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Abstract

Self-improving large language models (LLMs)
—i.e., to improve the performance of an LLM
by fine-tuning it with synthetic data generated
by itself — is a promising way to advance the
capabilities of LLMs while avoiding exten-
sive supervision. Existing approaches to self-
improvement often rely on external supervi-
sion signals in the form of seed data and/or
assistance from third-party models. This pa-
per presents CRESCENT — a simple yet ef-
fective framework for generating high-quality
synthetic question-answer data in a fully au-
tonomous manner. CRESCENT first elicits
the LLM to generate raw questions via a
bait prompt, then diversifies these questions
leveraging a rejection sampling-based self-
deduplication, and finally feeds the questions
to the LLM and collects the corresponding an-
swers by means of majority voting. We show
that CRESCENT sheds light on the potential of
true self-improvement with zero external super-
vision signals for math reasoning; in particular,
CRESCENT-generated question-answer pairs
suffice to (i) improve the reasoning capabilities
of an LLM while preserving its general perfor-
mance (especially in the O-shot setting); and
(i) distil LLM knowledge to weaker models
more effectively than existing methods based
on seed-dataset augmentation.

1 Introduction

In recent years, large language models (LLMs)
such as GPT-40 (Hurst et al., 2024), Gemini (Anil
et al., 2023), Llama (Touvron et al., 2023a), and
DeepSeek-R1 (Guo et al., 2025) have demonstrated
remarkable capabilities, revolutionizing natural lan-
guage processing and various other tasks. The suc-
cess of these models can be attributed to the scaling
laws (Kaplan et al., 2020), which dictate the rela-
tionship between model parameters, computational
resources, and training data size. For instance, the
prominent performance of Llama-3.1 with 405B
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Figure 1: Different schemes of self-improvement.

parameters (Dubey et al., 2024) roots in, amongst
others, the massive, high-quality datasets for pre-
and post-training. However, as models continue to
scale, the available real-world (public) data quickly
becomes exhausted; meanwhile, manually crafting
high-quality data is time- and labor-intensive. Thus,
data volume has become a key limiting factor for
the effective scaling of new-generation models.

In response to this challenge, synthetic data gen-
eration and data augmentation have emerged as
key methods to further improve the performance of
LLMs while avoiding extensive supervision. These
methods leverage the ability of LLMs to mirror
real-world distributions and generate high-quality,
pseudo-realistic data (Zhang et al., 2023). Fol-
lowing this line of research, the problem of self-
improvement naturally arises: Can we improve the
performance of an LLM by fine-tuning it with syn-
thetic data generated by itself? This problem has
triggered a recent surge of research results (Wang
et al., 2024). These methods, however, rely heav-
ily on external seed datasets for augmentation
(e.g., (Huang et al., 2023; Wang et al., 2023b))
and/or stronger third-party models as classifiers
or reward agents (e.g., (Le et al., 2022; Xin et al.,



2024)); see Fig. 1. Such dependency on external
supervision signals limits their ability to achieve
true self-improvement. Orthogonally, the recently
proposed method Magpie (Xu et al., 2024) suf-
fices to generate high-quality dialogue datasets (i.e.,
both responses and instructions) entirely through
the model itself. Nonetheless, the generated data
is highly randomized and primarily dedicated to
the alignment of base LLMs. Such data may im-
prove instruction-following abilities but will de-
grade fundamental capabilities like math and rea-
soning; see (Xu et al., 2024, Sect. 6). Recent discus-
sions (Kambhampati et al., 2024; Shumailov et al.,
2024) have explicitly questioned whether genuine
self-improvement is feasible, suggesting that when
trained solely on self-generated data, LLMs may
fail. Can LLMs achieve true self-improvement?
remains an open question in the literature.

This paper aims to provide the infrastructure to
explore the self-improvement problem of LLMs:
We present CRESCENT — a fully autonomous
Jframework for generating high-quality synthetic
question-answer (QA) data that suffice to improve
the reasoning capabilities of an LLM while preserv-
ing its general performance. CRESCENT adopts
a simple yet effective workflow: (i) It uses a bait
prompt to guide the model to generate raw ques-
tions in a specific domain, such as math word prob-
lems; (ii) It applies a self-deduplication mechanism
based on rejection sampling (Liu and Liu, 2001) to
refine and diversify the question pool; and (iii) For
each question, it performs majority voting (Wang
et al., 2023a) to identify the most confident answer
from the model (thus enhancing the consensus).
The so-obtained QA pairs are then used to fine-tune
the original LLM via, e.g., supervised fine-tuning
(SFT), to improve its math-reasoning capability.

Experiments with CRESCENT demonstrate ev-
ident self-improvement of LLLMs consistently for
three benchmarks on mathematical word problems
in both 0-shot and 5-shot settings, without trading
off their general capabilities. The improvement is
especially prominent for the 0-shot case, thus im-
proving the generalization ability of the model to
real-world tasks. Ablation studies further demon-
strate the superiority of CRESCENT over Mag-
pie (Xu et al., 2024) in the generation of themed
data: the latter tends to generate math-related dia-
logues, e.g., “Could you tell me what type of math-
ematics you like?” — rather than proper mathemati-
cal problems. Moreover, our experiments show that
CRESCENT can serve as a highly effective and effi-

cient distillation method, surpassing the baselines
using external data and stronger models.

Contributions. Our main contributions include:

* We present a simple yet effective frame-
work CRESCENT - utilizing the techniques
of bait prompting, diversification, and con-
sensus enhancement — to investigate the self-
improvement problem of LLMs.

* We show that CRESCENT-generated QA pairs
suffice to improve the reasoning capabilities
of an LLM with zero supervision signals while
preserving its general performance, thereby
providing an affirmative answer to the self-
improvement problem in the domain of math-
ematical reasoning (math word problems).

* Experiments demonstrate significant improve-
ments achieved by CRESCENT compared to
multiple prompting methods. As a by-product,
we show CRESCENT facilitates more effective
LLM knowledge distillation than existing ap-
proaches based on seed-dataset augmentation.

2 The CRESCENT Approach

This section presents CRESCENT — a framework for
controlled QA self-generation via diversification
and consensus enhancement. CRESCENT suffices
to generate high-quality domain-specific QA pairs
leveraging only the model itself, with zero external
data, nor assistance from third-party models.

Fig. 2 sketches the general workflow of CRES-
CENT, which consists of three main steps: (I) Bait
prompting: We use a bait prompt to instruct the
original, aligned LLM to produce a set of raw
questions within a specific domain; (II) Diversi-
fication: The raw questions may be semantically
analogous to each other (as per some similarity
metric), and thus we employ a rejection sampling
mechanism to attain a diverse pool of representative
questions through self-deduplication; (III) Consen-
sus enhancement:. We treat the generated questions
as query prompts and feed them back to the LLM.
Then, by majority vote, we obtain the final set of
synthetic QA pairs. We show that such QA pairs
are of high quality in the sense that they suffice to
improve the domain-specific capabilities (mathe-
matical reasoning, in our case) by fine-tuning the
original LLM with these QA pairs while preserving
its general capabilities.
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Figure 2: The general workflow of CRESCENT in mathematical reasoning.

Below, we first present the technical details of
Steps (I) to (IIT) and then provide the rationale be-
hind the self-improvement achieved by these steps.

2.1 Question Generation (Steps (I) and (II))

We begin by utilizing a simple bait prompt to elicit
the LLM to generate a bunch of domain-specific
questions, such as math word problems illustrated
in Fig. 2, denoted as raw questions. As some of
them may be semantically analogous to each other,
we optimize diversity of the questions in an itera-
tive manner: Each generated question is vectorized
and compared against the (embeddings of) other
questions. If there exists a question that is deemed
sufficiently similar (i.e., the similarity score is be-
low a prescribed threshold), we apply the following
deduplication prompt to modify it:

{question} is very similar to {question}, please
modify the latter to make it different.

This iterative process ensures that the question pool
remains diverse and representative across the spe-
cific domain through redundancy-aware selection.

Formally, the question-generation phase can be
described as follows: Let Q = {q1,42,...,qn} be
the set of raw questions generated by the LLM per
the bait prompt. For each question ¢;, we embed
it as a real-valued vector v; and compare it against
the vector representations {vy, va, ..., v;—1} of the
previously generated questions. The similarity be-
tween the two questions is determined by the dis-
tance between their respective vector embeddings
in the inner product space, e.g., the L? distance. If
the distance is below a given threshold 6, then ¢;
with (¢ > 7) is considered as a duplicate and thus

needs to be modified via the deduplication prompt,
1.e.,

If d (vs,v;) < 6 then ¢ = Deduplicate (¢;) . (1)

Such similarity-based deduplication incorporates
the maximal marginal relevance (MMR) crite-
rion (Carbonell and Goldstein, 1998) to mini-
mize repetition while preserving content relevance.
Moreover, the iterative refining process falls into
the paradigm of rejection sampling (cf. e.g., (Liu
and Liu, 2001)), which ultimately yields a diversi-
fied question pool featuring relevance and represen-
tativeness w.r.t. the target domain with negligible
redundancy; see Section 2.3.

2.2 Answer Generation (Step (III))

Let Q* = {d¢},¢5,...,q;} be the deduplicated
set of questions generated through the previous
step. The phase of answer generation aims to
synthesize the corresponding high-quality answers
w.r.t. each ¢f € Q*. We achieve this by means
of consensus enhancement, namely, we feed each
question ¢; back to the LLM and collect m inde-
pendently produced answers, denoted by the set
A; = {ai1,a2,...,an}, where each a; contains
integrated chain-of-thought (CoT) processes (Wei
et al., 2022) generated for question ¢;. We then
select the final answer a; for question ¢ using ma-
Jjority voting (Wang et al., 2023a). That is, we first
identify the set A; of most frequent answers:
i 2 { € Ai| f (a7) = max f(ak)} ,
ap€EA;

where f(a;) denotes the frequency (i.e., the num-
ber of occurrences) of answer a; in A;. Then, we



domain-specific question-answer space

\
' self modi-

X| fication

ai az

Figure 3: The intuition of CRESCENT. Let the black
dots be question embeddings and distribution curve be
conditional answer distribution. (1) Our diversification
step modifies question samples violating the minimal
distance criterion per (7) (the middle plot). (2) the con-
sensus enhancement step selects the majority mode an-
swer. (the green X in the left and right plots.)

uniformly sample an answer from A; as the final
answer a; paired with question ¢;. By repeating
the majority voting procedure for every question,
we obtain the final set of synthetic QA pairs:

(@5, A4%) = {(q1,a1),(g3,03), -, (qn, ap)} -

2.3 Rationale for Self-Improvement

Next, we provide the intuition on why self-

generated QA pairs using the CRESCENT frame-

work can be used to improve the capabilities of the

underlying LLM. This observation will be further

justified by extensive experiments in Section 3.
The intuition is three-fold (see Fig. 3):

(i) Relevance by bait prompting: The initial bait
prompt restricts the considered space of ques-
tions and answers to a specific domain and
hence all the generated QA pairs within the
CRESCENT scope are pertinent to this domain.

(i1) Diversity by rejection sampling-based dedu-
plication: Our diversification step explores
the question space while maintaining a mini-
mal pair-wise distance to alleviate redundancy.
This is achieved by a rejection sampling loop
where question samples violating the distance
criterion per () are modified and, therefore,
the generated questions exhibit a scattered dis-
tribution stretching over the space.

(iii) Accuracy by majority voting: Based on the
observation that a complex reasoning prob-
lem typically admits multiple distinct ways
of thinking yielding its unique correct an-
swer (Wang et al., 2023a), our consensus en-
hancement step selects, for each question, the
most frequent answer that may coincide with
the correct one with high likelihood.

As a consequence, fine-tuning the original LLM
with the so-obtained QA pairs will strengthen its
domain-specific capabilities by enforcing a reduc-
tion in the variance of answer generation for a
diverse set of domain-relevant questions.

3 Experiments

3.1 Experimental Setups

Benchmarks. We adopt three benchmarks on
math word problems (MWPs): (i) GSM8K (Cobbe
et al., 2021): 8.5K grade school math problems
with step-by-step solutions; (ii) ASDiv (Miao et al.,
2020): 2,305 diverse MWPs covering multiple dif-
ficulty levels; and (iii)) GSM-Plus (Li et al., 2024):
an enhanced version of GSM8K with 12K prob-
lems incorporating robustness checks. In order to
accelerate the evaluation, we use GSM-Plus-mini
— a subset of GSM-Plus containing 2,400 questions.
It should be noted that the GSM-Plus-mini and
GSMBSK datasets do not overlap.

Baseline Models. We conduct self-improvement
experiments with two different LLM models: (i)
Llama3-8B-Instruct: the instruction-tuned version
of Llama3-8B (Dubey et al., 2024); and (ii) LIama2-
7B-Chat (Touvron et al., 2023b): a instruction-
tuned version of Llama2-7B.

Generation Configurations. For each model, we
generate MWP QA pairs following these settings:

Question Generation: Bait prompt: “Gener-
ate a diverse math word problem requiring multi-
step reasoning”. We generate S0K candidate ques-
tions for Llama2-7B-Chat and 75k for Llama3-8B-
Instruct, both with temperature 7" = 0.95. Diversi-
fication: We use sentence embeddings generated by
the al1-MinilM-L6-v2 model from the Sentence-
BERT (Reimers and Gurevych, 2019) family; we
eliminate semantically similar questions using the
L? distance with threshold # = 0.25. We employ
FAISS (Douze et al., 2024) to accelerate vector
computation and comparisons.

Answer Generation: For each question, sample
5 answers with temperature 7' = 0.95, then select
the most frequent answer as the final answer. We
use the same answer generation settings for both
models. We use the vLLM (Kwon et al., 2023)
inference framework for both generation stages.

GPU hours: It took 30.0 GPU hours to generate
75k QA pairs with Llama3-8B-Instruct and 42.9
GPU hours for the 50k pairs with Llama2-7B-Chat.



Table 1: Main results comparing original models vs.
CRESCENT versions. Best results in bold (accuracy %).

0-shot 5-shot
GSMB8K ASDiv GSM+ GSM8K ASDiv GSM+

Original 188 417 113 230 459 135
CRESCENT 232 460 13.0 251 452 148

Original 345 436 231 758 623 512
CRESCENT 633 659 48.6 77.6 638 528

Model Training

Llama2-7B-Chat

Llama3-8B-Inst.

SFT Implementation. Our SFT procedure uses
single-epoch training with max sequence length
of 2,048 tokens. Optimization is performed us-
ing AdamW (Loshchilov and Hutter, 2019) (51 =
0.9, B2 = 0.95) under a linear learning rate sched-
ule (initial LR = le-5, 3% warm-up), and the batch
size is set to 128 through 8-way parallelization on
NVIDIA A100-80GB GPUs with 16-step gradient
accumulation. We use DeepSpeed Stage3 (Rasley
et al., 2020) and bfloat16 for mitigating memory
constraints, and FlashAttention-2 (Dao, 2024) for
efficient attention computation.

Evaluation Protocol. We use LM-Evaluation-
Harness (Gao et al., 2024) library; all datasets are
evaluated under 0-shot and 5-shot settings. Few-
shot examples are randomly selected from training
sets, excluding test samples. We use two answer
extractors: one identifies the number appearing af-
ter "####" and the other extracts the last number
in the output. An answer is considered correct if
either of the extractors retrieves the correct answer.

3.2 Main Results

The experimental results shown in Table 1 validate
our core hypothesis: self-generated reasoning QA
pairs — boosted through diversification and con-
sensus enhancement — enable model improvement
without external supervision signals. For GSMS8K,
Llama2-7B-Chat shows improvements of +4.4%71
(0-shot) and +2.1%7 (5-shot), while Llama3-8B-
Instruct achieves noticeable gains of +28.8%7 (0-
shot) and +1.8%7 (5-shot). Similar observations
apply consistently to ASDiv and GSM-Plus-mini
featuring different QA distributions.

It is noteworthy that CRESCENT leads to substan-
tial improvements in the 0-shot setting across all
three datasets, with performance on certain datasets
surpassing even the 5-shot counterparts for the orig-
inal models. This observation highlights the poten-
tial of O-shot learning in reducing dependency on
task-specific examples, thus indicating better gen-
eralization to real-world unseen problem types.
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Figure 4: Accuracies w.r.t. the ablation study.

3.3 Ablation Study

To justify the pivotality of CRESCENT’s core com-
ponents, we conduct comprehensive ablation ex-
periments over Llama3-8B-Instruct under 5-shot
GSMBSK evaluation. As depicted in Fig. 4, (i) full
method of CRESCENT achieves accuracy of 77.6%,
outperforming all ablated variants and the baseline;
(i1) removing consensus enhancement (w/o CE)
reduces performance to 73.0% (-4.6%); (iii) ex-
cluding diversification (w/o DV) yields a more se-
vere drop to 71.1% (-6.53%); (iv) using only bait
prompting (BP only) results in 70.6% (-7.0%). The
results demonstrate the significance of both diver-
sification and consensus enhancement.

Notably, CRESCENT surpasses the Magpie vari-
ants by substantial margins: (i) +5.6% over Magpie—
Common (Magpie-C) (72.0%); (ii) +11.0% over
Magpie-Math (Magpie-M) (66.6%).

To investigate the discrepancy between CRES-
CENT and Magpie-Math, we conduct a sampling
analysis on the mathematical questions generated
by CRESCENT, CRESCENT w/o DV, and Magpie-
Math: For each method, we randomly sample 1,500
questions; Each question is then classified by diffi-
culty using GPT-40 (Hurst et al., 2024), vectorized
with the all-MinilM-L6-v2 embedding model,
and projected into a two-dimensional plane using
t-SNE (Van der Maaten and Hinton, 2008). The
visualization in Fig. 5 suggests that, even without
diversification, CRESCENT can still generate high-
quality mathematical questions, albeit with reduced
diversity and difficulty (Fig. 5b). In contrast, the
vectors for Magpie-Math problems (Section 3.3)
feature (i) a more agglomerate form exhibiting sig-
nificantly low coverage than CRESCENT; and (ii)
numerous gray points signifying non-mathematical
problems; they are merely instructions related to
the mathematics topic, e.g., “Could you tell me
what type of mathematics you like?”. The latter
aligns with the observation in (Xu et al., 2024,
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Table 2: General capability before/after CRESCENT (%).

Benchmark #shots before after A
ARC-C 0 52.9 523  0.6]
MMLU 5 65.6 659 0.37
IFEval - 50.9 525 1.67

HellaSwag 5 77.9 772 0.7)
GPQA 0 31.2 315 037

Sect. 6) stating that Magpie-generated dialogues
may degrade math and reasoning capabilities.

4 Detailed Analysis of CRESCENT

4.1 General-Capability Preservation

Will CRESCENT incur catastrophic forgetting of
general capabilities? We address this problem
by evaluating Llama3-8B-Instruct before and after
CRESCENT on five non-mathematical benchmarks
covering commonsense reasoning (ARC-C (Clark
et al., 2018), HellaSwag (Zellers et al., 2019)), gen-
eral knowledge preserving (MMLU (Hendrycks
et al., 2021)), instruction following (IFEval (Zhou
et al., 2023)), and graduate-level question answer-
ing (GPQA (Rein et al., 2023)). We use the CRES-
CENT checkpoint directly from Section 3.2.

Table 2 shows that the CRESCENT-enhanced
model exhibits performance comparable to that of
the original model in all five tasks. This observa-
tion reveals that domain-specific self-enhancement
through CRESCENT does not compromise general
capabilities, a critical advantage over fine-tuning
approaches using external data, which often exhibit
significant capability trade-offs (Luo et al., 2023).

4.2 Analysis of Corrected Questions

Our results show significant improvements in the
0-shot setting. However, does this improvement re-
flect better generalization, or is it due to the lack of
formatting constraints in GSM8K’s 0-shot evalua-
tion, which can lead to incorrect answer extraction?
To investigate, we analyze Llama3-8B-Instruct’s O-

Total number: 453
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#Mathematical concept: 115 JELES

extraction
#Answer extraction: 63
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Figure 6: Breakdown of the corrected questions after
applying CRESCENT in the 0O-shot setting.

shot results before and after applying CRESCENT,
focusing on questions that were incorrect before
but correct after (corrected questions). We use
GPT-4o to classify and analyze these errors.

Fig. 6 shows the total number of corrected ques-
tions is 453. 390 (86%) of them are due to gen-
uine improvement in mathematical reasoning abil-
ity. These corrected questions can be further broken
down into the following: (i) Stepwise reasoning:
199 questions (44%) had errors in stepwise reason-
ing due to variable tracking (113), step sequence
issues (47), and missing steps (39); (ii) Mathe-
matical concept: 115 questions (25%) involved
fundamental math errors, with 98 attributed to cal-
culation mistakes and 17 to unit conversion fail-
ures; (iii) Redundant information: 37 questions
(8%) were impacted by irrelevant information in
the problem statement; (iv) Logical structure: 19
questions (4%) involved errors in logical reasoning,
such as issues with propositions or set operations;
(v) Other errors: 20 questions (4%) were due to
other miscellaneous error types.

Meanwhile, there are 63 (14%) corrected ques-
tions due to a better output format. After fine-
tuning with CRESCENT-generated QA pairs, these



Table 3: Comparison with prompting methods (%).

Method 0-shot  5-shot
Standard prompt 34.5 75.8
Standard prompt + SC 37.8 75.6
Random rephrased 36.9 75.8
CoT prompt 43.6 76.0
Optimized prompt 45.1 75.7
CRESCENT + standard 63.3 77.6
CRESCENT + optimized  69.8 771

questions are correctly answered without generat-
ing redundant content, indicating that CRESCENT’s
high-quality QA data also improves the model’s
instruction-following capability.

4.3 Comparison with Prompt Engineering

Can prompt techniques achieve a similar perfor-
mance with CRESCENT? We address this question
by comparing CRESCENT-trained LL.aMA3-8B-
Instruct against five prompting methods: (i) Stan-
dard prompt from Llama3 official repository;'
(ii) Standard prompt with self-consistency (SC,
aka majority voting) following the settings in
(Wang et al., 2023a); (iii)) Random rephrased uti-
lizes GPT-40 to randomly rephrase the standard
prompt five times (where we select the best eval-
uation result). Considering the answer-extractor
failures discussed in Section 4.2, we carefully craft
each instruction to control the output format, such
as requesting the answer to be placed after "####"
or at the end of the output, ensuring that the prompt
includes relevant formatting information compat-
ible with our answer extractor when rephrased by
GPT-40; (iv) CoT prompt following the settings
in (Wei et al., 2022); (v) Optimized prompt by
integrating CoT, the best candidate from random
rephrased, and the SC process.

The comparison results are reported in Table 3.
Overall, 0-shot outcomes demonstrate higher sen-
sitivity to prompt variations compared to 5-shot
configurations. For the original model, the opti-
mized prompt achieves optimal performance, im-
proving 0-shot accuracy by 10.6% over standard
prompts while exhibiting comparable 5-shot re-
sults. However, this result remains substantially in-
ferior (-18.2%) to CRESCENT using only standard
prompts. Notably, when employing the same op-
timized prompts, the CRESCENT-enhanced model
further improves 0-shot performance by 6.5%.

The observed performance gap substantiates that
the improvements achieved by CRESCENT can-
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Table 4: 0-shot robustness w.r.t. rephrased prompts (%).

Random rephrased trials
TT T2 T3 T4 T5

Original 299 199 28.6 369 244 279 5.69
CRESCENT 649 633 646 678 66.1 653 152

Method Mean Std o
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Figure 7: Accuracy in terms of synthetic data volume.

not be replicated through prompting techniques.
Moreover, in random rephrased experiments (cf.
Table 4), CRESCENT demonstrates superior robust-
ness across five different prompts, exhibiting con-
sistent performance with 37.4% higher accuracy
and much lower standard deviation. This result in-
dicates that CRESCENT not only enhances domain-
specific proficiency, but also establishes prompt-
agnostic generalization in 0-shot scenarios.

4.4 Data Efficiency and Training Dynamics

Next, we investigate the effect of self-improvement
in terms of the volume of synthetic data and the
number of training epochs.

Data Volume: We perform one epoch of SFT
using Llama3-8B-Instruct on CRESCENT data with
data volumes of 25k, 50k, 75k, 100k, and 150k; we
use the standard prompt for evaluation. As shown
in Fig. 7, the model’s performance improves con-
sistently from 25k to 75k, but stabilizes between
75k and 150k, suggesting an upper limit to the
improvement gained from increasing data volume.

Training Epochs: We perform SFT with
Llama3-8B-Instruct on 50k CRESCENT data for 4
epochs. The evaluation is conducted using the stan-
dard prompt. Table 5 shows that, in both settings
of 0-shot and 5-shot, the model exhibits a steady
performance as the number of epochs increases.

4.5 CRESCENT for Model Distillation

Next, we explore the potential of using the CRES-
CENT-generated data to distil the knowledge of an
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Table 5: Accuracy in terms of number of epochs (%).

#epochs 1 2 3 4
0-shot 50.8 604 61.1 62.6
5-shot 743 757 753 759

Table 6: Comparison of distillation approaches (%).

Method Teacher data  #Data Teacher model Acc (5-shot) Acc (0-shot)
GSMBK 7k - 38.4 384
MetaMath GSM8K 50k Llama3-8B-I. 41.7 22.0
ScaleQuest GSM8K&MATH 50k Mix 38.9 22.8
MMIQC Mix 50k GPT-4 33.7 28.3
CRESCENT - 50k Llama3-8B-I. 44.8 30.8

LLM into a weaker model. Specifically, we use
50k data generated by Llama3-8B-Instruct through
CRESCENT to perform SFT on Llama2-7B-Chat,
with settings inherited from Section 3.2. We com-
pare this approach with the following distillation
methods: (i) Directly using the GSM8K training
set without external model enhancement, which
contains only 7k samples; (ii) MetaMath (Yu et al.,
2024): a method bootstraps existing math datasets
by rewriting questions from multiple perspectives,
generating a new dataset called MetaMathQA. For
comparability, we use Llama3-8B-Instruct to gen-
erate S0k new QA pairs from GSMS8K training
set; (iii) ScaleQuest (Ding et al., 2024): a hy-
brid method combining multiple models, including
Qwen2-Math-7B (Yang et al., 2024), DeepSeek-
Math7B-RL (Shao et al., 2024), GPT-40, and
InternLM2-7B-Reward (Cai et al., 2024), along
with datasets from GSM8K and MATH. We ran-
domly sample 50k QA pairs from their open-source
dataset;? (iv) MMIQC (Liu et al., 2024): a method
leverages GPT-40 to enhance existing GSMS8K,
MATH and MetaMathQA datasets. We similarly
sample 50k QA pairs from their open-source data’.

The results shown in Table 6 demonstrate that
CRESCENT outperforms all other approaches that
rely on external data or stronger models. This high-
lights that CRESCENT is an efficient and effective
distillation approach, requiring no external datasets,
let alone complex interactions with them. Further-
more, this result also suggests that excessive re-
liance on external data during distillation may limit
the quality of the distilled data, in other words, the
model inherently features the ability to produce
data of higher quality than the seed dataset, but is
constrained to merely modifying or enhancing the

Zhttps://huggingface.co/datasets/dyyyyyyyy/
ScaleQuest-Math
Shttps://huggingface.co/datasets/Vivacem/MMIQC

seed data; CRESCENT, in contrast, unleashes such
ability to achieve self-improvement.

5 Related Work

Synthetic Data from Scratch: Recent efforts to
reduce reliance on external seed data have led to
the exploration of generating data from scratch for
fine-tuning LLMs. UltraChat (Ding et al., 2023)
shows how to generate diverse, high-quality multi-
turn conversations without human queries. Magpie
(Xu et al., 2024) introduces a self-synthesis method
to generate large-scale alignment data by utilizing
only pre-defined chat templates. GenQA (Chen
et al.,, 2024a) aims to generate large instruction
datasets with minimal human oversight by prompt-
ing LLMs to create diverse instruction examples.
Note note that these methods primarily focus on
creating alignment data to train the instruction-
following capabilities of base models.

LLM Self-Improvement: Recent methods ex-
ploring self-improvement demonstrate the poten-
tial of enhancing LLMSs’ capabilities through self-
generated feedback. (Huang et al., 2023) demon-
strates that LLMs can improve by sampling high-
confidence answers from existing high-quality
question sets. Similarly, CodeRL (Le et al., 2022)
introduces reinforcement learning to program syn-
thesis, where the model receives feedback from
unit tests and critic scores from other models, aim-
ing to optimize performance on unseen coding
tasks. StaR (Zelikman et al., 2022) leverages small
amounts of rationale examples and iteratively re-
fines the reasoning ability through self-generated
rationales. SPIN (Chen et al., 2024b) proposes a
self-play fine-tuning method, where a model gener-
ates its training data from previous iterations.

6 Conclusion

We presented CRESCENT as a simple yet effective
framework — leveraging techniques of bait prompt-
ing, diversification, and consensus enhancement
— for exploring the self-improvement problem of
LLMs. We show that CRESCENT suffices to im-
prove the mathematical reasoning capabilities of
an LLM with zero supervision signals while pre-
serving its general performance. Moreover, it facil-
itates more effective and efficient LLM knowledge
distillation than existing approaches based on seed-
dataset augmentation.


https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math
https://huggingface.co/datasets/dyyyyyyyy/ScaleQuest-Math
https://huggingface.co/datasets/Vivacem/MMIQC

Limitations
We observe the following limitations of this work:

Domain scalability. Although CRESCENT can
generate a variety of domain-specific datasets, the
experiments in this paper are confined to evaluat-
ing its effectiveness in improving math reasoning
capabilities. Further extensions to other domains
are subject to future work.

Aligned model restriction. CRESCENT is de-
signed for aligned chat models. In this paper, we
did not investigate whether the same approach can
be used to generate high-quality, domain-specific
data for base models without instruction tuning.
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