this paper, we distinguish between two concepts: training order and prediction
order. We denote “training order” (Ktrain) as the maximum order considered during LINOCS training.
Throughout this work “1-step” optimization specifically refers to the use of the 1-step cost (∥xt−Atxt−1|22),
while excluding higher orders, during training. In contrast, prediction order refers to post-training predictions
that involve iteratively propagating the identified operators for Kpred steps into the future.

Here, we demonstrate the contribution of LINOCS for accurate long-scale predictions in four types of systems:
1) time-invariant linear; 2) switching linear; 3) decomposed linear; and 4) LTV systems. Importantly, in
our experiments, we assume that we observe the underlying system under additive i.i.d Gaussian noise
conditions, however LINOCS can be easily adjusted to other noise statistics.

5.1 LINOCS for Linear Dynamics

We first present the LINOCS learning rule for the simplest case of time-invariant linear dynamical systems
(TI-LDS, Fig. 2 leftmost subplot). Let X̃ ∈ Rp×T be the observations of state X, such that X̃ = X+η, with
η being an i.i.d Gaussian noise (η ∼ N (0, σ2)). In the TI-LDS case, X evolves linearly as xt+1 = Axt + b
for all t = 1 . . . T , where b ∈ Rp×1 is a constant offset.

In this case, LINOCS estimates A and b by

Â, b̂ = arg min
A,b

K∑
k=0

wk∥x̃t+1 −Ak+1x̃t−k −
k∑

j=0
Ajb∥2

2, (8)

where Ak+1 is taking the transition matrix A to the power of k, K is an hyperpameter that dictates the
maximum reconstruction order, and the set {wk}K

k=0 can be either predefined or automatically adapted over
training based on each order error. Please refer to Algorithm 1 and Appendix A.5 for further details on the
inference of the operator and offset for the linear case.
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Figure 3: Linear System Experiment. A: Real vs. identified operators and offsets. B: Quiver plots of real
and identified operators. C: Highlighted differences in effects between real operators and inferred operators
showing how small differences in dynamic operators gain prominence during lookahead reconstruction (cal-
culation details in Section A.1). D: Full lookahead reconstructions (ground truth vs. baselines) show swift
convergence to the origin for the 1-step optimization (yellow) and divergence for DAD-based results (three
most right subplots). E: Frobenius norm of the differences between the ground truth operators (A) and the
identified operators (Â). F: MSE under increasing prediction orders. For all orders, LINOCS achieves better
(lower) MSE compared to 1-step optimization. G: Full lookahead post-training predictions using operators
identified by 1-step optimization (yellow) vs. the predictions using those identified by LINOCS (blue) under
various training orders (rows) and prediction orders (columns). H, I: LINOCS reconstruction compared
to 1-step optimization under increasing noise levels (σ) demonstrates its robustness. J: Propagating the
identified operators until reaching a relative reconstruction error of ∼ 1. LINOCS identifies operators that
can accurately predict ∼ 35,000 time points (∼ 1380 full rotations), much higher than 1-step training that
decay immediately.
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Algorithm 1 Linear-LINOCS
Inputs: Observations X̃ and maximum order K.
Build K multi-step reconstructions to get the set of {ψk} ▷ as described in Appendix A.5.
Infer A ▷ via Eq. (8) as described in Sec. A.5
Infer offset b ▷ via Eq. (16)

5.2 LINOCS for Switching Linear Dynamical Systems (SLDS)

For SLDS (Fig. 2, middle-left), we integrate LINOCS into the SLDS operator inference stage (to infer
{f}J

j=1, {b}J
j=1, see Sec. 4) using the SSM framework proposed by Linderman et al. (2020), which is the

current framework for running SLDS/rSLDS as described in e.g. Linderman et al. (2016; 2017). We maintain
the existing SLDS approach to estimating switch times that delineate the boundaries of the linear periods
between switches (i.e., for this stage, we have kept it as implemented by Linderman et al. (2020)). To find
operators within these identified linear periods, we integrate the learning rule for the TI-LDS case described
above in Section 5.1. Please see Algorithm 2 for the procedural steps.

Algorithm 2 SLDS-LINOCS
Input: Observations X̃, maximum order K ∈ R+, number of iterations. ▷ Initial parameters
Initialize: {f}J

j=1 ∼ Uniform ▷ Start with a uniform distribution
for each iteration until a defined number of iterations do

find switching time ▷ Based on current SSM framework Linderman et al. (2020)
infer operator in each period ▷ Use linear inference as described in Alg. 1

end for

5.3 LINOCS for decomposed Linear Dynamical Systems (dLDS)

For dLDS (Fig. 2, two rightmost subplots), as in SLDS, we incorporate LINOCS into the dynamical systems
update step. Let x̂k

t+1 denote the k-th order reconstruction of xt+1, calculated by iteratively propagating
the dLDS reconstruction k + 1 times, starting from xt−k. Furthermore, let xt+1 ≈ ΣJ

j=1ĉjtf̂jxt, where ĉt

represents the current estimate of the dLDS coefficients and {f̂j}J
j=1 denotes the current estimate of the

basis operators. We can now write the k-th order reconstruction (x̂k
t+1) as

x̂k
t+1 ←

 J∑
j=1

ĉjtf̂j

  J∑
j=1

ĉj(t−1)f̂j

 · · ·
 J∑

j=1
ĉj(t−k)f̂j

 x̃t−k,

as follows from the recursive update rule

x̂k
t ← (

J∑
j=1

ĉjtf̂j)x̂k−1
(t−1), where x̂0

t−1 := x̃t−1 (9)

.

To effectively integrate LINOCS into dLDS, we incorporate multi-step predictions into the training procedure
of dLDS itself. Specifically, in each iteration, we start with the update of the dynamics coefficients ct. For
this, we first define Fxk

t
∈ Rp×J as the horizontal concatenation

Fxk
t

:= [f1x
k
t ,f2x

k
t , . . . ,fJx

k
t ] for all k = 0 . . . K.

10
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Next, we define a new matrix F̃K
xt

that extends Fxt
to all K + 1 reconstructions stacked vertically, resulting

in F̃K
xt
∈ R(K+1)p×J

F̃K
xt

=


w0Fxt

w1Fx1
t

...
wK−1FxK

t

 , (10)

where wk is the weight of the k-th multi-step order. This matrix can then be used to infer to coefficients
(ct) while considering different reconstruction orders with varying weights.

To mirror this concatenated matrix of dynamics that represents multiple time-steps, we further de-
fine a matching concatenated state vector (x̃t+1)vert ∈ Rp(K+1)×1 by (x̃t+1)vert := w ⊗ x̃t+1 where
w = [w0; w1; · · · ; wK ] ∈ R(K+1)×1. I.e., (x̃t+1)vert is obtained by vertically stacking K + 1 times the ob-
servations x̃t+1 ∈ Rp×1 at time t + 1 weighted by their corresponding wk values (resulting in (x̃t+1)vert =
[w0x̃t+1; w1x̃t+1; · · · ; wK x̃t+1]).

The coefficients, ct, are thus updated in every iteration by minimizing the squared ℓ2 norm

ĉt = arg min
ct

∥(x̃t+1)vert − F̃
K
xt
ct∥2

2 + λc∥ct∥1. (11)

where λc is the sparsity regularization term on the coefficients.

Note that [F̃K
xt
ct] ∈ R(K+1)p×1 produces a vector of estimates of xt+1 computed from all different K + 1

past states. This way, the estimator in Equation (11) seeks the ct vector that best predicts xt+1 considering
all K + 1 lookaheads.

Moving forward, we update the dynamic operators {fj}J
j=1. One additional modification we make (compared

to the original learning of dLDS as presented by Mudrik et al. (2024)) is that rather than updating each fj

using gradient descent, we infer the dLDS’ basis dynamics operators {fj}J
j=1 by fully and directly minimizing

the cost. Specifically, let Fall := [f1,f2, . . . ,fJ ] ∈ Rp×pJ , be the concatenated matrix of all {fj}J
j=1.

Also, let (xc)t := ([1]J×1 ⊗ xt) ◦ (ct ⊗ [1]p×1) ∈ RpJ×1, where ⊗ denoted the Kronecker product
and ◦ denotes element-wise multiplication, and let Xc ∈ RpJ×T be the horizontal concatenation of all
(xc)t (for t = 0 . . . T − 1).

With these definitions, the dLDS operators {fj}J
j=1 are updated by

F̂all = arg min
Fall

∥X̃:,2: − Fall(Xc)∥2
F , (12)

with each {fj}J
j=1 being extracted from F̂all and normalized to a Frobenius norm of 1. Please see Algorithm 3

for the procedural steps.

Algorithm 3 dLDS-LINOCS
Input: Observations X̃, maximum order K ∈ R+

Initialize: C ∈ RJ×T and {f}J
j=1 ∼ Uniform

fj ← fj

max(λ(fj))∀j = 1, . . . , J ▷ Normalizing each fj to unit spectral norm
while not converged do

Compute k lookaheads of x̃ using current estimates of {ct}T
t=1 and {f}J

j=1. ▷ via Eq. 9
Construct F̃K

xt
. ▷ via Eq. 10

Update c using the LASSO method. ▷ via Eq. 11
Update Fall. ▷ via Eq. 12
Split Fall ∈ Rp×pJ into fJ

j=1 (each fj ∈ Rp×p).
end while
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5.4 LINOCS for regularized Linear Time-Varying Systems (LTV)

Finally, we focus on the more general case of regularized linear time varying systems that are not necessarily
switching or decomposed. In particular, we focus on two types of regularizations, 1) that the operators
change smoothly over time, i.e., ∥At −At−1∥2

F is small, and 2) that the operators are sparse, i.e., ∥At∥0 is
small.

For the LTV case, we apply LINOCS to find the time-changing operators {At}T
t=1 by iteratively integrating

multi-step reconstruction with the appropriate regularization. The operators are initialized with a regularized
1-step optimization

Ât = arg min
At

∥x̃t −Atx̃t−1∥2
F +R(At) = arg min

At

∥x̃t −Atx̃t−1∥2
F + λ∥At −At−1∥2

F (13)

where in this paper, we chose to focus on R(At) = λ∥At−At−1∥2
F ; however, other regularization terms can

be used in a more general sense. λ is the regularization weight.

We integrate LINOCS into the estimation process by iteratively updating the operator estimates one at a
time. Specifically, during each round of updates, we loop over every time point t = 0 . . . T and, holding all
other operators {Aτ}τ ̸=t fixed at their former estimates, and update At by

Ât = arg min
At

K∑
k=0

[
wk

k+1∑
ki=1
∥x̃t−ki+k+1 − Ât−ki+k−1Ât−ki+k−2 · · ·At · · · Ât−ki+1Ât−ki

x̃t−ki
∥2

2

]
+R(At)

where k = 0 . . . K denotes the order of the reconstruction and t − ki denotes the starting point of the
reconstruction. The weights wk are set as in all other models. Please see Algorithm 4 for the procedural
steps.

Algorithm 4 LTV-LINOCS
Input: Observations X̃, maximum order K ∈ R+, number of iterations M .
Initialize: {At}T

t=1 ∼ Uniform ▷ Initialize from uniform distribution
for each iteration m = 1 . . . M do

for each time point t = 1 . . . T do ▷ To infer At, consider K + 1 windows with shifts up to K
Define the following quantities:
x+ := diag({{xt+k−ki−1}k+1

ki=1}K
k=0) ∈ RpK∗×K∗

x− := diag({{xt−ki
}k+1

ki=1}K
k=0) ∈ RpK∗×K∗

B := concat({{
∏ki

j=1 Ât−j}k+1
ki=1}K

k=0, axis = 1) ∈ Rp×pK∗
▷ horizontal concatenation of A

estimates for windows
C := concat({{

∏k−ki

j=1 Ât−ki+k−j}k+1
ki=1}K

k=0, axis = 0) ∈ RpK∗×p ▷ vertical concatenation of A
estimates for shifts

Ψ := Bx− ∈ Rp×K∗

Ât = arg minAt
∥x̃+ −CAtΨ∥2

F + λ∥At −At−1∥2
F ▷ Solve for At through Ridge regression

optimization
end for

end for

6 Results

To showcase LINOCS’ ability to capture the dynamics in multiple models, we applied LINOCS to the
above systems under diverse settings. The hyper-parameters used in each experiment are summarized in
Section A.3.

6.1 LINOCS more accurately identifies ground truth linear systems under noisy observations

We first test LINOCS’ ability to robustly learn time-invariant linear dynamical systems from noisy ob-
servations. We then simulate the dynamics A ∈ R2×2 as a rotational transition operator and a ran-
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dom offset b ∈ R2×1, where each bi ∼ Uniform(0, 1). We build the synthetic state xt ∈ R2×1 as
xt = Axt−1 + b starting from random initial value xt ∈ Uniform(0, 1)2×1, such that the noisy observa-
tions are x̃ = x+ η, where η ∼ N (0, σ2) = N (0, 0.32) (Fig. 3A,B).

We compare the learned operators using LINOCS with four baselines. First we compare to traditional 1-step
optimization (Eqn. (3)). We further compare the linear LINOCS to our implementations of the conceptual
framework presented in DAD (Venkatraman et al., 2015), as it is the approach closest to LINOCS in terms
of integrating multi-step predictions into model training. Our implementation of DAD integrates expert and
non-expert demonstrations for model training, inspired by the Dataset-Aggregation (DAgger) approach (Ross
et al., 2011). Specifically we test three implementations of DAD. For each implementation we initialized the
transition matrix (Ainit) and the offset (binit) using the optimal estimate from 1-step optimization. We then
train the model through 100 iterations where at each iteration, we used our latest estimates of A and b to
perform full lookahead reconstruction, starting from time t = 0. We then update our estimates of A and b
using the optimal 1-step optimization, and tested all three options outlined below:

• DAD with full model update:
At each iteration, we update A and b based on the lookahead reconstruc-
tion of the state (x̂t) calculated based on the last operators estimate. Namely,
{Âiter+1, b̂iter+1} = arg min{A,b}

1
T

∑T −1
t=0 ∥x̃t+1 − (Ax̂t + b)∥2

2.

• DAgger-inspired DAD (reweighed DAD):
For reweighted DAD, we estimate A and b at each iteration using both the observations and the
lookahead reconstruction from the last estimates of A and b. In particular, let [x̂t, x̃t] ∈ Rp×2 be
a horizontal concatenation of the lookahead reconstruction and of the observations at time t. Then
we iteratively solve: {Âiter+1, b̂iter+1} = arg min{A,b}

1
T

∑T −1
t=0 ∥ [x̂t+1, x̃t+1]− (A [x̂t, x̃t] + b)∥2

2.

• DAgger with ℓ2 constraint (reweighted DAD with ℓ2):
This option is solved similarly to the reweighted DAD, with the addition of the Frobenius norm
(∥ · ∥F ) on the operators (A) and on (b) during training.

We find that LINOCS identifies operators that yield accurate dynamics in long-time scale predictions
(Fig. 3D). The other methods we tested, including 1-step optimization (Fig. 3C,E cyan) and DAD-based
implementations (Fig. 3D, reds), instead indeed decay to zero (away from the real system), indicating a
less accurate estimation of the dynamics. The improved accuracy of the operators identified by LINOCS
(Fig. 3E) becomes apparent when examining the effects of the operators’ estimation errors (Fig. 3C). These
errors are larger for the other methods, showcasing that those methods accumulate more errors over shorter
time spans than LINOCS’ does.

We next investigated the effect of the training order in LINOCS on long-term reconstruction. We trained
LINOCS on the noisy observations with increasing training orders (e.g. 5, 10, 30, 80) and then tested the
performance under multiple prediction orders (Fig. 3G). Compared to the baselines tested, LINOCS exhibits
increased performance even with very low training orders (e.g., 5), with higher orders resulting in almost
perfect reconstruction (Fig. 3G bottom-right subplot). Additionally, exploring LINOCS’s robustness to noise
reveals that, unlike one-step reconstruction, LINOCS is robust even under very high levels of noise (Fig. 3G,
H, blue). The resulting MSE compared to the ground truth dynamics is much lower in LINOCS, even under
very high σ noise levels (Fig. 3H blue vs. orange-red).

When examining the duration for which LINOCS remains robust without converging, we observe that our
approach accurately predicts approximately 35,000 time points into the future before deviating from the real
system and decaying to 0—demonstrating stability over exceptionally long time scales (Fig. 3J).

Additionally, when examining LINOCS’ long-term prediction robustness to increasing noise levels (σ) intro-
duced during training, we find it to be robust to even extreme Gaussian noise levels, σ = 0.9 (Fig. 3H,I,
blue), in contrast to 1-step optimization (Fig. 3 D, orange-red).

We further tested LINOCS on linear systems with structured noise (Fig. 14) as well as on a simulation of
3-dimensional cylinder (Fig. 15), yielding similar results. For structured noise, we modeled the observation
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Figure 4: Results on switching systems. A: Active discrete states for LINOCS (blue) compared to
baselines, including SLDS and rSLDS with 10 or 100 training epochs. B: Correlation (ρ) between the
ground truth dynamics (x) and the full-lookahead reconstructed dynamics (x̂). C: Correlation (ρ) between
the ground truth operators (f) and the identified operators (f̂). D: Correlation (ρ) between the ground truth
coefficients (c) and the identified coefficients (ĉ). E: Difference between the ground-truth sub-dynamics (F̂ )
and reconstructed basis dynamics by different models. LINOCS was able to achieve sub-dynamics that are
much closer to the ground truth than the other baselines.

as x̃ = x+σ sin(γt) with σ = 0.5 and γ = 3 for t = 1 . . . 501. Unlike other methods, LINOCS found operators
that led to accurate long-term predictions (Fig. 14 D). Moreover, when examined under increasing training
and prediction orders, we found that LINOCS is robust for long-term predictions, even for full lookahead
reconstructions (kpred = 501, Fig. 14 E,H). When evaluating its robustness to increasing noise levels (σ),
we found that even for very high noise levels (σ = 0.9), LINOCS achieved much more robust results than
1-step optimization (Fig. 14 F,G). Additionally, when exploring how far into the future it enables robust
reconstruction before converging, we found that it is capable of full lookahead for approximately 70,000 time
points—a testament to its ability to find more robust operators that can independently describe the system
(Fig. 14 I).

For the 3D cylinder case (Fig. 15), with Gaussian noise (σ = 0.4), we similarly demonstrate that LINOCS
recovers more accurate operators, leading to significantly more robust long-term predictions and enabling full
recovery of the process (Fig. 15 A,B,C,D), both under increasing prediction orders (Fig. 15 E, G) and noise
(σ) levels (Fig. 15 H), as well as exhibiting an impressive ability to reconstruct lookahead predictions (starting
from x0) for very long periods (approximately 70,000 time points) before converging to similar error as 1-step
does (Fig. 15 I). In contrast, 1-step optimization yields high-error within a few IMS prediction orders.

6.2 LINOCS identifies accurate interactions in switching systems

We next tested LINOCS-driven SLDS as detailed in Section 5.2 on simulated data comprising of J = 3
discrete states. The transition operators for each of the distinct states was set to a 3× 3 rotational matrix
oriented in a different direction. Additionally, the offset for each state (bj ∈ R3×1) was set to be the same
random vector drawn from a uniform distribution between 0 and 1 (Fig. 18D).

Notably, since the method is invariant to the order of the operators, to compare the identified operators to
the ground truth operators, we sorted the operators using the “linear sum assignment” problem (SciPy’s
implementation, by Crouse (2016)), with the cost function being the Frobenius norm between each pair of
fs (ground truth vs. estimated for each model). As baselines, we compare the results of LINOCS-augmented
SLDS with standard SLDS and recurrent SLDS (Linderman et al., 2016) with varying numbers of iterations.
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When comparing LINOCS-SLDS to the baselines (Fig. 4), LINOCS consistently outperformed the other
approaches across multiple metrics including operator recovery (Fig. 4C,E), switching times recovery
(Fig. 4A,D), and dynamics reconstruction (Fig. 4B, Fig. 16B). In particular, LINOCS-SLDS accurately
identified switching times, whereas classical SLDS and rSLDS tended to introduce additional redundant
switches (Fig. 4A). Moreover, the discrepancies between the ground truth operators and those identified by
LINOCS (Fig. 4E, right-most four columns) were substantially smaller than the differences observed with
classical SLDS/rSLDS (Fig. 4 E, left columns)„ as evidenced by the higher correlations between LINOCS’
operators and the ground truth (Fig. 4C). Furthermore, when examining the eigenvalues of the identified
operators compared to the ground truth (Fig. 17), the eigenspectrum derived from the LINOCS-driven
solver closely resembled the ground truth eigenspectrum more than the classical SLDS and rSLDS cases,
highlighting the effectiveness of LINOCS in capturing the underlying dynamics.

6.3 LINOCS finds dLDS operators that yield accurate dLDS lookahead predictions

Next, we applied LINOCS to dLDS, as described in Section 5.3. First we generated ground-truth data that
represent a “pseudo-switching” (Fig. 2) process—i.e. linear dynamics that switch more smoothly (in our case
between J = 3 systems) compared to SLDS where operators switch abruptly. This creates overlap periods
where two dynamical systems are active at once as they trade off (Fig. 19). LINOCS-dLDS demonstrated
significantly improved stability in full lookahead reconstruction compared to single-step dLDS (Fig. 5). No-
tably, training with orders approximately greater than 35 (Ktrain > 35) on our synthetic dataset (containing
1000 time points) resulted in highly accurate full reconstruction (Fig. 5A). Additionally, when comparing
MSE and correlation of the time-evolving operator Ft =

∑J
j=1 cjtfj to the ground truth, we observed a

monotonic decrease in MSE with increasing maximal LINOCS training orders (Ktrain), while the correlation
showed a monotonic increase (Fig. 5B).

Interestingly, although the 1-step reconstruction exhibited good performance even for non-LINOCS or low-
order LINOCS-dLDS (Fig. 5D left), the importance of LINOCS became more apparent in full lookahead
reconstruction (Fig. 5D right). This implies that multistep reconstructions might be important for more
accurately estimating dynamical system dynamics, as errors could be obscured when assessing only the
single-step reconstruction. It also highlights the importance of integrating multiple orders simultaneously
during training.

Figure 5: Decomposed linear dynamical systems results. A: Ground truth dynamics compared to
1-step (top) and full lookahead (bottom) reconstructions for non-LINOCS dLDS (Ktrain = 1) and LINOCS-
dLDS with different training orders (Ktrain ∈ [2, 5, 7, 15, 23, 36]). B: MSE (pink) and correlation (green)
between ground truth operators and the operators identified by LINOCS under different orders. C: MSE
(pink) and correlation (green) between ground truth dynamics and full lookahead reconstructions using the
different LINOCS training orders. D: Local MSE for 1-step (left) and for full lookahead reconstruction
(right) over the time points of the dynamics.

15



Under review as submission to TMLR

Figure 6: Additional decomposed linear dynamical systems results (Ktrain = 50). A: Ground truth
dynamics compared to (B) LINOCS results and (C) 1-step optimization results, for increasing prediction
orders. D,E: Correlation between the eigenvalues of the ground truth transition matrix (Ft =

∑J
j cjtfj)

and the eigenvalues of the one identified by LINOCS. D: imaginary part; E: real part. Results display
the average correlation over time. Eigenvalues were matched using the “linear sum assignment problem”
(Scipy’s Crouse (2016)). F,G: Comparing the identified time-changing transition matrix (Ft) identified by
LINOCS vs. 1-step optimization in terms of correlation (F) and MSE (G). H: Comparing the MSE of the
identified Ft over time.

We further extended our study to encompass more nuanced dLDS scenarios, exhibiting prolonged time scales
and recurring patterns of identical active operators across distinct intervals (Fig. 20). We found analogous
enhancements of LINOCS over the traditional 1-step dLDS implementation. Specifically, LINOCS demon-
strates robust accurate long-term predictions, including full lookahead prediction (Fig. 6B), in contrast to
1-step optimization, which yield high lookahead error (Fig. 6C, last three subplots). Furthermore, also for this
more complex example, upon comparing the identified time-varying transition operators Ft =

∑J
j cjtfj to

the ground truth, LINOCS revealed operators with eigenvalues significantly more correlated with the real op-
erators’ evaluations (Fig. 6D, E) compared to the 1-step optimization results. Additionally, when comparing
the operators themselves against the ground truth, those identified by LINOCS exhibited higher correlation
and smaller MSE with the ground truth compared to these identified by 1-step dLDS (Fig. 6F,G,H).

6.4 LINOCS finds interactions that yield robust lookahead predictions in time-varying systems

To test the applicability of LINOCS to more general LTV systems, we implemented LINOCS-LTV to capture
the chaotic behavior of the Lorenz attractor (Sec. A.4) through a smoothly changing LTV approximation
(Fig. 7). We compared LINOCS-LTV with several other LTV solvers with varying constraints, including
smoothness and sparsity (τ = 6, 7, 8 and smoothness with weights λ = 2, 20, refer to Sec. A.2 for details).
Unlike methods relying on 1-step optimization, LINOCS, despite similar regularization constraints, achieved
superior full lookahead reconstruction (Fig. 7A bottom).

Also here, while different methods performed satisfactorily in the 1-step (post-training) prediction (Fig. 7A
top, B red, C red), disparities emerged in higher-orders lookahead predictions where alternative methods
failed. While all methods, including LINOCS, achieved commendable 1-step reconstruction, LINOCS demon-
strated a markedly lower full lookahead error (Fig. 7B green, 5 most right bar pairs) and superior correlation
with the ground truth (Fig. 7C green, five most right bar pairs).
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Figure 7: LTV approximation of the Lorenz attractor. A: 1-step post-training prediction (top, pink-
red) vs. full lookahead prediction (bottom, green) for different baselines, including LINOCS with various
smoothness levels or ℓ0 regularization. Color indicates the local MSE. λ refers to the regularization weight.
B: Squared ℓ2 of the error between the ground truth and 1-step prediction (red) vs. full lookahead predictions
(starry green), for the different methods. C: Correlations between the ground truth and 1-step prediction
(red) vs. full lookahead predictions (starry green), for the different methods.

In addition, we analyzed operators identified across various training iterations of LINOCS to assess their
proficiency in achieving lookahead reconstruction (Fig. 21). For this analysis, we used the Lorenz attractor
with 900 time points with intervals of 0.1/9 arbitrary units (a.u.), and applied a smoothness constraint with
a weight of λ = 0.1. We observed that over training iterations, LINOCS adaptively influenced the predicted
lookahead dynamics to gradually converge towards the ground truth dynamics (Fig. 21 C), with a monotonic
decrease MSE (Fig. 21A, B).

When analyzing which time points of the dynamics contributed to higher MSEs in the full post-training
lookahead prediction, we noticed that early training iterations tended to produce higher full lookahead
prediction errors at later time points of the dynamics (Fig. 21B, top right). However, over subsequent
iterations, the effect of LINOCS managed to mitigate the accumulation of errors at these late time points
(Fig. 21B, bottom right).

6.5 LINOCS finds robust interactions in real-world neural data

Finally, we applied LINOCS to real-world dataset described by Kyzar et al. (2024), which consists of high
density electrode array of populations of single units in the human medial temporal and medial frontal lobes
while subjects were engaged in a screening task. We applied linear LINOCS, SLDS and dLDS-LINOCS, and
LTV-LINOCS to a single recording session that includes recordings from five brain areas (amygdala left and
right, cingulate cortex, hippocampus, pre-supplementary motor area). All the dynamical systems models
were trained on the firing rate data, which we inferred from the spike-sorted electrophysiology via a Gaussian
kernel convolution.

We investigated several LINOCS models to showcase their distinct characteristics. First, we examined the
linear case for each brain area individually and explored the mean field interactions between areas (Fig. 9).
Importantly, while typical real-world brain dynamics are assumed to be non-linear and non-stationary,
our aim in starting with the linear model was to demonstrate how LINOCS can identify the fundamental
background neural interactions under linear assumptions and check how its identified interactions defer from
these identified by the 1-step approach. We first applied the linear LINOCS on the firing rate activity
from all neurons within each region to identify between-region interactions. We observed that LINOCS
identified different linear interactions within areas compared to the 1-step approximation. Drawing from our
conclusions based on synthetic data linear results, this suggests that LINOCS may provide a more nuanced
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Figure 8: Comparison of LINOCS Lorenz locally linear time-varying results to other multi-
step approaches. A: rMSE of full lookahead reconstruction by LINOCS (blue) compared to the other
baselines (Jordana et al., 2021) (Shooting, red), and (Hess et al., 2023) (GTF, orange). B: LINOCS full
lookahead reconstruction under different hyper-parameter settings, with the options described in Table 10.
C: Shooting (Jordana et al., 2021) full lookahead reconstruction under different hyper-parameter settings,
with the options described in Table 9. D: GTF (Hess et al., 2023) full lookahead reconstruction under
different hyper-parameter settings, with the options described in Tables 7 and 8.

linear approximation of brain activity compared to the common 1-step optimization (Fig. 9 A), though
further comparisons with established neuroscience methods are needed to fully validate this advantage.

Then, we also applied the linear LINOCS on the mean activity of each region, and found that when examining
the full lookahead reconstructions (Fig. 9 C) the 1-step optimization, in contrast to LINOCS, decayed to zero
activity due to small accumulated deviations in operator values. In contrast, LINOCS managed to maintain
activity closer to the average values of the dynamics. However, due to linear enforcement, neither approach
could capture fluctuations in dynamics. Moreover, the full lookahead reconstruction error for LINOCS-linear
was overall much smaller compared to the classical 1-step (Fig. 9B).

We next applied LINOCS-SLDS with three discrete states and compared it with regular SLDS using the
same number of iterations. LINOCS identified operators that exhibit slight differences compared to those
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Figure 9: Application of linear-LINOCS to multi-region neural recordings. A: The per-region and
between-region mean field linear dynamics operators identified by 1-step linear optimization vs. LINOCS
with a linear time-invariant system. Each within-region network describes the linear operator Âregion derived
by applying LINOCS to the firing rate matrix constrained to include only the neurons from that region. Each
node represents a unit of the spike sorted data, ideally corresponding to a single neuron. Colors of nodes
represent their estimated brain region. Interactions between areas are found by applying LINOCS to the
mean activity per area. Edges width indicate connection strength. B: Full-lookahead reconstruction error for
1-step linear optimization vs. LINOCS-linear approach. C: Ground truth mean activity per region compared
to the lookahead prediction trace of the mean field activity by 1-step linear optimization vs. LINOCS-linear.

found by classical SLDS (Fig. 10B vs Fig. 22; Fig. 23 A vs. B) as well as slightly different switching patterns
between the two approaches (Fig. 23 C,D). These operators resulted in significantly more robust lookahead
predictions. Specifically, differences are evident in both connection presence, weights, and distribution among
global operators. For example, in the “Amygdala left” region, both classical SLDS and LINOCS-driven SLDS
identify a connection from neuron 10 to neuron 2 as part of f3, albeit with varying weights. Additionally,
both methods identify connections from 5 to 3 (in f1 for classical SLDS and in f2 for LINOCS-SLDS) as well
as from 6 to 3 (in f2 for classical SLDS and in f1 for LINOCS-SLDS), but with differing weights. Similar
discrepancies are observed in other regions. Furthermore, LINOCS-SLDS and classical-SLDS each identify
connections that the other overlooks; for instance, in the “Amygdala right” region, LINOCS-SLDS identifies
a strong connection from 11 to 6, whereas classical SLDS does not. Conversely, classical SLDS identifies a
connection from 3 to 6 (in f3), which LINOCS-SLDS does not recognize.

Importantly, the operators found by LINOCS enable full lookahead reconstruction without diverging, in
contrast to regular classical SLDS that diverge to extreme values in full lookahead prediction (Fig. 10C).
Moreover, the reconstruction error for the full lookahead prediction was overall much smaller for LINOCS-
SLDS compared to the classical SLDS (Fig. 10A). These observations suggest that if the real neural process
follows switching dynamics, LINOCS may capture the underlying dynamics more effectively, as inferred from
our analysis of the synthetic case.
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Figure 10: SLDS results on real data. A: Relative error of the full lookahead prediction compared to the
ground truth, for both LINOCS-SLDS vs. classical SLDS,for each brain area. B: The networks identified by
LINOCS-SLDS (see Fig. 22 for the networks identified by the classical-SLDS). C: Lookahead reconstruction
using LINOCS-SLDS (solid curve) vs. classical SLDS (dashed curve). Classical-SLDS diverge to extreme
values in the full lookahead reconstruction.

Figure 11: dLDS-LINOCS results on the real neural data. A: The identified operators {fj}J=8
j=1 .

B: The identified sparse coefficients ct. C: Correlation between the full-lookahead reconstruction results and
the observations. D: The two largest eigenvalues (λ) of the time-varying transition operator F̃t =

∑8
j=1 cjtfj .

Black (top): real part. Red (bottom): imaginary part.

We observed similar patterns using dLDS-LINOCS, which revealed underlying global brain interactions
potentially fundamental to brain function (Fig. 11 A). When examining their dynamic activations (ct), we
noted a “background” interaction consistently active, with slight modulations over time (Fig. 11 B, brown),
alongside gradually changing activities of other interactions (Fig. 11 B, gray-blue-purple). Importantly,
these results provided lookahead predictions that did not decay and maintained a high correlation with the
observations (Fig. 11 C).
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Figure 12: LTV-LINOCS results on real neural data. A: The ground truth data. B: MSE between
the ground truth data and the full lookahead reconstructions. C: MSE of the reconstruction over time
points, compared to 1-step optimization with different smoothness levels. D: Frobenius norm of the differ-
ences between As identified by the different models, normalized by the magnitude of the operator identified
by LINOCS. B: Full-lookahead predictions produced by LINOCS-LTV (left) and 1-step optimization with
increasing smoothness constraints (λ). F: Difference between the observations and the full lookahead recon-
struction for LINOCS-LTV vs. 1-step optimization with increasing smoothness levels.

Finally, employed the LTV-LINOCS on all neurons from all regions simultaneously while imposing a smooth-
ness constraint on consecutive operators (with regularization of λ = 0.1 on ∥At − At−1∥2

2, Fig. 12). Our
findings reveal that LINOCS identifies operators capable of producing full lookahead reconstructions with-
out divergence, closely approximating observed data. Comparative analysis against 1-step optimization with
various smoothness levels (Fig. 12B,C,E,F) underscores LINOCS’ ability to achieve better reconstructions
than other approaches. Additionally, examination of error evolution over time suggests a monotonic increase
in error for non-LINOCS approaches (Fig. 12C). Moreover, we observed notable discrepancies between the
operators identified by by LINOCS and the baselines (Fig. 12D). These results highlight the efficacy of
LTV-LINOCS in capturing complex temporal dynamics in real world data while maintaining data fidelity.
Overall, we showed that in all these real-world neural versions, LINOCS was able to recover more robust
descriptions of the dynamic evolution for the long run, which, based on our synthetic results, may imply
that these are closer to the real unknown interactions.

7 Discussion

In this paper we introduced LINOCS (Lookahead Inference of Networked Operators for Continuous Stabil-
ity), a learning procedure to improve stability and accuracy of dynamical system inference that leverages
lookahead estimation. By iteratively integrating re-weighted multi-step reconstructions with additional con-
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straints on the operators, LINOCS enables robust inference of networked operators in dynamical systems,
even in the presence of noise and nonlinearity.

Our experimental results highlight LINOCS’ effectiveness across various dynamical systems, including Linear
Systems (LDSs), Switching Linear Systems (SLDS), decomposed LDSs (dLDS) (Mudrik et al., 2024), and
Linear Time-Varying Systems (LTV) in both simulation and real-world neural data. LINOCS achieves more
precise full lookahead reconstruction and more accurately retrieves ground truth operators in synthetic data
compared to baseline methods, highlighting its ability to better capture nuanes in the underlying system.
These findings suggest that LINOCS holds greater potential than alternative approaches for accurately
identifying unknown hidden interactions also in real-world data, where the real underlying interactions are
typically obscured but pivotal for robust scientific interpretation.

Looking ahead, several promising avenues exist for future directions and extensions, including applying
LINOCS to improve operator inference and reconstruction robustness in additional models (e.g., TVART Har-
ris et al. (2021)) or integrate it to advance more robust RNN training. Particularly, if extending LINOCS to
deep networks, the integration of multi-step reconstructions into the networks’ training, may be used to ad-
dress issues such as vanishing or exploding gradients. Additionally, extending LINOCS to handle non-linear
local transformations (i.e., xt = g(Axt−1) with non-linear activation g(·)), as well as non-Gaussian noise
could enhance its applicability to a wider range of real-world scenarios.
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A Appendix

A.1 calculation details for operators differences (Fig. 3C)

We computed the operator differences illustrated in Figure 3C using the expression:

((Â− I)x− (A− I)x)× factor

Here, Â represents the operators identified by the different methods, A denotes the ground-truth operators,
and "factor" is a scalar used for visualization purposes only (identical for all methods).

A.2 Regularization options in LTV system experiment

we applied the following regularization options in Sec. 6.4.

• Smoothness: The objective function becomes: At = arg min ∥x̃t −Atx̃t∥2
F + λ∥At −At−1∥2

F∀t =
2 . . . T

• Sparsity Regularization: At = arg min ∥x̃t −Atx̃t∥2
F s.t. ∥At∥0 <= τ

A.3 Hyperparamters used in experiments

Table 1: Hyperparameter settings for DAD baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 0 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type step initialize A with 1-step optimization
reweight False whether to reweight the observations and the

lookahead during training.

Table 2: Hyperparameter settings for “DAD reweigh” baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 0 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type ’step’ initialization type for matrix A
reweight True whether to reweight the observations and the

lookahead during training.
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Table 3: Hyperparameter settings for “reweigh ℓ2” baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 1 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type ’step’ initialization type for matrix A
reweight True whether to reweight the observations and the

lookahead during training.

Table 4: Hyperparameter settings for LINOCS in linear experiment
Parameter Value Additional Info
K 80 maximum training order
with offset True whether to look for an offset term b
cal_offset True whether to calculate offset
weights_style exponential weight style for orders
σw exponential param-

eter for the weights
0.01

infer_b_way ’each’ approach to infer the onset. Based on each
order.

Kb 20 maximum lookahead training order for the off-
sets b

weights_style_b ’exponential’ weights style for the offsets b

A.4 Lorenz equations

The Lorenz attractor follows:
dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,

where x, y, and z represent the state variables, and σ, ρ, and β are the system parameters, set to σ = 10,
ρ = 28, and β = 8

3 .

A.5 Calculation of Operator and Offset for Linear Experiment

We begin by assuming that X represents the observations in this subsection. Our analysis involves two main
objectives: estimating the transition operator A and the offset b.

We define a set of matrices {ψk}K
k=1, where each ψk is found by solving:

ψ̂k =ψk
∥X:,k: −ψk[X:,:T −k, [1]1×T −k]∥2

F

Here, [1]1×T −k is a row vector of ones, and [X:,:T −k, [1]1×T −k] is the vertical concatenation. Each ψk captures
Ak+1 +

∑k
ki=0A

kib, with the last column of ψk specifically capturing
∑k

ki=0A
kib.

We extract all but the last column from each ψk:

Â = arg min
A
∥Ak − (ψk):,:p∥

2
F
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Table 5: Hyperparameter settings for dLDS experiment
Parameter Value Additional Info
K 50 maximum lookahead order
additional_update True whether to include an additional update step
ℓ1_init 0 value of ℓ1 on the coefficients for the 1-st iter-

ation
max_iters 200 maximum number of iterations
∥F∥2 0 ℓ2 norm on the basis of dLDS dynamics
frequpdateF

5 frequency of updating {fj}J
j=1

ℓ2decay 0.99 decay of the ℓ2 norm on the coefficients
ℓ1decay 0.9999, decay of the ℓ1 norm on the coefficients
wsmoothdecay 1.01, decay of smoothing weight on coefficients
l_smooth_time 1.1, regularization weight on coefficients smooth-

ing ct.
ℓ2 0, ℓ2 on the coefficients
wsmoothtime

0.1, smoothness on ct over time
σnoisyc 0.05 std of the noise to add to coefficients during

training.
ℓ1 2.5, ℓ1 regularization on ct

decor False wether to decorrelate the basis dynamics
max_interval_k 1 maximum interval to increase k during train-

ing
to_norm_F True whether to normalize the basis dynamics
x0 [0.2160895, 0.97627445,

0.00623026]
ground truth initial state (at t = 0)

J 3 number of basis dynamics operators (fs)

Table 6: Hyperparameter setting for the LTV-Lorenz experiment
Parameter Value Additional Info
K 5 maximum lookahead order
wsmooth 2 (or 20) smoothness weight
estimatethres 2 threshold to increase k value
with_future_cost_or True consider both fast and future reconstructions
withfuture True wether to apply time smoothness to future

weights
wsmoothfuture

0.05 weights future smoothness
weightsstyle ’uni’ Uniform weight style.
∥w∥F 0 Frobenius norm weights
init_style ’step’ initialize based on optimal 1-step
maxiters 40 maximum number of iterations
errorthres 8 threshold to increase error
withreverse False whether to include reverse update
Nzeros 0 or 1 or 2 or 3 how many zeros (relevant only to the sparse

networks)

This operation isolates the transition operator A by minimizing the Frobenius norm of the differences across
all k levels.
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Using the last columns of the original ψ matrices, we estimate b, considering our previously estimated A.
We model each observation xt as:

xt ≈ Axt−1 + b (14)

Expanding recursively for k steps, we derive:

xt ≈ Akxt−k +
k−1∑
ki=0

Akib (15)

To organize our data for analysis, we define shifted observation matrices X+k := X:,k: and corresponding
estimated matrices X̂+k := AkX:,:T −k. These are concatenated vertically for all k = 1 . . . K, adjusting the
dimensions as necessary with NaN padding.

Additionally, we construct Ã ∈ Rkp×p as a vertical concatenation of
{∑k−1

ki=0A
ki

}K

k=1
.

We solve for the offset b by minimizing:

b̂ = arg min
b
∥X+K − X̂+K − Ãb∥2

F (16)

This minimization is achieved via simple least squares, and b is then averaged across times.

B Explanation of Baselines for Comparing LTV-LINOCS

We compared the LTV-LINOCS system against two other multi-step approaches, each with various parameter
settings:

1. SSM-RNN Jordana et al. (2021): We used the code from the GitHub repository linked to the
original paper Jordana et al. (2021). We experimented with different numbers of epochs, network
architectures (fully connected vs. locally linear), seeds, and numbers of shooting points. Details are
provided in Table 9.

2. GTF-shPLRNN Hess et al. (2023): We utilized the code avail-
able in the GitHub repository https://github.com/DurstewitzLab/GTF-
shPLRNN/tree/b6172ce816f1910e54c30776ff49e52b5489430ahere, which is linked to the original
paper Hess et al. (2023) and written in Julia. We based the parameters on the values defined
in the file GTF-shPLRNN/paper/_experiments/EEG/Table1/shPLRNN/_aGTF.jl but modified the
observation model to the identity.

It is important to note that while we did not perform exhaustive hyperparameter tuning, we examined 12-
16 hyperparameter combinations around the default settings. Details of the hyperparameters are listed in
Tables 7, 8, and 9.

The comparison code will be shared via GitHub forks and Google Colab notebooks upon publication.

For reference, we use the ground-truth version of the Lorenz attractor, shown in Figure 7, and present the
results in Figure 8.

C Computational Complexity

C.1 Linear System

Given that x ∈ RN×T , and A ∈ p× p, computing the highest power K of A (AK) through repeated squaring
involves K matrix multiplications, each with a complexity of O(N3), resulting in O(KN3).
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Table 7: Parameters for GTF baseline options
option_1 option_2 option_3 option_4 option_5 option_6 option_7 option_8 option_9 option_10 option_11 option_12

partial_forcing FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
latent_dim 16 16 16 16 16 16 16 16 16 16 16 16
scalar_saving_interval 500 500 500 500 500 500 500 500 500 500 500 500
teacher_forcing_interval 16 16 16 16 16 16 16 16 16 16 16 16
gaussian_noise_level 0 0 0 0 0 0 0 0 0 0 0 0
use_gtf TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
optimizer RADAM RADAM RADAM RADAM RADAM RADAM RADAM RADAM RADAM RADAM RADAM RADAM
batch_size 16 16 16 16 16 16 16 16 16 16 16 16
start_lr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
path_to_inputs
gtf_alpha 1 1 1 0.8 0.8 0.8 1 1 1 0.9 0.9 0.9
batches_per_epoch 50 50 50 50 50 50 50 50 50 50 50 50
gtf_alpha_decay 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
observation_model Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity
lat_model_regularization 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
D_stsp_bins 30 30 30 30 30 30 30 30 30 30 30 30
PE_n 20 20 20 20 20 20 20 20 20 20 20 20
end_lr 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
device cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu
gradient_clipping_norm 0 0 0 0 0 0 0 0 0 0 0 0
D_stsp_scaling 1 1 1 1 1 1 1 1 1 1 1 1
image_saving_interval 500 500 500 500 500 500 500 500 500 500 500 500
num_bases 50 50 50 50 50 50 50 50 50 50 50 50
hidden_dim 512 512 512 512 512 512 512 512 512 512 512 512
sequence_length 50 50 50 50 50 50 50 50 50 50 50 50
MAR_ratio 0 0 0 0 0 0 0 0 0 0 0 0
obs_model_regularization 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06 1e-06
alpha_update_interval 5 5 5 5 5 5 5 5 5 5 5 5
epochs 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
MAR_lambda 0 0 0 0 0 0 0 0 0 0 0 0
run 1 1 1 1 1 1 1 1 1 2 2 2
PSE_smoothing 20 20 20 20 20 20 20 20 20 20 20 20
epoch number 500 1000 1500 500 1000 1500 500 1000 1500 500 1000 1500

Table 8: GTF Model of Each option
model

option_1 clippedShallowPLRNN
option_2 clippedShallowPLRNN
option_3 clippedShallowPLRNN
option_4 clippedShallowPLRNN
option_5 clippedShallowPLRNN
option_6 clippedShallowPLRNN
option_7 shallowPLRNN
option_8 shallowPLRNN
option_9 shallowPLRNN
option_10 shallowPLRNN
option_11 shallowPLRNN
option_12 shallowPLRNN

If the optimizer is set to a maximum of M iterations, then the total complexity is O(MKN3). In the linear
case, the addition of the offset term is integrated into the inference by extending the size of A by 1, which
does not affect the computational complexity scale (assuming N >> 1).

C.2 dLDS

The direct dLDS version we propose in the paper works directly on the observations rather than on a latent
low-dimensional space. This process involves both identifying the dynamic operators {fj}J

j=1 and their
coefficients ({ct}T

t=1).

We will start with the complexity for the coefficients inference. Particularly, the inference of ct for each
t = 1 . . . T , involves: ĉt = arg minct

∥x̃t+1vert−F̃K
xt
ct∥2

F where F̃K
xt
∈ R(K+1)p×J and (x̃t+1)vert ∈ Rp(K+1)×1.

Hence, assuming (K+1)p >> J , performing the above least squares to infer each ct requires O(J2(K+1)p) =
O(J2Kp) assuming K > 1 for the pseudo-inverse and O(J(K + 1)p) = O(JKp) for the matrix-vector
multiplication, resulting in overall O(J2Kp) for each time point, and O(MTJ2Kp) for T time points and
M overall model iterations.
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Table 9: Parameters for RNN Multiple-Shooting baseline options
num_shooting len_filt max_it argT alpha log_name bs seed num_epochs

Option 1 5 100 50 10000 100 locally_linear 40 1 5
Option 2 5 100 50 210 100 locally_linear 40 4 1000
Option 3 5 100 50 210 100 locally_linear 40 4 1000
Option 4 200 100 50 10000 100 5 40 4 5
Option 5 5 100 50 210 100 locally_linear 40 4 1000
Option 6 2 100 50 210 100 locally_linear 40 4 1000
Option 7 5 100 50 210 100 locally_linear 40 4 100
Option 8 2 100 50 210 100 locally_linear 40 40 100
Option 9 2 100 50 210 100 locally_linear 40 480 100
Option 10 2 100 50 210 100 locally_linear 40 480 100
Option 11 2 100 50 210 20 locally_linear 40 480 100
Option 12 2 100 50 210 5 locally_linear 40 480 100
Option 13 2 100 50 210 1 locally_linear 40 480 100
Option 14 2 100 10 210 1 fully_connected 40 480 100
Option 15 5 100 10 210 1 fully_connected 40 480 1000
Option 16 2 100 10 210 100 fully_connected 40 480 1000

Table 10: Parameters for LINOCS baseline options for comparison figure
Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7

λsmooth 0 0 0 0 0 2 20
num_zeros 0 0 1 2 3 0 0
max_K 8 3 4 4 4 5 5
max_iters 15 15 25 25 25 40 40

To infer the elements of the set {fj}J
j=1

F̂all = arg min
Fall

∥X̃:,2: − Fall(Xc)∥2
F ,

where X̃ ∈ Rp×(T +1) and Xc ∈ RpJ×T . Assuming pJ < T , the overall complexity will be O(p2J2T ) for
the the pseudo-inverse step and O(TpJp) = O(Tp2J). Hence, for each iteration O(p2J2T ) and overall
O(Mp2J2T ).

Hence, assuming K > p, the overall complexity of the dLDS direct LINOCS extension would be O(MTJ2p∗
max(p, K)) = O(MTJ2pk).

C.3 Locally Linear System (Time Invariant)

Assuming we limit the number of iterations to M . For each iteration m = 1 . . . M , we iterate over t = 1 . . . T
time points to infer At. For each At we consider K + 1 windows (k = 0 . . . K) with ki = 1 . . . k + 1 shifts.
Hence, under each combination of time t and iteration m, we get an overall

K∗ =
K∑

k=0
k + 1 = (K + 1)(1 + K + 1)

2 = (K + 1)(K + 2)
2

equations for each At. For simplicity, we will neglect the weights wk in the following computational com-
plexity analysis since they do not add complexity and do not nee to be considered here.

Let:

• x+ := diag
(
{{xt+k−ki−1}k+1

ki=1}K
k=0 ∈ RpK∗×K∗)

(each xτ ∈ Rp×1).

• x− := diag
(
{{xt−ki}k+1

ki=1}K
k=0 ∈ RpK∗×K∗)

.
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Figure 13: Zoom in for the reconstruction of the linear experiment.

• C ∈ RpK∗×p be a vertical concatenation of the set: {{Πk−ki
j=1 Ât−ki+k−j}k+1

ki=1}K
k=0.

• B ∈ Rp×pK∗ be an horizontal concatenation of the set: {{Πki
j=1Ât−j}k+1

ki=1}K
k=0.

• Ψ := Bx− ∈ Rp×K∗

• Ψ̃ ∈ Rp×(k+p) be [Ψ, Ip×p], namely, an horizontal consternation of Ψ and Ip×p where λ is the weight
of smoothness regularization on At.

• x̃+ be an horizontal consternation of x+ and λ1K∗×1 ⊗ At−1 where ⊗ is the Kronecker product,
1K∗×1 is a vector of ones with K∗ elements, and λ ∈ R+ is the weight of smoothness regularization
on At.

Each At can thus be solved via extended least squares:

Ât = arg min
At

∥x+ −CAtBx
−∥2

F + λ∥At −At−1∥2
F

= arg min
At

∥x+ −CAtΨ∥2
F + λ∥At −At−1∥2

F

= arg min
At

∥x̃+ −CAtΨ̃∥2
F

Assuming K∗ > p, the overall process thus involves the following computational steps:

1. Calculating Ψ: O(p2(K∗)2)

2. Pseudo-Inverse of Ψ: O((p2(K∗ + p)) = O(p2K∗).

3. Pseudo Inverse of C: O(p2Kp) = O(Kp3).

4. Matrix multiplication of pinv(C)x+pinv(Ψ): O(p2(K∗)2).

Overall, the most computational complexity in each iteration and time step is O(p2(K∗)2) Since we have T
time points and assuming that we limit the number of iterations to M , the overall complexity would be:

O(MTp2K2)

C.4 Observation vs. Latent Spaces in Dynamical Systems

In many dynamical systems models, the observation space, denoted as X ⊆ RN , contains the directly
measured variables. For a system observed over time, we represent these observations as xt ∈ X , where t
denotes the time index. The latent (low-dimensional) space, denoted as Z ⊆ RM with M ≤ N , contains
hidden variables that are not directly observed but inferred from the observations. Let zt ∈ Z represent the
latent state at time t. The relationship between the observation space and the latent space is often modeled
by an observation function h : Z → X , such that:

xt = h(zt) + ϵt
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where ϵt ∼ N (0, σ2I) represents observation noise. Several models, including SLDS and dLDS, include such
transition to a latent state to capture the underlying dynamics in a low-dimensional space. In this paper, by
fixing the observation function to the identity operator, we in essence learn the dynamic evolution directly
on the observations.

C.5 More Information about Neural Data

The data we used was collected by the Rutishauser lab at Cedars-Sinai Medical Center Kyzar et al. (2024),
with detailed descriptions in Kyzar et al. (2024); Kamiński et al. (2017; 2020). The dataset includes electro-
physiological recordings from 21 epileptic patients who were implanted with depth electrodes and Behnke-
Fried microwires in the human medial temporal lobe and medial frontal cortex. The recordings were obtained
while the subjects performed a memory task (“Sternberg task”). In the Sternberg task, participants were
required to memorize a set of 1–3 images. These images were pseudo-randomly chosen from a group of five
that elicited the strongest selective responses during the screening task. Following a maintenance period,
participants were shown a probe image and asked to identify whether it was included in the initial set. The
images used in these tasks represented a broad array of subjects and complex natural scenes. Please see
Kyzar et al. (2024) for more details.

We loaded the data from the DANDI Archive in an NWB (Neurodata Without Borders) format ( Rübel
et al. (2022)), and used a single session from it. This session includes recordings of a 63-year-old male subject
(Subject 10 in the data) recorded in June 2023 while performing the Sternberg task.

C.6 Pre-processing to Neural Data

To process the data, we took the spike times of the p = 74 neurons within the chosen session. We then
convolved the spike times with a 100ms-width Gaussian kernel to get a firing rate estimation. We then
normalized the data by dividing each neurons’ estimated firing rate by its top 99% firing rate, and used on
the initial 850 samples.

C.7 Code and Data Availability

Code and figure creation codes will be shared on GitHub upon publication and are attached as a supplement
to the submission. The human neural recordings data is available at (Kyzar et al., 2024).
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Figure 14: Linear System under Structured Noise. A: Real vs. identified operators and offsets.
B: Quiver plots of real and identified operators (lower 2x2 sub-matrix, i.e., focusing on the rotational
part of x2-x3) present patterns that appear similar, rendering it challenging to discern differences when
examined in isolation. C: The differences in effects between real operators and inferred operators highlight
how minor distinctions in dynamic operators gain prominence during lookahead reconstruction (calculation
details in A.1). D: Full lookahead reconstruction (ground truth vs. baselines) shows swift convergence to the
circle’s center for the one-step optimization results due to small differences in dynamic values (mid-yellow
subplot) and divergence for DAD-based results (three most-right subplots). E, H: MSE under increasing
prediction orders. LINOCS achieves better (lower) MSE compared to 1-step optimization. F, G: LINOCS
reconstruction compared to 1-step optimization under increasing noise values reveals that LINOCS maintains
good reconstruction even under extreme noise conditions. I: By propagating identified operators until a
relative reconstruction error of ∼ 1, LINOCS enables future predictions of ∼ 70,000 time points (∼ 4280
circles), contrasting with immediate convergence in one-step optimization. Black indicates error differences
between one-step optimization and LINOCS.
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Figure 15: Linear System for 3D Cylinder. A: Real vs. identified operators and offsets. B: Quiver
plots of real and identified operators present patterns that appear similar, rendering it challenging to discern
differences when examined in isolation. C: The differences in effects between real operators and inferred
operators highlight how minor distinctions in dynamic operators gain prominence during lookahead re-
construction (calculation details in A.1). D: Full lookahead reconstruction (ground truth operators vs.
baselines) shows swift convergence to the cylinder’s center for the 1-step optimization results due to small
differences in dynamic values (yellow) and divergence for DAD-based results (three most-right subplots).
E, G: MSE under increasing prediction orders. LINOCS achieves better (lower) MSE compared to 1-step
optimization with perfect full lookahead reconstruction under high-enough training order (E right bottom).
F,H: LINOCS reconstruction compared to 1-step optimization under increasing noise values reveals that
LINOCS maintains good reconstruction even under extreme noise conditions. I: Propagating the identified
operators until reaching a relative reconstruction error of ∼ 1 shows that LINOCS identifies operators that
enable a future prediction of ∼ 70,000 time points (∼ 2680 circles) before converging, unlike one-step opti-
mization that converges immediately. black: error difference between one-step optimization and LINOCS.
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Figure 16: Operators and reconstructions by the LINOCS-driven SLDS compared to classical
SLDS. A: Dynamical operators identified by LINOCS-driven SLDS. B: Full lookahead reconstruction.
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Figure 17: Eigenvalues of identified operators by the different systems compared to the eigen-
values of the ground truth operators. Rows represent different methods, with LINOCS (with different
parameter combination) in the four last rows. Columns represent the three eigenvalues of each of the three
different 3 × 3 linear operators. LINOCS enabled the identification of almost perfect eigenvalues while the
other methods found at least one wrong eigenvalue per operator, explaining the decaying/divergence of their
reconstruction.

Figure 18: Ground Truth operators and coefficients for the SLDS experiment. A: The ground truth
basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in various directions. B: Ground
truth operators’ coefficients (c). C: Ground truth state x. D: offset applied to the operators.
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Figure 19: Ground Truth operators and coefficients for the “pseudo-switching” dLDS experi-
ment. A: The ground truth basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in
various directions. B: Ground truth operators’ coefficients (c). C: Ground truth state x. The colors of the
markers are a time-changing re-weighted average of the active operators.

Figure 20: Ground Truth operators and coefficients for the second dLDS experiment. A: The
ground truth basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in various directions.
B: Ground truth operators’ coefficients (c). C: Ground truth state x.

Figure 21: Demonstration of LINOCS’ effect over iterations for Lorenz attractor with 900 time
points (Ktrain = 19). A: MSE over iterations (curve corresponds to median values; shade represents
25%-75% percentiles over time). B: MSE over time-points (horizontal) and training iterations (vertical).
C: Full lookahead reconstruction based on operators identified under different iterations. Dotted black: (as
exemplified in the top left) ground truth; Solid Cyan: Full lookahead LINOCS reconstruction.
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Figure 22: Classical SLDS results (non LINOCS) on the real world data. The identified net-
works ({fj}J

j=1) by the non-LINOCS SLDS code (Linderman et al., 2020), for each region in the real world
data (Kyzar et al., 2024).
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Figure 23: SLDS results on real data. A: Identified operators per region by LINOCS. B: Identified
operators per region by classical SLDS. C: Switch times by LINOCS-SLDS vs classical SLDS. D: Number
of switches for LINOCS-SLDS vs. classical SLDS.

Figure 24: Lookahead prediction error (∥x− x̂∥2
2) of DAD-algorithms over training iterations (for the white

noise linear experiment).
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