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Abstract

Self-improving large language models (LLMs)001
– i.e., to improve the performance of an LLM002
by fine-tuning it with synthetic data generated003
by itself – is a promising way to advance the004
capabilities of LLMs while avoiding exten-005
sive supervision. Existing approaches to self-006
improvement often rely on external supervi-007
sion signals in the form of seed data and/or008
assistance from third-party models. This pa-009
per presents CRESCENT – a simple yet ef-010
fective framework for generating high-quality011
synthetic question-answer data in a fully au-012
tonomous manner. CRESCENT first elicits013
the LLM to generate raw questions via a014
bait prompt, then diversifies these questions015
leveraging a rejection sampling-based self-016
deduplication, and finally feeds the questions017
to the LLM and collects the corresponding an-018
swers by means of majority voting. We show019
that CRESCENT sheds light on the potential of020
true self-improvement with zero external super-021
vision signals for math reasoning; in particular,022
CRESCENT-generated question-answer pairs023
suffice to (i) improve the reasoning capabilities024
of an LLM while preserving its general perfor-025
mance (especially in the 0-shot setting); and026
(ii) distil LLM knowledge to weaker models027
more effectively than existing methods based028
on seed-dataset augmentation.029

1 Introduction030

In recent years, large language models (LLMs)031

such as GPT-4o (Hurst et al., 2024), Gemini (Anil032

et al., 2023), Llama (Touvron et al., 2023a), and033

DeepSeek-R1 (Guo et al., 2025) have demonstrated034

remarkable capabilities, revolutionizing natural lan-035

guage processing and various other tasks. The suc-036

cess of these models can be attributed to the scaling037

laws (Kaplan et al., 2020), which dictate the rela-038

tionship between model parameters, computational039

resources, and training data size. For instance, the040

prominent performance of Llama-3.1 with 405B041

stronger models

external data
synthetic data

(mixed sourced)

bait 
prompt

synthetic data
(100% self-generated)

self-improvement with external scaffolding

self-improvement with zero supervision signal

Figure 1: Different schemes of self-improvement.

parameters (Dubey et al., 2024) roots in, amongst 042

others, the massive, high-quality datasets for pre- 043

and post-training. However, as models continue to 044

scale, the available real-world (public) data quickly 045

becomes exhausted; meanwhile, manually crafting 046

high-quality data is time- and labor-intensive. Thus, 047

data volume has become a key limiting factor for 048

the effective scaling of new-generation models. 049

In response to this challenge, synthetic data gen- 050

eration and data augmentation have emerged as 051

key methods to further improve the performance of 052

LLMs while avoiding extensive supervision. These 053

methods leverage the ability of LLMs to mirror 054

real-world distributions and generate high-quality, 055

pseudo-realistic data (Zhang et al., 2023). Fol- 056

lowing this line of research, the problem of self- 057

improvement naturally arises: Can we improve the 058

performance of an LLM by fine-tuning it with syn- 059

thetic data generated by itself? This problem has 060

triggered a recent surge of research results (Wang 061

et al., 2024). These methods, however, rely heav- 062

ily on external seed datasets for augmentation 063

(e.g., (Huang et al., 2023; Wang et al., 2023b)) 064

and/or stronger third-party models as classifiers 065

or reward agents (e.g., (Le et al., 2022; Xin et al., 066
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2024)); see Fig. 1. Such dependency on external067

supervision signals limits their ability to achieve068

true self-improvement. Orthogonally, the recently069

proposed method Magpie (Xu et al., 2024) suf-070

fices to generate high-quality dialogue datasets (i.e.,071

both responses and instructions) entirely through072

the model itself. Nonetheless, the generated data073

is highly randomized and primarily dedicated to074

the alignment of base LLMs. Such data may im-075

prove instruction-following abilities but will de-076

grade fundamental capabilities like math and rea-077

soning; see (Xu et al., 2024, Sect. 6). Recent discus-078

sions (Kambhampati et al., 2024; Shumailov et al.,079

2024) have explicitly questioned whether genuine080

self-improvement is feasible, suggesting that when081

trained solely on self-generated data, LLMs may082

fail. Can LLMs achieve true self-improvement?083

remains an open question in the literature.084

This paper aims to provide the infrastructure to085

explore the self-improvement problem of LLMs:086

We present CRESCENT – a fully autonomous087

framework for generating high-quality synthetic088

question-answer (QA) data that suffice to improve089

the reasoning capabilities of an LLM while preserv-090

ing its general performance. CRESCENT adopts091

a simple yet effective workflow: (i) It uses a bait092

prompt to guide the model to generate raw ques-093

tions in a specific domain, such as math word prob-094

lems; (ii) It applies a self-deduplication mechanism095

based on rejection sampling (Liu and Liu, 2001) to096

refine and diversify the question pool; and (iii) For097

each question, it performs majority voting (Wang098

et al., 2023a) to identify the most confident answer099

from the model (thus enhancing the consensus).100

The so-obtained QA pairs are then used to fine-tune101

the original LLM via, e.g., supervised fine-tuning102

(SFT), to improve its math-reasoning capability.103

Experiments with CRESCENT demonstrate ev-104

ident self-improvement of LLMs consistently for105

three benchmarks on mathematical word problems106

in both 0-shot and 5-shot settings, without trading107

off their general capabilities. The improvement is108

especially prominent for the 0-shot case, thus im-109

proving the generalization ability of the model to110

real-world tasks. Ablation studies further demon-111

strate the superiority of CRESCENT over Mag-112

pie (Xu et al., 2024) in the generation of themed113

data: the latter tends to generate math-related dia-114

logues, e.g., “Could you tell me what type of math-115

ematics you like?” – rather than proper mathemati-116

cal problems. Moreover, our experiments show that117

CRESCENT can serve as a highly effective and effi-118

cient distillation method, surpassing the baselines 119

using external data and stronger models. 120

Contributions. Our main contributions include: 121

• We present a simple yet effective frame- 122

work CRESCENT – utilizing the techniques 123

of bait prompting, diversification, and con- 124

sensus enhancement – to investigate the self- 125

improvement problem of LLMs. 126

• We show that CRESCENT-generated QA pairs 127

suffice to improve the reasoning capabilities 128

of an LLM with zero supervision signals while 129

preserving its general performance, thereby 130

providing an affirmative answer to the self- 131

improvement problem in the domain of math- 132

ematical reasoning (math word problems). 133

• Experiments demonstrate significant improve- 134

ments achieved by CRESCENT compared to 135

multiple prompting methods. As a by-product, 136

we show CRESCENT facilitates more effective 137

LLM knowledge distillation than existing ap- 138

proaches based on seed-dataset augmentation. 139

2 The CRESCENT Approach 140

This section presents CRESCENT – a framework for 141

controlled QA self-generation via diversification 142

and consensus enhancement. CRESCENT suffices 143

to generate high-quality domain-specific QA pairs 144

leveraging only the model itself, with zero external 145

data, nor assistance from third-party models. 146

Fig. 2 sketches the general workflow of CRES- 147

CENT, which consists of three main steps: (I) Bait 148

prompting: We use a bait prompt to instruct the 149

original, aligned LLM to produce a set of raw 150

questions within a specific domain; (II) Diversi- 151

fication: The raw questions may be semantically 152

analogous to each other (as per some similarity 153

metric), and thus we employ a rejection sampling 154

mechanism to attain a diverse pool of representative 155

questions through self-deduplication; (III) Consen- 156

sus enhancement: We treat the generated questions 157

as query prompts and feed them back to the LLM. 158

Then, by majority vote, we obtain the final set of 159

synthetic QA pairs. We show that such QA pairs 160

are of high quality in the sense that they suffice to 161

improve the domain-specific capabilities (mathe- 162

matical reasoning, in our case) by fine-tuning the 163

original LLM with these QA pairs while preserving 164

its general capabilities. 165
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Figure 2: The general workflow of CRESCENT in mathematical reasoning.

Below, we first present the technical details of166

Steps (I) to (III) and then provide the rationale be-167

hind the self-improvement achieved by these steps.168

2.1 Question Generation (Steps (I) and (II))169

We begin by utilizing a simple bait prompt to elicit170

the LLM to generate a bunch of domain-specific171

questions, such as math word problems illustrated172

in Fig. 2, denoted as raw questions. As some of173

them may be semantically analogous to each other,174

we optimize diversity of the questions in an itera-175

tive manner: Each generated question is vectorized176

and compared against the (embeddings of) other177

questions. If there exists a question that is deemed178

sufficiently similar (i.e., the similarity score is be-179

low a prescribed threshold), we apply the following180

deduplication prompt to modify it:181

{question} is very similar to {question}, please182

modify the latter to make it different.183

This iterative process ensures that the question pool184

remains diverse and representative across the spe-185

cific domain through redundancy-aware selection.186

Formally, the question-generation phase can be187

described as follows: Let Q = {q1, q2, . . . , qn} be188

the set of raw questions generated by the LLM per189

the bait prompt. For each question qi, we embed190

it as a real-valued vector vi and compare it against191

the vector representations {v1, v2, . . . , vi−1} of the192

previously generated questions. The similarity be-193

tween the two questions is determined by the dis-194

tance between their respective vector embeddings195

in the inner product space, e.g., the L2 distance. If196

the distance is below a given threshold θ, then qi197

with (i > j) is considered as a duplicate and thus198

needs to be modified via the deduplication prompt, 199

i.e., 200

If d (vi, vj) < θ then q∗i = Deduplicate (qi) . (†) 201

Such similarity-based deduplication incorporates 202

the maximal marginal relevance (MMR) crite- 203

rion (Carbonell and Goldstein, 1998) to mini- 204

mize repetition while preserving content relevance. 205

Moreover, the iterative refining process falls into 206

the paradigm of rejection sampling (cf. e.g., (Liu 207

and Liu, 2001)), which ultimately yields a diversi- 208

fied question pool featuring relevance and represen- 209

tativeness w.r.t. the target domain with negligible 210

redundancy; see Section 2.3. 211

2.2 Answer Generation (Step (III)) 212

Let Q∗ = {q∗1, q∗2, . . . , q∗n} be the deduplicated 213

set of questions generated through the previous 214

step. The phase of answer generation aims to 215

synthesize the corresponding high-quality answers 216

w.r.t. each q∗i ∈ Q∗. We achieve this by means 217

of consensus enhancement, namely, we feed each 218

question q∗i back to the LLM and collect m inde- 219

pendently produced answers, denoted by the set 220

Ai = {a1, a2, . . . , am}, where each aj contains 221

integrated chain-of-thought (CoT) processes (Wei 222

et al., 2022) generated for question q∗i . We then 223

select the final answer a∗i for question q∗i using ma- 224

jority voting (Wang et al., 2023a). That is, we first 225

identify the set Āi of most frequent answers: 226

Āi ≜

{
aj ∈ Ai

∣∣ f (aj) = max
ak∈Ai

f (ak)

}
, 227

where f(aj) denotes the frequency (i.e., the num- 228

ber of occurrences) of answer aj in Ai. Then, we 229
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Figure 3: The intuition of CRESCENT. Let the black
dots be question embeddings and distribution curve be
conditional answer distribution. (1) Our diversification
step modifies question samples violating the minimal
distance criterion per (†) (the middle plot). (2) the con-
sensus enhancement step selects the majority mode an-
swer. (the green X in the left and right plots.)

uniformly sample an answer from Āi as the final230

answer a∗i paired with question q∗i . By repeating231

the majority voting procedure for every question,232

we obtain the final set of synthetic QA pairs:233

(Q∗, A∗) = {(q∗1, a∗1) , (q∗2, a∗2) , . . . , (q∗n, a∗n)} .234

2.3 Rationale for Self-Improvement235

Next, we provide the intuition on why self-236

generated QA pairs using the CRESCENT frame-237

work can be used to improve the capabilities of the238

underlying LLM. This observation will be further239

justified by extensive experiments in Section 3.240

The intuition is three-fold (see Fig. 3):241

(i) Relevance by bait prompting: The initial bait242

prompt restricts the considered space of ques-243

tions and answers to a specific domain and244

hence all the generated QA pairs within the245

CRESCENT scope are pertinent to this domain.246

(ii) Diversity by rejection sampling-based dedu-247

plication: Our diversification step explores248

the question space while maintaining a mini-249

mal pair-wise distance to alleviate redundancy.250

This is achieved by a rejection sampling loop251

where question samples violating the distance252

criterion per (†) are modified and, therefore,253

the generated questions exhibit a scattered dis-254

tribution stretching over the space.255

(iii) Accuracy by majority voting: Based on the256

observation that a complex reasoning prob-257

lem typically admits multiple distinct ways258

of thinking yielding its unique correct an-259

swer (Wang et al., 2023a), our consensus en-260

hancement step selects, for each question, the261

most frequent answer that may coincide with262

the correct one with high likelihood.263

As a consequence, fine-tuning the original LLM 264

with the so-obtained QA pairs will strengthen its 265

domain-specific capabilities by enforcing a reduc- 266

tion in the variance of answer generation for a 267

diverse set of domain-relevant questions. 268

3 Experiments 269

3.1 Experimental Setups 270

Benchmarks. We adopt three benchmarks on 271

math word problems (MWPs): (i) GSM8K (Cobbe 272

et al., 2021): 8.5K grade school math problems 273

with step-by-step solutions; (ii) ASDiv (Miao et al., 274

2020): 2,305 diverse MWPs covering multiple dif- 275

ficulty levels; and (iii) GSM-Plus (Li et al., 2024): 276

an enhanced version of GSM8K with 12K prob- 277

lems incorporating robustness checks. In order to 278

accelerate the evaluation, we use GSM-Plus-mini 279

– a subset of GSM-Plus containing 2,400 questions. 280

It should be noted that the GSM-Plus-mini and 281

GSM8K datasets do not overlap. 282

Baseline Models. We conduct self-improvement 283

experiments with two different LLM models: (i) 284

Llama3-8B-Instruct: the instruction-tuned version 285

of Llama3-8B (Dubey et al., 2024); and (ii) Llama2- 286

7B-Chat (Touvron et al., 2023b): a instruction- 287

tuned version of Llama2-7B. 288

Generation Configurations. For each model, we 289

generate MWP QA pairs following these settings: 290

Question Generation: Bait prompt: “Gener- 291

ate a diverse math word problem requiring multi- 292

step reasoning”. We generate 50K candidate ques- 293

tions for Llama2-7B-Chat and 75k for Llama3-8B- 294

Instruct, both with temperature T = 0.95. Diversi- 295

fication: We use sentence embeddings generated by 296

the all-MiniLM-L6-v2 model from the Sentence- 297

BERT (Reimers and Gurevych, 2019) family; we 298

eliminate semantically similar questions using the 299

L2 distance with threshold θ = 0.25. We employ 300

FAISS (Douze et al., 2024) to accelerate vector 301

computation and comparisons. 302

Answer Generation: For each question, sample 303

5 answers with temperature T = 0.95, then select 304

the most frequent answer as the final answer. We 305

use the same answer generation settings for both 306

models. We use the vLLM (Kwon et al., 2023) 307

inference framework for both generation stages. 308

GPU hours: It took 30.0 GPU hours to generate 309

75k QA pairs with Llama3-8B-Instruct and 42.9 310

GPU hours for the 50k pairs with Llama2-7B-Chat. 311
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Table 1: Main results comparing original models vs.
CRESCENT versions. Best results in bold (accuracy %).

Model Training 0-shot 5-shot

GSM8K ASDiv GSM+ GSM8K ASDiv GSM+

Llama2-7B-Chat Original 18.8 41.7 11.3 23.0 45.9 13.5
CRESCENT 23.2 46.0 13.0 25.1 45.2 14.8

Llama3-8B-Inst. Original 34.5 43.6 23.1 75.8 62.3 51.2
CRESCENT 63.3 65.9 48.6 77.6 63.8 52.8

SFT Implementation. Our SFT procedure uses312

single-epoch training with max sequence length313

of 2,048 tokens. Optimization is performed us-314

ing AdamW (Loshchilov and Hutter, 2019) (β1 =315

0.9, β2 = 0.95) under a linear learning rate sched-316

ule (initial LR = 1e-5, 3% warm-up), and the batch317

size is set to 128 through 8-way parallelization on318

NVIDIA A100-80GB GPUs with 16-step gradient319

accumulation. We use DeepSpeed Stage3 (Rasley320

et al., 2020) and bfloat16 for mitigating memory321

constraints, and FlashAttention-2 (Dao, 2024) for322

efficient attention computation.323

Evaluation Protocol. We use LM-Evaluation-324

Harness (Gao et al., 2024) library; all datasets are325

evaluated under 0-shot and 5-shot settings. Few-326

shot examples are randomly selected from training327

sets, excluding test samples. We use two answer328

extractors: one identifies the number appearing af-329

ter "####" and the other extracts the last number330

in the output. An answer is considered correct if331

either of the extractors retrieves the correct answer.332

3.2 Main Results333

The experimental results shown in Table 1 validate334

our core hypothesis: self-generated reasoning QA335

pairs – boosted through diversification and con-336

sensus enhancement – enable model improvement337

without external supervision signals. For GSM8K,338

Llama2-7B-Chat shows improvements of +4.4%↑339

(0-shot) and +2.1%↑ (5-shot), while Llama3-8B-340

Instruct achieves noticeable gains of +28.8%↑ (0-341

shot) and +1.8%↑ (5-shot). Similar observations342

apply consistently to ASDiv and GSM-Plus-mini343

featuring different QA distributions.344

It is noteworthy that CRESCENT leads to substan-345

tial improvements in the 0-shot setting across all346

three datasets, with performance on certain datasets347

surpassing even the 5-shot counterparts for the orig-348

inal models. This observation highlights the poten-349

tial of 0-shot learning in reducing dependency on350

task-specific examples, thus indicating better gen-351

eralization to real-world unseen problem types.352
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Figure 4: Accuracies w.r.t. the ablation study.

3.3 Ablation Study 353

To justify the pivotality of CRESCENT’s core com- 354

ponents, we conduct comprehensive ablation ex- 355

periments over Llama3-8B-Instruct under 5-shot 356

GSM8K evaluation. As depicted in Fig. 4, (i) full 357

method of CRESCENT achieves accuracy of 77.6%, 358

outperforming all ablated variants and the baseline; 359

(ii) removing consensus enhancement (w/o CE) 360

reduces performance to 73.0% (-4.6%); (iii) ex- 361

cluding diversification (w/o DV) yields a more se- 362

vere drop to 71.1% (-6.53%); (iv) using only bait 363

prompting (BP only) results in 70.6% (-7.0%). The 364

results demonstrate the significance of both diver- 365

sification and consensus enhancement. 366

Notably, CRESCENT surpasses the Magpie vari- 367

ants by substantial margins: (i) +5.6% over Magpie– 368

Common (Magpie-C) (72.0%); (ii) +11.0% over 369

Magpie-Math (Magpie-M) (66.6%). 370

To investigate the discrepancy between CRES- 371

CENT and Magpie-Math, we conduct a sampling 372

analysis on the mathematical questions generated 373

by CRESCENT, CRESCENT w/o DV, and Magpie- 374

Math: For each method, we randomly sample 1,500 375

questions; Each question is then classified by diffi- 376

culty using GPT-4o (Hurst et al., 2024), vectorized 377

with the all-MiniLM-L6-v2 embedding model, 378

and projected into a two-dimensional plane using 379

t-SNE (Van der Maaten and Hinton, 2008). The 380

visualization in Fig. 5 suggests that, even without 381

diversification, CRESCENT can still generate high- 382

quality mathematical questions, albeit with reduced 383

diversity and difficulty (Fig. 5b). In contrast, the 384

vectors for Magpie-Math problems (Section 3.3) 385

feature (i) a more agglomerate form exhibiting sig- 386

nificantly low coverage than CRESCENT; and (ii) 387

numerous gray points signifying non-mathematical 388

problems; they are merely instructions related to 389

the mathematics topic, e.g., “Could you tell me 390

what type of mathematics you like?”. The latter 391

aligns with the observation in (Xu et al., 2024, 392
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Figure 5: T-SNE visualization of synthetic math questions. Points colored from 1 to 9 represent mathematical
questions with increasing difficulty; Gray marks math-related questions (rather than actual mathematical problems).

Table 2: General capability before/after CRESCENT (%).

Benchmark #shots before after ∆

ARC-C 0 52.9 52.3 0.6↓
MMLU 5 65.6 65.9 0.3↑
IFEval - 50.9 52.5 1.6↑

HellaSwag 5 77.9 77.2 0.7↓
GPQA 0 31.2 31.5 0.3↑

Sect. 6) stating that Magpie-generated dialogues393

may degrade math and reasoning capabilities.394

4 Detailed Analysis of CRESCENT395

4.1 General-Capability Preservation396

Will CRESCENT incur catastrophic forgetting of397

general capabilities? We address this problem398

by evaluating Llama3-8B-Instruct before and after399

CRESCENT on five non-mathematical benchmarks400

covering commonsense reasoning (ARC-C (Clark401

et al., 2018), HellaSwag (Zellers et al., 2019)), gen-402

eral knowledge preserving (MMLU (Hendrycks403

et al., 2021)), instruction following (IFEval (Zhou404

et al., 2023)), and graduate-level question answer-405

ing (GPQA (Rein et al., 2023)). We use the CRES-406

CENT checkpoint directly from Section 3.2.407

Table 2 shows that the CRESCENT-enhanced408

model exhibits performance comparable to that of409

the original model in all five tasks. This observa-410

tion reveals that domain-specific self-enhancement411

through CRESCENT does not compromise general412

capabilities, a critical advantage over fine-tuning413

approaches using external data, which often exhibit414

significant capability trade-offs (Luo et al., 2023).415

4.2 Analysis of Corrected Questions416

Our results show significant improvements in the417

0-shot setting. However, does this improvement re-418

flect better generalization, or is it due to the lack of419

formatting constraints in GSM8K’s 0-shot evalua-420

tion, which can lead to incorrect answer extraction?421

To investigate, we analyze Llama3-8B-Instruct’s 0-422

Total number: 453
#Stepwise reasoning: 199

#Mathematical concept: 115
#Answer extraction: 63

#Redundant information: 37
#Logical structure: 19

#others: 20

Figure 6: Breakdown of the corrected questions after
applying CRESCENT in the 0-shot setting.

shot results before and after applying CRESCENT, 423

focusing on questions that were incorrect before 424

but correct after (corrected questions). We use 425

GPT-4o to classify and analyze these errors. 426

Fig. 6 shows the total number of corrected ques- 427

tions is 453. 390 (86%) of them are due to gen- 428

uine improvement in mathematical reasoning abil- 429

ity. These corrected questions can be further broken 430

down into the following: (i) Stepwise reasoning: 431

199 questions (44%) had errors in stepwise reason- 432

ing due to variable tracking (113), step sequence 433

issues (47), and missing steps (39); (ii) Mathe- 434

matical concept: 115 questions (25%) involved 435

fundamental math errors, with 98 attributed to cal- 436

culation mistakes and 17 to unit conversion fail- 437

ures; (iii) Redundant information: 37 questions 438

(8%) were impacted by irrelevant information in 439

the problem statement; (iv) Logical structure: 19 440

questions (4%) involved errors in logical reasoning, 441

such as issues with propositions or set operations; 442

(v) Other errors: 20 questions (4%) were due to 443

other miscellaneous error types. 444

Meanwhile, there are 63 (14%) corrected ques- 445

tions due to a better output format. After fine- 446

tuning with CRESCENT-generated QA pairs, these 447
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Table 3: Comparison with prompting methods (%).

Method 0-shot 5-shot

Standard prompt 34.5 75.8
Standard prompt + SC 37.8 75.6
Random rephrased 36.9 75.8
CoT prompt 43.6 76.0
Optimized prompt 45.1 75.7

CRESCENT + standard 63.3 77.6
CRESCENT + optimized 69.8 77.1

questions are correctly answered without generat-448

ing redundant content, indicating that CRESCENT’s449

high-quality QA data also improves the model’s450

instruction-following capability.451

4.3 Comparison with Prompt Engineering452

Can prompt techniques achieve a similar perfor-453

mance with CRESCENT? We address this question454

by comparing CRESCENT-trained LLaMA3-8B-455

Instruct against five prompting methods: (i) Stan-456

dard prompt from Llama3 official repository;1457

(ii) Standard prompt with self-consistency (SC,458

aka majority voting) following the settings in459

(Wang et al., 2023a); (iii) Random rephrased uti-460

lizes GPT-4o to randomly rephrase the standard461

prompt five times (where we select the best eval-462

uation result). Considering the answer-extractor463

failures discussed in Section 4.2, we carefully craft464

each instruction to control the output format, such465

as requesting the answer to be placed after "####"466

or at the end of the output, ensuring that the prompt467

includes relevant formatting information compat-468

ible with our answer extractor when rephrased by469

GPT-4o; (iv) CoT prompt following the settings470

in (Wei et al., 2022); (v) Optimized prompt by471

integrating CoT, the best candidate from random472

rephrased, and the SC process.473

The comparison results are reported in Table 3.474

Overall, 0-shot outcomes demonstrate higher sen-475

sitivity to prompt variations compared to 5-shot476

configurations. For the original model, the opti-477

mized prompt achieves optimal performance, im-478

proving 0-shot accuracy by 10.6% over standard479

prompts while exhibiting comparable 5-shot re-480

sults. However, this result remains substantially in-481

ferior (-18.2%) to CRESCENT using only standard482

prompts. Notably, when employing the same op-483

timized prompts, the CRESCENT-enhanced model484

further improves 0-shot performance by 6.5%.485

The observed performance gap substantiates that486

the improvements achieved by CRESCENT can-487

1https://github.com/meta-llama/llama-cookbook

Table 4: 0-shot robustness w.r.t. rephrased prompts (%).

Method
Random rephrased trials

Mean Std σ
T1 T2 T3 T4 T5

Original 29.9 19.9 28.6 36.9 24.4 27.9 5.69
CRESCENT 64.9 63.3 64.6 67.8 66.1 65.3 1.52
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Figure 7: Accuracy in terms of synthetic data volume.

not be replicated through prompting techniques. 488

Moreover, in random rephrased experiments (cf. 489

Table 4), CRESCENT demonstrates superior robust- 490

ness across five different prompts, exhibiting con- 491

sistent performance with 37.4% higher accuracy 492

and much lower standard deviation. This result in- 493

dicates that CRESCENT not only enhances domain- 494

specific proficiency, but also establishes prompt- 495

agnostic generalization in 0-shot scenarios. 496

4.4 Data Efficiency and Training Dynamics 497

Next, we investigate the effect of self-improvement 498

in terms of the volume of synthetic data and the 499

number of training epochs. 500

Data Volume: We perform one epoch of SFT 501

using Llama3-8B-Instruct on CRESCENT data with 502

data volumes of 25k, 50k, 75k, 100k, and 150k; we 503

use the standard prompt for evaluation. As shown 504

in Fig. 7, the model’s performance improves con- 505

sistently from 25k to 75k, but stabilizes between 506

75k and 150k, suggesting an upper limit to the 507

improvement gained from increasing data volume. 508

Training Epochs: We perform SFT with 509

Llama3-8B-Instruct on 50k CRESCENT data for 4 510

epochs. The evaluation is conducted using the stan- 511

dard prompt. Table 5 shows that, in both settings 512

of 0-shot and 5-shot, the model exhibits a steady 513

performance as the number of epochs increases. 514

4.5 CRESCENT for Model Distillation 515

Next, we explore the potential of using the CRES- 516

CENT-generated data to distil the knowledge of an 517

7
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Table 5: Accuracy in terms of number of epochs (%).

#epochs 1 2 3 4

0-shot 50.8 60.4 61.1 62.6
5-shot 74.3 75.7 75.3 75.9

Table 6: Comparison of distillation approaches (%).

Method Teacher data #Data Teacher model Acc (5-shot) Acc (0-shot)

- GSM8K 7k - 38.4 38.4
MetaMath GSM8K 50k Llama3-8B-I. 41.7 22.0
ScaleQuest GSM8K&MATH 50k Mix 38.9 22.8
MMIQC Mix 50k GPT-4 33.7 28.3

CRESCENT - 50k Llama3-8B-I. 44.8 30.8

LLM into a weaker model. Specifically, we use518

50k data generated by Llama3-8B-Instruct through519

CRESCENT to perform SFT on Llama2-7B-Chat,520

with settings inherited from Section 3.2. We com-521

pare this approach with the following distillation522

methods: (i) Directly using the GSM8K training523

set without external model enhancement, which524

contains only 7k samples; (ii) MetaMath (Yu et al.,525

2024): a method bootstraps existing math datasets526

by rewriting questions from multiple perspectives,527

generating a new dataset called MetaMathQA. For528

comparability, we use Llama3-8B-Instruct to gen-529

erate 50k new QA pairs from GSM8K training530

set; (iii) ScaleQuest (Ding et al., 2024): a hy-531

brid method combining multiple models, including532

Qwen2-Math-7B (Yang et al., 2024), DeepSeek-533

Math7B-RL (Shao et al., 2024), GPT-4o, and534

InternLM2-7B-Reward (Cai et al., 2024), along535

with datasets from GSM8K and MATH. We ran-536

domly sample 50k QA pairs from their open-source537

dataset;2 (iv) MMIQC (Liu et al., 2024): a method538

leverages GPT-4o to enhance existing GSM8K,539

MATH and MetaMathQA datasets. We similarly540

sample 50k QA pairs from their open-source data3.541

The results shown in Table 6 demonstrate that542

CRESCENT outperforms all other approaches that543

rely on external data or stronger models. This high-544

lights that CRESCENT is an efficient and effective545

distillation approach, requiring no external datasets,546

let alone complex interactions with them. Further-547

more, this result also suggests that excessive re-548

liance on external data during distillation may limit549

the quality of the distilled data, in other words, the550

model inherently features the ability to produce551

data of higher quality than the seed dataset, but is552

constrained to merely modifying or enhancing the553

2https://huggingface.co/datasets/dyyyyyyyy/
ScaleQuest-Math

3https://huggingface.co/datasets/Vivacem/MMIQC

seed data; CRESCENT, in contrast, unleashes such 554

ability to achieve self-improvement. 555

5 Related Work 556

Synthetic Data from Scratch: Recent efforts to 557

reduce reliance on external seed data have led to 558

the exploration of generating data from scratch for 559

fine-tuning LLMs. UltraChat (Ding et al., 2023) 560

shows how to generate diverse, high-quality multi- 561

turn conversations without human queries. Magpie 562

(Xu et al., 2024) introduces a self-synthesis method 563

to generate large-scale alignment data by utilizing 564

only pre-defined chat templates. GenQA (Chen 565

et al., 2024a) aims to generate large instruction 566

datasets with minimal human oversight by prompt- 567

ing LLMs to create diverse instruction examples. 568

Note note that these methods primarily focus on 569

creating alignment data to train the instruction- 570

following capabilities of base models. 571

LLM Self-Improvement: Recent methods ex- 572

ploring self-improvement demonstrate the poten- 573

tial of enhancing LLMs’ capabilities through self- 574

generated feedback. (Huang et al., 2023) demon- 575

strates that LLMs can improve by sampling high- 576

confidence answers from existing high-quality 577

question sets. Similarly, CodeRL (Le et al., 2022) 578

introduces reinforcement learning to program syn- 579

thesis, where the model receives feedback from 580

unit tests and critic scores from other models, aim- 581

ing to optimize performance on unseen coding 582

tasks. StaR (Zelikman et al., 2022) leverages small 583

amounts of rationale examples and iteratively re- 584

fines the reasoning ability through self-generated 585

rationales. SPIN (Chen et al., 2024b) proposes a 586

self-play fine-tuning method, where a model gener- 587

ates its training data from previous iterations. 588

6 Conclusion 589

We presented CRESCENT as a simple yet effective 590

framework – leveraging techniques of bait prompt- 591

ing, diversification, and consensus enhancement 592

– for exploring the self-improvement problem of 593

LLMs. We show that CRESCENT suffices to im- 594

prove the mathematical reasoning capabilities of 595

an LLM with zero supervision signals while pre- 596

serving its general performance. Moreover, it facil- 597

itates more effective and efficient LLM knowledge 598

distillation than existing approaches based on seed- 599

dataset augmentation. 600
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Limitations601

We observe the following limitations of this work:602

Domain scalability. Although CRESCENT can603

generate a variety of domain-specific datasets, the604

experiments in this paper are confined to evaluat-605

ing its effectiveness in improving math reasoning606

capabilities. Further extensions to other domains607

are subject to future work.608

Aligned model restriction. CRESCENT is de-609

signed for aligned chat models. In this paper, we610

did not investigate whether the same approach can611

be used to generate high-quality, domain-specific612

data for base models without instruction tuning.613
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