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Abstract

The study of the attribution of input features
to the output of neural network models is an
active area of research. While numerous ex-
plainability techniques have been proposed to
interpret these models, the systematic and au-
tomated evaluation of these methods in the
sequence-to-sequence models remains under-
explored. This paper introduces a novel ap-
proach for evaluating explainability methods
in transformer-based seq2seq models, building
upon forward simulation of XAI methods. Our
method transfers learned knowledge in the form
of attribution maps from a larger model to a
smaller one and quantifies the resulting impact
on performance. We evaluate eight explainabil-
ity methods using the Inseq library to extract
attribution scores linking input and output se-
quences. This information is then injected into
the attention mechanism of an encoder-decoder
transformer for machine translation. Our re-
sults show that this framework serves both as
an automatic evaluation tool for explainabil-
ity techniques and as a knowledge distillation
strategy that enhances model performance. Our
experiments demonstrate that Attention attribu-
tions and Value Zeroing methods consistently
improved results on three machine translation
tasks and four composition settings. The codes
will be available on Github !.

1 Introduction

In recent years, natural language processing (NLP)
generative models have advanced rapidly and found
applications in a wide range of domains (Chang
et al., 2024; Kalyan, 2024). These models are typ-
ically built on complex neural network architec-
tures, which are often described as "black boxes"
due to their opaque internal mechanisms (Dayhoff
and DelLeo, 2001; Burkart and Huber, 2021). To
address the challenges posed by these opaque mod-
els, the field of Explainable Al (XAI) aims to en-

"https://github.com/

hance the transparency and interpretability of ma-
chine learning systems. A key objective of XAI
approaches is to assess and quantify the importance
of input features or attributions on the final output
of these models (Arya et al., 2019; Vieira and Di-
giampietri, 2022; Saeed and Omlin, 2023). Several
XAI methods and algorithms have been developed
and applied in NLP models to assess the attribu-
tion of input tokens in the final output for different
tasks (Madsen et al., 2022b). However, determin-
ing which explainability method most accurately
reflects the underlying relationships learned by the
model remains an open challenge.

Since explanations are intended for human in-
terpretation, the validation of XAI methods has
been predominantly human-centered (Kim et al.,
2024). Nevertheless, some approaches for the au-
tomatic evaluation of XAI methods in other do-
mains have been proposed (Nauta et al., 2023).
For example, in image classification tasks, tech-
niques such as removing important features iden-
tified by XAI methods and retraining the model
based on the remaining features (Hooker et al.,
2019; Ribeiro et al., 2016a), as well as covering
important features (Chang et al., 2018), have been
explored. However, such approaches are less com-
mon in NLP (Madsen et al., 2022a), where human
evaluation remains the dominant method (Madsen
et al., 2022b; Leiter et al.). Furthermore, prior re-
search has primarily focused on interpreting the
attention mechanism (Moradi et al., 2021; Serrano
and Smith, 2019) rather than comparing different
explainability methods.

In the context of the evaluation of XAI meth-
ods, one proposed approach is the concept of simu-
latability (Doshi-Velez and Kim, 2017; Hase and
Bansal, 2020), which measures how well expla-
nations allow humans to predict the behavior of
a model after receiving its explanation. However,
human evaluation is costly and not easily scalable,
motivating the development of automated evalua-
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Figure 1: (a) Illustrates the overall design of our approach. The input sequence and the gold output (X,Y) are
given to a teacher model, and their attributions E are obtained. Then, a new untrained model is trained using the
same (X,Y, E) triples. In the testing phase, the model gets the (X, F) — Y. (b) Shows two places where we inject

the attributions obtained from XAI methods.

tion pipelines for XAl methods. Building on this
concept, we hypothesize that each explainability
method encodes unique information to account for
the feature attribution. We further conjecture that
this information can be leveraged to train a down-
stream model that benefits from exposure to the
explanations generated by the original model. In
other words, the better the explanation, the higher
the performance should be for a model exposed to
this information. This approach offers a systematic
framework to evaluate and compare different XAl
methods.

These questions become particularly pertinent
in the context of sequence-to-sequence (seq2seq)
architectures (Sutskever, 2014), which employ an
encoder-decoder framework and are central to neu-
ral machine translation, summarization, and dia-
logue systems. However, the many-to-many map-
pings and intricate encoding-decoding processes of
seq2seq models make them more challenging to in-
terpret than simpler classification models (Gurrapu
et al., 2023). Understanding the causal relation-
ships between source and target tokens is key to ex-
plaining the behavior of seq2seq models (Alvarez-
Melis and Jaakkola, 2017), and several approaches
aim to provide such insights.

In this work, we propose a new approach to eval-
uate XAl attribution methods in seq2seq models.

In our approach, we train a new-untrained model
by feeding source, target, and explanation attri-
bution maps between the two sequences. In the
test time, the model receives the source (i.e., in-
put) along with the attribution explanation, and
its performance in generating the correct output is
measured. We apply this approach to three Ma-
chine Translation tasks, using Opus-MT (Tiede-
mann and Thottingal, 2020) models. To gener-
ate attribution explanations, we utilize the Inseq
Python library (Sarti et al., 2023), which offers an
interface to common XAl attribution methods for
seq2seq models.

In summary, the main contributions of this work
are as follows.

* We propose a novel framework for evaluating
explainability methods in seq2seq models by
integrating attribution mapping information
directly into the encoder-decoder architecture.

* We conduct extensive experiments exploring
multiple strategies for incorporating expla-
nations within the Transformer architecture
and systematically compare their effects on
model performance across various MT lan-
guage pairs.

* We provide empirical evidence that XAI at-
tribution methods significantly influence the



performance of seq2seq models. Our findings
demonstrate that the quality and type of expla-
nations can enhance or degrade model output
relative to baseline models without attribution
guidance.

2 Related work

2.1 Explainable AI in Seq2seq Models

Seq2seq models, particularly those based on the
transformer architecture (Vaswani, 2017), have
revolutionized tasks such as machine translation
and text summarization by capturing complex de-
pendencies between input and output sequences
(Stahlberg, 2020; Shakil et al., 2024). Neverthe-
less, their encoder-decoder structure introduces sev-
eral challenges for explainability methods (Zhao
et al., 2024). For instance, Intermediate represen-
tations pose a challenge as the transformation of
inputs through multiple layers makes it difficult
to directly correlate input features with outputs
(Sutskever, 2014). Attention mechanisms are of-
ten used to explain decisions in transformer mod-
els, but their reliability as faithful explanations has
been questioned (Jain and Wallace, 2019; Madsen
et al., 2022a). Furthermore, evaluation metrics
used in standard explainability methods may not
fully capture the nuances of seq2seq models, neces-
sitating specialized evaluation frameworks (Hase
and Bansal, 2020; Nauta et al., 2023).

To address some of these challenges, recent re-
search has focused on developing explainability
methods designed specifically for seq2seq mod-
els (Burkart and Huber, 2021; Zhao et al., 2024).
In this context, Lakhotia et al. (2021) introduced
FiD-Ex, a framework that improves the faithful-
ness of explanations in seq2seq models by incorpo-
rating sentence markers and fine-tuning on struc-
tured datasets. Furthermore, Sarti et al. (2023)
developed Inseq, a Python library that provides
a comprehensive tool for analyzing and compar-
ing different explainability methods for generative
language models. The library offers a range of
gradient-based, perturbation-based, and internal
representation-based explainability techniques.

2.2 Evaluation of XAI methods

The evaluation of XAI methods has frequently
drawn on established benchmarks introduced by
works such Hooker et al. (2019), DeYoung et al.
(2019), and Nguyen (2018). A common thread
across these studies is the reliance on feature re-

moval or manipulation strategies, where input fea-
tures deemed important by a given XAI method
are systematically ablated or masked to assess the
impact on model performance. In our work, we
use the XAI attribution as weights to strengthen
(or diminish) the relation between input and output
sequences.

Moreover, Tourni and Wijaya (2023) introduced
an approach that leverages Layer-wise Relevance
Propagation (LRP) (Bach et al., 2015) explanations
to weight intermediate features according to their
relevance to the final output. However, the pri-
mary aim of their work was not to systematically
compare different explainability methods, and their
approach was limited to a single attribution tech-
nique. Li et al. (2020) introduced an approach by
approximating the Alignment Error Rate metric
through proxy models that utilize the most relevant
source words identified by explanation methods.

In this work, we evaluate XAl attribution meth-
ods for seq2seq models in the context of machine
translation tasks. Building on the concept of simu-
latability, our approach centers on injecting learned
explanation mappings from a large trained model
into a smaller one and training it from scratch.
Then we can assess the impact of the explanation
on translation performance. This framework en-
ables us to systematically investigate how different
attribution methods contribute to the transfer of
mapping knowledge by affecting the model’s per-
formance. Specifically, we first use a pre-trained
Opus-MT model (Tiedemann and Thottingal, 2020)
to generate explanations for src-target pairs. We
then train another model from scratch by provid-
ing the attribution weights to the encoder-decoder
attention mechanism. By measuring performance
changes, we evaluate how effectively these expla-
nations influence model behavior. To systemati-
cally compare different XAl techniques, we use
the Inseq library?, applying the eight explainability
methods described in the following subsection.

2.3 Al Explainability Methods

XAI attribution methods can be broadly cat-
egorized into three main types: gradient-
based, internal-based, and perturbation-based ap-
proaches (Sarti et al., 2023). In this work, we use a
multitude of XAI methods to generate input feature
attribution scores.

2https: //github.com/inseq-team/inseq
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Saliency: Attribution scores with the saliency
method (Simonyan et al., 2013) are calculated with
the following formula:

arg maxySe(z) — A|z|3 (1)

Where S.(z) is the score of class ¢ computed by
the last layer of a network for an input sentence
2 (Simonyan et al., 2013).

Input X Gradient: is calculated on the basis of
the saliency method. The key difference is that the
saliency map is multiplied with the input feature

values z>:

x x Saliency(x) 2)

Layer Gradient x Activation: For this method,
the same formula as for Input x Gradient is used,
except that it is targeted at a specific layer, specifi-
cally the last encoder layer.

Integrated Gradients: integrates the gradient at
dimension ¢ of an input x:

1 / A
></ OF (2 4+ a x (x x)da 3)
a=0 (51‘,

where F' is a neural network and x the input (Sun-
dararajan et al., 2017), i.e. the tokenized source
sentence in our case.

Gradient SHAP: Approximates Shapley values
through gradients. Specifically, the entire dataset
is used as the background by ‘approximating the
model with a linear function between each back-
ground data sample and the current input to be
explained, and we assume the input features are
independent’.

DeepLIFT: is a method that generates input
feature attribution scores based on a given refer-
ence (Shrikumar et al., 2019). The result expresses
the difference between the reference and the output.

if unit i is the target
unit of interest

0 otherwise

“4)

3h’ctps ://captum.ai/docs/attribution_
algorithms#input-x-gradient
4https ://github.com/shap/shap
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and zj; = wé-;rl’lfgl) (Ancona et al., 2017).

Attention: In this method, the values of the atten-
tion heads of the teacher models are used directly:

KT >
— |V (6)
Vi,
(Vaswani, 2017). As the teacher and learner models
have the same architecture in our experiments, the
attention values are aggregated from the layers and
heads of the teacher model.

Attention = softmax (

Value Zeroing: is calculated by determining the
distance between a changed output representation
~‘\]

~‘|j . . .
z;”. x;” is calculated by removing token j from

the input (Mohebbi et al., 2023):
Ci; = cosine(Z;?, &;) )

All the above-mentioned methods are adapted
to the sequence-to-sequence tasks. Therefore, at-
tributions are calculated for every input token with
respect to all output tokens.

3 Methodology

Inspired by forward simulation of XAI methods
(Hase and Bansal, 2020), we design a pipeline to
compare different explainability attribution map-
pings based on their impact on model’s perfor-
mance in downstream tasks. To analyze the for-
ward simulation of various XAI methods, we use
a teacher-student model (Fig. 1). In the first step,
we use the Inseq library to extract input-output at-
tributions using the eight explainability algorithms
specified in subsection 2.3. At this stage, the
teacher model receives a source-target language
pair (X,Y) as input, and the output of Inseq is a
set of attributions (X, Y) — F mapping the output
to the input tokens.

All of these attributions, except for the Attention-
based ones, are in the shape e € R7***! where
j is the input sequence length, k is the output se-
quence length, and [ is the hidden dimension of the
model. Gradient-based methods get the weight of
the gradient for each individual input feature in the
vector space. We aggregate these values along the
last dimension by averaging them, which results in
a final shape of e € R7**. With a slight difference,
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the Attention attributions are extracted in the shape
e € RI*Xkxnxh \where j and k are the same as be-
fore, n represents the number of layers (here, only
on the encoder side, n = 6), and h is the number of
attention heads (8 in this case). We then compute
the average along both of the last two axes to ob-
tain a final shape of ¢ € R7**. To handle negative
values and normalize the attribution matrices, we
apply the MinMaxScaler® as follows:

eij —min(e, ;)

/ K
0T max(e,) —min(e,) )

Then, the input to the student model is the triple
of (X, Y, E’). In the next step, we apply four differ-
ent operations on the attention A = QK product:

Add: Simply add attributions to attention
weights:

AW — AW L g )

Multiply: Elementwise multiplication with the
attention weights:
AW = AW o F (10)
Average: Take the average of attributions and
attention weights:

A _AVA+E

5 Y

Replace: Substitute the standard attention mech-
anism with attribution-guided attention:

Attention(Q, K, V, E/)

=f <Softmax (%) ,E/) VvV (12)

Where E' = {¢/, ¢, ..., €]} represents the ex-
plainability attributions based on the batch size
used for the model, and ), K, and V' are the query,
key, and value matrices of the transformer model. f
is one of the operators mentioned above in 1-3. The

last operation replaces E to completely substitute
QKT
Vi )

Now, we train the student Opus-MT model

(Tiedemann and Thottingal, 2020) from scratch
with two settings: 1) We apply one of the above-
mentioned operators to all layers of the encoder

5In our limited experiments with different normalizing
functions, MinMaxScaler normalization yielded better results.

block. 2) We apply the attributions to the cross-
attention mechanism between the encoder and de-
coder blocks. The source and target language pairs
remain the same as those used for obtaining the
attributions from the teacher model.

4 Experimental Results

4.1 Evaluation Datasets and Metrics

To evaluate the proposed pipeline, we train the
Opus-MT model (Tiedemann and Thottingal, 2020)
on three datasets. We select two datasets from the
same language family: German—English (de-en)
and French—English (fr-en). For the third dataset,
we choose Arabic—English (ar-en) due to its en-
coding and linguistic differences from the target
language. For de-en and fr-en, we use the WMT14
dataset (Bojar et al., 2014), and for ar-en, we use
the UN Parallel Corpus (Ziemski et al., 2016).

We select 200,000 sample pairs from each
dataset and preprocess them to suit our experimen-
tal setup. Given the large number of seq2seq mod-
els we train from scratch, we impose constraints
to efficiently manage the training process. Specifi-
cally, we limit both input and output sequences to
a maximum of 128 tokens. Additionally, we dis-
card samples with fewer than three tokens and filter
out pairs where the input-to-output length ratio (or
vice versa) exceeds 1.7. For the de-en and fr-en
datasets, we further exclude samples with an exces-
sively high normalized Levenshtein distance. Since
the validation and test sets of the WMT datasets
are relatively small, we select an additional 15,000
samples from their training sets (without overlap
with our training data). The UN Parallel Corpus
does not include separate validation and test sets, so
we extract 15, 000 samples from the main dataset
for this purpose.

Throughout our experiments, we use the imple-
mentation of BLEU score (Papineni et al., 2002) to
evaluate the student models.

4.2 Experimental Settings

We train the Opus-MT models® for 20 epochs and
apply an early stopping of three consecutive epochs
without improvement in validation loss. The model
follows an encoder-decoder architecture, with each
containing six layers with eight attention heads.
The model employs the Swish activation function,
as proposed by Ramachandran et al. (2017) (Ra-
machandran et al., 2017), which has been shown to

®https://huggingface.co/Helsinki-NLP



enhance training dynamics and convergence com-
pared to traditional activation functions like ReLU.
For training the models, we utilized 20 Nvidia
V100 GPUs.

4.3 Results and Discussion

In our analysis, we evaluate the proposed methods
through three key comparisons: a) we assess eight
XAI methods for their effectiveness in improving
translation quality when their attributions are in-
jected into the model. b) We compare the impact of
injecting attributions into the encoder self-attention
versus the cross-attention layer to understand their
influence on information flow and source-target
alignment. c) We examine the effect of applying
the attributions to half of the attention heads, ex-
ploring whether selective attribution merge shows
a different behavior of attribution maps. As a base-
line, we report the results of training the student
model without attribution injection on the three
datasets. Table 1 presents the BLEU scores for
training the model from scratch for each language
pair.

de-en fr-en
22.85 28.79

ar-en
16.85

Baseline

Table 1: baseline BLEU score results

Comparison of XAI Methods — This analysis
evaluates eight different explainability methods in
terms of their impact on translation quality. Table 2
shows the result of the injection of the attribution
score to the 8 attention heads of the encoder vs.
cross-attention part of the Opus-MT model trained
from scratch. Across all three language pairs, At-
tention and Value Zeroing tend to have the highest
values among the attribution methods. Results sug-
gest that these two mechanisms capture a strong
signal relevant to the translation process. Gradient-
based methods (IxG, LGxA, IG) generally yield
lower scores compared to the aforementioned meth-
ods. DeepLIFT attributions, except for the addi-
tion operation, decrease the result for de-en and
fr-en. French-English (fr-en) consistently exhibits
higher attribution scores than German-English (de-
en), while Arabic-English (ar-en) shows the highest
scores overall across most methods. Value-zeroing
and Attention attribution help to double the BLEU
score of this language pair. This finding may in-
dicate that the morphological and syntactic com-
plexity of the source language influences the attri-

butions and hence affects the result of the student
model.

German-English (de-en) Attribution scores are
generally the lowest among the three language
pairs. This is likely due to the high word reorder-
ing requirements in German, which may lead to
weaker local alignment between input tokens and
model outputs (Avramidis et al., 2019; Macke-
tanz et al., 2021). French-English (fr-en) Attri-
bution scores are higher than de-en, suggesting
that French and English have more direct word
alignment, which leads to stronger feature attri-
butions. This aligns with linguistic expectations
and empirical evidence (Legrand et al., 2016), as
French and English share more lexical and syntac-
tic similarities. Arabic-English (ar-en) This pair
exhibits the highest result of providing attribution
mappings, particularly for Attention (46.69-51.53)
and ValueZeroing (46.29-51.64). It is possible that
Arabic’s rich morphology and non-concatenative
structure likely cause the model to rely more heav-
ily on attention mechanisms, explaining the higher
increase of the result after being exposed to the
attribution maps across the board.

Overall, Attention and Value Zeroing tend to
contribute to the highest scores among attribution
methods across all the three language pairs. The
results suggest these two mechanisms capture a
strong signal relevant to the translation process.
Gradient-based methods (IxG, LGxA, IG) gener-
ally yield lower scores.

Encoder Self-Attention vs. Cross-Attention —
This analysis examines the impact of injecting attri-
bution scores into encoder self-attention layers ver-
sus cross-attention layers. In contrast to the encoder
self-attention, cross-attention bridges the source
and target languages by guiding the decoder’s fo-
cus on the encoder’s output. This mechanism is
more sensitive because it manages the alignment
between the source input and the target output. Any
modification here can directly influence how the
source information is integrated into the target gen-
eration process. For this reason, the initial hypoth-
esis was that injecting attributes—which describe
the relation between the source and target—into
the cross-attention layer might enhance the flow of
relevant information. However, the experimental
results tell a different story.

In most cases, injecting these attributes into
cross-attention either blocks or corrupts the flow
of information. For example, when we replace the



de-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 23.10 27.36  23.10 27.68 23.17 23.26 31.58 33.12
multiply 21.59 2798 21.85 27.75 21.65 21.73 35.08 35.01
average 23.18 26.65  23.18 26.51 22.90 22.99 30.47 32.27
replace 21.78 26.84 21.75 26.31 21.68 21.68 31.57 33.39
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 22.50 16.82 2249 1941 22.83 22.54 14.21 11.99
multiply 7.40 7.57 4.69 8.18 10.32 8.76 3.14 2.27
average 20.06 1942 20.01 19.72 20.63 22.87 14.89 14.96
replace 0.25 0.08 0.21 0.04 0.25 0.38 4.69 0.25
fr-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 29.04 36.99 29.04 35.52 30.14 29.04 44.16 46.97
multiply 29.29 38.54 2930 35.94 29.66 28.88 49.31 49.14
average 28.68 36.31 28.68 34.16 29.55 28.84 42.62 45.43
replace 28.15 36.15 28.15 34.42 29.26 28.26 42.77 45.35
fr-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 24.31 26.50 2432 23.78 26.53 24.59 24.50 22.25
multiply 14.69 3.66 14.68 6.29 7.49 15.86 5.82 1.62
average 22.12 23.50 2876 28.76 24.40 20.55 25.75 26.12
replace 0.77 0.06 0.77 0.01 0.70 1.60 5.89 1.63
ar-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 32.60 38.72 32.60 30.75 33.91 33.59 46.46 46.29
multiply 37.06 43.74  36.78 40.28 37.59 37.03 51.53 51.64
average 27.70 34.14  27.70  30.55 28.75 26.56 46.69 41.17
replace 36.76 434  36.69 40.17 37.75 36.81 49.77 51.48
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing
add 33.87 31.31 33.87 29.24 34.94 33.61 26.28 29.61
multiply 17.40 5.81 1741 12.52 22.63 17.41 6.17 1.72
average 18.47 10.32 1847 12.94 14.38 18.10 11.05 13.08
replace 1.81 0.25 1.85 0.01 0.97 1.78 9.56 5.48

Table 2: BLEU score comparison of various attribution methods across different composition strategies (add,
multiply, average, replace) to 8 heads applied to encoder and cross-attention modules in neural machine translation
models. Results are reported for three language pairs—German—English (de—en), French—English (fr—en), and
Arabic—English (ar—en)—with columns corresponding to attribution techniques (IxG, Saliency, LGxA, IG, GSHAP,
DeepLIFT, Attention, and ValueZeroing). Scores that beat the baseline model for each setting are boldfaced and the
highest BLEU score for each dataset are highlighted in green.

cross-attention weights entirely with the attribute
values (using the ‘replace’ operator), the perfor-
mance degrades drastically to the point where the
model essentially fails to learn anything. This is
likely due to reduced focus on the source input
within the cross-attention mechanism.

For the operators addition (+) and average,
scores better than multiplication (®) in the cross-
attention context. Adding the attributions seems to
augment the existing attention values in a benefi-
cial way, whereas multiplying them often leads to
an overly aggressive modification that harms the
model’s ability to propagate information from the
encoder. The addition might act as a mild correc-

tive signal that helps the decoder focus better, while
multiplication can excessively amplify or diminish
the weights, leading to a loss of critical alignment
information.

Effect of Attention Head Reduction (8 Heads
vs. 4 Heads) — In another setting, we applied the at-
tribution methods to only 4 heads out of the 8 heads
of the encoder attention. Figure 4 shows the result
of this comparison. This analysis investigates how
reducing the number of attention heads affects the
performance of the model when integrating attri-
bution scores. By selectively applying attributions
to only four heads (every other head), we assess
whether information flow can still be captured and



whether the model retains its translation quality.
The changes in BLEU scores between 8-head and
4-head settings are relatively minor. Some meth-
ods and operators show slight improvements. The
results suggest that a mix of normal attention mech-
anisms and attribution operators can help the model
to learn the mapping better and show the robustness
of the learned attribution mappings.

4.4 Attrbutions methods difference

While a linguistic and qualitative analysis of the
differences between each attribution method is
out of the scope of this work, we are interested
in quantifying the differences between these attri-
bution methods. The entropy of the attribution
matrices can tell us the disparity of the mapping
scores. We randomly selected 2000 samples for
each method for this matter. We compared the en-
tropy scores produced by all the methods using the
Wilcoxon signed-rank test. Only for methods IxG
and LGxA did we not find significantly different
entropy scores between the two methods, p > 0.5.
Moreover, from the visualization of the Figure 5 we
see that the higher scoring attributes (i.e., Saliency,
Attention, and Value Zeroing) have a lower average
entropy.

5 Conclusion

In this work, we investigated integrating XAl-
driven attributions into sequence-to-sequence NMT
models to assess their impact on enhancing tar-
get sequence generation, using this improve-
ment as a proxy to evaluate the quality of
the learned mappings. Our extensive analysis
across German—English, French—English, and Ara-
bic—English language pairs included comparing
eight XAl methods and various composition strate-
gies (i.e., addition, multiplication, averaging, and
replacement) for injecting attribution scores into
the Transformer’s attention mechanisms.

The effectiveness of attribution methods can be
summarized as follows: Attention-based and Value
Zeroing attribution techniques consistently yielded
the greatest improvements in BLEU scores. In con-
trast, gradient-based methods (e.g., IxG, LGxA,
DeepLift) resulted in lower performance gains and,
in some cases, decreased the results. Statistical
analysis of these attribution maps revealed that
higher-scoring attributes tend to have lower entropy,
indicating they convey more structured and orga-
nized information.

Injecting attribution scores into encoder self-
attention layers generally reinforced intra-pairs re-
lationships and improved translation quality. Con-
versely, modifications in the cross-attention lay-
ers do not benefit from the extra knowledge pro-
vided to this part of the Encoder-Decoder Trans-
formers architecture. Finally, reducing the number
of attention composition heads from eight to four
demonstrated that selective merging can refine the
attention mechanism, and, in some cases, further
enhance the performance.

Limitations

There are some limitations to this work worth
noting. First, we compared attribution informa-
tion across explainability methods, the majority of
which were gradient-based. This choice was pri-
marily due to the computational cost associated
with extracting attributions using other methods,
particularly perturbation-based approaches such as
LIME (Ribeiro et al., 2016b) and reAGent (Zhao
and Shan, 2024), which are resource-intensive to
obtain. Furthermore, some of these methods, pro-
vided by Inseq, generate (self-)attributions for the
decoder side of the seq2seq models. However, at
this stage, we limited our experiments to encoder
self-attention and cross-attention between the de-
coder and encoder.

In this work, we restricted our experiments to
a single evaluation metric—the BLEU score. In-
corporating additional metrics that capture seman-
tic similarity, such as METEOR and BERTScore,
along with human evaluations assessing fluency,
coherence, and relevance, could provide deeper
insights and a more comprehensive evaluation of
model performance. Future research should ex-
plore these alternative metrics to achieve a more
nuanced assessment of generated sequences by the
help of attributions.

Additionally, our focus was limited to ma-
chine translation tasks. Future work could extend
this evaluation framework to other sequence-to-
sequence models, including those applied in ques-
tion answering and text summarization.
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Figure 3: Result of attribution composition of cross-attention weights on the de-en (a), fr-en(b) and ar-en(c) datasets:
comparing 4-Head (striped bars) and 8-Head (plain bars) configurations.
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Figure 5: Violin plots showing the distribution of entropy values for attribution maps generated by different XAl
methods. Each violin represents the spread of entropy across all samples for a given method. Lower entropy values

indicate more focused attribution maps.
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