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Abstract

To facilitate the practical implementation of
occupant-centric HVAC control (OCC) that re-
flects individual thermal comfort, ensuring scal-
ability and validating performance through real-
world deployment are critical. This study pro-
poses a scalable OCC framework tailored for ac-
commodations, which generates an initial comfort
model at check-in using a public thermal comfort
database and guest profile data, then personal-
izes it during the stay based on temperature set-
point adjustments. The system was deployed in
an accommodation facility in Japan and evaluated
in a four-night field experiment with 20 partici-
pants. Results showed a 37% reduction in daily
setpoint adjustments (from 4.9 to 3.1 times per
person), suggesting enhanced thermal comfort.
The findings demonstrate the effectiveness of the
proposed framework and its potential for enhance-
ment through broader deployment and data accu-
mulation.

1. Introduction
Conventional HVAC (Heating, Ventilation, and Air Condi-
tioning) systems aim to provide environments acceptable
to the average people, often resulting in user dissatisfaction
(Graham et al., 2021). The importance of occupant-centric
HVAC control (OCC), which prioritizes individual thermal
comfort, is increasingly recognized (Huang et al., 2024;
Soleimanijavid et al., 2024). However, OCC approaches re-
main underutilized in real-world settings. Soleimanijavid et
al. (2024) identified several barriers to adoption, including
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computational complexity, integration with Building Au-
tomation Systems (BAS), data availability and quality, scal-
ability, and limited real-world implementation studies. To
overcome these challenges, scalable OCC frameworks must
demonstrate improved thermal comfort with minimal data
and computational requirements. Although most OCC stud-
ies research has focused on multi-occupant spaces such as
office, classroom, and conference room (Huang et al., 2024),
the HVAC control resolution in such spaces is normally
zone level, leading to a mismatch with thermal comfort
modeling resolution (i.e., personal level). Ono et al. (2022)
revealed that this mismatch can result in an 8% potential
loss in thermal comfort improvement.

Given these limitations, accommodation settings offer
promising opportunities for OCC. Guest rooms are gener-
ally occupied by one or a few guests, enabling finer control
resolution than office spaces. However, accommodations
pose unique constraints, such as limited guest information
at check-in and short stays that restrict data collection. To
address these, we propose a scalable OCC framework that
utilizes available guest information, such as climate of resi-
dence, sex, and season to construct an initial comfort model
based on a public thermal comfort database. This model
serves as the starting point at check-in, and during the stay,
guest interactions with the HVAC system (i.e., setpoint ad-
justments) are used to learn individual preferences. Al-
though the short stay can limit the amount of data collected
from individuals, setpoint adjustment histories can be more
informative than survey-based feedback on thermal comfort
when learning preference. We implemented this framework
in an accommodation facility in Japan and conducted a field
experiment to assess the control performance.

2. Method
2.1. Proposed Control Framework

Figure 1 illustrates the proposed OCC framwork in accom-
modations. During the preparation phase, seasonal base
comfort models are constructed from a temperate-climate
dataset, and temperature shifts (∆T ) are calculated based
on climate, sex, and season. At check-in, the initial comfort
model is generated by applying the appropriate ∆T to the
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Figure 1. Proposed occupant-centric HVAC control framework in accommodations.

base model. During the guest’s stay, the comfort model is
updated every night based on the records of temperature
setpoint adjustments. This framework might not work well
if the guest stays only for one night, but it can be effective
when staying for more than one night or for repeat guests.

2.1.1. BASE AND INITIAL COMFORT MODELS

To develop an intuitive thermal comfort model that proba-
bilistically expresses the relationship between air tempera-
ture and thermal comfort, we adopted the modeling frame-
work proposed by Jung and Jazizadeh (2019). The proce-
dure is as follows: (1) From thermal preference survey re-
sults (“prefer warmer,” “neutral,” “prefer cooler”), the mean
and standard deviation of air temperature corresponding to
each response are calculated. (2) Each response category
was assumed to follow a normal distribution. For “prefer
warmer” and “prefer cooler,”half-normal distributions are
used. (3) The overall comfort probability curve is derived
from three comfort states corresponding to the three normal
distributions based on a Bayesian network.

To construct the thermal comfort model, we extracted
data entries from the ASHRAE Global Thermal Comfort
Database II (Földváry Ličina et al., 2018) based on the fol-
lowing criteria: Indoor air temperature, outdoor air tempera-
ture, and thermal preference are recorded, office or school,
and air-conditioned. A total of 35,632 data entries met these
conditions. To keep the model simple, we constructed base
comfort models for each season using data from the temper-
ate climate, which had the highest data volume (Figure 2).
Based on these models, the comfort temperature (defined as
the temperature corresponding to 100% comfort probability)

Figure 2. Base comfort models for each season.

was calculated. The resulting comfort temperatures were
consistent with previous literature (Cena & de Dear, 1999):
24.2 °C in summer, 23.4 °C in spring/autumn, and 22.3 °C
in winter. To extend this model to be an initial comfort
model for a guest considering the climate, sex, and season,
we applied horizontal shifts (∆T ) to the base comfort model.
For each subgroup, the average temperature associated with
thermal neutrality was calculated, and ∆T was defined as
the deviation from the temperate-climate baseline.

2.1.2. UPDATING MODELS BASED ON INDIVIDUAL DATA

Individual preference data are collected through temperature
setpoint adjustments by guests. If the temperature setpoint
is increased/decreased, thermal preference data is recorded
as “prefer warmer” and “prefer cooler,” respectively at that
time. If the setpoint remained for an hour, the thermal prefer-
ence of “no change” is recorded. The individual preference
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data are combined into the original database with a prede-
termined weight to have a comparable impact on comfort
modeling and recalculate a comfort probability curve to
obtain the personalized comfort model for the guest.

2.2. Case study

2.2.1. STUDY BUILDING

The proposed OCC framework was implemented in an ac-
tual accommodation facility to evaluate its performance
through a subjective experiment. The study building is lo-
cated in Nagano, Japan, consisting of 20 guest rooms and
several common areas such as a hall. Each guest room was
individually air-conditioned using a Variable Refrigerant
Flow (VRF) system, allowing guests to freely adjust the
temperature setpoint during their stay.

2.2.2. SUBJECTIVE EXPERIMENT

A subjective experiment was conducted in the guest rooms
over a five-day, four-night period from August 20 to 24,
2024, to evaluate the OCC performance. 20 university stu-
dents (10 male and 10 female) were participated for the
experiment, with each assigned to a separate guest room.
Because daily activities such as taking meals, bathing, and
sleeping can influence perceived comfort, a consistent sched-
ule was established for all participants throughout the exper-
iment. Participants were instructed to remain in their guest
rooms from 7:00 PM until 8:30 AM the following morning.
The participants were asked to answer a survey on thermal
comfort 5 times per day. Prior to the main experiment, a
two-night, three-day preliminary experiment was conducted
at each participant’s home to help participants familiarize
themselves with the experimental process and schedule.

Table 1 shows the experimental cases. Day 1 (NoOCC-A)
was designated for learning individual preferences based
on participants’ temperature setpoint adjustment history,
with the initial temperature set to 25 °C. On Days 2 and
3, a crossover experiment was conducted to compare fixed-
setpoint operation at 25 °C (NoOCC-N) and OCC (OCC-N),
with the two cases alternated between two groups of 10
participants each. During this phase, temperature setpoint
adjustment was prohibited. On Day 4, participants were

Table 1. Experimental cases.

Case name Setpoint control
strategy

Setpoint adjustment
by guests

NoOCC-A Initially set to 25 °C Allowed
NoOCC-N Constant at 25 °C Not allowed
OCC-N OCC Not allowed
OCC-A OCC Allowed

again allowed to adjust the temperature setpoint, and the
number of temperature setpoint adjustments by participants
was recorded while OCC was active (OCC-A). With OCC,
the temperature satisfies more than a probability threshold
(here, set to 80%) according to the comfort model is set
to the setpoint to balance thermal comfort and energy effi-
ciency viewpoints.

3. Results and Discussion
A statistical analysis by the Wilcoxon signed-rank test was
conducted for the subjective feedback on thermal comfort
and thermal preference between Cases NoOCC-N and OCC-
N (Figure 3). While the difference in thermal comfort
was not significant, a trend toward improved comfort un-
der the OCC condition (OCC-N) was observed. Regard-
ing thermal preference, the proportion of responses indicat-
ing “no change (±0 ºC)” increased significantly in OCC-N
(p < 0.001). These results suggest that the OCC system ef-
fectively created environments perceived as comfortable by
the participants, thereby reducing the need for temperature
adjustments. Additionally, the mean temperatures over time
and guest rooms for NoOCC-N and OCC-N were the same
level, 24.3 and 24.1 ºC, respectively, meaning that OCC
would not lead to a significant increase in energy usage.

Figure 4 compares the number of temperature setpoint ad-
justments between NoOCC-A (Day 1) and OCC-A (Day
4). On Day 1, there were a total of 97 operations (4.9 times
per person), while on Day 4, this dropped to 61 operations
(3.1 times per person), marking a 37% reduction. Notably,
adjustments to increase the temperature were reduced nearly
in half. The individual adjustment behavior showed substan-
tial variability in participants’ sensitivity to their thermal
environment. While two participants made no changes at all,
others adjusted the temperature as many as 17 times in one
day. Moreover, many participants performed both upward
and downward adjustments within a single day, suggesting
that fine-tuned adjustments were made in response to their
activities such as bathing and sleeping. Figure 5 presents

Figure 3. Subjective feedback on thermal comfort (left) and ther-
mal preference (right).
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Figure 4. Number of temperature setpoint adjustments for the total of all participants (left) and each participant (right).

Figure 5. Comfort probability curves before and after learning in-
dividual preference for Participant #1 and #10.

changes in the comfort probability curves for two represen-
tative participants based on temperature adjustment history
from Day 1. Participant #1, who lowered the setpoint tem-
perature on Day 1, had a 24 ºC setting on Day 4 as a result of
preference learning. Participant #10, who raised the setpoint
temperature, had a 29 ºC setting on Day 4. These examples
demonstrate that the system successfully learned individual
preferences from setpoint adjustment history.

The number of preference data used for learning was be-
tween 11 and 18 per individual, which was much smaller
than the required responses for accurate prediction sug-
gested by Tartarini et al. (2022), 250–300 data points per

person, indicating the importance of collecting informative
data that effectively captures individual preferences. Sup-
porting this, Tekler et al. (2024) showed that only two
informative data points made substantial improvement in
prediction performance of personal comfort models through
active transfer learning. Likewise, temperature setpoint
adjustments offer a more direct representation of user prefer-
ence than conventional survey-based feedback, particularly
when feedback is collected passively and without interaction
with the HVAC system, contributing to effective personal-
ization with minimal data. Additionally, the proposed OCC
framework provides a practical advantage by eliminating the
need for additional sensors, subjective feedback collection
interfaces, and controllers, while OCC frameworks normally
rely on occupancy sensors, subjective feedback on thermal
comfort, and complex algorithms (Lei et al., 2022). This
simplicity enhances both the scalability and ease of deploy-
ment of the proposed framework in real-world settings.

4. Conclusion
This study proposed and validated a scalable occupant-
centric HVAC control framework for accommodation en-
vironments through a four-night field experiment with 20
participants. The results showed a 37% reduction in set-
point adjustments and a significant increase in responses
indicating “no change” in thermal preference (p < 0.001),
suggesting improved thermal comfort. The findings demon-
strate the scalability of the proposed OCC framework that
can be easily adopted in other accommodations with min-
imal data collection and guests’ burden. While this initial
deployment relied on the ASHRAE database, broader adop-
tion will allow the system to be incrementally refined using
accumulated real-world user data. This synergy between
the scalable control framework and personalized data accu-
mulation holds significant potential for advancing occupant-
centric HVAC control in accommodations.
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