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Abstract

The study of the attribution of input features001
to the output of neural network models is an002
active area of research. While numerous ex-003
plainability techniques have been proposed to004
interpret these models, the systematic and au-005
tomated evaluation of these methods in the006
sequence-to-sequence models remains under-007
explored. This paper introduces a novel ap-008
proach for evaluating explainability methods009
in transformer-based seq2seq models, building010
upon forward simulation of XAI methods. Our011
method transfers learned knowledge in the form012
of attribution maps from a larger model to a013
smaller one and quantifies the resulting impact014
on performance. We evaluate eight explainabil-015
ity methods using the Inseq library to extract016
attribution scores linking input and output se-017
quences. This information is then injected into018
the attention mechanism of an encoder-decoder019
transformer for machine translation. Our re-020
sults show that this framework serves both as021
an automatic evaluation tool for explainabil-022
ity techniques and as a knowledge distillation023
strategy that enhances model performance. Our024
experiments demonstrate that Attention attribu-025
tions and Value Zeroing methods consistently026
improved results on three machine translation027
tasks and four composition settings. The codes028
will be available on Github 1.029

1 Introduction030

In recent years, natural language processing (NLP)031

generative models have advanced rapidly and found032

applications in a wide range of domains (Chang033

et al., 2024; Kalyan, 2024). These models are typ-034

ically built on complex neural network architec-035

tures, which are often described as "black boxes"036

due to their opaque internal mechanisms (Dayhoff037

and DeLeo, 2001; Burkart and Huber, 2021). To038

address the challenges posed by these opaque mod-039

els, the field of Explainable AI (XAI) aims to en-040

1https://github.com/

hance the transparency and interpretability of ma- 041

chine learning systems. A key objective of XAI 042

approaches is to assess and quantify the importance 043

of input features or attributions on the final output 044

of these models (Arya et al., 2019; Vieira and Di- 045

giampietri, 2022; Saeed and Omlin, 2023). Several 046

XAI methods and algorithms have been developed 047

and applied in NLP models to assess the attribu- 048

tion of input tokens in the final output for different 049

tasks (Madsen et al., 2022b). However, determin- 050

ing which explainability method most accurately 051

reflects the underlying relationships learned by the 052

model remains an open challenge. 053

Since explanations are intended for human in- 054

terpretation, the validation of XAI methods has 055

been predominantly human-centered (Kim et al., 056

2024). Nevertheless, some approaches for the au- 057

tomatic evaluation of XAI methods in other do- 058

mains have been proposed (Nauta et al., 2023). 059

For example, in image classification tasks, tech- 060

niques such as removing important features iden- 061

tified by XAI methods and retraining the model 062

based on the remaining features (Hooker et al., 063

2019; Ribeiro et al., 2016a), as well as covering 064

important features (Chang et al., 2018), have been 065

explored. However, such approaches are less com- 066

mon in NLP (Madsen et al., 2022a), where human 067

evaluation remains the dominant method (Madsen 068

et al., 2022b; Leiter et al.). Furthermore, prior re- 069

search has primarily focused on interpreting the 070

attention mechanism (Moradi et al., 2021; Serrano 071

and Smith, 2019) rather than comparing different 072

explainability methods. 073

In the context of the evaluation of XAI meth- 074

ods, one proposed approach is the concept of simu- 075

latability (Doshi-Velez and Kim, 2017; Hase and 076

Bansal, 2020), which measures how well expla- 077

nations allow humans to predict the behavior of 078

a model after receiving its explanation. However, 079

human evaluation is costly and not easily scalable, 080

motivating the development of automated evalua- 081
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Figure 1: (a) Illustrates the overall design of our approach. The input sequence and the gold output (X,Y ) are
given to a teacher model, and their attributions E are obtained. Then, a new untrained model is trained using the
same (X,Y,E) triples. In the testing phase, the model gets the (X,E) → Ŷ . (b) Shows two places where we inject
the attributions obtained from XAI methods.

tion pipelines for XAI methods. Building on this082

concept, we hypothesize that each explainability083

method encodes unique information to account for084

the feature attribution. We further conjecture that085

this information can be leveraged to train a down-086

stream model that benefits from exposure to the087

explanations generated by the original model. In088

other words, the better the explanation, the higher089

the performance should be for a model exposed to090

this information. This approach offers a systematic091

framework to evaluate and compare different XAI092

methods.093

These questions become particularly pertinent094

in the context of sequence-to-sequence (seq2seq)095

architectures (Sutskever, 2014), which employ an096

encoder-decoder framework and are central to neu-097

ral machine translation, summarization, and dia-098

logue systems. However, the many-to-many map-099

pings and intricate encoding-decoding processes of100

seq2seq models make them more challenging to in-101

terpret than simpler classification models (Gurrapu102

et al., 2023). Understanding the causal relation-103

ships between source and target tokens is key to ex-104

plaining the behavior of seq2seq models (Alvarez-105

Melis and Jaakkola, 2017), and several approaches106

aim to provide such insights.107

In this work, we propose a new approach to eval-108

uate XAI attribution methods in seq2seq models.109

In our approach, we train a new-untrained model 110

by feeding source, target, and explanation attri- 111

bution maps between the two sequences. In the 112

test time, the model receives the source (i.e., in- 113

put) along with the attribution explanation, and 114

its performance in generating the correct output is 115

measured. We apply this approach to three Ma- 116

chine Translation tasks, using Opus-MT (Tiede- 117

mann and Thottingal, 2020) models. To gener- 118

ate attribution explanations, we utilize the Inseq 119

Python library (Sarti et al., 2023), which offers an 120

interface to common XAI attribution methods for 121

seq2seq models. 122

In summary, the main contributions of this work 123

are as follows. 124

• We propose a novel framework for evaluating 125

explainability methods in seq2seq models by 126

integrating attribution mapping information 127

directly into the encoder-decoder architecture. 128

• We conduct extensive experiments exploring 129

multiple strategies for incorporating expla- 130

nations within the Transformer architecture 131

and systematically compare their effects on 132

model performance across various MT lan- 133

guage pairs. 134

• We provide empirical evidence that XAI at- 135

tribution methods significantly influence the 136
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performance of seq2seq models. Our findings137

demonstrate that the quality and type of expla-138

nations can enhance or degrade model output139

relative to baseline models without attribution140

guidance.141

2 Related work142

2.1 Explainable AI in Seq2seq Models143

Seq2seq models, particularly those based on the144

transformer architecture (Vaswani, 2017), have145

revolutionized tasks such as machine translation146

and text summarization by capturing complex de-147

pendencies between input and output sequences148

(Stahlberg, 2020; Shakil et al., 2024). Neverthe-149

less, their encoder-decoder structure introduces sev-150

eral challenges for explainability methods (Zhao151

et al., 2024). For instance, Intermediate represen-152

tations pose a challenge as the transformation of153

inputs through multiple layers makes it difficult154

to directly correlate input features with outputs155

(Sutskever, 2014). Attention mechanisms are of-156

ten used to explain decisions in transformer mod-157

els, but their reliability as faithful explanations has158

been questioned (Jain and Wallace, 2019; Madsen159

et al., 2022a). Furthermore, evaluation metrics160

used in standard explainability methods may not161

fully capture the nuances of seq2seq models, neces-162

sitating specialized evaluation frameworks (Hase163

and Bansal, 2020; Nauta et al., 2023).164

To address some of these challenges, recent re-165

search has focused on developing explainability166

methods designed specifically for seq2seq mod-167

els (Burkart and Huber, 2021; Zhao et al., 2024).168

In this context, Lakhotia et al. (2021) introduced169

FiD-Ex, a framework that improves the faithful-170

ness of explanations in seq2seq models by incorpo-171

rating sentence markers and fine-tuning on struc-172

tured datasets. Furthermore, Sarti et al. (2023)173

developed Inseq, a Python library that provides174

a comprehensive tool for analyzing and compar-175

ing different explainability methods for generative176

language models. The library offers a range of177

gradient-based, perturbation-based, and internal178

representation-based explainability techniques.179

2.2 Evaluation of XAI methods180

The evaluation of XAI methods has frequently181

drawn on established benchmarks introduced by182

works such Hooker et al. (2019), DeYoung et al.183

(2019), and Nguyen (2018). A common thread184

across these studies is the reliance on feature re-185

moval or manipulation strategies, where input fea- 186

tures deemed important by a given XAI method 187

are systematically ablated or masked to assess the 188

impact on model performance. In our work, we 189

use the XAI attribution as weights to strengthen 190

(or diminish) the relation between input and output 191

sequences. 192

Moreover, Tourni and Wijaya (2023) introduced 193

an approach that leverages Layer-wise Relevance 194

Propagation (LRP) (Bach et al., 2015) explanations 195

to weight intermediate features according to their 196

relevance to the final output. However, the pri- 197

mary aim of their work was not to systematically 198

compare different explainability methods, and their 199

approach was limited to a single attribution tech- 200

nique. Li et al. (2020) introduced an approach by 201

approximating the Alignment Error Rate metric 202

through proxy models that utilize the most relevant 203

source words identified by explanation methods. 204

In this work, we evaluate XAI attribution meth- 205

ods for seq2seq models in the context of machine 206

translation tasks. Building on the concept of simu- 207

latability, our approach centers on injecting learned 208

explanation mappings from a large trained model 209

into a smaller one and training it from scratch. 210

Then we can assess the impact of the explanation 211

on translation performance. This framework en- 212

ables us to systematically investigate how different 213

attribution methods contribute to the transfer of 214

mapping knowledge by affecting the model’s per- 215

formance. Specifically, we first use a pre-trained 216

Opus-MT model (Tiedemann and Thottingal, 2020) 217

to generate explanations for src-target pairs. We 218

then train another model from scratch by provid- 219

ing the attribution weights to the encoder-decoder 220

attention mechanism. By measuring performance 221

changes, we evaluate how effectively these expla- 222

nations influence model behavior. To systemati- 223

cally compare different XAI techniques, we use 224

the Inseq library2, applying the eight explainability 225

methods described in the following subsection. 226

2.3 AI Explainability Methods 227

XAI attribution methods can be broadly cat- 228

egorized into three main types: gradient- 229

based, internal-based, and perturbation-based ap- 230

proaches (Sarti et al., 2023). In this work, we use a 231

multitude of XAI methods to generate input feature 232

attribution scores. 233

2https://github.com/inseq-team/inseq
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Saliency: Attribution scores with the saliency234

method (Simonyan et al., 2013) are calculated with235

the following formula:236

arg maxISc(x)− λ||x||22 (1)237

Where Sc(x) is the score of class c computed by238

the last layer of a network for an input sentence239

x (Simonyan et al., 2013).240

Input X Gradient: is calculated on the basis of241

the saliency method. The key difference is that the242

saliency map is multiplied with the input feature243

values x3:244

x× Saliency(x) (2)245

Layer Gradient × Activation: For this method,246

the same formula as for Input × Gradient is used,247

except that it is targeted at a specific layer, specifi-248

cally the last encoder layer.249

Integrated Gradients: integrates the gradient at250

dimension i of an input x:251

IGi(x) = (xi − x′i)252

×
∫ 1

α=0

δF (x′ + α× (x− x′)

δxi
dα (3)253

where F is a neural network and x the input (Sun-254

dararajan et al., 2017), i.e. the tokenized source255

sentence in our case.256

Gradient SHAP: Approximates Shapley values257

through gradients. Specifically, the entire dataset258

is used as the background by ‘approximating the259

model with a linear function between each back-260

ground data sample and the current input to be261

explained, and we assume the input features are262

independent’4.263

DeepLIFT: is a method that generates input264

feature attribution scores based on a given refer-265

ence (Shrikumar et al., 2019). The result expresses266

the difference between the reference and the output.267

r
(L)
i =


Si(x)− Si(x) if unit i is the target

unit of interest
0 otherwise

(4)

268

3https://captum.ai/docs/attribution_
algorithms#input-x-gradient

4https://github.com/shap/shap

with 269

r
(l)
i =

∑
j

zji − zji∑
i′ zji −

∑
i′ zji

rl+1
j (5) 270

and zji = wl+1,l
ji x

(l)
i (Ancona et al., 2017). 271

Attention: In this method, the values of the atten- 272

tion heads of the teacher models are used directly: 273

Attention = softmax

(
QKT

√
dk

)
V (6) 274

(Vaswani, 2017). As the teacher and learner models 275

have the same architecture in our experiments, the 276

attention values are aggregated from the layers and 277

heads of the teacher model. 278

Value Zeroing: is calculated by determining the 279

distance between a changed output representation 280

x̃¬ji . x̃¬ji is calculated by removing token j from 281

the input (Mohebbi et al., 2023): 282

Ci,j = cosine(x̃¬ji , x̃i) (7) 283

All the above-mentioned methods are adapted 284

to the sequence-to-sequence tasks. Therefore, at- 285

tributions are calculated for every input token with 286

respect to all output tokens. 287

3 Methodology 288

Inspired by forward simulation of XAI methods 289

(Hase and Bansal, 2020), we design a pipeline to 290

compare different explainability attribution map- 291

pings based on their impact on model’s perfor- 292

mance in downstream tasks. To analyze the for- 293

ward simulation of various XAI methods, we use 294

a teacher-student model (Fig. 1). In the first step, 295

we use the Inseq library to extract input-output at- 296

tributions using the eight explainability algorithms 297

specified in subsection 2.3. At this stage, the 298

teacher model receives a source-target language 299

pair (X,Y ) as input, and the output of Inseq is a 300

set of attributions (X,Y ) → E mapping the output 301

to the input tokens. 302

All of these attributions, except for the Attention- 303

based ones, are in the shape e ∈ Rj×k×l, where 304

j is the input sequence length, k is the output se- 305

quence length, and l is the hidden dimension of the 306

model. Gradient-based methods get the weight of 307

the gradient for each individual input feature in the 308

vector space. We aggregate these values along the 309

last dimension by averaging them, which results in 310

a final shape of e ∈ Rj×k. With a slight difference, 311

4
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the Attention attributions are extracted in the shape312

e ∈ Rj×k×n×h, where j and k are the same as be-313

fore, n represents the number of layers (here, only314

on the encoder side, n = 6), and h is the number of315

attention heads (8 in this case). We then compute316

the average along both of the last two axes to ob-317

tain a final shape of e ∈ Rj×k. To handle negative318

values and normalize the attribution matrices, we319

apply the MinMaxScaler5 as follows:320

e′i,j =
ei,j −min

i
(e:,j)

max
i

(e:,j)−min
i
(e:,j)

(8)321

Then, the input to the student model is the triple322

of (X,Y,E′). In the next step, we apply four differ-323

ent operations on the attention A = QKT product:324

Add: Simply add attributions to attention325

weights:326

Ã(h) = A(h) +E′ (9)327

Multiply: Elementwise multiplication with the328

attention weights:329

Ã(h) = A(h) ⊙E′ (10)330

Average: Take the average of attributions and331

attention weights:332

Ã(h) =
A(h) +E′

2
(11)333

Replace: Substitute the standard attention mech-334

anism with attribution-guided attention:335

˜Attention(Q,K, V,E′)336

= f

(
softmax

(
QK⊤
√
dk

)
,E′

)
V (12)337

Where E′ = {e′1, e′2, . . . , e′b} represents the ex-338

plainability attributions based on the batch size339

used for the model, and Q, K, and V are the query,340

key, and value matrices of the transformer model. f341

is one of the operators mentioned above in 1-3. The342

last operation replaces E′ to completely substitute343
QK⊤
√
dk

.344

Now, we train the student Opus-MT model345

(Tiedemann and Thottingal, 2020) from scratch346

with two settings: 1) We apply one of the above-347

mentioned operators to all layers of the encoder348

5In our limited experiments with different normalizing
functions, MinMaxScaler normalization yielded better results.

block. 2) We apply the attributions to the cross- 349

attention mechanism between the encoder and de- 350

coder blocks. The source and target language pairs 351

remain the same as those used for obtaining the 352

attributions from the teacher model. 353

4 Experimental Results 354

4.1 Evaluation Datasets and Metrics 355

To evaluate the proposed pipeline, we train the 356

Opus-MT model (Tiedemann and Thottingal, 2020) 357

on three datasets. We select two datasets from the 358

same language family: German→English (de-en) 359

and French→English (fr-en). For the third dataset, 360

we choose Arabic→English (ar-en) due to its en- 361

coding and linguistic differences from the target 362

language. For de-en and fr-en, we use the WMT14 363

dataset (Bojar et al., 2014), and for ar-en, we use 364

the UN Parallel Corpus (Ziemski et al., 2016). 365

We select 200, 000 sample pairs from each 366

dataset and preprocess them to suit our experimen- 367

tal setup. Given the large number of seq2seq mod- 368

els we train from scratch, we impose constraints 369

to efficiently manage the training process. Specifi- 370

cally, we limit both input and output sequences to 371

a maximum of 128 tokens. Additionally, we dis- 372

card samples with fewer than three tokens and filter 373

out pairs where the input-to-output length ratio (or 374

vice versa) exceeds 1.7. For the de-en and fr-en 375

datasets, we further exclude samples with an exces- 376

sively high normalized Levenshtein distance. Since 377

the validation and test sets of the WMT datasets 378

are relatively small, we select an additional 15,000 379

samples from their training sets (without overlap 380

with our training data). The UN Parallel Corpus 381

does not include separate validation and test sets, so 382

we extract 15, 000 samples from the main dataset 383

for this purpose. 384

Throughout our experiments, we use the imple- 385

mentation of BLEU score (Papineni et al., 2002) to 386

evaluate the student models. 387

4.2 Experimental Settings 388

We train the Opus-MT models6 for 20 epochs and 389

apply an early stopping of three consecutive epochs 390

without improvement in validation loss. The model 391

follows an encoder-decoder architecture, with each 392

containing six layers with eight attention heads. 393

The model employs the Swish activation function, 394

as proposed by Ramachandran et al. (2017) (Ra- 395

machandran et al., 2017), which has been shown to 396

6https://huggingface.co/Helsinki-NLP
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enhance training dynamics and convergence com-397

pared to traditional activation functions like ReLU.398

For training the models, we utilized 20 Nvidia399

V100 GPUs.400

4.3 Results and Discussion401

In our analysis, we evaluate the proposed methods402

through three key comparisons: a) we assess eight403

XAI methods for their effectiveness in improving404

translation quality when their attributions are in-405

jected into the model. b) We compare the impact of406

injecting attributions into the encoder self-attention407

versus the cross-attention layer to understand their408

influence on information flow and source-target409

alignment. c) We examine the effect of applying410

the attributions to half of the attention heads, ex-411

ploring whether selective attribution merge shows412

a different behavior of attribution maps. As a base-413

line, we report the results of training the student414

model without attribution injection on the three415

datasets. Table 1 presents the BLEU scores for416

training the model from scratch for each language417

pair.418

de-en fr-en ar-en
Baseline 22.85 28.79 16.85

Table 1: baseline BLEU score results

Comparison of XAI Methods – This analysis419

evaluates eight different explainability methods in420

terms of their impact on translation quality. Table 2421

shows the result of the injection of the attribution422

score to the 8 attention heads of the encoder vs.423

cross-attention part of the Opus-MT model trained424

from scratch. Across all three language pairs, At-425

tention and Value Zeroing tend to have the highest426

values among the attribution methods. Results sug-427

gest that these two mechanisms capture a strong428

signal relevant to the translation process. Gradient-429

based methods (IxG, LGxA, IG) generally yield430

lower scores compared to the aforementioned meth-431

ods. DeepLIFT attributions, except for the addi-432

tion operation, decrease the result for de-en and433

fr-en. French-English (fr-en) consistently exhibits434

higher attribution scores than German-English (de-435

en), while Arabic-English (ar-en) shows the highest436

scores overall across most methods. Value-zeroing437

and Attention attribution help to double the BLEU438

score of this language pair. This finding may in-439

dicate that the morphological and syntactic com-440

plexity of the source language influences the attri-441

butions and hence affects the result of the student 442

model. 443

German-English (de-en) Attribution scores are 444

generally the lowest among the three language 445

pairs. This is likely due to the high word reorder- 446

ing requirements in German, which may lead to 447

weaker local alignment between input tokens and 448

model outputs (Avramidis et al., 2019; Macke- 449

tanz et al., 2021). French-English (fr-en) Attri- 450

bution scores are higher than de-en, suggesting 451

that French and English have more direct word 452

alignment, which leads to stronger feature attri- 453

butions. This aligns with linguistic expectations 454

and empirical evidence (Legrand et al., 2016), as 455

French and English share more lexical and syntac- 456

tic similarities. Arabic-English (ar-en) This pair 457

exhibits the highest result of providing attribution 458

mappings, particularly for Attention (46.69–51.53) 459

and ValueZeroing (46.29–51.64). It is possible that 460

Arabic’s rich morphology and non-concatenative 461

structure likely cause the model to rely more heav- 462

ily on attention mechanisms, explaining the higher 463

increase of the result after being exposed to the 464

attribution maps across the board. 465

Overall, Attention and Value Zeroing tend to 466

contribute to the highest scores among attribution 467

methods across all the three language pairs. The 468

results suggest these two mechanisms capture a 469

strong signal relevant to the translation process. 470

Gradient-based methods (IxG, LGxA, IG) gener- 471

ally yield lower scores. 472

Encoder Self-Attention vs. Cross-Attention – 473

This analysis examines the impact of injecting attri- 474

bution scores into encoder self-attention layers ver- 475

sus cross-attention layers. In contrast to the encoder 476

self-attention, cross-attention bridges the source 477

and target languages by guiding the decoder’s fo- 478

cus on the encoder’s output. This mechanism is 479

more sensitive because it manages the alignment 480

between the source input and the target output. Any 481

modification here can directly influence how the 482

source information is integrated into the target gen- 483

eration process. For this reason, the initial hypoth- 484

esis was that injecting attributes—which describe 485

the relation between the source and target—into 486

the cross-attention layer might enhance the flow of 487

relevant information. However, the experimental 488

results tell a different story. 489

In most cases, injecting these attributes into 490

cross-attention either blocks or corrupts the flow 491

of information. For example, when we replace the 492
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de-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 23.10 27.36 23.10 27.68 23.17 23.26 31.58 33.12
multiply 21.59 27.98 21.85 27.75 21.65 21.73 35.08 35.01
average 23.18 26.65 23.18 26.51 22.90 22.99 30.47 32.27
replace 21.78 26.84 21.75 26.31 21.68 21.68 31.57 33.39
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 22.50 16.82 22.49 19.41 22.83 22.54 14.21 11.99
multiply 7.40 7.57 4.69 8.18 10.32 8.76 3.14 2.27
average 20.06 19.42 20.01 19.72 20.63 22.87 14.89 14.96
replace 0.25 0.08 0.21 0.04 0.25 0.38 4.69 0.25

fr-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 29.04 36.99 29.04 35.52 30.14 29.04 44.16 46.97
multiply 29.29 38.54 29.30 35.94 29.66 28.88 49.31 49.14
average 28.68 36.31 28.68 34.16 29.55 28.84 42.62 45.43
replace 28.15 36.15 28.15 34.42 29.26 28.26 42.77 45.35
fr-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 24.31 26.50 24.32 23.78 26.53 24.59 24.50 22.25
multiply 14.69 3.66 14.68 6.29 7.49 15.86 5.82 1.62
average 22.12 23.50 28.76 28.76 24.40 20.55 25.75 26.12
replace 0.77 0.06 0.77 0.01 0.70 1.60 5.89 1.63

ar-en Encoder IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 32.60 38.72 32.60 30.75 33.91 33.59 46.46 46.29
multiply 37.06 43.74 36.78 40.28 37.59 37.03 51.53 51.64
average 27.70 34.14 27.70 30.55 28.75 26.56 46.69 41.17
replace 36.76 43.4 36.69 40.17 37.75 36.81 49.77 51.48
de-en CrossAttention IxG Saliency LGxA IG GSHAP DeepLIFT Attention ValueZeroing

add 33.87 31.31 33.87 29.24 34.94 33.61 26.28 29.61
multiply 17.40 5.81 17.41 12.52 22.63 17.41 6.17 1.72
average 18.47 10.32 18.47 12.94 14.38 18.10 11.05 13.08
replace 1.81 0.25 1.85 0.01 0.97 1.78 9.56 5.48

Table 2: BLEU score comparison of various attribution methods across different composition strategies (add,
multiply, average, replace) to 8 heads applied to encoder and cross-attention modules in neural machine translation
models. Results are reported for three language pairs—German–English (de–en), French–English (fr–en), and
Arabic–English (ar–en)—with columns corresponding to attribution techniques (IxG, Saliency, LGxA, IG, GSHAP,
DeepLIFT, Attention, and ValueZeroing). Scores that beat the baseline model for each setting are boldfaced and the
highest BLEU score for each dataset are highlighted in green.

cross-attention weights entirely with the attribute493

values (using the ‘replace’ operator), the perfor-494

mance degrades drastically to the point where the495

model essentially fails to learn anything. This is496

likely due to reduced focus on the source input497

within the cross-attention mechanism.498

For the operators addition (+) and average,499

scores better than multiplication (⊙) in the cross-500

attention context. Adding the attributions seems to501

augment the existing attention values in a benefi-502

cial way, whereas multiplying them often leads to503

an overly aggressive modification that harms the504

model’s ability to propagate information from the505

encoder. The addition might act as a mild correc-506

tive signal that helps the decoder focus better, while 507

multiplication can excessively amplify or diminish 508

the weights, leading to a loss of critical alignment 509

information. 510

Effect of Attention Head Reduction (8 Heads 511

vs. 4 Heads) – In another setting, we applied the at- 512

tribution methods to only 4 heads out of the 8 heads 513

of the encoder attention. Figure 4 shows the result 514

of this comparison. This analysis investigates how 515

reducing the number of attention heads affects the 516

performance of the model when integrating attri- 517

bution scores. By selectively applying attributions 518

to only four heads (every other head), we assess 519

whether information flow can still be captured and 520

7



whether the model retains its translation quality.521

The changes in BLEU scores between 8-head and522

4-head settings are relatively minor. Some meth-523

ods and operators show slight improvements. The524

results suggest that a mix of normal attention mech-525

anisms and attribution operators can help the model526

to learn the mapping better and show the robustness527

of the learned attribution mappings.528

4.4 Attrbutions methods difference529

While a linguistic and qualitative analysis of the530

differences between each attribution method is531

out of the scope of this work, we are interested532

in quantifying the differences between these attri-533

bution methods. The entropy of the attribution534

matrices can tell us the disparity of the mapping535

scores. We randomly selected 2000 samples for536

each method for this matter. We compared the en-537

tropy scores produced by all the methods using the538

Wilcoxon signed-rank test. Only for methods IxG539

and LGxA did we not find significantly different540

entropy scores between the two methods, p > 0.5.541

Moreover, from the visualization of the Figure 5 we542

see that the higher scoring attributes (i.e., Saliency,543

Attention, and Value Zeroing) have a lower average544

entropy.545

5 Conclusion546

In this work, we investigated integrating XAI-547

driven attributions into sequence-to-sequence NMT548

models to assess their impact on enhancing tar-549

get sequence generation, using this improve-550

ment as a proxy to evaluate the quality of551

the learned mappings. Our extensive analysis552

across German–English, French–English, and Ara-553

bic–English language pairs included comparing554

eight XAI methods and various composition strate-555

gies (i.e., addition, multiplication, averaging, and556

replacement) for injecting attribution scores into557

the Transformer’s attention mechanisms.558

The effectiveness of attribution methods can be559

summarized as follows: Attention-based and Value560

Zeroing attribution techniques consistently yielded561

the greatest improvements in BLEU scores. In con-562

trast, gradient-based methods (e.g., IxG, LGxA,563

DeepLift) resulted in lower performance gains and,564

in some cases, decreased the results. Statistical565

analysis of these attribution maps revealed that566

higher-scoring attributes tend to have lower entropy,567

indicating they convey more structured and orga-568

nized information.569

Injecting attribution scores into encoder self- 570

attention layers generally reinforced intra-pairs re- 571

lationships and improved translation quality. Con- 572

versely, modifications in the cross-attention lay- 573

ers do not benefit from the extra knowledge pro- 574

vided to this part of the Encoder-Decoder Trans- 575

formers architecture. Finally, reducing the number 576

of attention composition heads from eight to four 577

demonstrated that selective merging can refine the 578

attention mechanism, and, in some cases, further 579

enhance the performance. 580

Limitations 581

There are some limitations to this work worth 582

noting. First, we compared attribution informa- 583

tion across explainability methods, the majority of 584

which were gradient-based. This choice was pri- 585

marily due to the computational cost associated 586

with extracting attributions using other methods, 587

particularly perturbation-based approaches such as 588

LIME (Ribeiro et al., 2016b) and reAGent (Zhao 589

and Shan, 2024), which are resource-intensive to 590

obtain. Furthermore, some of these methods, pro- 591

vided by Inseq, generate (self-)attributions for the 592

decoder side of the seq2seq models. However, at 593

this stage, we limited our experiments to encoder 594

self-attention and cross-attention between the de- 595

coder and encoder. 596

In this work, we restricted our experiments to 597

a single evaluation metric—the BLEU score. In- 598

corporating additional metrics that capture seman- 599

tic similarity, such as METEOR and BERTScore, 600

along with human evaluations assessing fluency, 601

coherence, and relevance, could provide deeper 602

insights and a more comprehensive evaluation of 603

model performance. Future research should ex- 604

plore these alternative metrics to achieve a more 605

nuanced assessment of generated sequences by the 606

help of attributions. 607

Additionally, our focus was limited to ma- 608

chine translation tasks. Future work could extend 609

this evaluation framework to other sequence-to- 610

sequence models, including those applied in ques- 611

tion answering and text summarization. 612
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(b) fr-en
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(c) ar-en

Figure 5: Violin plots showing the distribution of entropy values for attribution maps generated by different XAI
methods. Each violin represents the spread of entropy across all samples for a given method. Lower entropy values
indicate more focused attribution maps.
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