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Abstract001

Generative large language models (LLMs) have002
achieved remarkable success in various indus-003
trial applications, owing to their promising In-004
Context Learning capabilities. However, the005
issue of long context in complex tasks poses006
a significant barrier to their wider adoption,007
manifested in two main aspects: (i) The ex-008
cessively long context leads to high costs and009
inference delays. (ii) A substantial amount of010
task-irrelevant information introduced by long011
contexts exacerbates the "lost in the middle"012
problem. Existing methods compress context013
by removing redundant tokens using metrics014
such as self-information or perplexity (PPL),015
which is inconsistent with the objective of re-016
taining the most important tokens when con-017
ditioning on a given query. In this study, we018
introduce information bottleneck theory (IB) to019
model the problem, offering a novel perspective020
that thoroughly addresses the essential prop-021
erties required for context compression. Ad-022
ditionally, we propose a cross-attention-based023
approach to approximate mutual information in024
IB, which can be flexibly replaced with suitable025
alternatives in different scenarios. Extensive026
experiments on four datasets demonstrate that027
our method achieves a 25% increase in com-028
pression rate compared to the state-of-the-art,029
while maintaining question answering perfor-030
mance. In particular, the context compressed031
by our method even outperform the full context032
in some cases.033

1 Introduction034

In recent years, LLMs (Achiam et al., 2023) have035

been widely applied to various tasks in multiple do-036

mains, such as text classification (Sun et al., 2023),037

question answering systems (Wang et al., 2023a),038

and etc.. As one of the most promising capabil-039

ities of these models, In-Context Learning (ICL)040

(Brown, 2020) plays a critical role by enabling the041

effective use of large language models without re-042

quiring additional training. However, in complex043

Figure 1: Comparison of our method and baseline ap-
proaches for preserving key information in model re-
sponses. Our method effectively retains critical context
("Thief"), ensuring accurate interpretation, while base-
line methods fail to do so.

tasks, the need to guide the model’s adaptation to 044

the task or provide supplementary knowledge of- 045

ten results in excessively long context, leading to 046

high computational costs, increased inference la- 047

tency, and the "lost in the middle" problem (Tay 048

et al., 2020). Therefore, how to compress context 049

while maintaining model performance has become 050

a widely studied topic. 051

In the literature, Liu et al. (2023) utilize lan- 052

guage models to compress context in a generative 053

manner, while other methods select the most im- 054

portant lexical units (tokens, words, or sentences) 055

from the original context in an extractive man- 056

ner. Specifically, the generative-based compression 057

methods typically construct compressors by fine- 058

tuning models to generate summaries of the origi- 059

nal text, but they are often constrained by inherent 060

limitations of language models, such as restricted 061

context windows, hallucination phenomena, and 062

the "lost in the middle" problem. The extractive- 063

based compression methods is to design appropri- 064

ate metrics (e.g., self-information (Shannon, 1951), 065
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perplexity (PPL), self-attention) to assign impor-066

tance scores to each unit, thereby identifying and067

removing less salient units. However, the metrics068

used in previous works are not aligned with the op-069

timization goals of the compressor, which may lead070

to suboptimal results. For example, these metrics071

often place excessive emphasis on nouns, while072

overlooking other crucial elements like preposi-073

tional phrases, quantifiers or verbs, which may074

have lower information entropy. However, ne-075

glecting such information can result in highly frag-076

mented compression that is difficult to understand,077

ultimately leading to incorrect model outputs, as078

shown in Figure 2.079

In this paper, we formulate this problem from an080

Information Bottleneck (IB) (Tishby et al., 2000;081

Fischer, 2020) perspective, deriving mutual infor-082

mation as our metric. We also provide a math-083

ematical proof that using mutual information is084

equivalent to maximizing the likelihood of the com-085

pressed output, which is precisely the compressor’s086

optimization objective. In summary, our contribu-087

tions are twofold:088

• Applying Information Bottleneck Theory to089

Context Compression: We introduce a novel090

perspective by utilizing Information Bottle-091

neck theory to analyze the properties of con-092

text compression. This results in the mutual093

information metric, and we mathematically094

prove that it is equivalent to maximizing the095

likelihood of the compressed generation.096

• Experimental Validation: We conduct ex-097

tensive experiments that show significant098

improvements over previous work on long-099

context question answering. Moreover, our100

method reduces memory usage to 50% of the101

most memory-efficient baseline while achiev-102

ing a 25% improvement in accuracy compared103

to the best-performing baseline.104

2 Related Work105

2.1 Extractive Context Compression106

Large language models (LLMs) excel at many tasks107

but struggle with long inputs due to increased token108

costs and context truncation. ICL (Brown, 2020)109

alleviates some of these issues by providing task-110

relevant prompts but also adds to token usage and111

inference cost.112

To address this, extractive context compression113

methods remove less relevant tokens or phrases114

Figure 2: LLMLingua2 overly focuses on high-entropy
nouns like ’barn’ and ’farmhouse,’ while neglecting
relational words (e.g., ’near’) and verbs, resulting in
highly fragmented compression and leading to incorrect
answers (’on a farm’). In contrast, QUITO-X retains
key relational phrases (’in a barn near a farmhouse’),
preserving full meaning and yielding the correct answer.

while preserving essential content. Selective 115

Context (Li et al., 2023b) ranks tokens by self- 116

information, while LLMLingua (Pan et al., 2024; 117

Jiang et al., 2023) compresses input based on PPL, 118

using a coarse-to-fine strategy. QUITO (Wang 119

et al., 2024) leverages attention from a small LLM 120

to retain query-relevant context. 121

These approaches use entropy-based metrics 122

(e.g., self-information, PPL) that frequently favor 123

high-entropy tokens such as nouns, while underesti- 124

mating the importance of function words crucial to 125

relational semantics (Figure 2). Furthermore, these 126

metrics are often not theoretically aligned with the 127

underlying optimization objective, such as mini- 128

mizing KL divergence, thus leading to suboptimal 129

results. 130

2.2 Information Bottleneck 131

The Information Bottleneck (IB) principle (Tishby 132

et al., 2000) aims to compress input X into a repre- 133

sentation T that preserves task-relevant information 134

I(T ;Y ) while discarding irrelevant parts I(T ;X): 135

LIB = I(T ;X)− βI(T ;Y ). (1) 136

In deep learning, IB has been used to interpret 137

representation learning (Shwartz-Ziv and Tishby, 138

2017) and inform model compression (Alemi et al., 139

2016). In NLP, recent work (Zhu et al., 2024) ap- 140

plies IB to filter noisy context for LLMs. Inspired 141
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by these works, we build on the information bottle-142

neck principle to derive a token-wise mutual infor-143

mation metric as our optimization objective, using144

cross-attention scores as a practical proxy. We the-145

oretically prove that this metric is consistent with146

the maximum likelihood objective, and it achieves147

state-of-the-art performance across a wide range of148

long-context evaluation benchmarks.149

3 Method150

3.1 Theorem151

Problem Formulation. Given the original con-152

text X = (xi)
L
i=1 and the query Q, our objective is153

to filter out unnecessary content from the context154

X = (xi)
L
i=1 into a reduced context X̄ = (x̄i)

L̄
i=1,155

while maximizing the likelihood of the ground truth156

output Y of the large language model (LLM). This157

can be formulated as:158

max
X̄

E
[
log

(
P (Y | X̄,Q)

)]
(2)159

where L and L̄ represent the sequence lengths of160

the original context X and the reduced context X̄ ,161

respectively. The compression ratio τ is defined as162

τ = L̄
L163

IB Perspective. To balance τ and the likelihood164

of Y , we formulate our task as an optimization165

problem from an information bottleneck perspec-166

tive(Tishby et al., 2000):167

LIB = I(X̄;X | Q)− βI(X̄;Y | Q) (3)168

where minimizing the first term improves effi-169

ciency, and maximizing the second term ensures170

correctness.171

In the following discussion, we fix the compres-172

sion ratio τ as a constant k. Under this condition,173

the cost savings from compression are fixed, allow-174

ing us to ignore the first term and focus solely on175

maximizing the second term:176

max
X̄

I(X̄;Y | Q) s.t. τ = k (4)177

The following Theorem 1 demonstrates the consis-178

tency between our modeling and the optimization179

objective of the task.180

Theorem 1. Under our setting, our optimization181

objective (5) is equivalent to (4):182

max
X̄

IQ(X̄;Y ) ∼ max
X̄

E[logP (Y | X̄,Q)]

s.t. τ = k.
(5)183

The detailed proof is provided in the Appendix B. 184

Using the chain rule of Mutual Information, we 185

have 186

I(X;Y | Q) = IQ(x1;Y | Q) + ...

+ IQ(xn;Y | x1, x2...xn−1, Q)
(6) 187

Thus, We can break the mutual information be- 188

tween X and Y into the mutual information be- 189

tween each token xi and Y . we utilize 190

s(xi) = I(xi;Y | x1, x2, ...xi−1, Q) 191

as a metric to measure the importance score of 192

token xi, from which we can identify the tokens to 193

retain and those to remove. However, it is difficult 194

to compute the mutual information s(xi) directly 195

due to the following reasons: (i) We cannot access 196

the ground truth output Y in practical scenarios. 197

(ii) Even if we use the output of a language model 198

YLM to approximate Y , the result of s(xi) cannot 199

be directly inferred from the probability sampled 200

by the language model. 201

Therefore, we need to establish a computation- 202

ally feasible metric to approximate mutual informa- 203

tion. Inspired by works in the fields of computer 204

vision and multi-modal learning (Dosovitskiy et al., 205

2021; Esser et al., 2024), which often measure the 206

correlation between two types of information I1 207

and I2 using either cross-attention between them 208

or self-attention after concatenating I1 and I2, We 209

conducted several detailed experiments, exploring 210

various strategies for both cross-attention and self- 211

attention, along with other metrics, to determine 212

which method best approximates mutual informa- 213

tion. Ultimately, we found that using an encoder- 214

decoder architecture, with X and Q as inputs, and 215

leveraging the cross-attention values between the 216

first token of the output Y and xi, is the most suit- 217

able approach to approximate mutual information 218

in our case. The specific experimental details are 219

provided in the Appendix A. 220

Merging into Lexical Units. Following Li et al. 221

(2023b), we also merge tokens into words as lex- 222

ical units to avoid disjoint contexts. We denote 223

w as a word, lw as the length of the word, and 224

xi, xi+1, . . . , xi+lw−1 as the tokens comprising the 225

word w and xprev represents the preceding context. 226

Benefited from the addition of mutual information, 227

I(xi, ..., xi+lw−1 | xprev, Y,Q) = I(xi | xprev, Y,Q)

+...+ I(xi+lw−1 | xprev, xi, ..., xi+n−2, Q)
(7) 228
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Figure 3: Overview of the proposed method for extracting cross-attention scores using a T5 model. The figure
illustrates the process of filtering the context to retain the most relevant information for answering a specific query.

we can directly sum the s(xi) of all tokens xi in a229

word w to represent s(w).230

Gaussian Smoothing. We observed that relying231

solely on independent metrics for each lexical unit232

often prioritizes nouns, which typically have high233

information entropy, while overlooking interme-234

diate conjunctions, verbs, and prepositions. This235

leads to semantic ambiguity and hampers under-236

standing by large models. To mitigate this issue237

further, we applied a Gaussian filter on word-level238

scores239

s(w) =
K∑

k=−K

s(w + k) · g(k)240

241

g(k) =
1

σ
√
2π

exp (− k2

2σ2
)242

which helps preserve the information surrounding243

important units. The detail could be found in sec-244

tion 3.2245

3.2 Algorithm246

Our method compresses long contexts into concise,247

informative representations through three key steps,248

as shown in Figure 3:249

Concat and Encode: The X and Q are con-250

catenated into a single input sequence X +Q and251

fed into the fenc. This produces a sequence of hid-252

den representations that captures the semantic and253

positional information of the input tokens:254

{ht} = fenc(X +Q) (8)255

Here, ht represents the hidden representation of the256

t-th token.257

Measuring Token Importance: During the258

decoding process, the cross-attention mechanism259

fattn is leveraged to compute the importance of 260

each token in the context relative to the query. 261

Specifically, hidden representation of the decoder’s 262

first token h<start> attends to all tokens in the en- 263

coded sequence via the cross-attention mechanism: 264

{at} = fattn({ht}, h<start>) (9) 265

Here, at denotes the attention score assigned to the 266

t-th token, reflecting its relative importance with 267

respect to the query. 268

Post-processing of Importance Score: The at- 269

tention weights for context tokens are extracted, 270

averaged across all attention heads, and normalized 271

using a softmax function. 272

s(t) =
exp at∑

token∈ftok(X) exp atoken
, t ∈ ftok(X)

(10) 273

We use ftok for tokenization, these scores represent 274

the relevance of each token in the tokenized context 275

to the given query. 276

The normalized token scores are aggregated at 277

the word level: 278

s(w) =
∑
t∈w

s(t), w ∈ X (11) 279

To account for the contextual importance of words, 280

a Gaussian filter is applied to the word-level scores. 281

This ensures that words appearing near important 282

terms also receive elevated scores: 283

s(w) =
K∑

k=−K

s(w + k) · g(k) (12) 284

285

g(k) =
1

σ
√
2π

exp (− k2

2σ2
) (13) 286
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Based on the smoothed scores, we retain only287

the most relevant words to form the compressed288

context. The compression ratio τ can be adjusted289

to control the level of detail retained. The function290

ftop selects words whose scores are among the top291

τ proportion:292

X̄ = ftop({s(w)}, τ), w ∈ X (14)293

This algorithm effectively reduces context length294

while retaining essential information, ensuring ac-295

curate and efficient performance in downstream296

tasks.297

4 Experiments298

4.1 Datasets and Metrics299

We conduct experiments on nine datasets that vary300

in text length and task type, covering both manage-301

able and excessively long contexts:302

(i) CoQA (Reddy et al., 2019) and Quoref303

(Dasigi et al., 2019): These datasets feature texts304

of moderate length, within the processing capabil-305

ity of large models, making them ideal for standard306

evaluations of model performance.307

(ii) 2WikiMultiHopQA (Ho et al., 2020), Hot-308

potQA (Yang et al., 2018), MuSiQue (Trivedi309

et al., 2022), TriviaQA (Joshi et al., 2017), and310

Gov_Report (Huang et al., 2021): These datasets311

are part of the LongBench benchmark (Bai et al.,312

2023), which focuses on long-context understand-313

ing across diverse NLP tasks such as multi-doc314

QA, few-shot QA, and summarization. They typi-315

cally feature excessively long inputs that challenge316

models’ ability to retain and reason over relevant317

information, often suffering from the "lost in the318

middle" phenomenon.319

To evaluate model accuracy, we adopt the320

Exact Match (EM) metric for question answering321

datasets, which measures the percentage of predic-322

tions that exactly match the ground truth answers.323

For the summarization dataset Gov_Report, we re-324

port ROUGE-L (Lin, 2004), a widely used metric325

that assesses the overlap between generated sum-326

maries and reference summaries.327

4.2 Implementation Details328

We employed the FLAN-T5-small model (Chung329

et al., 2024) for compression. Our approach lever-330

ages Huggingface Transformers and PyTorch 2.1.0331

with CUDA-12.1. For question-answering tasks,332

we utilized LongChat-13B-16k (Li et al., 2023a)333

and LLaMA3-8B-Instruct (AI@Meta, 2024).334

In our experiments, we observed that the choice 335

of the parameter σ in (13) does not significantly 336

impact the compression performance as long as 337

σ ̸= 0. Therefore, for consistency, we set σ = 1 338

for all subsequent experiments. Detailed parameter 339

search results are provided in the Appendix D. 340

For CoQA (Reddy et al., 2019) and Quoref 341

(Dasigi et al., 2019), we evaluated model accu- 342

racy using the original context and without any 343

context, aiming to assess the models’ ability to 344

summarize with full information and rely on prior 345

knowledge. Next, we tested five baseline methods 346

and our proposed approach at compression ratios of 347

0.75, 0.50, and 0.25, measuring accuracy with the 348

compressed context using both LongChat-13B-16k 349

and LLaMA3-8B-Instruct models. 350

For datasets with long contexts, including 2Wiki- 351

MultiHopQA (Ho et al., 2020), HotpotQA (Yang 352

et al., 2018), and MuSiQue (Trivedi et al., 2022), 353

TriviaQA (Joshi et al., 2017), Gov_Report (Huang 354

et al., 2021), sourced from LongBench (Bai et al., 355

2023), we focused on the LLaMA3-8B-Instruct 356

model. To handle the extreme length of these texts, 357

a chunking strategy was adopted, dividing the con- 358

text into 512-token chunks. Two strategies were 359

tested: 360

Strategy 1: Compressing each chunk individually 361

and then merging the compressed representations. 362

Strategy 2: Calculating attention scores between 363

each chunk and the query, merging these attention 364

scores across all chunks, and then performing a 365

unified compression on the merged context. 366

4.3 Baseline 367

We compared against the following context com- 368

pression baselines in Table 1: (1) Selective Con- 369

text (Li et al., 2023b): Uses GPT-2 (Radford et al., 370

2019) to retain context segments based on self- 371

information. (2) LLMLingua (Pan et al., 2024): 372

Employs Llama-2-7b (Touvron et al., 2023) with 373

dynamic compression driven by context PPL. (3) 374

LongLLMLingua (Jiang et al., 2023): Extends 375

LLMLingua for longer contexts, also using Llama- 376

2-7b (Touvron et al., 2023). (4) LLMLingua2 377

(Pan et al., 2024): Utilizes XLM-RoBERTa-large 378

(Conneau, 2019), introducing data distillation for 379

compression. (5) QUITO (Wang et al., 2024): Ap- 380

plies Qwen2-0.5B-Instruct (Yang et al., 2024) with 381

attention mechanisms to selectively retain query- 382

relevant context. 383

For datasets with manageable text lengths, such 384

as CoQA (Reddy et al., 2019) and Quoref (Dasigi 385
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Algorithm Architecture Model Parameters

Selective Context Transformer Decoder-Only GPT-2 124M
LLMLingua Transformer Decoder-Only Llama-2-7b 7B

LongLLMLingua Transformer Decoder-Only Llama-2-7b 7B
LLMLingua2 Transformer Encoder-Only XLM-RoBERTa-large 355M

QUITO Transformer Decoder-Only Qwen2-0.5b-Instruct 500M
QUITO-X Transformer Encoder-Decoder FLAN-T5-small 80M

Table 1: Comparison of different compression algorithms in terms of architecture, model, and parameter size. Our
method, based on the FLAN-T5-small model, demonstrates the effectiveness of a compact Transformer Encoder-
Decoder architecture with only 80M parameters, significantly reducing computational cost while maintaining or
exceeding performance compared to larger models like LLMLingua (7B) and QUITO (500M).

dataset model ratio Selective-Context LLMLingua LongLLMLingua LLMLingua2 QUITO QUITO-X

Q
uo

re
f L

on
gC

ha
t 1.00 70.6 70.6 70.6 70.6 70.6 70.6

0.75 65.3 46.4 46.5 65.7 65.6 68.1
0.50 55.8 34.5 34.6 55.0 59.4 65.1
0.25 40.9 28.2 28.7 41.5 52.3 60.8
0.00 2.9 2.9 2.9 2.9 2.9 2.9

L
la

m
a-

3

1.00 93.1 93.1 93.1 93.1 93.1 93.1
0.75 90.3 64.9 65.3 90.7 89.8 92.6
0.50 81.3 51.1 51.4 82.6 84.4 90.2
0.25 59.3 43.2 43.3 65.5 75.8 86.8
0.00 6.8 6.8 6.8 6.8 6.8 6.8

C
oQ

A L
on

gC
ha

t 1.00 59.1 59.1 59.1 59.1 59.1 59.1
0.75 56.6 44.9 45.4 57.5 54.6 59.6
0.50 47.0 36.3 36.4 50.3 50.4 59.5
0.25 32.1 30.4 25.9 41.0 41.4 55.5
0.00 13.8 13.8 13.8 13.8 13.8 13.8

L
la

m
a-

3

1.00 79.3 79.3 79.3 79.3 79.3 79.3
0.75 76.5 62.3 61.8 74.8 73.1 79.5
0.50 64.1 50.9 50.4 69.4 64.6 78.1
0.25 45.3 43.0 37.3 57.7 53.5 75.5
0.00 18.1 18.1 18.1 18.1 18.1 18.1

Table 2: Experimental results of various compression methods applied at different compression ratios on the
Quoref and CoQA datasets. The table shows the effectiveness of different methods, including Selective-Context,
LLMLingua, LongLLMLingua, LLMLingua2, QUITO, and QUITO-X, across different compression ratios (1.00,
0.75, 0.50, 0.25, and 0.00). Our method consistently achieves the best performance at all ratios.

et al., 2019), we evaluated our method against all386

listed baselines. These datasets allowed us to test387

the effectiveness of each approach in compressing388

contexts without encountering extreme text length389

challenges.390

For datasets with long contexts, including 2Wiki-391

MultiHopQA (Ho et al., 2020), HotpotQA (Yang392

et al., 2018), MuSiQue (Trivedi et al., 2022), Trivi-393

aQA (Joshi et al., 2017), and Gov_Report (Huang394

et al., 2021), we focus our comparison on LLMLin-395

gua2, as well as two additional baselines: Selective 396

Context and Quito. These datasets pose different 397

challenges: the QA datasets (multi-doc QA and 398

few-shot QA) often suffer from the “lost in the mid- 399

dle” phenomenon, while the summarization dataset 400

(Gov_Report) requires models to preserve critical 401

information across lengthy documents. Together, 402

they provide a comprehensive evaluation of our 403

method’s performance in long-context scenarios 404

across diverse task types. 405
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dataset task ratio Selective-Context QUITO LLMLingua2 strategy 1 strategy 2

2w
ik

im
qa

Multi-Doc QA

1.00 55.0 55.0 55.0 55.0 55.0
0.75 59.0 56.0 64.0 64.0 60.5
0.50 54.5 58.5 68.0 67.5 69.0
0.25 49.0 51.0 53.5 61.5 60.0

ho
tp

ot
qa

Multi-Doc QA

1.00 15.5 15.5 15.5 15.5 15.5
0.75 19.0 21.5 25.5 31.0 30.0
0.50 38.5 57.0 57.5 65.5 63.0
0.25 46.5 55.0 52.5 63.0 69.5

m
us

iq
ue

Multi-Doc QA

1.00 2.5 2.5 2.5 2.5 2.5
0.75 2.5 2.5 2.5 4.0 3.5
0.50 10.0 37.0 40.5 41.5 43.5
0.25 35.0 36.0 40.0 43.0 49.0

G
ov

_R
ep

or
t

Summ.

1.00 16.50 16.50 16.50 16.50 16.50
0.75 16.30 17.44 17.39 17.72 17.95
0.50 18.21 19.12 18.46 19.12 19.02
0.25 17.96 19.12 18.04 19.12 18.90

Tr
iv

ia
Q

A

Few-shot QA

1.00 15.0 15.0 15.0 15.0 15.0
0.75 19.0 20.0 22.0 28.5 25.0
0.50 27.5 32.5 22.0 42.0 38.5
0.25 36.5 62.5 37.5 59.0 60.0

Table 3: Performance comparison across datasets under different compression ratios. We evaluate multi-doc QA,
summarization, and few-shot QA tasks with Exact Match or ROUGE-L. Bold numbers indicate the best performance
for each dataset and ratio combination.

4.4 Experimental Results406

The results shown in Table 2 and Table 3 com-407

prehensively demonstrate the effectiveness of our408

proposed methods across various datasets and com-409

pression ratios.410

For the Quoref and CoQA datasets (Table 2),411

our proposed QUITO-X consistently outperforms412

existing baselines, including Selective-Context,413

LLMLingua, LongLLMLingua, LLMLingua2, and414

QUITO, under all tested compression ratios (1.00,415

0.75, 0.50, 0.25, and 0.00). Remarkably, QUITO-416

X achieves superior performance even at higher417

compression ratios, where significant portions of418

context are removed. This robust performance high-419

lights the capability of our method in retaining420

critical information despite substantial context re-421

ductions. In some cases, particularly noted in the422

underlined sections of Table 2, our method even423

surpasses the performance of the original, uncom-424

pressed context. This suggests that our approach425

not only removes irrelevant noise but also enables426

the model to focus better on relevant portions of427

the context, thereby improving prediction quality.428

For long-text datasets (Table 3), including 2Wiki- 429

MultiHopQA, HotpotQA, MuSiQue, TriviaQA, 430

and Gov_Report, the supplementary experiments 431

further validate the adaptability and robustness of 432

our strategies under varying compression levels. 433

In the multi-doc QA datasets (2WikiMulti- 434

HopQA, HotpotQA, and MuSiQue), both proposed 435

strategies (Strategy 1 and Strategy 2) consistently 436

outperform the baselines. For example, in 2Wiki- 437

MultiHopQA, Strategy 1 achieves the best result 438

at a compression ratio of 0.75, while Strategy 2 439

excels at 0.50. In HotpotQA, Strategy 2 demon- 440

strates the highest performance at 0.25 and 0.50 441

ratios. In MuSiQue, Strategy 2 shows a clear ad- 442

vantage at lower ratios, particularly under the most 443

aggressive compression (0.25). 444

On the few-shot QA dataset TriviaQA, our 445

method also achieves consistent improvements over 446

baselines across different compression ratios. This 447

result highlights the effectiveness of our approach 448

even in scenarios with limited supervision and long 449

input contexts. 450

For the summarization dataset Gov_Report, our 451
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Figure 4: Ablation study results on four datasets (CoQA, Quoref, DROP, SQuAD) under three compression ratios
(0.25, 0.5, 0.75). The top row shows the impact of the Gaussian filter on accuracy and information coverage,
demonstrating consistent improvements across all datasets and compression ratios. The bottom row illustrates the
effect of the merging module, highlighting its importance in recovering meaningful representations, particularly
under higher compression ratios.

method yields higher ROUGE-L scores compared452

to other baselines, particularly under medium and453

high compression levels. This demonstrates that454

our strategy not only maintains key information455

but also preserves summary quality even with sig-456

nificantly reduced context, which is especially im-457

portant in summarization tasks involving lengthy458

documents.459

These results collectively underscore the robust-460

ness, adaptability, and overall effectiveness of our461

proposed methods for handling compressed con-462

texts across a variety of datasets, task types, and463

compression scenarios.464

4.5 Ablation Study465

Gaussian Filter. The top row of Figure 4 shows466

the effect of the Gaussian filter across different467

datasets and compression ratios (0.25, 0.5, 0.75).468

For CoQA and Quoref, we use accuracy as the eval-469

uation metric, while for DROP and SQuAD, we470

adopt information coverage, which we explain fur-471

ther in the Appendix C. The Gaussian filter consis-472

tently improves performance, particularly at lower473

ratios. For example, in SQuAD, information cov-474

erage increases significantly (from 71.5 to 87.8) at475

the 0.25 ratio. These results demonstrate its effec-476

tiveness in retaining critical context information477

during compression.478

Merging. The bottom row of Figure 4 highlights479

the impact of the merging module. Merging consis-480

tently boosts accuracy and information coverage,481

especially at the 0.25 ratio where context loss is482

severe. For instance, in DROP, merging improves 483

information coverage by nearly 10 points. This 484

confirms its role in preserving meaningful context 485

under high compression. 486

4.6 Comparison with Sentence-Level 487

Compression 488

To further evaluate the effectiveness of our token- 489

level compression approach, we compare it against 490

FILCO (Wang et al., 2023b), a sentence-level 491

method that compresses long contexts by selecting 492

salient sentences. We follow FILCO’s experimen- 493

tal protocol and preprocessing pipeline on NQ and 494

TQA, using their released datasets and settings to 495

ensure a fair comparison. 496

As shown in Appendix G, our method outper- 497

forms FILCO under comparable compression ratios 498

(25% and 50%) on both datasets. 499

5 Conclusion 500

In this paper, we aim to tackle the challenge of 501

context compression. Leveraging information bot- 502

tleneck theory, we derive mutual information as 503

the optimization objective, which we prove to be 504

equivalent to maximizing likelihood. Our method 505

significantly outperforms strong baselines in both 506

inference latency and performance. Furthermore, it 507

excels on long texts, occasionally surpassing mod- 508

els that utilize the original context, likely by elim- 509

inating inherent redundancy in the context. More 510

effective chunking strategies for long texts are left 511

for future exploration. 512
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Limitations513

Despite the strong performance and efficiency514

gains demonstrated by our method, there are sev-515

eral limitations worth noting:516

First, due to the restricted context window of517

smaller language models, our approach relies on518

chunking strategies to process long documents.519

While this proves effective across many datasets,520

chunking inevitably breaks the global context521

and may lead to semantic discontinuities between522

chunks. How to maintain coherence across chunk523

boundaries—or to quantify the impact of such frag-524

mentation—remains an open research question.525

Second, since our method performs compression526

at the token level, the resulting outputs can suf-527

fer from reduced human readability. Compared528

to sentence-level or summarization-based meth-529

ods, token-level outputs tend to appear fragmented530

or syntactically incomplete. Although this does531

not impair the model’s ability to interpret the com-532

pressed input and answer questions accurately, it533

may reduce the interpretability of the compression534

decisions from a human perspective.535

That said, as we demonstrate in Appendix H, our536

approach retains significantly better semantic conti-537

nuity and readability compared to other token-level538

baselines (e.g., LLMLingua2 and QUITO). This539

highlights the potential of our method to strike540

a balance between compression granularity and541

human interpretability. Future work may explore542

ways to further enhance this trade-off, for exam-543

ple by integrating syntactic structure or discourse544

markers into the token selection process.545

Finally, due to computational constraints, we546

were unable to conduct broader-scale experiments547

across more diverse domains. As a result, certain548

hyperparameters—such as the Gaussian smooth-549

ing parameter σ—have not been comprehensively550

tuned across all datasets. While our experiments551

suggest the method is relatively stable under reason-552

able variations of σ, further large-scale validation553

would strengthen the generalizability claims.554
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following experiment: we filtered a subset from729

the Drop QA dataset, denoted as D = {Di}ni=1 =730

{Xi, Yi, Qi}ni=1. In D, Yi is a substring of Xi. The731

substring Yi within Xi (hereafter referred to as732

SubYi) captures the majority of the mutual informa-733

tion between Xi and Yi. Informally, the higher734

the relative value of a metric on the tokens of735

these substrings, the better the metric can measure736

I(X;Y | Q).737

A.2 Experiment738

We tested several commonly used metrics, includ-739

ing self-attention (Wang et al., 2024) and self-740

information (Li et al., 2023b). Cross-attention is741

a prevalent metric for measuring the correlation742

between two pieces of information. We used Flan-743

T5-small (Chung et al., 2024) to compute cross-744

attention and implemented the following two strate-745

gies for each Di:746

cross attn first. Compute only the cross-attention747

scores between the first token <start> in Yi and748

each token in Xi.749

cross attn total. Autoregressively generate Yi750

and compute the average sum of the cross-attention751

scores between all tokens in Yi and all tokens in752

Xi.753

We adopted Mean Reciprocal Rank (MRR)754

(Kwok et al., 2001; Radev et al., 2002) to evaluate755

which metric better represents mutual information.756

Specifically, for each metric, we first calculate the757

MRR for each data point Di = {Xi, Yi, Qi} indi-758

vidually. For a given Di, we calculate the value of759

each token based on the metric, sort them to obtain760

their rank array, and then compute MRR assuming761

SubYi has a length of len and appears at positions762

k, . . . , k + len− 1:763

MRRi =
1

len

len∑
j=1

1

rankk+j−1
764

Finally, the overall MRR for the dataset D is ob-765

tained by averaging MRRi across all data points:766

MRR =
1

|D|

|D|∑
i=1

MRRi767

A.3 Result768

The experimental results are presented in Figure 5.769

The results indicate that using the cross-attention770

value between the first token of output Y and each771

xi yields a significantly higher MRR compared to772

other methods.773

Figure 5: MRR results

B Proof of Theorem 1 774

Let X be the original context, Q be the query, Y 775

be the output, and X̄ be the extractive compressed 776

result. Denote τ as the compression rate, and let k 777

be a constant such that k ∈ (0, 1]. 778

Theorem

max
X̄

IQ(X̄;Y ) ∼ max
X̄

E[logP (Y | X̄,Q)]

s.t. τ = k.
(15) 779

(To simplify the notation, we use IQ to represent 780

the condition on Q.) 781

Proof: We start by expanding the mutual infor- 782

mation term IQ(X̄;Y ): 783

IQ(X̄;Y ) = 784∫
x̄,y,q

P (x̄, y | q) log
(

P (x̄, y | q)
P (x̄ | q)P (y | q)

)
dx̄ dy dq 785

=

∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 786

−
∫
y,q

logP (y | q)(
∫
x̄
P (x̄, y | q)dx̄) dy dq 787

=

∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 788

−
∫
y,q

logP (y | q)P (y | q) dy dq 789

Since
∫
y,q logP (y | q)P (y | q) dy dq does not 790

affect the optimization, we ignore it: 791

IQ(X̄;Y ) 792

∼
∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 793

= EX̄,Y,Q [logP (y | x̄, q)] . 794
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Figure 6: Information coverage on Drop.

Figure 7: Information coverage on SQuAD.

Here x̄, y, q represent specific data points sampled795

from the random variables X̄, Y,Q, respectively.796

This completes the proof.797

C Information Coverage798

In this section, we explain the Information Cover-799

age metric used in our ablation study for DROP and800

SQuAD datasets. Unlike accuracy, which directly801

measures the correctness of the model’s predic-802

tions, Information Coverage focuses on whether803

key information (i.e., the source of the answer) is804

preserved after context compression.805

Specifically, we adopt EM as the evaluation met-806

ric for measuring coverage. Given a compressed807

context and a target answer, EM evaluates whether808

the answer’s source can still be precisely matched809

within the compressed context. This ensures that810

critical information needed to derive the answer is811

retained post-compression. A higher EM score in-812

dicates better preservation of essential information,813

thus reflecting the compression method’s effective-814

ness in maintaining important content.815

Figures 6 and 7 showcase the Information Cov-816

erage at different compression ratios (from 1.0 to817

0.25) on the DROP and SQuAD datasets. These 818

results are independent of the ablation experiments 819

and are intended to highlight the robustness of our 820

proposed method under varying levels of compres- 821

sion. 822

From the figures, it is evident that across all com- 823

pression ratios, our method consistently achieves 824

the highest Information Coverage compared to 825

baseline approaches. This demonstrates the ef- 826

fectiveness of our method in preserving critical 827

answer-related information, even as the context 828

length is reduced. Notably, at lower compression 829

ratios (e.g., 0.25), where information loss is more 830

severe, our approach still outperforms other meth- 831

ods by a clear margin, underscoring its ability to 832

prioritize and retain essential content. 833

These findings further confirm that our method 834

can effectively mitigate the challenges of informa- 835

tion loss during compression while maintaining 836

performance in downstream tasks. 837

D Parameter Search for σ 838

In our experiments, we examined the effect of dif- 839

ferent values of the parameter σ on the performance 840

of the compression technique. Specifically, σ con- 841

trols the variance of the Gaussian filter used during 842

context compression. To explore its impact, we 843

conducted a parameter search across several values 844

of σ, ranging from 1 to 5, to assess how variations 845

in σ influence model performance at different com- 846

pression ratios. 847

Figure 8 shows the results of this search, where 848

we measured the model’s accuracy and information 849

coverage at compression ratios of 0.75, 0.50, and 850

0.25. 851

From our observations, we found that the value 852

of σ had minimal impact on performance for non- 853

zero values, with only a slight variation in both 854

accuracy and information coverage. Based on these 855

findings, we chose σ = 1 as the default value for all 856

subsequent experiments, ensuring both consistent 857

and efficient compression without substantial loss 858

in performance. 859

For a detailed breakdown of the parameter 860

search, see the plot in Figure 8, which illus- 861

trates how σ affects model performance across all 862

datasets tested. 863

E Computational Overhead Analysis 864

The computational overhead of our approach pri- 865

marily arises from calculating the cross-attention 866
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Figure 8: parameter search across several values of σ

during inference with a relatively small proxy867

model. Similarly, the PPL-based method incurs868

additional time overhead from computing log-869

likelihood during inference using the same proxy870

model. In both methods, the time overhead is ap-871

proximately equivalent to one round of inference872

by the proxy model.873

E.1 Inference Time per 512 Tokens874

The table below details the inference time per 512875

tokens for different models:876

Model Time per 512 Tokens
Llama3-8B 2.4251s

Flan-T5-Small 0.3238s

Table 4: Inference time per 512 tokens for different
models.

For our method, we use FLAN-T5-Small, a877

model with only 80M parameters, as the proxy878

model. This makes the additional time overhead879

negligible. The efficiency gains from our approach880

far outweigh this minimal time cost. Furthermore,881

it is important to note that while our method and the882

PPL-based method theoretically share the same ad-883

ditional time cost when employing the same proxy884

model, prior works typically use much larger mod- 885

els as proxies. This makes our method more effi- 886

cient in practice. 887

F Comparison with Different FLAN-T5 888

Model Sizes 889

To demonstrate the versatility of our approach, 890

we compared models with different sizes of the 891

encoder-decoder architecture. Specifically, we used 892

various models from the Flan-T5 series (Flan-T5- 893

small, Flan-T5-base, Flan-T5-large), as there are 894

no other encoder-decoder models that rival Flan- 895

T5 within the same time frame. Older models like 896

BART (2019) and T5 (2019) show a significant per- 897

formance gap compared to Flan-T5. For efficiency 898

reasons, we primarily utilized Flan-T5-Small in 899

our experiments. We also benchmarked Flan-T5- 900

Base and Flan-T5-Large, with their results showing 901

similarly promising trends, as shown in the table 5. 902

G Comparison with Sentence-Level 903

Compression Methods 904

To compare our token-level compression with 905

sentence-level methods, we replicate FILCO’s ex- 906

perimental setup on NQ and TQA, two question 907

answering benchmarks with long input contexts. 908
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Ratio Dataset Small Base Large
0.75 Squad 97.3 98.3 98.2
0.5 94.1 96.4 95.6

0.25 88.1 92.1 90.4
0.75 Quoref 92.6 92.4 92.2
0.5 90.2 90.1 90.3

0.25 86.8 89.4 89.9
0.75 CoQA 79.5 80.3 80.1
0.5 78.1 78.6 79.9

0.25 75.5 77.8 77.5

Table 5: Evaluation results for different sizes of FLAN-
T5 models on various datasets.

We use the same preprocessed datasets and eval-909

uation protocol as described in FILCO’s original910

paper to ensure fair comparison.911

Table 6 summarizes the results under 25% and912

50% compression ratios.913

Method NQ TQA

FILCO (44%-64%) 44.24 59.50
Ours (50%) 60.91 60.19
Ours (25%) 56.79 60.95

Table 6: Comparison with sentence-level compression
(FILCO) on NQ and TQA under 25% and 50% com-
pression. Our method consistently outperforms FILCO.

Compared to sentence-level approaches like914

FILCO, our method achieves superior performance915

and offers precise compression rate control, mak-916

ing it particularly effective in low-budget scenarios917

where retaining critical information is crucial.918

H Case Studies on Readability and919

Semantic Continuity920

To evaluate the readability and semantic integrity of921

the compressed outputs, we conducted case studies922

comparing our method with several strong base-923

lines, including LLMLingua2, QUITO, and their924

variants. Figure 9 and 10 illustrate representative925

examples.926

These examples support our claim that while927

token-level compression tends to reduce syntactic928

completeness, our method produces more coherent929

and interpretable outputs than other token-level930

baselines, making it more suitable for applications931

where transparency matters.932
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Original Prompt (Census QA Example):
As of the census of 2000, there were 218,590 people, 79,667 households, and 60,387 families
residing in the county. The population density was 496 people per square mile (192/km²). There
were 83,146 housing units at an average density of 189 per square mile (73/km²). The racial
makeup of the county was 86.77% Race (United States Census), 9.27% Race (United States
Census), 0.23% Race (United States Census), 1.52% Race (United States Census), 0.06% Race
(United States Census), 0.69% from Race (United States Census), and 1.47% from two or more
races. 1.91% of the population were Race (United States Census) or Race (United States Census)
of any race. 22.5% were of German people, 13.1% Irish people, 9.8% Italian people, 9.2% English,
8.1% "American" and 6.0% Polish ancestry.
Question: Which group from the census is smaller: German or English?

Compressed Prompt (LLMLingua2):
2000, 218,590 79,667 households 60,387 families 496 83,146 units 189 racial makeup 86.77%
1.47% 1.91% 22.5% German 13.1% 9.8% Italian 9.2% 8.1% 6.0% Polish

Compressed Prompt (QUITO):
2000, 79,667 households, and 60,387 families residing There were 86.77% Race (United Race
race. 22.5% of German people, 13.1% Irish people, 6.0% Polish ancestry.

Compressed Prompt (Ours):
the people, 79,667 households, and 60,387 families residing 22.5% of German people, 13.1% Irish
people, 9.8% Italian people, 9.2% English, 8.1% "American" and 6.0% Polish ancestry.

Answer: English (9.2%) is smaller than German (22.5%)

Figure 9: Case Study 1: Census-based QA under different compression schemes. Our method retains more semantic
and numeric fidelity compared to other token-level approaches.
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Original Prompt (NFL QA Example):
Hoping to rebound from their tough overtime road loss to the Raiders, the Jets went home for a
Week 8 duel with the Kansas City Chiefs. In the first quarter, New York took flight as QB Brett
Favre completed an 18-yard TD pass to RB Leon Washington. In the second quarter, the Chiefs
tied the game as QB Tyler Thigpen completed a 19-yard TD pass to TE Tony Gonzalez. The
Jets would answer with Washington getting a 60-yard TD run. Kansas City closed out the half as
Thigpen completed an 11-yard TD pass to WR Mark Bradley. In the third quarter, the Chiefs took
the lead as kicker Connor Barth nailed a 30-yard field goal, yet New York replied with RB Thomas
Jones getting a 1-yard TD run. In the fourth quarter, Kansas City got the lead again as CB Brandon
Flowers returned an interception 91 yards for a touchdown. Fortunately, the Jets pulled out the
win with Favre completing the game-winning 15-yard TD pass to WR Laveranues Coles. During
halftime, the Jets celebrated the 40th anniversary of their Super Bowl III championship team.
Question: How many yards was the longest TD of the game?

Compressed Prompt (LLMLingua2):
Raiders Jets Week 8 Kansas City Chiefs York Favre 18-yard Washington Chiefs Thigpen 19-yard
Gonzalez 60-yard TD Kansas Thigpen 11-yard Bradley third Chiefs Barth 30-yard Jones 1-yard
TD fourth Kansas Flowers touchdown Jets Favre 15-yard Coles Jets 40th Super Bowl

Compressed Prompt (QUITO):
Jets the Kansas City Chiefs. as QB Brett Favre completed to RB Leon Washington. In QB Tyler
Thigpen TE Tony Gonzalez. run. Kansas WR Mark Bradley. kicker Connor Barth with RB
Thomas Jones win with Favre completing to WR Laveranues Coles. During halftime, the

Compressed Prompt (Ours):
completed an 18-yard TD pass RB Tyler completed a 19-yard TD pass getting a 60-yard TD run.
completed an 11-yard TD pass nailed a a 1-yard TD the 91 completing the game-winning 15-yard
TD pass WR

Answer: 91 yards (Brandon Flowers interception return)

Figure 10: Case Study 2: Sports-related QA. Our method captures the most relevant yardage details, supporting
accurate numerical reasoning.
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