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Abstract

During pre-training, the Text-to-Image (T2I)001
diffusion models encode factual knowledge002
into their parameters. These parameterized003
facts enable realistic image generation, but004
they may become obsolete over time, thereby005
misrepresenting the current state of the world.006
Knowledge editing techniques aim to update007
model knowledge in a targeted way. How-008
ever, facing the dual challenges posed by in-009
adequate editing datasets and unreliable evalu-010
ation criterion, the development of T2I knowl-011
edge editing encounter difficulties in effectively012
generalizing injected knowledge. In this work,013
we design a T2I knowledge editing framework014
by comprehensively spanning on three phases:015
First, we curate a dataset CAKE, compris-016
ing paraphrase and multi-object test, to enable017
more fine-grained assessment on knowledge018
generalization. Second, we propose a novel019
criterion, adaptive CLIP threshold, to effec-020
tively filter out false successful images under021
the current criterion and achieve reliable editing022
evaluation. Finally, we introduce MPE, a sim-023
ple but effective approach for T2I knowledge024
editing. Instead of tuning parameters, MPE pre-025
cisely recognizes and edits the outdated part of026
the conditioning text-prompt to accommodate027
the up-to-date knowledge. A straightforward028
implementation of MPE (Based on in-context029
learning) exhibits better overall performance030
than previous model editors. We hope these031
efforts can further promote faithful evaluation032
of T2I knowledge editing methods.1033

1 Introduction034

Text-to-image (T2I) diffusion models have gained035

significant advancements in encoding real-world036

concepts via bridging the gap between textual de-037

scriptions and visual representations (Zhang et al.,038

2023a; Yang et al., 2023; Saharia et al., 2022; Rom-039

bach et al., 2022a). By pre-training on a large040

1Our code will be made publicly available

number of image-caption pairs, these generative 041

models acquire statistical biases on visual concepts 042

such as colors, objects, and personalities. For ex- 043

ample, by inputting a text prompt “the CEO of 044

Tesla", the model can generate a portrait of “Elon 045

Musk". While some concepts are ageless, other 046

encoded knowledge facts may become invalid over 047

time (e.g., head of a state) or induce harmful social 048

biases (e.g., implicit gender of CEO). To address 049

this oversight, knowledge editing (Bau et al., 2020; 050

Wang et al., 2022; Santurkar et al., 2021; Sinitsin 051

et al., 2020; De Cao et al., 2021; Mitchell et al., 052

2021; Meng et al., 2022a,b) provides an efficient 053

solution by patching undesirable model outputs 054

without significantly altering the model’s general 055

behavior on unrelated input. 056

Considering the emerging text-to-image sce- 057

nario, several pioneering works have been ex- 058

plored for the knowledge editing of generative mod- 059

els (Basu et al., 2023; Arad et al., 2023; Xiong 060

et al., 2024). These studies all borrow the idea of 061

localized parameter updating (Meng et al., 2022a,b) 062

from language model editing. Specifically, each 063

fact edit is defined as a mapping from edit prompt 064

to target prompt (e.g., "the president of the United 065

States" → "Joe Biden") and is represented as a 066

computed key-value vector pair. By locating this 067

vector pair at a specific model component, such as 068

MLP or self-attention block, one is capable of tran- 069

sitioning the generative model’s perception on the 070

edit prompt to accord with up-to-date knowledge, 071

thereby achieving knowledge editing. 072

However, the existing works still focus on exte- 073

rior model editing, i.e., text mapping, instead of 074

knowledge mapping and generalization reasoning. 075

Based on an edited Stable Diffusion (Rombach 076

et al., 2022b), we generate images by creating the 077

input prompts that are synonymous with the fact 078

edit and consist of multiple objects. As illustrated 079

in Fig. 1, we observe ➀Paraphrase Generaliza- 080

tion Failure: Via replacing the input prompt of 081
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the president of 
United States

the president of 
United States

the american 
president

the CEO of 
Google

the CEO of 
Google

The american 
president meeting 

with the CEO of 
Google

Edit timeline

the president of United States   -->   Joe Biden the CEO of Google   -->   Sundar Pichai

❌ ❌

Input prompt Edited knowledge

(a) (b) 

Figure 1: Illustrating the challenges in T2I knowledge editing, the timeline in this figure shows the order in which
these images were generated: (a) Existing editing approaches often fail on paraphrases of edit prompt, such as
“the American president”. We term this situation Paraphrase Generalization Failure. (b) The edited model
struggles to deal with inputs involved with multiple edited knowledge. We refer to this case as Compositionality
Generalization Failure.

fact edit with its paraphrase (e.g., changing "United082

States" to "American"), the synthetic portrait looks083

significantly distorted from the ground truth and084

distinct from the one generated by the original085

prompt. ➁Compositionality Generalization Fail-086

ure: When incorporating multiple edited objects087

within a single input prompt, the model’s genera-088

tion behavior is only partially updated on a subset089

of fact edits. We attribute these generalization fail-090

ures to superficial text mapping, where the knowl-091

edge editing lacks the reasoning flexibility to ade-092

quately comprehend various language concepts.093

To effectively address how to implement knowl-094

edge mapping in generative models, which requires095

the edited knowledge to generalize to free and var-096

ied language inputs, we must tackle two main chal-097

lenges. ❶Most of the T2I benchmark datasets (Or-098

gad et al., 2023; Arad et al., 2023; Basu et al., 2023)099

used for knowledge editing do not include complex100

evaluation prompts comprising paraphrases and101

multiple edited objects. Such simple datasets hin-102

der the development of sophisticated editing meth-103

ods associated with the desired generalization ca-104

pability. ❷The evaluation criterion for T2I knowl-105

edge editing are underexplored. Namely, given a106

synthesized image from an edited model, how can107

we determine whether the synthesis behavior is in108

line with the desired update? Previous research109

(Orgad et al., 2023; Arad et al., 2023) formulates110

the decision of editing success as a binary classifi-111

cation task, comparing the closeness of synthesized112

images to outdated and target facts. However, as 113

shown in Fig. 1, this approach often results in false 114

successful images that appear closer to the target 115

facts but fail to meet the intended editing goals. 116

Thus, a more reliable evaluation strategy is needed 117

to advance knowledge editing efforts. 118

In response to these challenges, we design a 119

comprehensive text-to-image knowledge editing 120

framework that spans three phases: dataset con- 121

struction, evaluation strategy, and editing method. 122

First, we curate a dataset named as Counterfactual 123

Assessment of Text-to-image Knowledge Editing 124

(CAKE) to quantitatively assess the edited model’s 125

capabilities in addressing the above-mentioned 126

complex cases. In particular, CAKE introduces 127

two new types of evaluation prompts, built from 128

the paraphrases of edit prompt and multiple edited 129

objects, respectively. In addition to verifying su- 130

perficial text-mapping, the use of these additional 131

evaluation prompts allows CAKE to offer a more 132

fine-grained assessment of editing performance and 133

insights into how well an editing method general- 134

izes text-mapping to knowledge-mapping. 135

Second, to establish a reliable evaluation strat- 136

egy for editing, we propose a novel criterion termed 137

adaptive CLIP threshold. Unlike the previous cri- 138

terion based on classification, this innovative cri- 139

terion instead focuses on whether the synthesized 140

image is "sufficiently" similar to the target fact. 141

Specifically, this criterion analyzes the CLIP score 142

distribution of ideal synthesized images and uti- 143
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lizes its parameter estimations to calculate a score144

threshold that quantifies the degree of "sufficiency".145

Utilizing this score threshold in decision-making146

can effectively filter out false successful images147

in editing evaluation scenarios. Our validation ex-148

periments supported by Kosmos-2, the state-of-the-149

art open-source vision-language model (Liu et al.,150

2023; Peng et al., 2023), demonstrate the superior-151

ity of the novel criterion, significantly outperform-152

ing the current criterion.153

Third, rather than tuning parameters, we ex-154

plore a distinctive approach to T2I knowledge edit-155

ing termed Memory-based Prompt Editing (MPE).156

MPE stores all fact edits in an external memory157

and functions as a pre-processing module for the158

conditioning text prompt. Before image synthesis,159

MPE identifies and edits outdated parts of the in-160

put prompt to align with current knowledge. Our161

experiments include a simple, in-context learning-162

based (Brown et al., 2020) implementation of MPE.163

Extensive results suggest that current editing meth-164

ods struggle to generalize text-mapping to desired165

knowledge-mapping, whereas MPE outperforms166

previous competitors in overall performance and167

applicability, demonstrating significant potential in168

addressing T2I knowledge editing.169

2 Related Work170

Text-to-image model editing. Model editing tech-171

niques focus on providing stable, targeted updates172

to model behavior without costly re-training. Re-173

lated researches have been carried out on a variety174

of model architectures, such as generative adversar-175

ial networks (Bau et al., 2020; Wang et al., 2022),176

image classifiers (Santurkar et al., 2021) and LLMs177

(Meng et al., 2022a,b; Mitchell et al., 2021, 2022).178

(Orgad et al., 2023) formally describes T2I model179

editing as modifying model’s generative preference180

for visual concepts (e.g., editing the default color of181

Roses from Red to Blue). Subsequent studies start182

to focus on editing factual knowledge in T2I model:183

Inspiring from language model editing (Meng et al.,184

2022a,b), ReFACT and Diff-quickfix (Arad et al.,185

2023; Basu et al., 2023) both encode the to-be-186

edited knowledge into a key-value vector pair, but187

place it into different model components (MLP or188

self-attention block). The concurrent work EMCID189

(Xiong et al., 2024) sequentially distributes key-190

value vector pairs across multiple model layers to191

enable massive concept editing while preserving192

generation quality. Unlike above methods, our pro-193

posed MPE interprets knowledge editing as prompt 194

editing, where the model remains intact, thereby 195

avoiding catastrophic forgetting. 196

3 Text-to-image Knowledge Editing 197

3.1 Preliminaries 198

Text-to-Image Diffusion Model. For our analysis, 199

we focus specifically on T2I diffusion models. We 200

consider a T2I diffusion model with deterministic 201

generative processes, as described in (Song et al., 202

2020). This model can be expressed as f(xT , p), 203

where p represents the conditioning text prompt 204

and xT is the initial latent variable sampled from 205

a Gaussian distribution. The function f denotes 206

a deterministic, iterative denoising process, which 207

outputs a real image x. 208

Text-to-Image Knowledge Editing. Unlike lan- 209

guage model editing (Meng et al., 2022a; Mitchell 210

et al., 2021; Zhong et al., 2023; Gu et al., 2023), we 211

define a fact edit e as a text mapping (pedit → ptar), 212

for example, (the U.S. president → Joe Biden). 213

For practical applicability, we argue that the edited 214

model should generalize the injected edits from 215

external text mappings to internal knowledge map- 216

pings. Given an edit e = (pedit → ptar), we for- 217

mally describe the goal of T2I knowledge editing as 218

producing an edited model fedit based on f and e. 219

The edited model fedit should satisfy the following 220

conditions: 221

∀p ∈ Para(pedit), fedit(xT , p) = f(xT , ptar),

∀p /∈ Para(pedit), fedit(xT , p) = f(xT , p),
(1) 222

where Para(·) represents the set containing all 223

paraphrases of pedit. The objective of this task re- 224

quires the edited model to recognize pedit in any 225

form and map it to ptar through the encoding pro- 226

cess, which we refer to as knowledge mapping. 227

3.2 Counterfactual Assessment of 228

Text-to-image Knowledge Editing 229

In order to faithfully assess how well the editing 230

methods achieve knowledge mapping, we build 231

CAKE (Counterfactual Assessment of Text-to- 232

image Knowledge Editing) for practical and fine- 233

grained editing evaluation. See Appendix A for 234

dataset construction process and statistics. 235

Following previous work (The RoAD dataset, 236

Arad et al., 2023), CAKE focus on counterfactual 237

edits about figures associated with specific roles 238

(e.g., editing The U.S. president → Tim Cook). 239

This includes a diverse range of roles, such as 240
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Single Edit I: the president of the United States ->Tim Cook
Efficacy {The president of the United States / Tim Cook}
Generality {The president of the United States / Tim Cook} in a meeting

{The president of the United States / Tim Cook} eating an apple
KgeMap {The leader of the United States / Tim Cook} runing in the streets

{The U.S. president / Tim Cook} eating strawberries
Specificity { flag of the United States / flag of the United States }

{ currency of the United States / currency of the United States }
Composite Edit II: the Titanic male lead ->Jeff Bezos

Compo
{The president of United States and the Titanic male lead / Tim
Cook and Jeff Bezos} hiking in the mountains
{...} having a causal conversation at a coffee shop

Table 1: Part of the first entry in the CAKE dataset.
All prompts are represented in {pedit/ptar}. During
experiments, each entry undergoes top-down alternat-
ing editing for fair comparisons (See Appendix A for
details), i.e. Edit I → evaluate {Efficacy, Generality,
KgeMap, Specificity} → Edit II → evaluate {Compo}.

entrepreneurs, politicians and so on. CAKE to-241

tally contains 100 entries and each entry consists242

of two counterfactual edit prompts and 15 evalua-243

tion prompts, which are all represented in the form:244

{pedit/ptar}, as shown in Table 1.245

After updating the knowledge expressed by the246

given edit prompts in a T2I model, we use different247

types of evaluation prompts to compute the editing248

performance in various dimensions:249

Efficacy: Determine whether the edited model250

comprehends the updated text mappings.251

Generality: Assess whether the edited model can252

flexibly utilize the updated text mappings.253

Specificity: Measure how well the edited model254

preserves other close but unrelated concepts.255

KgeMap (New): Use paraphrases to verify256

whether the edited model generalizes updated text257

mappings to knowledge mappings.258

Compo (New): Evaluate the edited model’s ca-259

pability to apply multiple updated knowledge ele-260

ments in its generative behavior simultaneously.261

Evaluating in terms of the above fine-grained262

metrics allows CAKE to serve as a robust starting263

point for developing more effective and practical264

editing methods.265

3.3 Adaptive CLIP Threshold Criterion266

After updating a fact edit to a T2I model and syn-267

thesizing an image conditioned on an evaluation268

prompt, the critical question becomes: How can269

we determine whether the synthesis aligns with270

the desired update?271

Previous researches (Arad et al., 2023; Or-272

gad et al., 2023) formulate the question as a bi-273

nary classification task and use the CLIP-Score274

CLIP(·, ·) (Radford et al., 2021; Hessel et al.,275

2021) to measure text-image similarity, setting the 276

current decision boundary for determining edit- 277

ing success. However, this approach overlooks 278

whether the synthesized image is "sufficiently" 279

close to the target fact, leading to false positives 280

where ineligible images are mistakenly labeled as 281

successful (see Fig 2). 282

To address this, we propose an adaptive CLIP 283

threshold that better aligns with the ideal decision 284

boundary. By analyzing the CLIP-Score distribu- 285

tion of ideal images, we establish a prompt-specific 286

threshold that quantifies "sufficiency", providing a 287

more precise and reliable measure for evaluating 288

edits. 289

To obtain the threshold, an extra warm-up stage 290

is required before editing, as illustrated in Fig. 2. 291

For each evaluation prompt {pedit/ptar}, we use 292

the clean T2I model f conditioned on ptar to gen- 293

erate a set of real images
{

x(1), . . . , x(n)
}

, where 294

x(i) = f(x(i)T , ptar) and x(i)T is the randomly sam- 295

pled initial variable. These real images inherently 296

bear sufficient similarity to the target fact ptar and 297

are thus considered ideal for post-editing genera- 298

tion, i.e., fedit(xT , pedit). 299

Next, we calculate the CLIP-Score between 300

these ideal images and ptar to form an ideal 301

score set S =
{
s(1), . . . , s(n)

}
, where s(i) = 302

CLIP(x(i), ptar). We assume the ideal score s fol- 303

lows a normal distribution N(µ, σ) and estimate its 304

parameters µ̂ and σ̂ using Maximum Likelihood 305

Estimation (Pan et al., 2002): 306

µ̂ =
1

n

n∑
i=1

s(i), σ̂ =

√√√√ 1

n− 1

n∑
i=1

(s(i) − µ̂)2, (2) 307

where µ̂ and σ̂ are the unbiased parameter esti- 308

mates for N(µ, σ). We define an operator g(µ̂, σ̂) 309

that calculates the minimum successful similarity 310

as the decision-making threshold, to preserve most 311

ideal images while filtering out most unsuccessful 312

images, as follows: 313

CLIP(fedit(xT , pedit), ptar) ≥ g(µ̂, σ̂). (3) 314

Eq. (3) formulates the new criterion for edit- 315

ing evaluation. To determine the optimal operator 316

g(µ̂, σ̂) for the knowledge editing task, we con- 317

ducted a criterion validation experiment. We tested 318

existing editing methods, TIME (Orgad et al., 2023) 319

and ReFACT (Arad et al., 2023), on the role-editing 320

benchmark RoAD (Arad et al., 2023) using several 321
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“Donald Trump”

Current :  CLIP(�, �tar) > CLIP(�, �old)

 Decision boundary

“Joe Biden”

Ideal :  CLIP(�, �tar) > ?

�old �tar

�− �−��−3� + � +2� +3�

�(��, �tar) {�(1), . . . , �(�)} CLIP(�, �tar) {�(1), . . . , �(�)}

(�, �)
MLEAdaptive CLIP threshold

Threshold operator  �(�, �) = � − 2�

Text & Image embedding

Figure 2: An editing evaluation example (pedit ="the U.S. president", ptar ="Joe Biden"). A closer distance
between two embedding points implies higher similarity, i.e. CLIP-Score. The images with borders are false
successful images under the current criterion. For each evaluation prompt, the adaptive CLIP threshold precisely
approximates the ideal decision boundary and effectively filters out the false successful images.
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Figure 3: The Macro-F1 of different criterion(threshold
operators). Current refers to the current criterion.

operator choices (e.g., µ̂ − 2σ̂) to make evalua-322

tion decisions. Additionally, we selected Kosmos-323

2 (Peng et al., 2023), the best-performing open-324

source vision-language model for the Celebrity325

Recognition task (Liu et al., 2023), as the pseudo-326

label generator (see Appendix B for the pseudo-327

label generation process)2. Fig. 3 presents the328

Macro-F1 performance of various operator choices329

and the current classification-based criterion. The330

results demonstrate that µ̂− 2σ̂ is the most effec-331

tive choice among the candidate operators. Fur-332

thermore, the adaptive CLIP threshold consistently333

outperforms the current criterion, indicating its re-334

liability as an evaluation scheme. In later experi-335

ments, we set threshold operator g(µ̂, σ̂) = µ̂−2σ̂.336

3.4 MPE: A Proposal for Text-to-Image337

Knowledge Editing338

In this section, we propose a simple and effective339

scheme for T2I knowledge editing, MPE (Memory-340

based Prompt Editing).341

Workflow. Unlike previous parameter-update342

2The ability of GPT-4v to perform person identification
has been officially prohibited. Thus, Kosmos-2 was chosen.

Edit Memory
Retrieval

 � =  The U.S. president 
reading a book

 �∗ =  (����� → ����)

Router (�, �edit)

Editer (�, �edit, �tar)

“activating”

���� =  The U.S. president reading a book

���� =  Joe Biden reading a book

“up-to-date”

Figure 4: The basic workflow of MPE.

methods, when receiving a fact edit (pedit → ptar), 343

MPE keeps the T2I model frozen and serves as 344

a pre-processing module for the conditioning text 345

prompt p, as follows: 346

fedit(xT , p) = f(xT ,MPE(p, pedit, ptar)). (4) 347

Towards the task objective defined in Sec 3.1, the 348

expected output of MPE should be either ptar or p, 349

depending on whether Para(pedit) contains p itself 350

or any sub-sequence of p (e.g., the ideal output 351

of "The U.S. president reading a book" should be 352

"Joe Biden reading a book"). 353

In particular, MPE consists of two components: 354

Router and Editer. 1) The Router takes p and pedit 355

as input and detects whether the p contains any 356

paraphrases from Para(pedit). If so, it sends an 357

"activating" signal to the Editer, which implies the 358

generating behavior on p of the clean model f has 359

been outdated. 2) If receiving the signal, the Editer 360

would precisely recognize the outdated part (any 361

form of the pedit) of the input prompt p and then 362

replace it with the ptar. Depending on MPE, the 363

text prompt can adaptively fuse with edited knowl- 364

edge, thereby altering the T2I model’s generation 365

behavior in a targeted way, as shown in Fig 4. 366

Multiple editing. Real-world scenarios generally 367

involve a vast pool of knowledge updates. To oper- 368

ate in practical applications, MPE adopts a "Mem- 369
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Method Score Efficacy Generality KgeMap Compo Specificity FID (↓) CLIP

Base 0.00 00.00%±0.00 03.09%±0.93 03.10%±0.67 01.73%±0.66 96.90%±1.53 33.41 0.426
TIME 11.4 03.50%±0.92 12.68%±1.73 10.37%±1.62 04.80%±1.17 85.80%±3.09 31.94 0.421
ReFACT 35.2 33.70%±6.18 42.46%±5.51 34.10%±4.48 35.73%±4.87 31.19%±2.09 33.38 0.426
EMCID 41.9 82.60%±8.82 48.48%±4.73 39.43%±2.89 40.83%±6.93 19.97%±1.50 32.65 0.426
MPE 77.2 94.40%±2.73 88.84%±4.52 63.07%±2.52 72.70%±3.35 71.20%±1.87 33.41 0.426

Table 2: Quantitative evaluation results on CAKE. Best results are marked with bold. Best results among editing
methods are marked with underline. FID refers to FID-5K, CLIP refers to the average CLIP Score.

ory + Retrieval" strategy (Mitchell et al., 2022; Gu370

et al., 2023; Song et al., 2024) and introduces an371

additional Retriever component. Specifically, when372

receiving multiple edits
{
e(1), . . . , e(n)

}
, MPE373

stores all edits in an external memory and embeds374

their p(i)edit by the Retriever to construct a retrieval375

index. Then for each input prompt p, the retrieval376

index returns the key edit e∗ that is the most rele-377

vant (i.e., closest in the embedding space) to p, and378

sends them together to the Router for prompt edit-379

ing. The complete workflow of MPE is described380

in Appendix C.381

Implementation. The Router and the Editer can382

be instantiated using various schemes, such as fine-383

tuning a pre-trained text classification model (Sanh384

et al., 2019; Devlin et al., 2018) for the Router and385

a Seq2Seq model (Lewis et al., 2019; Raffel et al.,386

2020) for the Editer. In this paper, we consider a387

lightweight, in-context learning-based implementa-388

tion: We deploy the pre-trained Contriever model389

(Izacard et al., 2022) locally as the Retriever com-390

ponent and teach the GPT-3.5-turbo API (Ouyang391

et al., 2022) to work as both the Router and the392

Editer simultaneously, by our manually designed393

demonstrations (i.e., input-label pairs). The con-394

crete prompts used are detailed in Appendix D.395

4 Experiments396

4.1 Experimental Setup397

In this paper, we investigate both single-editing398

(updating edits from a single entry at a time) and399

multiple-editing (updating edits from multiple en-400

tries at a time) scenarios for comprehensive as-401

sessment. All experiments are conducted using402

the Stable Diffusion v1-4 model (Rombach et al.,403

2022b).404

Dataset. In addition to the newly constructed405

CAKE, we include the knowledge editing dataset406

RoAD (Arad et al., 2023) and the preference edit-407

ing TIME Dataset (Orgad et al., 2023) in our exper-408

iments. The TIME Dataset contains 147 variations409

about visual concepts (e.g., changing the default410

color of Roses from Red to Blue) to assess the 411

performance in editing generative preference. 412

Baseline. Except for the unreleased Diff-quickfix 413

(Basu et al., 2023), we experiment with all available 414

T2I knowledge editing baselines, including TIME 415

(Orgad et al., 2023), ReFACT (Arad et al., 2023), 416

and EMCID (Xiong et al., 2024). TIME targets 417

at modifying generative preferences and cannot be 418

directly applied to RoAD and CAKE due to the 419

incompatible input format. So we implement an 420

adaptation version of TIME that has been empiri- 421

cally demonstrated to be the most effective version 422

in knowledge editing scenarios (Arad et al., 2023). 423

Following prior settings, we include a special case, 424

Base, in our single-editing experiments. For each 425

evaluation prompt {pedit/ptar}, Base refers to di- 426

rectly inputting pedit into the unedited model f for 427

generation, serving as a reference baseline. 428

Metric. We introduce the metrics we considered 429

in Section 3.2. We evaluate editing performance in 430

terms of Efficacy, Generality, Specificity, KgeMap 431

and Compo. Among them, KgeMap and Compo 432

are only available for the CAKE dataset. We 433

use our proposed adaptive CLIP threshold as the 434

evaluation criterion. After editing, an evaluation 435

prompt {pedit/ptar} is considered successful if the 436

synthesized image x conditioned on pedit satisfies 437

CLIP(x, ptar) ≥ µ̂−2σ̂. Then each metric is com- 438

puted as the ratio of successful evaluation prompts 439

to the total number of corresponding evaluation 440

prompts. We also calculate the geometric mean of 441

all the aforementioned metrics as Score to charac- 442

terize the overall performance. To evaluate the gen- 443

eral image quality, we report the FID-5K (Heusel 444

et al., 2017) and the average CLIP score (Radford 445

et al., 2021) based on a randomly selected 5,000 446

image-caption pairs from the MS-COCO validation 447

dataset (Lin et al., 2014). We use Laion’s ViT-G/14 448

(Cherti et al., 2023), the best open-source CLIP 449

model, to conduct all CLIP Score calculation. 450

Setting. For each evaluation prompt {pedit/ptar}: 451

Before editing, we need an extra warm-up stage to 452
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Dataset Method Score Efficacy Generality Specificity FID(↓) CLIP

Base 15.8 02.89%±1.66 14.11%±1.10 95.98%±1.26 33.41 0.426

RoAD
TIME 44.6 28.78%±3.12 37.42%±1.59 82.60%±3.39 31.60 0.422
ReFACT 57.1 39.11%±4.44 53.53%±2.72 88.87%±1.10 33.36 0.426
EMCID 78.9 85.00%±4.07 69.18%±3.06 83.51%±1.58 33.09 0.426
MPE 87.6 90.89%±3.58 89.31%±2.36 82.69%±1.41 33.41 0.426

Base 49.9 25.77%±3.09 50.85%±2.06 95.15%±1.99 33.41 0.426
TIME TIME 81.8 84.52%±4.46 79.06%±2.43 82.02%±3.34 31.78 0.423

Dataset ReFACT 73.7 65.38%±4.26 70.87%±2.32 86.31%±1.36 33.39 0.426
EMCID 79.5 88.65%±3.12 80.54%±2.04 70.31%±1.94 33.18 0.426
MPE 86.4 97.02%±1.63 91.58%±1.12 72.65%±1.73 33.41 0.426

Table 3: Quantitative evaluation results on RoAD and TIME Dataset. Best results are marked with bold. Best results
among editing methods are marked with underline.

Dataset Method #1 #10 #25 #50 #All

TIME 11.36% 00.00%(0%) 00.00%(0%) 00.12%(1%) 00.00%(0%)

CAKE
ReFACT 35.24% 27.76%(78%) 23.84%(67%) 21.62%(61%) 20.15%(57%)
EMCID 41.87% 33.54%(80%) 30.42%(73%) 29.27%(70%) 25.85%(62%)

MPE 77.18% 77.17%(99%) 75.54%(97%) 75.93%(98%) 74.83%(96%)

Table 4: The metric Score in multiple editing experiments on CAKE is reported here to characterize the trend in
overall editing performance. The (# num) refers to the size of edit batch. The (percent %) indicates the percentage
to which the editing methods preserve the single-editing performance (# 1). Best results are marked with bold.

calculate the adaptive CLIP threshold over 50 ran-453

dom seeds; After editing, we generate synthesized454

images conditioned on pedit over 10 random seeds455

to obtain the stable editing performance. Various456

seeds correspond to different initial variables xT .457

All experiments are conducted on NVIDIA A40s458

and take about 15 GPU hours to finish one setting.459

4.2 Single Editing Results460

Table 2,3 presents our single-editing results. We461

observe that our proposed MPE demonstrates su-462

perior overall performance compared to other base-463

lines across all datasets, especially in the knowl-464

edge editing task (CAKE, RoAD), underscoring its465

potential for further development.466

The experimental results on CAKE are consis-467

tent with our early findings: current editing meth-468

ods struggle to generalize text-mapping to desired469

knowledge-mapping, as evidenced by their perfor-470

mance degradation in both the KgeMap and Compo471

metrics. This poses significant challenges for fu-472

ture research endeavors.473

The TIME method, originally designed for edit-474

ing generative preferences, fails catastrophically475

on CAKE and thus proves inadequate for updat-476

ing factual knowledge within the diffusion model.477

However, its exceptional and well-balanced perfor-478

mance on its initial task (TIME Dataset) remains479

noteworthy. Considering its low computational 480

cost and rapid editing speed, TIME presents itself 481

as a strong alternative for preference editing. 482

Quantitatively, the overall performance of 483

ReFACT is relatively low, only surpassing TIME 484

in knowledge editing tasks. Meanwhile, as illus- 485

trated by the qualitative examples in Fig. 5, the 486

synthesis behaviors of the ReFACT-edited model 487

progress in the desired direction but ultimately fail. 488

These "plausible" images can be effectively filtered 489

out using the adaptive CLIP threshold. 490

EMCID exhibits superior performance among 491

parameter-update editing methods. On RoAD, EM- 492

CID distinguishes itself by demonstrating excel- 493

lent performance across all considered metrics; On 494

CAKE, EMCID is able to generate images that 495

better match the editing goal than ReFACT (See 496

Fig. 5). However, the weak Specificity in Table 2 497

indicates that EMCID struggles to limit the editing 498

scope, encountering difficulties in correctly gener- 499

ating close but unrelated concepts after editing. 500

Interestingly, compared to the superior overall 501

performance, MPE does not excel in Specificity. 502

We attribute this to the drawbacks of prompt edit- 503

ing: once the pre-processing module make a mis- 504

take, the revised prompt could be totally unrelated 505

to the original input (e.g., flag of the United States 506

→ Tim Cook). Fortunately, we later observe that 507
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# 1

# All

clean �

EDIT : The president of the United States  →  Tim Cook

�����:   The president of the United States (Efficacy)

MPE ReFACT EMCID TIME clean � MPE ReFACT EMCID

EDIT : The painter of Girl with a Pearl Earring  →  Emma Watson

TIME

�����:   Girl with a Pearl Earring (Specificity)

Figure 5: The qualitative examples from the CAKE dataset. The (# num) refers to the size of edit batch.
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Figure 6: The performance curves of various metrics across multiple editing experiments are depicted. The
horizontal axis denotes the size of the edit batches, while the shaded areas indicate the standard deviation.

when facing high edit volumes, the Specificity of508

MPE exhibits excellent robustness, potentially com-509

pensating for the identified shortcoming.510

4.3 Multiple Editing Results511

We conducted multiple editing experiments to sim-512

ulate real-world scenarios. We group entries into513

edit batches of size k, where k takes values from514

{1, 10, 25, 50, all}. Then for each batch, we in-515

jected all fact edits within it into the clean model516

simultaneously and evaluated the performance on517

all associated evaluation prompts.518

Table 4, Fig. 6 present the related results. We519

first investigate the changing trend in overall edit-520

ing performance: Except MPE, other (parameter-521

update) editing methods have suffered considerable522

performance degradation – TIME completely lost523

its editing ability; The performance of ReFACT524

under (#All) has also declined to nearly half of525

its single-editing performance; EMCID exhibits526

better robustness to larger edit volumes, benefited527

from its distributed editing strategy, but is still sig-528

nificantly inferior to MPE. Utilizing a proficient529

external retriever, MPE demonstrates outstanding530

performance retention (96%) under (#All). Be-531

sides, qualitative examples in Fig. 5 show that 1)532

TIME frequently generates meaningless pure noise533

under multiple editing, which reveals the loss in534

generating ability caused by parameter updates; 2)535

ReFACT and EMCID maintain image quality well,536

suggesting that the MLPs in the text encoder might 537

be a better updating location for knowledge editing. 538

We then focus on some specific metrics. The 539

curves in Fig. 6 show that MPE owns remarkable 540

robustness to multiple editing, which potentially 541

compensates its weaknesses in Specificity. Con- 542

versely, the robustness of ReFACT and EMCID 543

to multiple editing seems less than ideal: They 544

both experience relatively large performance degra- 545

dation across all metrics. We hope these results 546

can act as a call to the community to develop more 547

practical and effective editing methods. More quan- 548

titative and qualitative results are provided in Ap- 549

pendix E. 550

5 Conclusion 551

In this work, we aim to establish a reliable evalua- 552

tion paradigm for T2I knowledge editing. Specifi- 553

cally, we curate a dataset named CAKE, compris- 554

ing fine-grained metrics to validate knowledge gen- 555

eralization. We then develop an innovative crite- 556

rion, the adaptive CLIP threshold, to approximate 557

the ideal decision boundary, effectively filtering out 558

false successful images in evaluation scenarios. Ad- 559

ditionally, by transferring the editing impact from 560

the parameter space to the input space, we design a 561

distinctive approach, MPE, to achieve T2I knowl- 562

edge editing. Extensive results have demonstrated 563

the limitations of current editing methods and the 564

further potential of MPE. 565

8



Limitations566

The limitations of our work are as follows:567

1. Similar to previous datasets, our curated568

CAKE focuses on figure editing pertaining569

to specific roles. To maintain the quality of570

evaluation prompts, the scale of CAKE is kept571

small, comprising only 100 edits and 1,500572

evaluation prompts. We suggest that future re-573

search should aim to construct a larger and574

more diverse knowledge editing dataset to575

achieve more reliable evaluations.576

2. Our experiments only involve a straightfor-577

ward, API-based implementation of our pro-578

posed MPE. The further potential of MPE in579

real applications is under-explored because580

the call of OpenAI API leads to inevitable581

financial costs. In future work, we will experi-582

ment with more economical schemes of MPE583

as stated in Sec. 3.4.584

3. Memory-based editing allows for lossless edit-585

ing of models and thus distinguishes itself586

among editing techniques. However, its vul-587

nerability to attacks such as memory injection588

poses significant risks in production environ-589

ments. Therefore, this approach requires ro-590

bust security measures to mitigate these risks591

effectively in real-world scenarios.592

Ethics Statement593

We curate a counterfactual editing dataset named594

CAKE, which includes world-renowned roles and595

identifiable figures. During the dataset construction596

process, we faithfully adhere to privacy regulations597

and collect publicly available information from the598

internet. We randomly assign counterfactual rela-599

tions between specific roles and figures. On behalf600

of all authors, we declare that these counterfactual601

relations are exclusively intended for research pur-602

poses and carry no implications for the real world.603

We have manually ensured that the finished dataset604

does not contain any potentially offensive content.605

References606

Dana Arad, Hadas Orgad, and Yonatan Belinkov. 2023.607
Refact: Updating text-to-image models by editing608
the text encoder. arXiv preprint arXiv:2306.00738.609

Samyadeep Basu, Nanxuan Zhao, Vlad I Morariu, So-610
heil Feizi, and Varun Manjunatha. 2023. Localizing611

and editing knowledge in text-to-image generative 612
models. In The Twelfth International Conference on 613
Learning Representations. 614

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, 615
and Antonio Torralba. 2020. Rewriting a deep gen- 616
erative model. In Computer Vision–ECCV 2020: 617
16th European Conference, Glasgow, UK, August 618
23–28, 2020, Proceedings, Part I 16, pages 351–369. 619
Springer. 620

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 621
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 622
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 623
Askell, et al. 2020. Language models are few-shot 624
learners. Advances in neural information processing 625
systems, 33:1877–1901. 626

Mehdi Cherti, Romain Beaumont, Ross Wightman, 627
Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, 628
Christoph Schuhmann, Ludwig Schmidt, and Jenia 629
Jitsev. 2023. Reproducible scaling laws for con- 630
trastive language-image learning. In Proceedings 631
of the IEEE/CVF Conference on Computer Vision 632
and Pattern Recognition, pages 2818–2829. 633

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 634
ing factual knowledge in language models. arXiv 635
preprint arXiv:2104.08164. 636

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 637
Kristina Toutanova. 2018. Bert: Pre-training of deep 638
bidirectional transformers for language understand- 639
ing. arXiv preprint arXiv:1810.04805. 640

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao 641
Liu, Ruobing Wang, and Xin Wang. 2023. Pokemqa: 642
Programmable knowledge editing for multi-hop ques- 643
tion answering. arXiv preprint arXiv:2312.15194. 644

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le 645
Bras, and Yejin Choi. 2021. Clipscore: A reference- 646
free evaluation metric for image captioning. arXiv 647
preprint arXiv:2104.08718. 648

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, 649
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans 650
trained by a two time-scale update rule converge to a 651
local nash equilibrium. Advances in neural informa- 652
tion processing systems, 30. 653

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se- 654
bastian Riedel, Piotr Bojanowski, Armand Joulin, 655
and Edouard Grave. 2022. Unsupervised dense infor- 656
mation retrieval with contrastive learning. Preprint, 657
arXiv:2112.09118. 658

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 659
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 660
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 661
noising sequence-to-sequence pre-training for natural 662
language generation, translation, and comprehension. 663
arXiv preprint arXiv:1910.13461. 664

9

https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118


Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,665
and Ji-Rong Wen. 2022. Pretrained language mod-666
els for text generation: A survey. arXiv preprint667
arXiv:2201.05273.668

Tsung-Yi Lin, Michael Maire, Serge Belongie, James669
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,670
and C Lawrence Zitnick. 2014. Microsoft coco:671
Common objects in context. In Computer Vision–672
ECCV 2014: 13th European Conference, Zurich,673
Switzerland, September 6-12, 2014, Proceedings,674
Part V 13, pages 740–755. Springer.675

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,676
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi677
Wang, Conghui He, Ziwei Liu, et al. 2023. Mm-678
bench: Is your multi-modal model an all-around679
player? arXiv preprint arXiv:2307.06281.680

Kevin Meng, David Bau, Alex Andonian, and Yonatan681
Belinkov. 2022a. Locating and editing factual as-682
sociations in gpt. Advances in Neural Information683
Processing Systems, 35:17359–17372.684

Kevin Meng, Arnab Sen Sharma, Alex Andonian,685
Yonatan Belinkov, and David Bau. 2022b. Mass-686
editing memory in a transformer. arXiv preprint687
arXiv:2210.07229.688

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea689
Finn, and Christopher D Manning. 2021. Fast model690
editing at scale. arXiv preprint arXiv:2110.11309.691

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-692
pher D Manning, and Chelsea Finn. 2022. Memory-693
based model editing at scale. In International Con-694
ference on Machine Learning, pages 15817–15831.695
PMLR.696

Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov.697
2023. Editing implicit assumptions in text-to-image698
diffusion models. arXiv preprint arXiv:2303.08084.699

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,700
Carroll Wainwright, Pamela Mishkin, Chong Zhang,701
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.702
2022. Training language models to follow instruc-703
tions with human feedback. Advances in neural in-704
formation processing systems, 35:27730–27744.705

Jian-Xin Pan, Kai-Tai Fang, Jian-Xin Pan, and Kai-706
Tai Fang. 2002. Maximum likelihood estimation.707
Growth curve models and statistical diagnostics,708
pages 77–158.709

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao,710
Shaohan Huang, Shuming Ma, and Furu Wei.711
2023. Kosmos-2: Grounding multimodal large712
language models to the world. arXiv preprint713
arXiv:2306.14824.714

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya715
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-716
try, Amanda Askell, Pamela Mishkin, Jack Clark,717
et al. 2021. Learning transferable visual models from718
natural language supervision. In International confer-719
ence on machine learning, pages 8748–8763. PMLR.720

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 721
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 722
Wei Li, and Peter J Liu. 2020. Exploring the lim- 723
its of transfer learning with a unified text-to-text 724
transformer. Journal of machine learning research, 725
21(140):1–67. 726

Robin Rombach, Andreas Blattmann, Dominik Lorenz, 727
Patrick Esser, and Björn Ommer. 2022a. High- 728
resolution image synthesis with latent diffusion mod- 729
els. In Proceedings of the IEEE/CVF conference 730
on computer vision and pattern recognition, pages 731
10684–10695. 732

Robin Rombach, Andreas Blattmann, Dominik Lorenz, 733
Patrick Esser, and Björn Ommer. 2022b. High- 734
resolution image synthesis with latent diffusion mod- 735
els. In Proceedings of the IEEE/CVF conference 736
on computer vision and pattern recognition, pages 737
10684–10695. 738

Chitwan Saharia, William Chan, Saurabh Saxena, 739
Lala Li, Jay Whang, Emily L Denton, Kam- 740
yar Ghasemipour, Raphael Gontijo Lopes, Burcu 741
Karagol Ayan, Tim Salimans, et al. 2022. Photo- 742
realistic text-to-image diffusion models with deep 743
language understanding. Advances in Neural Infor- 744
mation Processing Systems, 35:36479–36494. 745

Victor Sanh, Lysandre Debut, Julien Chaumond, and 746
Thomas Wolf. 2019. Distilbert, a distilled version 747
of bert: smaller, faster, cheaper and lighter. arXiv 748
preprint arXiv:1910.01108. 749

Shibani Santurkar, Dimitris Tsipras, Mahalaxmi Elango, 750
David Bau, Antonio Torralba, and Aleksander Madry. 751
2021. Editing a classifier by rewriting its prediction 752
rules. Advances in Neural Information Processing 753
Systems, 34:23359–23373. 754

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, 755
Sergei Popov, and Artem Babenko. 2020. Editable 756
neural networks. arXiv preprint arXiv:2004.00345. 757

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. 758
Denoising diffusion implicit models. arXiv preprint 759
arXiv:2010.02502. 760

Xiaoshuai Song, Zhengyang Wang, Keqing He, Guant- 761
ing Dong, Jinxu Zhao, and Weiran Xu. 2024. Knowl- 762
edge editing on black-box large language models. 763
arXiv preprint arXiv:2402.08631. 764

Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. 2022. 765
Rewriting geometric rules of a gan. ACM Transac- 766
tions on Graphics (TOG), 41(4):1–16. 767

Tianwei Xiong, Yue Wu, Enze Xie, Yue Wu, Zhenguo 768
Li, and Xihui Liu. 2024. Editing massive concepts 769
in text-to-image diffusion models. arXiv preprint 770
arXiv:2403.13807. 771

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, 772
Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, 773
and Ming-Hsuan Yang. 2023. Diffusion models: A 774
comprehensive survey of methods and applications. 775
ACM Computing Surveys, 56(4):1–39. 776

10



Chenshuang Zhang, Chaoning Zhang, Mengchun777
Zhang, and In So Kweon. 2023a. Text-to-image778
diffusion model in generative ai: A survey. arXiv779
preprint arXiv:2303.07909.780

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,781
and Dawei Song. 2023b. A survey of controllable782
text generation using transformer-based pre-trained783
language models. ACM Computing Surveys, 56(3):1–784
37.785

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-786
ning, Christopher Potts, and Danqi Chen. 2023.787
Mquake: Assessing knowledge editing in language788
models via multi-hop questions. arXiv preprint789
arXiv:2305.14795.790

A Statistics and Construction Details of791

CAKE792

Statistics. CAKE comprises 100 different edits and793

1,500 evaluation prompts. Each entry includes two794

edits (Edit I, Edit II) along with the correspond-795

ing evaluation prompts for performance assess-796

ment: 1 Efficacy prompt, 5 Generality prompts, 3797

Specificity prompts, 3 KgeMap prompts, 3 Compo798

prompts.799

Construction Details. Given the powerful text800

generation capabilities of LLMs (Li et al., 2022;801

Zhang et al., 2023b), we utilize ChatGPT to auto-802

matically gather candidate edit prompts pedit and803

target prompts ptar to form fact edits. Specifically,804

we prompt ChatGPT to:805

i) list the top-20 influential individuals across806

various fields of our time (e.g., Jeff Bezos,807

Tim Cook) to create a candidate target set808

O =
{
p
(1)
tar, . . . , p

(20)
tar

}
. We manually verified809

their correct generation of Stable Diffusion v1-810

4 (Rombach et al., 2022b), the text-to-image811

diffusion model we study.812

ii) generate 10 roles in different categories (e.g.,813

the CEO of Microsoft).814

iii) for each role, leverage in-context learning815

(Brown et al., 2020) to automatically produce816

9 additional roles in same category (e.g., the817

CEO of Tesla, the CEO of IBM) to gather a818

candidate edit prompt set
{
p
(1)
edit, . . . , p

(100)
edit

}
.819

Then for each existing pedit, we randomly assign820

a target prompt in O to it and construct a counter-821

factual text-mapping (edit) set E = {e1, . . . , e100}.822

We refer to each existing edit as Edit I and build823

evaluation prompts for them to compose the com-824

plete entry. In particular, for all metrics except825

Specificity, we fill the pedit/ptar pairs into natural 826

language templates (e.g., _ eating an apple) to form 827

evaluation prompts. In the case of Specificity, we 828

manually design evaluation prompts (e.g., Tesla 829

logo) inquiring about other knowledge related to 830

the entities (e.g., Tesla) in pedit. 831

We then further augment the existing dataset by 832

introducing Edit II: For each entry, we supplement 833

it with a randomly sampled edit (p′edit → p′tar) 834

from the rest of single-edit part that satisfies ptar ̸= 835

p′tar. We term the newer edit as Edit II. 836

Finally, each candidate entries was indepen- 837

dently reviewed by us in terms of grammar and 838

semantic logic. The outcome of this meticulous 839

process was the CAKE dataset comprising 100 en- 840

tries. 841

The top-down alternating editing. The editing 842

and evaluation order of CAKE is slightly different 843

from other editing datasets. After updating the Edit 844

I to the T2I model, we first finish the generations 845

on evaluation prompts of { Efficacy, Generality, 846

Specificity, KgeMap}. Afterwards, we directly in- 847

sert the Edit II into the current, edited model and 848

finally compute the last metric { Compo}. By fol- 849

lowing the top-down alternating editing, we test the 850

Compositionality property and can precisely com- 851

pute the editing performance of T2I model with 852

only one newer edit, aligning with other editing 853

datasets. 854

B Detailed process of the Criterion 855

Validation Experiments 856

To and the most effective threshold operator and 857

validate the superiority of our proposed adaptive 858

CLIP threshold, we leverage the Kosmos-2 (Peng 859

et al., 2023) as the pseudo-label generator, en- 860

abling the automatic criterion evaluation. Specifi- 861

cally, Kosmos-2 is prompted to conduct celebrity 862

recognition task (Kosmos-2 is the best open-source 863

VLM on this task according to (Liu et al., 2023)). 864

Following previous settings, we adopt the zero- 865

shot context for Kosmos-2 to execute the visual 866

question answering task. For each synthesised im- 867

age from existing editing methods, Kosmos-2 is 868

taught to answer the question "Who is the person 869

in this image?" with subsequent four options. One 870

of these options corresponds to the target figure af- 871

ter editing, while the others are randomly selected 872

from a pool of candidate celebrities. A synthesised 873

image is labeled as "successful" only if Kosmos-2 874

selects the correct option or directly outputs the 875
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Several demonstrations in MPE’s in-context prompt

1.
Input: The spokesman of United Nations giving a speech
source concept: The chief trainer of Inter Miami.
target concept: David Beckham.
Does the entity specified by source concept appeared in the Input: No.
Output: The spokesman of United Nations giving a speech

2.
Input: The lead singer of Nightwish standing on the stage
source concept: The lead singer of Nightwish.
target concept: Elvis Presley.
Does the entity specified by source concept appeared in the Input: Yes.
Output: Elvis Presley standing on the stage

3.
Input: Kylian Mbappe and Kanye West celebrating Christmas together
source concept: The chief scientist at NASA.
target concept: Boris Johnson.
Does the entity specified by source concept appeared in the Input: No.
Output: Kylian Mbappe and Kanye West celebrating Christmas together

Table 5: Here are several demonstrations from MPE’s
in-context prompt. When the language model answers
the question, ’Does the entity specified by the source
concept appear in the input?’, it functions as the Router.
When the language model generates the final output, it
functions as the Editer.

name of the target figure.876

C Overall Algorithm of MPE877

In Sec 3.4, we present the basic workflow of MPE.878

However, in real applications, when receiving a text879

prompt p, we don’t actually know how many fact880

edits it’s associated with. So, to accommodate this881

problem, we leverage the Router R to determine882

whether the editing process should be terminated.883

The specific algorithm is in Alg. 1.

Algorithm 1 Overall Workflow of MPE.

Input: edit memory M = {e(1), . . . , e(n)}, router
R, editer E, retriever Retrieval(), input text
prompt p

1: /* Editing in the loop */
2: for M ≠ ∅ do
3: e∗ = Retrieval(M, p)
4: M = M\ {e∗}
5: if R(p, p∗edit) ̸= "Activating" then
6: return p
7: end if
8: p = E(p, p∗edit, p

∗
tar)

9: end for
884

D Prompts used for In-context Learning885

We present several demonstrations from MPE’s886

in-context prompt in Table 5 to illustrate the work-887

ing mechanism of in-context learning-based MPE888

implementation.889

E More Quantitative and Qualitative 890

Results 891

The performance curves of editing methods in 892

terms of { Efficacy, Generality} are presented in 893

Fig. 7. 894

The results of the metric Score on RoAD in 895

multiple-editing are shown in Table 6. 896

Additional qualitative examples in metrics { 897

KgeMap, Compo } are provided in Fig. 8 898
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Figure 7: The performance curves of various metrics across multiple editing experiments are depicted. The
horizontal axis denotes the size of the edit batches, while the shaded areas indicate the standard deviation.

Dataset Method #1 #10 #25 #50 #All

TIME 44.64% 19.03%(42%) 8.52%(19%) 04.25%(9%) 05.80%(12%)

RoAD
ReFACT 57.09% 53.33%(93%) 48.89%(85%) 43.70%(76%) 36.78%(64%)
EMCID 78.89% 74.99%(95%) 69.67%(88%) 66.40%(84%) 62.03%(78%)

MPE 87.56% 81.42%(92%) 82.26%(93%) 83.50%(95%) 82.49%(94%)

Table 6: The metric Score in multiple editing experiments on RoAD is reported here to characterize the trend in
overall editing performance. The (# num) refers to the size of edit batch. The (percent %) indicates the percentage
to which the editing methods preserve the single-editing performance (# 1). Best results are marked with bold.

# 1

# All

clean �

EDIT I: The CEO of Intel →  Taylor Swift

�����:   A pencil sketch of the head of Intel (KgeMap)

MPE ReFACT EMCID TIME clean � MPE ReFACT EMCID

EDIT II: The director of the Lord of the Rings → Lionel Messi

TIME

�����:   The CEO of Intel and the director of the Lord of 
the Rings sharing a meal at a restaurant (Compo)

# 1

# All

clean �

�����:   The CEO of Intel (Efficacy)

MPE ReFACT EMCID TIME clean � MPE ReFACT EMCID TIME

�����:   Headquarters building of Intel (Specificity)

0

Figure 8: The qualitative examples from the CAKE dataset. The (# num) refers to the size of edit batch.
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