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Improving Composed Image Retrieval via Contrastive Learning
with Scaling Positives and Negatives

Anonymous Authors
ABSTRACT
The Composed Image Retrieval (CIR) task aims to retrieve target
images using a composed query consisting of a reference image
and a modified text. Advanced methods often utilize contrastive
learning as the optimization objective, which benefits from ade-
quate positive and negative examples. However, the triplet for CIR
incurs high manual annotation costs, resulting in limited positive
examples. Furthermore, existing methods commonly use in-batch
negative sampling, which reduces the negative number available
for the model. To address the problem of lack of positives, we pro-
pose a data generation method by leveraging a multi-modal large
language model to construct triplets for CIR. To introduce more
negatives during fine-tuning, we design a two-stage fine-tuning
framework for CIR, whose second stage introduces plenty of static
representations of negatives to optimize the representation space
rapidly. The above two improvements can be effectively stacked
and designed to be plug-and-play, easily applied to existing CIR
models without changing their original architectures. Extensive
experiments and ablation analysis demonstrate that our method
effectively scales positives and negatives and achieves state-of-the-
art results on both FashionIQ and CIRR datasets. In addition, our
methods also perform well in zero-shot composed image retrieval,
providing a new CIR solution for the low-resources scenario. The
code is released at https://anonymous.4open.science/r/45F4 andwill
be publicly available upon acceptance.

CCS CONCEPTS
• Information systems → Multimedia and multi-modal Re-
trieval; Image Search; Retrieval effectiveness.

KEYWORDS
composed image retrieval, contrastive learning

1 INTRODUCTION
Composed Image Retrieval (CIR) aims to retrieve images given a
query composed of a modified text and a reference image. Unlike
the standard text-to-image retrieval tasks, the modified text in CIR
describes the unsatisfied attributes of the reference image or the
new attributes based on the reference image. CIR provides a new
idea for iteratively optimizing the retrieval results based on the
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(a) Illustration of the Composed Image Retrieval (CIR) task
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(b) Our proposedmethod effectively scales the number of positive and negative exam-
ples in the CIR task to a level comparable to other computer vision tasks and models.

Figure 1: Task introduction and themotivation of this work.

current text-to-image retrieval and thus has become a popular re-
search task in the multi-modal field. Previous research on CIR typi-
cally involves model architecture [5, 9, 33] and optimization objec-
tives [2, 5, 23, 35]. The methods for the model architecture focus
on better representation and fusion methods for texts and images.
The contribution of the works in this aspect includes (1) introduc-
ing vision-language pre-trained models, like CLIP [28], BLIP [18],
as the backbone [2, 5, 23, 35] and (2) designing the novel late fu-
sion [5, 33, 35] or early fusion [2, 16, 23] modules to fuse the ref-
erence image and the modified text to obtain the single query rep-
resentation. Therefore, the popular model architecture in CIR can
be illustrated in Fig.1(a), which consists of a query encoder and a
target image encoder. In practice, a collection of image candidates
is first converted into image representations by the image encoder
for rapid indexing. When the user gives a reference image and a
modified text, they are forwarded to the query encoder to fusion
and obtain the query representation. Finally, the query representa-
tion is computed with the dot product or cosine similarity with all
representations of candidate images, and the image with the top
similarity is considered the target image.

The works for optimization objective [2, 35] focus on aligning
the query representation with the target image representations.
Advanced methods use contrastive learning [31] to align the rep-
resentations of queries and images. The key to contrastive learn-
ing is to select correct and sufficient positives and negatives. The
annotated triplets in the dataset, in the form of (reference image,
modified text, target image), usually are regarded as positive exam-
ples, while negative examples are generated by replacing the target
images with other ones in the mini-batch. However, as shown in

https://anonymous.4open.science/r/45F4
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Fig.1(b), there are two challenges with these works: (1) The num-
ber of manually annotated triplets (2̃0K) is deficient, leading to a
lack of sufficient positive examples for the model. As a comparison,
in other tasks using contrastive learning like visual representation
learning [10], image-text retrieval [19, 27], and image retrieval [26],
the number of positive examples is at least 60k; (2) Previous CIR
tasks typically use in-batch negative sampling, with around 128
negative examples, while many successful works in contrastive
learning use over 4k negative examples [7, 13, 18]. Existing works
ignore these two problems at the data level, resulting in the inabil-
ity of contrastive learning to fulfill its capabilities.

Therefore, this work is based on a universal and simple motiva-
tion: to scale the number of positive and negative samples of the
CIR task to the same scale as other tasks with contrastive learning.
To construct more positives for CIR, we propose a novel data gen-
eration method based on the multi-modal Large Language Model
(MLLM). Specifically, we design a four-step pipeline to automati-
cally construct positive samples, which includes (1) caption gen-
eration with MLLM; (2) reference-target image pair matching; (3)
modified text generation based on templates; and (4) positive ex-
ample construction. With the help of our method, plenty of ac-
ceptable positive examples can be generated without any manual
annotation, scaling the triplet number from 20k to 100k without
the use of external datasets (Fig.1(b)). To introduce more negatives
for CIR, we design a two-stage fine-tuning framework. Specifically,
in the first stage, we follow previous works [2, 4, 23, 35] and use
in-batch negative sampling to enable the model to learn initial rep-
resentation space for CIR; while in the second stage, we initialize
the model trained in the first stage and freeze the target image
encoder, only fine-tuning the query encoder. The frozen target im-
age encoder introduces a large number of static representations
of negatives at once (Fig.1(b)), guiding query encoders to optimize
representation space rapidly. Note that the second stage has only
about 1/20 of the time overhead of the first stage and can be easily
superimposed on existing advanced models in CIR.

To verify the effectiveness of our method, we experiment ex-
tensively with both the full-supervised and zero-shot settings. For
the full-supervised setting, we adopt our method in four advanced
models in CIR with different backbones, achieving a 1%-6% perfor-
mance improvement on the popular FashionIQ and CIRR datasets,
reaching a new state-of-the-art. For the zero-shot setting, themodel
needs to be built without requiring human-labeled triplets for train-
ing. We apply our method to in-domain and out-of-domain im-
age datasets to construct sufficient positives and negatives for CIR.
With fewer image scales than the baselines, the superior perfor-
mance of ourmethod demonstrates the easewithwhich ourmethod
can be applied to low-resource scenarios.

The contributions of our paper can be summarized as follows:

• We propose a data generation method with the multi-modal
large languagemodel to scale positive examples in CIR, which
can automatically build high-quality positive examples based
on image datasets only.

• We propose a two-stage plug-to-play framework to scale
negative examples during fine-tuning, whose second stage
can be quickly adapted to almost anymodel in CIRwith 1/20
time overhead of the first stage.

• Extensive experiments and analysis under the full-supervised
and zero-shot setting demonstrate the effectiveness and su-
periority of our proposed method, which achieves state-of-
the-art performance on both FashionIQ and CIRR datasets.

2 RELATEDWORK
Composed Image Retrieval. The recent paradigm in CIR [4, 33,

40, 41] consists of three main steps: (1) extracting the representa-
tion of both images and sentences; (2) fusing the representations
of sentences and reference images to obtain query representations;
(3) aligning the representations of queries and target images with
similar semantics. For the first step, early models in CIR utilize
two separate encoders [11, 14, 33, 38] while recent CIR models [4,
21, 35, 41] exploit pre-trained vision-language encoders [25, 28]
as the backbone. Some works [4, 41] simply use the global repre-
sentations extracted from these pre-trained encoders while other
works [35, 38, 40] integrate local and global representations. For
the second step, some works [4, 33, 34, 41] leverage weights or
gating mechanisms, while other works [38, 40] design combining
modules like cross-modal transformer. For the third step, the most
commonly used loss functions in CIR are triplet loss [8, 30, 40], con-
trastive learning [4, 15, 31, 33–35, 41]. Recent advanced methods
in the CIR predominantly employ a combination of dual encoders
and contrastive learning with in-batch negative sampling.We treat
the models obtained from these methods as the first-stage models
and continue to train them in the second stage to improve CIR per-
formance further.

Data Generation for CIR. InstructPix2Pix [6] first uses GPT-3 to
generate modified text for captions and then utilizes a diffusion
model to generate images for these texts. COVR [32] mine similar
captioned videos from a large database and use a language model
to generate modified text that describes the differences between
the videos, resulting in the WebVid-CoVR dataset with 1.6 million
triplets. CASE [16] uses a data roaming approach that rephrases
labels from a large-scale VQA dataset into a form suitable for com-
posed image retrieval. CompDiff [12] constructs triplets for CIR
datasets by automatically generatingmodified texts and correspond-
ing images using large language models and diffusion models. Un-
like theseworks that often require generating images orwell-labeled
datasets, our method is built on a real image collection without the
need for any additional manual annotation and leverages the capa-
bilities of MLLM to construct triplets.

Negative Sampling in Contrastive Learning. In the realm of con-
trastive learning, negative sampling techniques have evolved to
enhance model performance: the in-batch negative sampling from
SimCLR [7] selects negative examples from the same batch, while
thememory bank approach in Bank [37] utilizes a stored set of past
instances for more diverse negatives. Additionally, MoCo [13] em-
ploys a moving average of representations to create dynamic neg-
atives, contributing to robust representation learning. Compared
to Memory Bank and MoCo, our method does not dynamically up-
date the negatives with the aid of additional queues or momentum
encoders; instead, it fine-tunes the model for the second stage by
introducing a large number of static negative samples at once.
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3 METHOD
3.1 Preliminary
Suppose a CIR dataset consists of 𝑁 annotated triplets, where the
𝑖th triplet 𝑥𝑖 is denoted as

𝑥𝑖 = (𝑟𝑖 ,𝑚𝑖 , 𝑡𝑖 ), 𝑟𝑖 , 𝑡𝑖 ∈ Ω,𝑚𝑖 ∈ 𝑇 (1)

where 𝑟𝑖 , 𝑚𝑖 , and 𝑡𝑖 represent the reference image, the modified
text1, and the target image of the 𝑖th example, respectively, while
Ω is the candidate image set containing all reference and target
images of the triplets and 𝑇 is the text set containing all modified
texts. The CIR task aims to use the reference image 𝑟𝑖 and the mod-
ified text𝑚𝑖 to compose a query 𝑞𝑖 , and retrieve the target image
𝑡𝑖 from the candidate set Ω with 𝑞𝑖 .

Then, we describe the classical paradigm of CIR. Multiple an-
notated triplets are combined into a mini-batch, and the reference
images and modified texts in the same batch are then encoded us-
ing a query encoder 𝐹 (·) query representations. The target images
are encoded using an image encoder 𝐺 (·) to obtain target image
representations. For simplicity, we rewrite the representations for
the triplet (𝑟𝑖 ,𝑚𝑖 , 𝑡𝑖 ) as q𝑖 = 𝐹 (𝑟𝑖 ,𝑚𝑖 ) and t𝑖 = 𝐺 (𝑡𝑖 ), respectively.
The cosine similarity 𝑓 (·, ·) is then adopted to calculate the similar-
ity between the query and target image representations. Recall that
current methods based on contrastive learning usually treat the an-
notated examples as positive examples and treat the examples ob-
tained by replacing the target image in the positive examples with
another image in the mini-batch as the negatives.Then contrastive
learning is used to pull the query representations and target image
representations in positive examples closer while pushing query
representations and target image representations in negative ex-
amples further, which can be expressed as

Lt
cl =

1
𝐵

𝐵∑
𝑖=1

− log( exp(𝑓 (q𝑖 , t𝑖 )/𝜏)∑𝐵
𝑗=1 exp(𝑓 (q𝑖 , t𝑗 )/𝜏)

) (2)

where 𝐵 is the batch size and 𝜏 is a temperature hyper-parameter.
Despite the good results achieved with this current paradigm,

the lack of negative and positive examples still severely limits the
performance of contrastive learning. To address these problems,
we first propose a method of scaling positive examples using a
multi-modal large language model (MLLM). Then, we investigate
the impact of different types of negative examples on CIR perfor-
mance and find that using negative examples obtained by replacing
the target image is simple and most effective. Therefore, we pro-
pose a two-stage fine-tuning strategy, scaling negative examples
using a caching technique based on existing models.

3.2 Scaling Positive Examples
Due to the high cost of manually labeling triplets, we propose a
simple but effective method with a multi-modal Large Language
Model (MLLM) to construct the triplets for CIR. As shown in Fig,2,
given an image dataset2 𝐷 = {𝐼1, 𝐼2, ..., 𝐼𝑀 }with size𝑀 , ourmethod
consists of four steps: (1) Generating a suitable caption for each im-
age to obtain the image-text pairs; (2) Constructing M (reference

1In this work, we refer to the text in the CIR triplet as a ”modified text”, which is also
referred to as a ”modification sentence” or ”modification text” in other works.
2Image dataset here could be Ω in the CIR dataset or any image dataset.

image, target image) pairs; (3) Generating modified texts for im-
age pairs using the captions; (4) Combining the modified texts and
image pairs to form triplets.

Caption Generation. We introduce a MLLM 𝑔mllm (·, ·) to gener-
ate a corresponding caption for each image in the dataset. Specifi-
cally, we design a prompt template 𝑃cap (𝑡𝑦𝑝𝑒, 𝑘) to guide theMLLM
to obtain a brief caption for each image under constrained condi-
tions, where 𝑡𝑦𝑝𝑒 and 𝑘 are two dataset-specific parameters

to simulate the type and length ofmodified text in the real dataset.
For an image 𝐼𝑖 in the candidate image set, we input 𝐼𝑖 and 𝑃cap to-
gether into the MLLM to obtain the corresponding caption 𝐶𝑖 :

𝐶𝑖 = 𝑔mllm (𝐼𝑖 , 𝑃cap (𝑡𝑦𝑝𝑒, 𝑘)) . (3)

Then we can obtain M image-text pairs {(𝐼1,𝐶1), ..., (𝐼𝑀 ,𝐶𝑀 )}. In
practice, the 𝑃cap used in this work is written as follows:

Please briefly describe the {type} in {k} words.

Image Pair Match. After obtaining the image-text pair, we need
to match two image-text pairs to generate a quadruplet. Regard-
ing the image in an image-text pair as the reference image, the
naive method randomly chooses the image from another image-
text pair as the target image. However, a randomly selected target
image may be too similar to the reference image to construct pre-
cise modified text or too dissimilar to help models improve perfor-
mance.Therefore, we introduce a uni-modal image encoder𝑔img (·)
to get the representation of every image and calculate the pairwise
similarity between two different images 𝐼𝑖 and 𝐼 𝑗 :

𝑠𝑖𝑚𝑖 𝑗 = 𝑓 (𝑔img (𝐼𝑖 ), 𝑔img (𝐼 𝑗 )) (1 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑖 ≠ 𝑗) (4)

Then we can rank the similarities related to 𝐼𝑖 in descending order.
Only one image whose similarity rank is between [𝑐0, 𝑐1) (𝑐0 < 𝑐1)
will be chosen as the target image, where 𝑐0 and 𝑐1 are two hyper-
parameters. In practice, we regard each image in the dataset 𝐷 as
the reference image and sample a target image for each image. We
denote the target image for image 𝐼𝑖 as 𝐼 t𝑖 , therefore, we can get
𝑀 (reference image, target image) pairs {(𝐼1, 𝐼 t1), ..., (𝐼𝑀 , 𝐼

t
𝑀 )}. We

combine these image pairs with their corresponding captions to
form M quadruplets:

{(𝐼1,𝐶1, 𝐼 t1,𝐶
t
1), ..., (𝐼𝑀 ,𝐶𝑀 , 𝐼

t
𝑀 ,𝐶

t
𝑀 )} (5)

Modified Text Generation. Given one quadruplet (𝐼𝑖 ,𝐶𝑖 , 𝐼 t𝑖 ,𝐶
t
𝑖 ) by

the last step, we use a prompt template 𝑃tempk (𝑘 ∈ {0, 1, 2} to form
a modified text𝑚tempk

𝑖 :

𝑚
tempk
𝑖 = 𝑃tempk (𝐶𝑖 ,𝐶t

𝑖 ) (6)

In this work, we consider three types of templates below.

𝑃temp0: {𝐶 t
𝑖} instead of {𝐶𝑖}

𝑃temp1: Unlike {𝐶𝑖}, I want {𝐶 t
𝑖}

𝑃temp2: {𝐶 t
𝑖}

Note that we attempt to use LLM to post-process the generated
modified text. The first method involves using LLM to make the
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Encoder
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Learning
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Step 1: Constructing Negative Examples

a dog
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Replacing Reference Replacing Modified Text Replacing Target Replacing Query

A living room with a 
blue couch, green 
pillows

Prompt Template

A white bookshelf with 
books and a plant in a 
room

A white bookshelf with books and a plant in a room,  
instead of A living room with a blue couch, green 
pillows

Step 3: Modified Text Generation

Step 2: Image Pair Match

Image Encoder

FashionGeneral

Figure 2: Overview of Our Framework of Scaling Positive Examples and Negative Examples. We abbreviate some of the modi-
fied texts due to space constraints.

modified text more diverse and fluent. The second method uses
in-context learning to make LLM mimic the modified text in an-
notated datasets. However, based on our experiments, neither of
these methods surpasses the prompt template method. Specific re-
sults can be found in supplementary materials.

Positive Example Construction. Finally, we could combine image
pairs from the second step with the modified texts obtained in the
third step to get new M triplets {(𝐼𝑖 ,𝑚temp

𝑖 , 𝐼 t𝑖 )}. So, we can ob-
tain an expanded dataset that is comparable in size to the origi-
nal dataset. We could use these new examples as a complement to
the annotated dataset. We could also use these examples to train a
model from scratch, thus allowing for fully automated training of
a CIR model without human involvement.

3.3 Scaling Negative Examples
Recent works in visual contrastive representation learning [13, 37]
have shown that scaling negative numbers can effectively improve
performance. However, existingworks in CIR employ in-batch neg-
ative sampling strategies, restricting themodel from seeing enough
negatives. Furthermore, recalling that the labeled data in CIR is a
triplet, it is theoretically possible to construct negative examples
by replacing any element in the triplet. Most works [2, 5, 33, 35]
only use the ”replace the target image” strategy to construct nega-
tive samples without additional interpretation. Therefore, we first
explore the performance impact of different methods of construct-
ing negative examples and find that ”Replacing the target image”
leads to more true and hard negatives than other methods with the
popular CIR datasets. After determining themethod of negative ex-
ample construction, we propose a two-stage fine-tuning strategy
for CIR that leverages a two-stage framework to scale negative ex-
amples during fine-tuning.

ConstructingNegative Examples. Considering the annotated data
in CIR are triplets, for triplet (𝑟𝑖 ,𝑚𝑖 , 𝑡𝑖 ), there are four methods

1 2 3 420
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CIRR 

Figure 3: Performance of four different methods on nega-
tive example construction. The number on the horizontal
axis corresponds to the serial number before the different
replacing methods in Section 3.3.

of negative example construction by randomly sampling another
triplet (𝑟 𝑗 ,𝑚 𝑗 , 𝑡 𝑗 ):

(1) Replacing the reference image, obtaining (𝑟 𝑗 ,𝑚𝑖 , 𝑡𝑖 );
(2) Replacing the modified text, obtaining (𝑟𝑖 ,𝑚 𝑗 , 𝑡𝑖 );
(3) Replacing the target image, obtaining (𝑟𝑖 ,𝑚𝑖 , 𝑡 𝑗 );
(4) Replacing the whole query pair, i.e. the reference image and

modified text, obtaining (𝑟 𝑗 ,𝑚 𝑗 , 𝑡𝑖 ).
Most previous works use only the third method [2, 5, 9, 23, 33, 35],
and Wang et al. [34] uses the first three methods jointly. However,
none of the existing works have explored all four methods com-
pletely. To this end, we compare these four negative construction
methods while other settings remain the same. As shown in Fig.3,
we find that constructing the negative examples by replacing tar-
get images works best. Based on the examples in Fig.2, we can ob-
serve that the other threemethods easily generate relatively simple
or false negatives. For example, since some modified texts (e.g., ”a
dog”) only describe the target image, replacing the reference image
with another image can lead to false negatives. Similarly, if the ref-
erence image is very similar to the target images, this type of data
leads the model to directly use the reference image to retrieve the
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target image, making it easy to generate false negatives when re-
placing the modified text (e.g., ”dog” and ”lying”). Lastly, replacing
the whole query pair leads to the simple negatives as the reference
image and modified text significantly differ from those in the pos-
itive example (e.g., ”sofa+shelf” and ”llama+dog”). Compared with
the other three methods, ”replacing the target image” is inherently
aligned with the final application scenario, and the probability of
generating false negatives is relatively low. In the supplementary
materials, we report the performance of every combination of four
types of negative examples. The experimental results suggest that
incorporating other types of negative examples may lead to in-
creased overhead and potentially compromise model performance.
For this reason, we keep consistent with previous work and only
consider the negative example type of replacing the target image.

Two-Stage Fine-tuning. Previous work on extended negative ex-
amples, such as Memory Bank [37] and MoCo [13], has focussed
on visual representation learning, whose models typically follow a
simple Siamese network architecture. However, CIR tasks require
an information fusion of visual and language, and different meth-
ods follow different backbones, such as CLIP [28], BLIP [18], and
BLIP-2 [17].Therefore, we propose amore general two-stage frame-
work to ensure fast adaptation of different models in CIR (Right
half of Fig.2). Specifically, in the first stage, we fine-tune both the
query encoder and the target encoder with in-batch negative sam-
pling as in Eqn.2 following previous works [2, 5, 23]; while in the
second stage, we freeze the target encoder and only fine-tune the
query encoder. Therefore, all candidate images, i.e., the entire Ω,
can advance past the frozen target image encoder, cached before
the second fine-tuning stage. Finally, for triplet (𝑚𝑖 , 𝑟𝑖 , 𝑡𝑖 ), we uti-
lize all non-target images from the candidate set, i.e. Ω − {𝑡𝑖 }, to
form negative examples. The contrastive loss for the second stage
can be expressed as

L2rd
cl =

1
𝐵

𝐵∑
𝑖=1

− log
exp(𝑓 (q𝑖 , 𝑔(𝑡𝑖 )) /𝜏)∑

𝑡 𝑗 ∈Ω exp
(
𝑓
(
qi, 𝑔(𝑡 𝑗 )

)
/𝜏
) (7)

where 𝑔(.) represent the frozen target image encoder. It is worth
noting that the second stage is very efficient. According to our esti-
mates on different baselines, one training epoch on average takes
12 minutes, and typically 50 epochs are needed for the first stage,
resulting in a total duration of around 10 hours. While in our ad-
ditional second stage, pre-computing representations take an aver-
age of 10 minutes, with each epoch taking 5 minutes, and only 5
epochs are required, around half an hour in total.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Baselines. To evaluate the superiority of our method, we
conduct experiments on four advancedmodels in CIR: TG-CIR [35],
CLIP4CIR [5], BLIP4CIR [23] and SPRC [2].
TG-CIR [35] uses CLIPViT-B/16 as the backbone, which exploits the
global and local attribute representations and information from the
target image to guide both query fusion and metric learning.
CLIP4CIR [5] uses CLIPResNet50x4 as the backbone, which simply
regards element-wise sum as a fusion approach.

BLIP4CIR [23] uses BLIPbase as the backbone, which adopts the
fusion encoder of BLIP to fuse the reference image tokens andmod-
ified text tokens. We do not include an extra re-ranker to ensure
the evaluation protocols are consistent.
SPRC [2] uses BLIP-2pretrained-vitl as the backbone, which exploits
the QFormer [17] as an encoder for query and target image sharing.

4.1.2 Training Protocol. We directly use checkpoints released by
baseline works as the first stage models to avoid retraining. For
the second stage, we calculate image representations for all images
before training and only finetune the query encoder using scaled
positives and negatives for 5 epochs. For themain results in section
4.2, we only use images in Ω, so it can be fairly compared to any
model that uses the original dataset.

Table 1: Average token length calculated by LLAVA Tok-
enizer [20] of the modified text and triplet count statistics
for the annotated and generated training sets.

Dataset Annotated Generated

Token Triplet Token Triplet

FashionIQ [36] 7.8 18k 16.5 96k
CIRR [21] 15.4 28k 20.9 128k

4.1.3 Evaluation Datasets. We evaluate our model on two com-
monly used CIR datasets: FashionIQ [36] and CIRR [21].
FashionIQ [36] consists of 30,134 examples extracted from 77,684
images crawled from fashion websites. These images are catego-
rized into Dress, Shirt, and Top&Tee. The modified text is manu-
ally annotated for each pair of reference and target images. As in
[4, 40, 41], we use 18,000 examples for training and 6,016 validation
examples for testing since the ”real” test set is unavailable.
CIRR [21] (Composed Image Retrieval on Real-life images) con-
tains 21,552 real-life images from the web taken from 𝑁𝐿𝑉𝑅2, a
popular natural language reasoning dataset. CIRR contains 36,554
examples, of which 28,225 examples are used for training, 4,181
for validation, and 4,148 for testing. In addition, the images in this
dataset are divided into several semantically similar groups to eval-
uate 𝑅subset@𝐾 metric (see below).

4.1.4 Evaluation Metrics. 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 (𝑅@𝐾 ) is the proportion of
queries for which the retrieved top K images include the correct
target image. 𝑅𝑒𝑐𝑎𝑙𝑙subset@𝐾 (𝑅subset@𝐾 ) is nearly the same as
𝑅@𝐾 but the model only retrieves inside the semantically similar
group of the reference image. For the FashionIQ dataset, following
previous works [2, 4, 23], we evaluate our model through 𝑅@𝐾
(𝐾 = 10, 50) on the original protocol. As in [41], we also report the
mean of all 𝑅@𝐾 scores as Rmean. For the CIRR dataset, follow-
ing previous works [4, 22], we evaluate our model through 𝑅@𝐾
(𝐾 = 1, 5, 10, 50) and 𝑅subset@𝐾 (𝐾 = 1, 2, 3). As in [2], we also
report (𝑅@5+𝑅subset@1)/2 as Rmean.

4.1.5 Implementation Details. We use LLaVA-v1 [20] as a multi-
modal large language model for caption generation. We use the
advanced model unicomViT-L/14 [1] for the unimodal image en-
coder. As used by CLIP4CIR [5], we leverage AdamW [24] opti-
mizer. All experiments are conducted on a single Tesla V100 GPU.
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Table 2: Evaluation results of various models on FashionIQ. The best results are in boldface.

Methods Backbone Dress Shirt Top&Tee Average

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Rmean
CIRPLANT [21] w/o VLP 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20
ARTEMIS [9] w/o VLP 27.16 52.40 21.78 43.64 29.20 54.83 26.05 50.29 38.17
ComqueryFormer [39] w/o VLP 28.85 55.38 25.64 50.22 33.61 60.48 29.37 55.36 42.37
PL4CIR [41] CLIP 33.60 58.90 39.45 61.78 43.96 68.33 39.02 63.00 51.01
TG-CIR [35] CLIP 35.55 59.44 40.24 62.37 43.65 67.36 39.81 63.06 51.44
+SPN CLIP 36.84 60.83 41.85 63.89 45.59 68.79 41.43 64.50 52.97
CLIP4CIR [4] CLIP 38.18 62.67 44.01 64.57 45.39 69.56 42.52 65.60 54.06
+SPN CLIP 38.82 62.92 45.83 66.44 48.80 71.29 44.48 66.88 55.68

BLIP4CIR [23] BLIP 44.22 67.08 45.00 66.68 49.72 73.02 46.31 68.93 57.62
+SPN BLIP 44.52 67.13 45.68 67.96 50.74 73.79 46.98 69.63 58.30

SPRC [2] BLIP-2 49.18 72.43 55.64 73.89 59.35 78.58 54.92 74.97 64.85
+SPN BLIP-2 50.57 74.12 57.70 75.27 60.84 79.96 56.37 76.45 66.41

Table 3: Performance comparison of various models on CIRR. The best results are in boldface.

Methods Backbone Recall@K Rsubset@K Rmean
K=1 K=5 K=10 K=50 K=1 K=2 K=3

CIRPLANT [21] w/o VLP 19.55 52.55 68.39 92.38 39.20 63.03 79.49 45.88
ARTEMIS [9] w/o VLP 16.96 46.10 61.31 87.73 39.99 62.20 75.67 43.05
ComqueryFormer [39] w/o VLP 25.76 61.76 75.90 95.13 51.86 76.26 89.25 56.81
TG-CIR [35] CLIP 45.23 78.34 87.13 97.30 72.84 89.25 95.13 75.59
+SPN CLIP 47.28 79.13 87.98 97.54 75.40 89.78 95.21 77.27
CLIP4CIR [4] CLIP 42.80 75.88 86.26 97.64 70.00 87.45 94.99 72.94
+SPN CLIP 45.33 78.07 87.61 98.17 73.93 89.28 95.61 76.00
BLIP4CIR [23] BLIP 44.77 76.55 86.41 97.18 74.99 89.90 95.59 75.77
+SPN BLIP 46.43 77.64 87.01 97.06 75.74 90.07 95.83 76.69

SPRC [2] BLIP-2 51.96 82.12 89.74 97.69 80.65 92.31 96.60 81.39
+SPN BLIP-2 55.06 83.83 90.87 98.29 81.54 92.65 97.04 82.69

We manually tune 𝜏 ∈ {0.01, 0.02, 0.03, 0.05} and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∈
{2𝑒 − 6, 5𝑒 − 6, 6𝑒 − 6, 1𝑒 − 5, 2𝑒 − 5}. Detailed hyper-parameters are
reported in the supplementary materials.

We analyze the modified text in the two datasets using LLAVA
tokenizer [20] and count the average annotated token length in
Table 1. For FashionIQ, we set 𝑡𝑦𝑝𝑒 to the name of the split, i.e.,
dress/shirt/top tee, and 𝑘 to 5. For CIRR and Conceptual Caption,
we set 𝑡𝑦𝑝𝑒 to ”image” and𝑘 to 10 in the image captioning template.
The detailed data statistics for both the generated and annotated
triplets are provided in Table 1. For both datasets, we set 𝑐0 to 10000.
We set 𝑐1 to 20000 for FashionIQ and 15000 For CIRR.

4.2 Main Results
We compare our method against the following baseline methods:
CIRPLANT [21], ARTEMIS [9], ComqueryFormer [39], PL4CIR [41],
TG-CIR [35], CLIP4CIR [4], BLIP4CIR [23], SPRC [2]. Details about
these models can be found in supplementary materials. We abbre-
viate the method of scaling positive examples as SP, the method of

scaling negative examples as SN, and the superposition of the two
methods as SPN.

Results on FashionIQ. Table 2 illustrates the comparison between
our model and other recent studies on FashionIQ. It demonstrates
that our plug-and-play approach improves the effectiveness of all
four baseline models with different architectures. SPN boosts the
R@10 metric for TG-CIR by 3.8%, CLIP4CIR by 4.1%, BLIP4CIR by
1.5%, and SPRC by 2.6%. SPN enhances the R@50 of TG-CIR by 3%,
CLIP4CIR by 2%, BLIP4CIR by 1%, and SPRC by 2%. This mainly
benefits from more negative and positive examples in contrastive
learning, which allows the model to learn a better representation.

Results on CIRR. Table 3 illustrates the comparison between our
model and other recent studies on CIRR. It shows that SPN also im-
proves the performance of all four baseline models. SPN increases
the R@1 of TG-CIR by 4.5%, CLIP4CIR by 5.9%, BLIP4CIR by 3.7%,
and SPRC by 6%. SPN improves the R@5 of TG-CIR by 1%, CLIP4CIR
by 2.9%, BLIP4CIR by 1.4%, and SPRC by 2.1%. This proves our
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Figure 4: Discussion of the core components in the method. The results shown in the figures are on the validation set.

method works well for images in both general and fashion scenes.
SPN promotes the Rsubset@1 of TG-CIR by 3.5%, CLIP4CIR by 5.6%,
BLIP4CIR by 1%, and SPRC by 1.1%. The objective of the subset
test is to justify whether the model can distinguish between hard
negative examples [21]. Such a boost indicates that our model can
learn more fine-grained representations than the base model, thus
distinguishing harder negative examples.

Table 4: Ablation results on CLIP4CIR.

Model FashionIQ CIRR

R@10 R@50 R@1 R@5 Rsubset@1
CLIP4CIR 42.52 65.60 43.96 77.68 70.84
+SP 43.83 66.66 44.75 79.45 72.85
+SN 43.43 66.45 46.35 79.67 73.07
+SPN 44.48 66.88 46.97 80.29 74.17

4.3 Ablation Study
Contribution of SP and SN. To evaluate the effectiveness of SP

and SN, we train CLIP4CIR using several variants of our method
and test on the validation set of CIRR and FashionIQ. SP variant
conducts contrastive learning with in-batch negative sampling on
the scaled positive examples. SN variant only scales negative ex-
amples without exploiting new positive examples.The results illus-
trate that removing either SN or SP significantly decreases perfor-
mance. SP and SN can improve the baseline model by 1.3% to 3.1%
on the two datasets, respectively. SN is more effective for the CIRR
dataset. SP is more useful for the FashionIQ dataset. We attribute
this phenomenon to the fact that the modified texts are more com-
plex in the CIRR dataset and that contrast learning is more lacking
in negative than positive examples. While the modified texts are
simple in FashionIQ, the situation is exactly the opposite.

Discussion on 𝑘 . Since the LLAVA tokenizer utilizes the BPE tok-
enization method, which typically results in a word count to token
count ratio of 1:2. So the corresponding word counts for FashionIQ
are around 4, and for CIRR, they are around 8.Therefore, we exper-
iment with 𝑘 values that approximate the word count of the modi-
fied text in the annotated triplets. As shown in Fig.4(a), we find that
slightly exceeding the annotated word count yields better results,
as lower or higher values lead to performance degradation.

Discussion on MLLM Model. The MLLM we use can be replaced
with any model that can generate captions for images, so we try
three representativemodels LLAVA [20], BLIP [18], and BLIP-2 [17]
in Table 4(b).We find that LLAVA,with great instruction fine-tuning,
works best among the three models. But surprisingly, BLIP works
better than BLIP-2. This suggests that BLIP-2’s ability to follow im-
age captioning instructions is not very good. At the same time,
using different MLLMs consistently yields better results than w/o
SP, indicating that our method is insensitive to different MLLMs.

Discussion on Number of Positive Examples. SP allows for con-
structing many triplets based on images, so we consider exactly
howmany additional triplets on top of the existing ones work best.
As shown in Fig 4(c), as the number of positive examples rises, the
effect of the model increases and then decreases, with the best re-
sults when increasing nearly 60% of the number of original triplets,
that is 12k for FashionIQ and 16k for CIRR.

Discussion on Image PairMatch. In Fig.4(d), we explore fourmeth-
ods for constructing image pairs. The first method involves select-
ing target imageswith the highest similarity to the reference image.
The second method entails choosing target images with moderate
similarity to the reference image. The third method focuses on se-
lecting target images with the lowest similarity to the reference
image, while the fourth method involves selecting target images
randomly from the entire set. Our findings indicate that the second
method consistently produces superior results across both datasets.
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Table 5: Zero-shot results.

Model FashionIQ CIRR

R@10 R@50 R@1 R@5 Rsubset@1
Out-of-Domain Image Dataset

CLIP [28] 19.04 35.03 12.65 38.41 34.29
PIC2WORD [29] 24.70 43.70 23.90 51.90 -
SEARLE-OTI [3] 27.61 47.90 24.87 52.31 53.80
SPN-CC 28.97 49.54 34.34 65.42 64.87

In-Domain Image Dataset

SPN-IN 31.11 52.19 36.55 67.69 67.28

This observation can be attributed to the higher quality of triplets
generated through this selection approach compared to the others.

Discussion on Prompt Templates. We can combine three prompt
templates in 7 ways. For two or more combinations of templates,
we obtain a corresponding number ofmodified texts for each triplet
and randomly select one during training. As shown in Fig.4(e), we
find that for CIRR, a mixture of the first two works best. For Fash-
ionIQ, only the third works best. This indicates that in FashionIQ,
more modified texts directly describe the target image.

Discussion on Number of Negative Examples. Because SN could
exploit many images as negative examples, an experiment is con-
ducted to verify the relationship between the number of negative
examples and the performance. As shown in Fig 4(f), themodel per-
forms better as the number of negative examples rises and works
best when all images in the candidate image set are used as nega-
tive examples, which is 24k for FashionIQ and 16k for CIRR. We
additionally scale negative examples with images from external
MSCOCO datasets. However, we observe a decline in performance.

4.4 Results of Zero-Shot CIR
Zero-shot CIR is aimed at building a CIR model without requir-
ing human-labeled triplets for training [29]. For comparison un-
der the zero-shot setting, we introduce two advanced baselines for
zero-shot CIR, PIC2WORD [29] and SEARLE [3]. Following these
two baselines, we use CLIPViT-L/14 as the backbone. Before train-
ing, we use the method described in Section 3.2 to generate a CIR
dataset from an image dataset. Then contrastive learning with in-
batch negative sampling is used for first-stage fine-tuning and the
method described in Section 3.3 is used to scale negative examples
for second-stage fine-tuning.

Neither of these baselines uses an in-domain image dataset for
training. Therefor, we also utilize images from the out-of-domain
dataset Conceptual Caption (CC3M), comprised of 3.3million image-
caption pairs from the Internet, to generate positive examples for a
fair comparison with PIC2WORD. Specifically, we randomly select
the 50k images in CC3M to construct the CIR dataset due to com-
puting resource limitations. The number of 50k images is equal
to 1.7% of that PIC2WORD used and 50% of that SEARLE used.
We abbreviate our model trained with this setting as SPN-CC. As
shown in Table 5, SPN-CC gets the best results while using the

blue wresting 
logo tee shirt

Shows three llamas of 
different colors, one of 
which is similarly black 
and white.

w/o SPN

w SPN

w SPN

w/o SPN

Figure 5: Comparison of retrieval results between the
CLIP4CIR model w/o and w SPN.

least amount of images. This suggests that, given a collection of
images out of the domain, our method can automatically construct
appropriate triplets and train an acceptable model in the zero-shot
setting. We also explore the setting of in-domain images, i.e., those
in FashionIQ and CIRR, and abbreviate the model trained with this
setting as SPN-IN. Under this setting, SPN-IN yields better results
than SPN-CC using out-of-domain data.This suggests that if in the
future we need to do a composed image retrieval task for a new
scene but with few labeling costs, an accepted solution is to use
our SPN method to automatically construct the positive examples
within this scene and train a model from scratch.

4.5 Case Study
Fig.5 indicates the retrieval cases of CLIP4CIR w/o and w SPN.The
first example is selected from CIRR, and the second one is from
FashionIQ. For both examples, we can find that using SPN allows
us to learn more of the rarer concepts (e.g. ”llama”, ”logo”), thus
enhancing the base model. In the meantime, we can find that the
base model has difficulty in retrieving the correct image when the
reference and target images are very different (e.g., ”panda”
and ”llama”, ”dress” and ”tee”), and SPN narrows this gap. More
examples can be found in supplementary materials.

5 CONCLUSION
The Composed Image Retrieval (CIR) task uses a composed query
to retrieve target images. While existing methods have achieved
impressive results, limited labeled data and contrastive learning
with in-batch negative sampling limit the performance of their
methods. To address these problems, we first propose a data gen-
eration method using a multi-modal large language model to scale
positives. We then propose a two-stage fine-tuning framework to
scale negatives, introducing static representations of negatives in
the second stage. These improvements are plug-and-play, enhanc-
ing existing CIR models without architecture changes. Extensive
experiments show that we obtain state-of-the-art results on the
FashionIQ and CIRR datasets. Moreover, our method could be ap-
plied to zero-shot composed image retrieval, offering a novel solu-
tion for unannotated CIR scenarios.
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