
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics
Anonymous Author(s)

ABSTRACT

We study the classic 𝑘-center clustering problem under the addi-

tional constraint that each cluster should be fair. In this setting,

each point is marked with one or more colors, which can be used to

model protected attributes (e.g., gender or ethnicity). A cluster is

deemed fair if, for every color, the fraction of its points marked with

that color is within some prespecified range. We present a coreset-

based approach to fair 𝑘-center clustering for general metric spaces

which attains almost the best approximation quality of the current

state of the art solutions, while featuring running times which can

be orders of magnitude faster for large datasets of low doubling

dimension. We devise sequential, streaming and MapReduce imple-

mentations of our approach and conduct a thourough experimental

analysis to provide evidence of their practicality, scalability, and

effectiveness.

ACM Reference Format:

Anonymous Author(s). 2023. Fast and Accurate Fair 𝑘-Center Clustering in

Doubling Metrics. In Proceedings of ACM Conference (Conference’17). ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Clustering, in its many variants, is a fundamental primitive in un-

supervised learning and data analysis, aiming at grouping points

according to some notion of similarity. In the most common set-

ting, the input to clustering is a set of points 𝑆 from a metric space

(𝑀,𝑑), where 𝑑 : 𝑀 ×𝑀 → R+
0
is a distance function, modeling

dissimilarity [20]. A popular variant is 𝑘-clustering, which requires

to select a set of 𝑘 centers and to build an assignment of each input

point to one of the 𝑘 centers while minimizing some cost, which is

a function of the distances between points and centers. Different

cost functions define different clustering objectives to be minimized.

This paper focuses on the popular 𝑘-center clustering problem (𝑘-

center problem, for short), which aims at mininizing the maximum

distance between a point and its assigned center.

A very natural assignment strategy for 𝑘-center associates each

point with its closest center [12]. Imagine, however, that each point

is a representation of some features of individuals, and that cluster-

ing implies decisions that may impact individual livelihoods. In this

scenario, the decisions being made, i.e., the clustering, should not

have a disproportionate effect on the people involved. For instance,

people from a particular protected group cannot be segregated in a

single cluster. This intuition is captured by the notion of disparate

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

impact [11]: people in different protected classes should not ex-

perience disproportionately different outcomes. Blindly ignoring

protected attributes, however, is no solution [10]: correlated fea-

tures (e.g., height which correlates with biological sex) can leak

information about the protected attributes and may influence the

clustering, leading to unfair solutions. This suggests that to achieve

fairness in the clustering we need to explicitly take into account

protected attributes when assigning points to centers.

The study of fair 𝑘-clustering under the disparate impact no-

tion has been initiated by Chierichetti et al. [9] and generalized in

subsequent works [3, 5, 19]. Each point is assigned one or more

colors to model the protected attributes, and the clustering has to

be built so that in each cluster the fraction of points of each color

is within a color-specific range. For instance, if the input set has

half blue points and half red points, each cluster could be required

to have roughly half blue points and half red points. State of the

art approaches to fair clustering with multiple colors are based on

Linear Programming, which limits their scalability to large datasets.

Coresets are an effective way of dealing with scalability issues for

big data analytics [15]. A coreset is a compact representation of

a large instance on which computationally demanding (e.g., LP-

besed) algorithms can be run to efficiently obtain good solutions

for the whole instance. For fair clustering in the big data setting,

coresets have been recently used in [4] to reduce the size of the lin-

ear programs, yielding a 2-pass streaming algorithm and a 2-round

MapReduce/MPC algorithm, attaining, respectively, (7 + 𝜀) and 9

approximations.

1.1 Our contribution

In this paper, we present an improved coreset-based strategy for

fair 𝑘-center clustering of multi-colored points in general metrics,

whose accuracy/performance tradeoffs are analyzed in terms of the

doubling dimension of the data set. We devise implementations

of our strategy in the sequential, streaming and MapReduce/MPC

frameworks, yielding the following contributions, where 𝑆 , Γ, and
𝐷 represent, respectively, the input dataset, the set of colors, and

the doubling dimension of 𝑆 .

• A sequential algorithm for fair 𝑘-center which attains a

(3 + 𝜀) approximation, and whose running time is linear in

|𝑆 | for constant 𝑘 , |Γ |, 𝜀, and 𝐷 . (See Theorem 4.5 for the

general statement.)

• A 2-pass streaming algorithm for fair𝑘-center which attains

a (3 + 𝜀) approximation and requires working memory

which, for constant 𝑘 , |Γ |, 𝜀, and 𝐷 , is 𝑂 (log(𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛)),
where 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are, respectively, the minimum and

maximum pairwise distance in 𝑆 . (See Theorem 5.1 for the

general statement.)

• A 5-round MapReduce/MPC algorithm for fair 𝑘-center

which attains a (3 + 𝜀) approximation and requires a

local memory which, for constant 𝑘 , |Γ |, 𝜀, and 𝐷 , is

𝑂 (max{|𝑆 |/𝑝, 𝑝}), when 𝑝 processors are used. (See Theo-

rem 6.1 for the general statement.)

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

As in [3, 4], all of the above algorithms return solutions where

the color distribution in each cluster complies with the fairness

constraints within a modest additive violation of 4Δ + 3, where

Δ ≤ |Γ | is the maximum number of colors per point.

We implemented and ran our algorithms on real-world datasets,

scaling up to 16 million points, to assess the effectiveness and

scalability of our coreset-based strategy. The experiments show that

our algorithms return solutions whose quality is comparable to the

best attained by state-of-the-art algorithms but exhibit significantly

better performance.

The main novelty of our approach is that it adapts (obliviously)

to the dimensionality of the input dataset, becoming extremely

accurate (abating considerably the approximation ratios of [4]),

and time and space efficient for low-dimensional datasets, in all

computational settings. Also, our experiments provide evidence of

its practicality.

Structure of the paper. The rest of the paper is organized as fol-

lows. Section 2 summarizes the relevant related work. Section 3

formally defines the problem and states some basic technical facts.

Sections 4, 5, and 6 describe and analyze, respectively, our sequen-

tial, streaming and MapReduce algorithms. Finally, our experimen-

tal results are reported in Section 7. For space limitations, some

technical details are reported in an appendix.

2 RELATEDWORK

For space limitations, in this section we limit our literature review

to the fair 𝑘-center clustering problem, in which a fair assignment

to 𝑘 cluster centers has to be built while minimizing the maximum

distance of a point from its assigned center. For a survey of other fair

clustering objective functions and notions, we refer the interested

reader to the recent tutorial
1
offered at AAAI 2022.

In the pioneering work by Chierichetti et al. [9], each point of

the input is colored either red or blue, and a feasible solution is an

assignment that preserves the balance of colors in each cluster, i.e.,

the ratio of blue to red points in each cluster must be the same as

the ratio in the input dataset. The authors provide a combinatorial

algorithm yielding a 3 approximation for the 𝑘-center objective.

The main limitation of their approach, however, is that it is limited

to the case of a single binary protected attribute. An extension to

the case where the protected attribute can take one out of many

colors has been devised by Rösner and Schmidt [19], who provide

a 14-approximation algorithm.

The notion of balance has been generalized by Bercea et al. in [5].

In their work, the ratio of each color in each cluster is allowed to

take values within user-specified color-specific ranges. The paper

proposes approaches based on Linear Programming, obtaining a

5 approximation for fair 𝑘-center with exact preservation of the

ratios, and a bicriteria 3 approximation that incurs a small violation

of the fairness constraints. The main drawback of their approach

is that it generates linear programs with a number of variables

quadratic in the size of the input set.

Bera et al. [3] provide a further extension to the fairness no-

tion, allowing each point to have multiple colors (thus supporting

the notion of multiple protected attributes). As in [5], the balance

of each individual color in a cluster is then required to be within

1
https://www.fairclustering.com/

pre-specified color-specific ranges. The paper proposes a two-step

approach valid for all 𝑘-clustering problems with a L𝑝 norm ob-

jective (thus including 𝑘-center, 𝑘-median, and 𝑘-means, among

the others), where the centers are first identified using an unfair

approximation algorithm for the unconstrained 𝑘-clustering objec-

tive and then the assignment of points to centers is obtained using

an LP-based technique. For 𝑘-center, their approach leads to a 3

approximation
2
, with an additive 4Δ + 3 violation of the fairness

constraints, where Δ is the maximum number of colors of a point.

Importantly, this approach reduces the number of variables in the

LP program to 𝑂 (𝑘 · 𝑛), where 𝑛 is the input size.

Coreset-based streaming and MapReduce/MPC instantiations

of the aforementioned strategy are presented in [4]. In both cases,

the approach still relies on first determining a good set of unfair

centers, together with the determination of a weighted summary

of the input set upon which a variant of the LP introduced in [3] is

solved to identify a suitable assignment of points to centers. The

resulting algorithms achieve a 2-pass 7 + 𝜀 approximation in the

Streaming setting, and a 2-round 9 approximation for the MPC.

Ahmadian et al. [1] study a different 𝑘-center variant, where

there is an upper bound 𝛼 to the ratio of each color in each cluster,

but there are no lower constraints on the ratios. They devise a

3-approximate LP-based solution to the problem, and they also

provide a combinatorial 12-approximation algorithm for the special

case of 𝛼 = 0.5.

The goal of reducing the size of the LP used to build the fair

assignment of points is further pursued by Harb and Lam [14], that

are thus able to achieve the same approximation factors as in [4]

while being considerably faster in practice.

3 PRELIMINARIES

This section formally defines the problems studied in this paper,

and states some important technical facts. Consider a metric space

(𝑀,𝑑). We will analyze the performance of our algorithms in terms

of the dimensionality of the input set 𝑆 ⊆ 𝑀 which, for general

metric spaces, can be captured by the notion of doubling dimension,

reviewed below.

For any 𝑝 ∈ 𝑆 and 𝑟 > 0, let the ball of radius 𝑟 centered at 𝑝 ,

denoted as 𝐵(𝑝, 𝑟) ⊆ 𝑆 , be the subset of all points of 𝑆 at distance at
most 𝑟 from 𝑝 . Then, the doubling dimension of 𝑆 is the minimum

value 𝐷 such that, for all 𝑝 ∈ 𝑆 , any ball 𝐵(𝑝, 𝑟) is contained in

the union of at most 2
𝐷
balls of radius 𝑟/2 centered at points of

𝑆 . The notion of doubling dimension has been used extensively

for a variety of applications (e.g., see [7, 8, 13, 17] and references

therein).

Given an input set 𝑆 , we assume that each point 𝑥 ∈ 𝑆 is colored

with a color combination of at most Δ colors out of a set of colors Γ.3

With 𝑆ℓ ⊆ 𝑆 we denote the set of points whose color combination

contains ℓ ∈ Γ. For 𝑥 ∈ 𝑆 we use 𝑐𝑜𝑙 (𝑥) ⊆ Γ to denote its color

combination, and define C𝑆 ⊆ 2
Γ
to be the family of all color

combinations associated with at least one point in 𝑆 .

A 𝑘-clustering of a set 𝑆 is a pair (𝐶,𝜙) where 𝐶 ⊆ 𝑆 is the set
of centers, and 𝜙 : 𝑆 → 𝐶 is the assignment function that maps each

2
In fact, in [3] a 4 approximation is claimed, but a careful reading of the proof reveals

that, for the 𝑘-center objective, the approximation factor can be brought down to 3.

3
This allows to model the setting of multiple sensitive attributes.

2

https://www.fairclustering.com/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

point of 𝑆 to a center. The 𝑘-center cost, also called radius, of a

𝑘-clustering (𝐶,𝜙) is the largest distance between a point and its

assigned center:

𝑟𝐶,𝜙 (𝑆) = max

𝑥∈𝑆
𝑑 (𝑥, 𝜙 (𝑥))

Given a set of centers, the standard, color-oblivious way of build-

ing a clustering is by assigning each point to its closest center (with

ties broken arbitrarily). Let this assignment function be denoted by

𝜙𝑢𝑛𝑓 (·), where 𝑢𝑛𝑓 stands for unfair, and let 𝑂𝑃𝑇𝑢𝑛𝑓 (𝑆, 𝑘) be the
minimum radius of any 𝑘-clustering of 𝑆 under 𝜙𝑢𝑛𝑓 (·). (We will

omit 𝑆 and 𝑘 when clear from context.)

For the unfair 𝑘-center problem, the classic 𝑂 (𝑘𝑛)-time algo-

rithm by Gonzalez [12] provides a 2 approximation. The algorithm,

which we refer to as GMM (Greedy Minimum Maximum) imple-

ments the following simple greedy strategy. The set of centers is

initialized with an arbitrary point. Then, the next center is selected

to be a point at maximum distance from all previously selected

centers. The procedure is repeated until there are 𝑘 centers.

Our analysis will make use of the following result, which was

proved in [6, Lemma 1].

Lemma 3.1. Let 𝑋 ⊆ 𝑆 . For a given 𝑘 , let 𝑇𝑋 be set of 𝑘 centers

computed by GMM on 𝑋 . We have

𝑟𝑇𝑋 ,𝜙𝑢𝑛𝑓 (𝑋) ≤ 2 ·𝑂𝑃𝑇𝑢𝑛𝑓 (𝑆, 𝑘)

Clearly, the aforementioned standard assignment function might

lead to unfair results, in the sense that different clusters might

exhibit different proportions of points with the same color. This

motivates the following additional constraint. A clustering (𝐶,𝜙)
for 𝑆 is called fair if, for each ℓ ∈ Γ, for given parameters 𝛽ℓ ≤ 𝛼ℓ :

𝛽ℓ ≤
|{𝑥 ∈ 𝑆ℓ : 𝜙 (𝑥) = 𝑐𝑖 }|
|{𝑥 ∈ 𝑆 : 𝜙 (𝑥) = 𝑐𝑖 }|

≤ 𝛼ℓ ∀𝑐𝑖 ∈ 𝐶.

In other words, fairness requires that the fraction of points whose

color combination includes color ℓ is between parameters 𝛽ℓ and 𝛼ℓ
in every cluster. Our algorithms will enforce this notion of fairness

within some (small) tolerance. More precisely, as in [3] we say that

a clustering (𝐶,𝜙) for 𝑆 is fair with additive violation 𝜆 if for every

𝑐𝑖 ∈ 𝐶 and ℓ ∈ Γ,
𝛽ℓ · |{𝑥 ∈ 𝑆 : 𝜙 (𝑥) = 𝑐𝑖 }| − 𝜆 ≤ |{𝑥 ∈ 𝑆ℓ : 𝜙 (𝑥) = 𝑐𝑖 }|

and

|{𝑥 ∈ 𝑆ℓ : 𝜙 (𝑥) = 𝑐𝑖 }| ≤ 𝛼ℓ · |{𝑥 ∈ 𝑆 : 𝜙 (𝑥) = 𝑐𝑖 }| + 𝜆.
Note that the fairness conditions are stated for each color in-

dependently. This means that a point with multiple colors will be

involved in multiple fairness constraints. An alternative approach

would be that of considering every color combination in 𝐶𝑆 as a

new, different color and enforcing a fairness constraint for each of

these new colors. Clearly, this simpler approach can be modeled

as the case of a single color per point. It is important to observe

that no fair clustering may exist for a given multicolored pointset

𝑆 under a certain set of fariness constraints.

An optimal fair clustering is a fair clusteringwhichminimizes the

radius, denoted as 𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 (𝑆, 𝑘). (In case no fair clustering exists,

we set𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 (𝑆, 𝑘) = +∞.) The following basic fact trivially holds.
Fact 1. For a given set 𝑆 and any fairness constraint, we have

𝑂𝑃𝑇𝑢𝑛𝑓 (𝑆, 𝑘) ≤ 𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 (𝑆, 𝑘)

3.1 Big-data models of computation

In the MapReduce model [18], an algorithm executes in a sequence

of parallel rounds. In each round a multiset 𝑋 of key-value pairs is

transformed in a new multiset 𝑌 by means of a mapper function,

followed by the application of a reducer function to obtain a final

multiset 𝑍 . Crucially, the local memory available to each mapper

and reducer is limited by a parameter 𝑀𝐿 , whereas the aggregate

memory across all mappers and reducers is limited by parameter

𝑀𝐴 . An algorithm in this model strives to minimize the number of

rounds while complying with the memory limits.

We emphasize that our MapReduce algorithms admit a straight-

forward porting to the MPC model [2], maintaining the same round

and space complexity. Hence, all the results in this paper stated for

MapReduce hold identically for the MPC model.

4 SEQUENTIAL ALGORITHM

This section describes our sequential coreset-based algorithm for

fair k-center clustering. The input consists of a set of colored points

𝑆 , the number of clusters 𝑘 , the fairness constraints, represented by

the two vectors 𝛼 = {𝛼ℓ : ℓ ∈ Γ} and 𝛽 = {𝛽ℓ : ℓ ∈ Γ}, and an

accuracy parameter 𝜀 ∈ (0, 1). The algorithm executes three main

steps. In the first step, a small coreset 𝑇 of colored and weighted

points is computed from 𝑆 , so that each 𝑥 ∈ 𝑆 has a proxy 𝜋 (𝑥) ∈ 𝑇
with the same color combination, and each 𝑡 ∈ 𝑇 carries a weight

denoting the number of original points for which it acts as a proxy.

In the second step, a solution 𝐶 ⊆ 𝑇 consisting of 𝑘 centers is

computed running GMM on𝑇 , and a skeleton of the final clustering

is computed by suitably distributing the weights of the coreset

points among the centers. Finally, in the third step, the skeleton is

turned into the final clustering. The pseudocode for this high-level

structure of the algorithm is depicted in Algorithm 1. The three

steps and the procedures that they use are described in detail in the

following subsections.

Algorithm 1: Sequential Fair k-Center Clustering

Input: Set of points 𝑆 , parameters 𝑘 , 𝛼 , 𝛽 and 𝜀

Output: Set of centers 𝐶 , assignment function 𝜙

/* Step 1 */

(𝑇, 𝜋) ← CoresetConstruction(𝑆, 𝑘, 𝜀);
/* Step 2 */

𝐶 ← GMM(𝑇, 𝑘);
ˆ𝜙 ←WeightDistribution(𝑇,𝐶, 𝛼, 𝛽);
/* Step 3 */

𝜙 ← FinalAssignment(ˆ𝜙, 𝑆,𝑇 ,𝐶);
return (𝐶,𝜙);

4.1 Step 1: Coreset construction

We build the weighted coreset𝑇 as follows (see Algorithm 2 for the

pseudocode). First we run 𝑘 iterations of GMM on 𝑆 to determine a

set of 𝑘 centers, which we denote as 𝑇𝑘 , and compute the radius

𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓
. Then, we continue to run GMM until the first iteration

𝜏 ≥ 𝑘 such that

𝑟𝑇𝜏 ,𝜙𝑢𝑛𝑓 ≤ (𝜀/6) · 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓
.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2: CoresetConstruction

Input: Set of points 𝑆 , parameters 𝑘 and 𝜀

/* Identify coreset points */

𝑇 ← {an arbitrary point of 𝑆};
while |𝑇 | < 𝑘 do 𝑇 ← 𝑇 ∪

{
arg max𝑥∈𝑆 𝑑 (𝑥,𝑇)

}
;

𝑟𝑘 ← max𝑥∈𝑆 𝑑 (𝑥,𝑇);
while max𝑥∈𝑆 𝑑 (𝑥,𝑇) > (𝜀/6)𝑟𝑘 do

𝑇 ← 𝑇 ∪
{
arg max𝑥∈𝑆 𝑑 (𝑥,𝑇)

}
;

/* Build the proxy function and weights */

for 𝑡 ∈ 𝑇 do

Build |C𝑆 | copies of 𝑡 with distinct color combinations;

Set the weight𝑤 (𝑡) of each copy to 0;

for 𝑥 ∈ 𝑆 do

𝑡 ′ ← arg min𝑡 ∈𝑇 :𝑐𝑜𝑙 (𝑡)=𝑐𝑜𝑙 (𝑥) 𝑑 (𝑥, 𝑡) ;
𝑤 (𝑡 ′) ←𝑤 (𝑡 ′) + 1;

𝜋 (𝑥) ← 𝑡 ′;

return 𝑇,𝑤, 𝜋 ;

Now, for each point 𝑡 ∈ 𝑇𝜏 we create |C𝑆 | copies, each colored with

a distinct color combination in C𝑆 . The resulting set of |C𝑆 | · |𝑇𝜏 |
copies will be our coreset 𝑇 . Then, we determine a proxy function

𝜋 : 𝑆 → 𝑇 which assigns to each point 𝑥 ∈ 𝑆 the closest coreset

point of the same color combination, namely

𝜋 (𝑥) = arg min

𝑡 ∈𝑇 : 𝑐𝑜𝑙 (𝑡)=𝑐𝑜𝑙 (𝑥)
𝑑 (𝑥, 𝑡) ∀𝑥 ∈ 𝑆.

Also, for each coreset point 𝑡 ∈ 𝑇 we compute a weight 𝑤 (𝑡),
corresponding to the number of points of 𝑆 for which 𝑡 is a proxy :

𝑤 (𝑡) = |{𝑥 ∈ 𝑆 : 𝜋 (𝑥) = 𝑡}| .
Points of 𝑇 with zero weight (i.e. which are the proxy of no input

point) are simply discarded. Observe that all the points proxied by

the same coreset point 𝑡 have the same color combination.

The following lemma upper bounds the distance between each

input point from its representative in 𝑇 .

Lemma 4.1. Let 𝑇 be the coreset constructed above for the set 𝑆 ,

and let 𝜋 be the associated proxy function. Then, for each 𝑥 ∈ 𝑆 we
have:

𝑑 (𝑥, 𝜋 (𝑥)) ≤ (𝜀/3) ·𝑂𝑃𝑇𝑢𝑛𝑓
Proof. We have that

𝑟𝑇𝜏 ,𝜙𝑢𝑛𝑓 ≤ (𝜀/6) · 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓

≤ (𝜀/3) ·𝑂𝑃𝑇𝑢𝑛𝑓
where the first inequality holds by construction, and the second by

Lemma 3.1. □

We now bound the size of the coreset.

Lemma 4.2. If 𝑆 has doubling dimension 𝐷 , then

|𝑇 | ≤ |C𝑆 | · 𝑘 · (12/𝜀)𝐷

Proof. We first prove an upper bound on the number 𝜏 of itera-

tions needed by GMM to obtain a radius

𝑟𝑇𝜏 ,𝜙𝑢𝑛𝑓 ≤ (𝜀/6) · 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓
.

Consider the unfair 𝑘-center clustering induced by 𝑇𝑘 using 𝜙𝑢𝑛𝑓 ,

whose radius is 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓
. By the doubling dimension property, each

of the 𝑘 clusters can be covered using at most (12/𝜀)𝐷 balls of

radius ≤ (𝜀/12)𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓
, for a total of at most ℎ = 𝑘 · (12/𝜀)𝐷 balls.

Consider now the execution of ℎ iterations of GMM on 𝑆 , with

𝑇ℎ being the set of centers and 𝑥 ∈ 𝑆 being the point farthest from

any center in 𝑇ℎ . It is easy to see that GMM ensures that any two

points in𝑇ℎ ∪{𝑥} are at distance at least 𝑟𝑇ℎ,𝜙𝑢𝑛𝑓
from one another.

Since two of these points must fall into one of the ℎ balls mentioned

above, by the triangle inequality we have that

𝑟𝑇ℎ,𝜙𝑢𝑛𝑓
≤ 2(𝜀/12) · 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓

= (𝜀/6) · 𝑟𝑇𝑘 ,𝜙𝑢𝑛𝑓

Hence, we are guaranteed that after running ℎ iterations of GMM

we find a set of points meeting the stopping condition, which im-

plies 𝜏 ≤ ℎ. The lemma follows by noting that each point in 𝑇ℎ is

replicated at most |C𝑆 | times in 𝑇 . □

4.2 Step 2: creating the clustering skeleton

Recall that coreset 𝑇 computed in Step 1 is such that each 𝑡 ∈ 𝑇
represents𝑤 (𝑡) points of 𝑆 with the same color combination, which,

by virtue of Lemma 4.1, are rather close to 𝑡 . In Step 2, our algorithm

first computes a set𝐶 of 𝑘 centers by running GMM on𝑇 , and then

invokes a procedure calledWeightDistribution, described below,

to distribute the weight of each 𝑡 ∈ 𝑇 among one or more centers

of𝐶 , so to minimize the maximum distance between coreset points

and one of the centers receiving their weights (which we will refer

to as the radius of the distribution) while, at the same time, enforcing

the fairness constraints. This distribution will be modeled through

a weight assignment function
ˆ𝜙 : 𝑇 ×𝐶 → N which will provide a

skeleton of the final clustering and will be used in Step 3 to extract

the assignment function 𝜙 .

To achieve the aforementioned weight distribution, we make use

of a weighted version of the Frequency Distributor LP of Harb and

Shan [14]. Let 𝑅 be a guess on the radius of the distribution and

consider the power set 2
𝐶
of the set of centers 𝐶 . For each color

combination 𝐿 ∈ C𝑆 and each subset of centers 𝐶′ ∈ 2
𝐶
, define

𝐽𝐶′,𝐿,𝑅 as the set of points with color combination 𝐿 that are within

distance 𝑅 from all and only the points of 𝐶′, namely

𝐽𝐶′,𝐿,𝑅 = {𝑡 ∈ 𝑇 : 𝑐𝑜𝑙 (𝑡) = 𝐿 ∧ 𝑑 (𝑡, 𝑐) ≤ 𝑅 ∀𝑐 ∈ 𝐶′∧
∧ 𝑑 (𝑡, 𝑐) > 𝑅 ∀ 𝑐 ∉ 𝐶′}

Each 𝐽𝐶′,𝐿,𝑅 is referred to as a joiner in [14]. For a joiner 𝐽 , we

introduce the following notation: 𝐶 𝐽 denotes the subset of centers

defining 𝐽 , 𝑐𝑜𝑙 (𝐽) denotes the color combination common to all of

its points and

𝑤 (𝐽) =
∑︁
𝑡 ∈ 𝐽

𝑤 (𝑡)

denotes the total weight carried by the points of the joiner. Let

J (𝑅) be the set of joiners obtained for the guess 𝑅 and observe

that they define a partition of 𝑇 . For every ℓ ∈ Γ we also define

J (𝑅)ℓ = {𝐽 ∈ J (𝑅) : ℓ ∈ 𝑐𝑜𝑙 (𝐽)}

The crucial observation is that a joiner 𝐽 ∈ J (𝑅) acts as a

super point in the sense that the weight of any of its points can

be indifferently distributed to any center in 𝐽𝐶 . Thus, the weight

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑥 𝜙★(𝑥)

𝜋 (𝑥) 𝜋
(
𝜙★(𝑥)

)
nrst

(
𝜋
(
𝜙★(𝑥)

))

≤ 𝑂𝑃𝑇𝑓 𝑎𝑖𝑟

≤ 𝜀
3
𝑂𝑃𝑇𝑢𝑛𝑓

≤ 𝜀
3
𝑂𝑃𝑇𝑢𝑛𝑓

≤ 2𝑂𝑃𝑇𝑢𝑛𝑓

Figure 1

distribution can be computed at the joiner level rather than the

coreset point level. To this purpose, the following linear program

is defined which uses a variable 𝑧 𝐽 ,𝑐 for every joiner 𝐽 and center

𝑐 ∈ 𝐶 𝐽 .

LP-WFD(J (𝑅),𝐶)
𝑧 𝐽 ,𝑐 ≥0 𝐽 ∈J(𝑅),𝑐∈𝐶 𝐽 (1)∑︁

𝑐∈𝐶 𝐽

𝑧 𝐽 ,𝑐 =𝑤 (𝐽) ∀𝐽 ∈ J (𝑅) (2)

𝛽ℓ

∑︁
𝐽 ∈J(𝑅)

𝑧 𝐽 ,𝑐 ≤
∑︁

𝐽 ′∈J(𝑅)ℓ
𝑧 𝐽 ′,𝑐 ∀𝑐 ∈ 𝐶, ℓ ∈ Γ (3)∑︁

𝐽 ′∈J(𝑅)ℓ
𝑧 𝐽 ′,𝑐 ≤𝛼ℓ

∑︁
𝐽 ∈J(𝑅)

𝑧 𝐽 ,𝑐 ∀𝑐 ∈ 𝐶, ℓ ∈ Γ (4)

Condition (2) ensures that all the weight is assigned to some center,

whereas Conditions (3) and (4) encode the fairness constraints.

Note that the fairness constraints (3) and (4) are defined cluster-

wise, and can be specified through variables 𝑧 𝐽 ,𝑐 which exploit the

aggregation of the points defined by the joiners.

By construction, in a feasible solution to the above LP the

nonzero 𝑧 𝐽 ,𝑐 ’s define an association between joiners and centers,

such that for every coreset point 𝑡 belonging to some joiner 𝐽 and

any center 𝑐 with 𝑧 𝐽 ,𝑐 > 0, we have 𝑑 (𝑡, 𝑐) ≤ 𝑅. Clearly, for small

values of 𝑅 no feasible solution may exist. The following lemma

provides a crucial lower bound to values 𝑅 which yield feasible

solutions.

Lemma 4.3. Suppose that the weighted coreset 𝑇 computed for 𝑆

features a proxy function 𝜋 such that 𝑑 (𝑥, 𝜋 (𝑥)) ≤ 𝜀/3, for every
𝑥 ∈ 𝑆 . Then, for 𝑅 ≥ (3 + (2/3)𝜀)𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 , the linear program above

has a feasible solution.

Proof. Consider the set of centers 𝐶 selected by GMM, and the

optimal fair clustering (𝐶★, 𝜙★) of cost𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 . We will show that

we can distribute the weight of points in 𝑇 to points in 𝐶 within

distance 𝑅 so that the constraints of the linear program are satisfied.

For each point 𝑥 ∈ 𝑆 , consider its optimal fair center 𝜙★ (𝑥),
and let nrst

(
𝜋
(
𝜙★ (𝑥)

))
be the center of 𝐶 nearest to 𝜋

(
𝜙★ (𝑥)

)
.

By Lemma 3.1, we have that 𝑑 (nrst

(
𝜋
(
𝜙★ (𝑥)

))
, 𝜋

(
𝜙★ (𝑥)

)
≤

2𝑂𝑃𝑇𝑢𝑛𝑓 . Figure 1 depicts all the points involved, along with

relevant bounds on their distances. Let 𝐽 ∈ J be the joiner

such that 𝜋 (𝑥) ∈ 𝐽 . By following the chain of inequalities of

Figure 1, we have that 𝑑 (𝜋 (𝑥) , nrst

(
𝜋
(
𝜙★ (𝑥)

))
) ≤ 𝑅, hence

nrst

(
𝜋
(
𝜙★ (𝑥)

))
∈ 𝐶 𝐽 . We determine values for the variables of

LP-WFD(J (𝑅),𝐶) by “moving" one unit of weight from 𝜋 (𝑥) to
the variable 𝑧 𝐽 ,nrst(𝜋 (𝜙★ (𝑥))) . After processing all points in 𝑆 , it is
immediate to see that the group of constraints (2) is satisfied.

As for the fairness constraints (3) and (4), for 𝑐 ∈ 𝐶★, let𝐶★(𝑐) =
{𝑥 ∈ 𝑆 : 𝜙★ (𝑥) = 𝑐} be the optimal cluster centered in 𝑐 . Similarly,

let 𝐶★
ℓ
(𝑐) = {𝑥 ∈ 𝑆ℓ : 𝜙★ (𝑥) = 𝑐} for 𝑐 ∈ 𝐶★, ℓ ∈ Γ be the set of

points of color ℓ assigned to the cluster centered in 𝑐 . Clearly, each

optimal cluster 𝐶★(𝑐) must respect the fairness constraints, i.e.

𝛽ℓ ≤
|𝐶★

ℓ
(𝑐) |

|𝐶★(𝑐) | ≤ 𝛼ℓ (5)

for each 𝑐 ∈ 𝐶★ and ℓ ∈ Γ. Now, for each 𝑐 ∈ 𝐶 let 𝑁 (𝑐) ={
𝑐★ ∈ 𝐶★ : nrst

(
𝜋
(
𝑐★

))
= 𝑐

}
be the set of optimal centers for

which 𝑐 is the closest center in 𝐶 to their proxy in the coreset.

By the weight assignment procedure described above, we have that

any center 𝑐 ∈ 𝐶 is assigned a weight equal to the number of points

in ∪𝑐′∈𝑁 (𝑐)𝐶★(𝑐′). Therefore we have that for any color ℓ ∈ Γ and

any center 𝑐 ∈ 𝐶

𝛽ℓ ≤
∑
𝑐′∈𝑁 (𝑐) |𝐶★ℓ (𝑐

′) |∑
𝑐′∈𝑁 (𝑐) |𝐶★(𝑐′) |

≤ 𝛼ℓ

by Fact 2 (in the Appendix) and Inequality (5), which proves that

the set of constraints (3) and (4) are also satisfied. □

In Step 2, after computing the centers 𝐶 we run Proce-

dureWeightDistribution which performs the following opera-

tions (see Algorithm 3 for the pseudocode). First it computes and

sorts the |𝑇 |𝑘 distances between the coreset points and the cen-

ters, and then performs a binary search over these distances to

identify the smallest value 𝑅 such that the LP-WFD yields a fea-

sible solution 𝑍𝐿𝑃−𝑊𝐹𝐷 = {𝑧 𝐽 ,𝑐 : 𝐽 ∈ J (𝑅) ∧ 𝑐 ∈ 𝐶}. Note
that this solution may be fractional. In order to derive an integral

weight assignment to the centers, we run Procedure CoresetAs-

sign. The procedure first transforms 𝑍𝐿𝑃−𝑊𝐹𝐷 into an integral

solution 𝑍 𝑖𝑛𝑡
𝐿𝑃−𝑊𝐹𝐷

= {𝑧𝑖𝑛𝑡
𝐽 ,𝑐

: 𝐽 ∈ J (𝑅) ∧ 𝑐 ∈ 𝐶}, by using the

iterative rounding procedure presented in [4], and then derives the

weight assignment function
ˆ𝜙 by distributing the weight of the

coreset points of each joiner 𝐽 among the centers, as specified by

the 𝑧𝑖𝑛𝑡
𝐽 ,𝑐

’s. The rounding introduces a mere additive violation of the

fairness constraints, as stated in the following lemma. For space

limitations, the details of Procedure CoresetAssign and the proof

of the lemma are moved to Appendix B.

Lemma 4.4. Procedure CoresetAssign returns a weight distribu-

tion function
ˆ𝜙 : 𝑇 ×𝐶 → N such that for every color ℓ ∈ Γ and every

center 𝑐 ∈ 𝐶

𝛽ℓ ·
∑︁
𝑡 ∈𝑇

ˆ𝜙 (𝑡, 𝑐) − (4Δ + 3) ≤
∑︁
𝑡 ∈𝑇ℓ

ˆ𝜙 (𝑡, 𝑐) ≤ 𝛼ℓ ·
∑︁
𝑡 ∈𝑇

ˆ𝜙 (𝑡, 𝑐) + (4Δ + 3),

where 𝑇ℓ is the subset of coreset points whose color combination con-

tains ℓ .

4.3 Step 3: Final assignment

In the last step, the algorithm uses the weight assignment function

ˆ𝜙 computed in Step 2 to compute the final assignment function 𝜙

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 3:WeightDistribution

Input: Weighted coreset 𝑇 , set of centers𝐶 , parameters 𝛼 , 𝛽

Output: Assignment
ˆ𝜙 : 𝑇 ×𝐶 → N

Λ← Sorted list of distances 𝑑 (𝑡, 𝑐), ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶;
Do binary search on Λ to find the smallest 𝑅 such that

LP-WFD(J (𝑅),𝐶) yields a feasible solution
𝑧∗ = {𝑧 𝐽 ,𝑐 : 𝐽 ∈ J (𝑅), 𝑐 ∈ 𝐶 𝐽 };

ˆ𝜙 ← CoresetAssign(𝑇,J (𝑅),𝐶, 𝑧∗);

Algorithm 4: FinalAssignment

Input: Sets 𝑆,𝑇 and 𝐶 , and assignment
ˆ𝜙 : 𝑇 ×𝐶 → N

Output: Assignment 𝜙 : 𝑆 → 𝐶

for 𝑥 ∈ 𝑆 do

𝑡 ← 𝜋 (𝑥);
𝑐 ← arbitrary 𝑐 ∈ 𝐶 :

ˆ𝜙 (𝑡, 𝑐) > 0;

𝜙 (𝑥) ← 𝑐;

ˆ𝜙 (𝑡, 𝑐) ← ˆ𝜙 (𝑡, 𝑐) − 1;

return 𝜙 ;

between the original points of 𝑆 and the centers in 𝐶 . Observe that,

by construction,
ˆ𝜙 ensures that for each 𝑡 ∈ 𝑇∑︁

𝑐∈𝐶

ˆ𝜙 (𝑡, 𝑐) = 𝑤 (𝑡) = |{𝑥 ∈ 𝑆 : 𝜋 (𝑥) = 𝑡}| .

Therefore, we can compute 𝜙 through a sequential scan of 𝑆 , where

for each 𝑥 ∈ 𝑆 an arbitrary center 𝑐 with ˆ𝜙 (𝜋 (𝑥), 𝑐) > 0 is chosen,

and 𝜙 (𝑥) is set equal to 𝑐 while ˆ𝜙 (𝜋 (𝑥), 𝑐) is decreased by 1. The

pseudocode is depicted in Algorithm 4.

4.4 Putting all pieces together

The following theorem concludes the analysis.

Theorem 4.5. For an input set 𝑆 of doubling dimension 𝐷 , the

above sequential algorithm returns a (3 + 𝜀)-approximation to the

optimum fair k-center clustering, with an additive violation ≤ 4Δ+3 of

the fairness constraints. For fixed values of 𝑘 ,𝐷 , and |Γ |, the algorithm
requires linear time in the input set size.

Proof. The compliance with the fairness constraints is an im-

mediate consequence of Lemma 4.4 and the derivation of 𝜙 from
ˆ𝜙 .

As for the radius, the above assignment procedure, combined with

the result of Lemma 4.3, ensures that for every 𝑥 ∈ 𝑆
𝑑 (𝑥, 𝜙 (𝑥)) ≤ 𝑑 (𝑥, 𝜋 (𝑥)) + max

𝑐∈𝐶,𝑧𝜋 (𝑥),𝑐>0

𝑑 (𝜋 (𝑥) , 𝑐)

≤ (𝜀/3)𝑂𝑃𝑇𝑢𝑛𝑓 + (3 + (2𝜀)/3)𝑂𝑃𝑇𝑓 𝑎𝑖𝑟
≤ (3 + 𝜀)𝑂𝑃𝑇𝑓 𝑎𝑖𝑟 .

The running time of the algorithm is dominated by the run

of GMM to identify 𝑇 , the cost of solving 𝑂 (log(|𝑇 |𝑘)) in-

stances of LP-WFD(J (𝑅),𝐶), and the cost of computing the fi-

nal assignment. By Lemma 4.2 we have that |𝑇 | ≤ |C𝑆 | · 𝑘 ·
(12/𝜀)𝐷 , and by adapting the analysis in [14], we have that each

LP-WFD(J (𝑅),𝐶) entails 𝑂
(
𝑘 ·min{2𝑘 |C𝑆 |, |𝑇 |}

)
variables and

𝑂

(
𝑘

(
|Γ | +min{2𝑘 |C𝑆 |, |𝑇 |}

))
constraints. Thus, since |C𝑆 | ≤ 2

|Γ |
,

for fixed values of 𝑘 , 𝐷 , and |Γ |, the algorithm exhibits only linear

dependence in |𝑆 |. □

It is important to remark that our algorithm attains an approxi-

mation factor that can be made arbitrarily close to the one of [3] but,

for wide ranges of the involved parameters, reduces dramatically

the size of the linear programs required to compute the solution,

which dominate by far the computation costs.

5 STREAMING ALGORITHM

In this section, we describe a 2-pass streaming implementation of

the sequential algorithm (Algorithm 1). We now regard the input 𝑆

as a stream of points. The first pass constructs the weighted coreset

𝑇 and, at the end of the pass, Step 2 of Algorithm 1, whose space

requirements are independent of the stream size, is performed as is,

returning the weight distribution function
ˆ𝜙 . Then, in the second

pass the final assignment 𝜙 is computed.

The coreset construction requires the knowledge of the small-

est and largest pairwise distances in the stream (or suitable ap-

proximations), denoted respectively as 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥
4
. The first

pass runs in parallel several instances for geometric guesses 𝑅

of the optimal radius of 𝑂𝑃𝑇𝑢𝑛𝑓 (𝑆, 𝑘), namely 𝑅 = 2
𝑗𝑑𝑚𝑖𝑛 , with

0 ≤ 𝑗 ≤ ⌈log
2
(𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛)⌉. Let 𝑆𝑖 be the set of the first 𝑖 points of

𝑆 . For 𝑖 ≥ 1, each instance maintains two sets of points:

• A set 𝐶𝑅 of up to 𝑘 + 1 points with 𝑑 (𝑥,𝐶𝑅) ≤ 2𝑅,∀𝑥 ∈ 𝑆𝑖 ,
• A set 𝑇𝑅 of weighted points with 𝑑 (𝑥,𝑇𝑅) ≤ 𝜀

12
𝑅,∀𝑥 ∈ 𝑆𝑖 .

𝐶𝑅 is used to detect when the guess 𝑅 is too small, while 𝑇𝑅 is the

candidate coreset. For each point 𝑥 in the stream, if 𝑑 (𝑥,𝐶𝑅) > 2𝑅,

then 𝑥 is added to𝐶𝑅 . In case the size of𝐶𝑅 exceeds 𝑘 , this instance

fails because the guess 𝑅 is too small. Otherwise, 𝑥 is processed as

follows. If 𝑑 (𝑥,𝑇𝑅) > 𝜀
12
𝑅, then we add 𝑥 to 𝑇𝑅 with weight 1, and

also add |C𝑆 |−1 copies of 𝑥 to𝑇𝑅 , with the other color combinations

from C𝑆 and weights 0. If instead 𝑑 (𝑥,𝑇) ≤ 𝜀
12
𝑅, then we take the

point 𝑡 ∈ 𝑇𝑅 which arrived the earliest (rather than the closest),

and such that 𝑐𝑜𝑙 (𝑡) = 𝑐𝑜𝑙 (𝑥) and 𝑑 (𝑥, 𝑡) ≤ 𝜀
12
𝑅, and increase𝑤 (𝑡)

by one, thus making 𝑡 proxy of 𝑥 . It is important to remark that we

do not store the proxy function explicitly, since it would require

linear memory. By using the earliest valid coreset point as the proxy,

the proxy function can be reconstructed on the fly, a fact that will

be used in the second pass of the algorithm. We select the output

⟨𝐶𝑅,𝑇𝑅, 𝑅⟩ of the non-failing instance associated with the smallest

guess 𝑅. The pseudocode for the first pass is depicted as Algorithm 5

As mentioned above, at the end of the first pass, Step 2 of Algo-

rithm 1 is run on 𝑇 to compute the weight distribution function

ˆ𝜙 based on (𝐶𝑅,𝑇𝑅). In the second pass, the final assignment 𝜙 is

computed using the naturally streamlined algorithm FinalAssign-

ment (Algorithm 4) with the only difference that, for every 𝑥 ∈ 𝑆 ,
its proxy 𝜋 (𝑥) is obtained as the earliest coreset point 𝑡 such that

𝑐𝑜𝑙 (𝑡) = 𝑐𝑜𝑙 (𝑥) and 𝑑 (𝑥, 𝑡) ≤ (𝜀/12)𝑅. We have:

Theorem 5.1. For an input stream 𝑆 of doubling dimension 𝐷 ,

the above 2-pass algorithm returns a (3 + 𝜀) approximation to the

4
A similar assumption was needed in the streaming algorithm by [4]. The assumption

can be removed by introducing an extra pass (details will be provided in the full

version).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Algorithm 5: Streaming coreset construction

Input: Stream of points 𝑆 , parameters 𝑘 and 𝜀

Output:Weighted coreset 𝑇 and radius 𝑅

for 𝑅 ← 𝑑𝑚𝑖𝑛, 2 · 𝑑𝑚𝑖𝑛, 4 · 𝑑𝑚𝑖𝑛, . . . do in parallel

𝐶𝑅,𝑇𝑅 ← ∅;
for 𝑥 ∈ 𝑆 do

if 𝑑 (𝑥,𝐶𝑅) > 2𝑅 then 𝐶𝑅 ← 𝐶𝑅 ∪ {𝑥} ;
if |𝐶𝑅 | > 𝑘 then Fail ;

if 𝑑 (𝑥,𝑇𝑅) ≤ 𝜀
12
𝑅 then

𝑡 ← 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡 ({𝑡 ∈ 𝑇𝑅 : 𝑑 (𝑥, 𝑡) ≤ 𝜀
12
𝑅 ∧ 𝑐𝑜𝑙 (𝑡) =

𝑐𝑜𝑙 (𝑥)});
𝑤 (𝑐) ←𝑤 (𝑐) + 1;

else

Add a copy of 𝑥 to 𝑇𝑅 for each color

combination;

Set𝑤 (𝑡) to 1 for the copy with the same color

combination as 𝑥 , and to 0 for all others;

return ⟨𝐶𝑅,𝑇𝑅, 𝑅⟩ where 𝑅 is the min non-failed guess;

optimum fair k-center clustering, with an additive violation ≤ 4Δ + 3

of the fairness constraints using working memory

𝑂

(
𝑘 · |C𝑆 |

(
(24/𝜀)𝐷 log(𝑑max/𝑑𝑚𝑖𝑛) + |Γ |min{2𝑘 , 𝑘 · (24/𝜀)𝐷 }

))
Proof. First, we prove that the set 𝐶𝑅 returned by Algorithm 5

provides a 4 approximation to the unfair𝑘-center problem. Consider

the smallest integer 𝑗 such that 𝑑𝑚𝑖𝑛 · 2𝑗−1 ≤ 𝑟∗
𝑘
≤ 𝑑𝑚𝑖𝑛 · 2𝑗 , where

𝑟∗
𝑘
is the radius of an optimal solution to unfair 𝑘-center on the

stream 𝑆 , and define 𝑅 = 2
𝑗
. Clearly, 𝑅 ≤ 2𝑟∗

𝑘
Observe that the

instance associated to guess 𝑅 indeed terminates successfully, since

the points put in 𝐶
�̂�
must necessarily belong to different optimal

unfair clusters. Also, at the end of the stream, we will have that

for each 𝑥 ∈ 𝑆 , 𝑑 (𝑥,𝐶
�̂�
) ≤ 2𝑅 ≤ 4 · 𝑟∗

𝑘
. Therefore, Algorithm 5 will

return a triple ⟨𝐶𝑅,𝑇𝑅, 𝑅⟩ with 𝑅 ≤ 𝑅 ≤ 4 ·𝑟∗
𝑘
. Consider now coreset

𝑇𝑅 . For each 𝑥 ∈ 𝑆 , we have
𝑑 (𝑥,𝑇𝑅) ≤ (𝜀/12)𝑅 ≤ (𝜀/12)4𝑟∗

𝑘
≤ (𝜀/3)𝑂𝑃𝑇𝑢𝑛𝑓 ,

hence 𝑇𝑅 has the same quality of the coreset computed by the

sequential algorithm, and the approximation guarantee exhibited

by the final solution can thus be argued similarly.

Let us now bound the working memory required by the

streamimg algorithm. By virtue of the doubling dimension property,

for every instance associated with a generic guess 𝑅 and until the

instance is non-failed, each of the ≤ 𝑘 clusters of radius 2𝑅 induced

by 𝐶𝑅 can be covered by using at most (24/𝜀)𝐷 clusters of radius

𝜀𝑅/12, and each such cluster may contribute |C𝑆 | coreset points to
𝑇𝑅 . Also, in the first pass, we have log(𝑑max/𝑑𝑚𝑖𝑛) instances of the
algorithm running in parallel. The bound on the working memory

is a consequence of the bounds on the |𝑇𝑅 |’s and on the size of the

linear programs executed at the end of the first pass. □

6 MAPREDUCE ALGORITHM

In this section, we adapt the sequential strategy presented in the

Section 4 to the distributed setting, devising the following 5-round

Table 1: Datasets used in the experimental evaluation.

dataset n d |Γ |

hmda 16 007 906 8 18

census1990 2 458 285 66 8

athlete 206 165 3 2

diabetes 89 782 9 5

4area 35 385 8 4

dataset n d |Γ |

adult 32 561 5 7

creditcard 30 000 14 7

bank 4 521 9 3

victorian 4 500 10 45

reuter_50_50 2 500 10 50

MapReduce algorithm. In the first round, the input 𝑆 is partitioned

arbitrarily across the 𝑝 workers, and worker 𝑖 extracts a subset𝑇𝑖 of

points by executing the first two while-loops of Algorithm 2 on its

partition, using accuracy parameter 𝜀/2 rather than 𝜀. In the second

round, the 𝑇𝑖 ’s are gathered in a single worker, and their union,

say 𝑇 ′, is further processed through the first two while-loops of

Algorithm 2, using again accuracy 𝜀/2, to extract a subset 𝑇 ′′ ⊂ 𝑇 ′.
In the third round, a copy of 𝑇 ′′ is sent to each worker, which

makes |C𝑆 | copies of each 𝑡 ∈ 𝑇 ′′ and computes their weights

with respect to the points of 𝑆 in its partition, as specified in the

last two for-loops of Algorithm 2. In the fourth round, the final

coreset𝑇 is built by gathering all copies of the points of𝑇 ′′ created
by the different workers in a single worker, and coalescing the

𝑝 like-colored copies of each 𝑡 ∈ 𝑇 ′′ by adding up their weights.

This produces the final weighted coreset 𝑇 , on which Step 2 of

Algorithm 1 is run sequentially to compute the set 𝐶 of centers

and 𝑝 projections
ˆ𝜙𝑖 , 𝑖 ∈ [𝑝], of the weight distibution function

ˆ𝜙 ,

relative to the 𝑝 partitions of 𝑆 . The final assignment is then built

in the fifth round, by sending to the 𝑖-th worker the projection
ˆ𝜙𝑖 ,

so that procedure FinalAssignment can be applied independently

within its partition. The following theorem, whose proof is deferred

to Appendix C for lack of space, summarizes the accuracy-space

tradeoffs featured by the above algorithm.

Theorem 6.1. For an input set 𝑆 of doubling dimension 𝐷 , the

above 5-round MapReduce algorithm returns a (3 + 𝜀) approximation

to the optimum fair k-center clustering, with an additive violation

≤ 4Δ + 3 of the fairness constraints, using local memory

𝑀𝐿 = 𝑂

(
max

{
|𝑆 |
𝑝
, 𝑘 |C𝑆 |

(
𝑝 (24/𝜀)𝐷 + |Γ |min

{
2
𝑘 , 𝑘 (24/𝜀)𝐷

})})
and linear aggregate memory.

7 EXPERIMENTS

Our experiments aim at: (a) comparing the performance of different

algorithms for different values of 𝑘 in terms of radius and running

time; (b) verifying the influence of the coreset size on the quality of

the approximation; (c) demonstrating the efficiency of the streaming

and MapReduce approaches on large datasets. We compare our

approach against the following baselines: unfair, the classic GMM

algorithm [12], which returns the unfair clustering radius that we

use as a reference point; Bera-et-al, the algorithm from [3]; KFC,

the algorithm of [14]; Bera-et-al-stream and Bera-et-al-MR the

streaming and MapReduce algorithms from [4], respectively. We

devised best-effort implementations of all of the above algorithms,

always improving on the running time of the original ones while

maintaining the same accuracy, but for KFC, for which we used

the author’s code. We experiment with the same datasets used by

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

algorithm Bera−et−al coreset (1k) coreset (32k) KFC unfair

hmda census1990 athlete diabetes

4 16 64 4 16 64 4 16 64 4 16 64

500

1K

50

100

50

100

150

200

0

2.5M

5.0M

7.5M

10.0M

ra
di

us

hmda census1990 athlete diabetes

4 16 64 4 16 64 4 16 64 4 16 64

0.1

10.0

1 000.0

k

tim
e

(s
)

Figure 2: Radius (top) and running time (bottom, in log scale)

of different algorithms vs. 𝑘 (in logarithmic scale). Missing

points are for timed-out runs.

previous works [3, 4, 14], whose features are given in Table 1. Due to

space constraints, in this section we report only on the four largest

ones, providing the results for the others in Appendix D, along with

details about our experimental setup. As in [3], we set strict fairness

constraints: 𝛽ℓ = 𝑟ℓ (1−𝛿) and 𝛼ℓ = 𝑟ℓ/(1−𝛿), for 𝑟ℓ = |𝑆ℓ |/|𝑆 | and
𝛿 = 0.01. For our algorithms, rather than governing the coreset size

indirectly through 𝜀, we fix it directly as a multiple of 𝑘 , allowing

for more interpretable results. Our source code is publicly available

(see https://anonymous.4open.science/r/fair-clustering-C8EF/.)

Sequential setting. Figure 2 reports the radius and the running

time of different sequential algorithms for 𝑘 = 2
𝑖
, 𝑖 ∈ [1, 6]. unfair

always has the smallest radius and the fastest running time, as ex-

pected. The best fair clustering radius is up to 15 times larger (hmda)
than the unfair clustering radius. Notably, while an unfair cluster-

ing sees its radius constantly decreasing with 𝑘 , for some datasets

(hmda, census1990) the fair radius tends to remain constant as 𝑘

becomes larger. We observed that in these cases the fairness con-

straints encourage the assignment of the majority of points to a

few (≪ 𝑘) large clusters, whose radius remains large irrespective

of the value of 𝑘 . Two instances of our algorithm, dubbed coreset,

were run with coreset sizes 𝑘 and 32𝑘 . As expected, using a larger

coreset gives a clustering with a smaller radius, which becomes

comparable (at most 1.39 times larger) to the one attained by KFC

and Bera-et-al. Noticeably, the slight increase in the radius is

compensated by the significantly faster execution time (Figure 2,

bottom), even with a coreset of size 32𝑘 . Indeed, in our experiments,

Bera-et-al timed out after one hour on census1990 and hmda, and
on athlete for large 𝑘 , whereas KFC timed out on hmda, with 16

million points. In contrast, our coreset-based algorithm completed

just in under 5 minutes for 𝑘 = 64 and a coreset of size 32𝑘 .

Streaming. We compare our algorithm (coreset-stream) with

Bera-et-al-stream [4] for different amounts of memory allowed

to both algorithms, and for 𝑘 = 32. For coreset-stream, larger

memory implies that each of the log
2
𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛 instances of the

algorithm builds a larger coreset, whereas for Bera-et-al-stream,

algorithm Bera−et−al−stream coreset−stream

hmda census1990

442K 3M 24M 163K 3M

3

20

148

20

55

148

memory (bytes)

tim
e

(s
)

hmda census1990

442K 3M 24M 163K 3M

120

130

140

4.70M

4.75M

4.80M

4.85M

4.90M

memory (bytes)

ra
di

us

Figure 3: Streaming algorithms performance vs. memory (log

scale): time (left, log scale) and radius (right).

algorithm Bera−et−al−MR coreset−MR

hmda census1990

2 4 8 16 2 4 8 16
0

5

10

0

20

40

60

80

parallelism

tim
e

(s
)

hmda census1990

2 4 8 16 2 4 8 16
130.0

132.5

135.0

137.5

4.75M

4.80M

4.85M

4.90M

4.95M

parallelism

ra
di

us

Figure 4:MapReduce algorithms performance vs. parallelism:

time (left) and radius (right).

larger memory implies that a smaller 𝜀 is used, hence more parallel

instances are run, each building a 𝑘-clustering. Both implementa-

tions feature the same level of optimization. Figure 3 reports the

running time and the radius achieved by both algorithms on the two

largest datasets of the testbed. The dashed lines, used for reference,

mark the best running time and radius attainable by the sequential

fair algorithms. We observe that for comparable memory usage, our

coreset-stream algorithm runs faster than Bera-et-al-stream.

As for the radius, coreset-stream provides a radius closer to the

best radius found by sequential algorithms. The figure highligths

the fundamental tradeoff of our coreset construction: larger coresets

allow for better approximations. Interestingly, for small memories,

both algorithms are faster than the fastest sequential one. This is

due both to the low aspect ratio 𝑑𝑚𝑎𝑥/𝑑𝑚𝑖𝑛 (≈ 56𝐾 for hmda, ≈ 43

for census1990) and to the streaming clustering strategy which

may require less than 𝑛 distance computations per center.

MapReduce. We compare our algorithm (coreset-MR) with

Bera-et-al-MR [4] for different numbers of processors and 𝑘 = 32.

Figure 4 reports the results in terms of time and radius. The line in

the time plots marks the total running time, whereas the shaded

area represents the time required to solve the linear program on

the pointset created by each algorithm. As already noted in [4],

the running time of Bera-et-al-MR increases with the number of

processors because it is dominated by the time to solve the linear

program (shaded red area) whose size increases with the number of

processors, thus annulling scalability. Conversely, in coreset-MR

the size of the linear program is independent of the number of pro-

cessors: in fact, the blue shaded area marks a constant running time

for all processor counts. Consequently coreset-MR features good

scalability. As for the radius, both approaches provide solutions of

comparable quality.

8

https://anonymous.4open.science/r/fair-clustering-C8EF/

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mahdian. 2019.

Clustering without Over-Representation. In Proc. KDD. ACM, 267–275.

[2] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for

Parallel Query Processing. J. ACM 64, 6 (2017), 40:1–40:58.

[3] Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Ne-

gahbani. 2019. Fair Algorithms for Clustering. In Proc. NeurIPS. 4955–4966.

[4] Suman K. Bera, Syamantak Das, Sainyam Galhotra, and Sagar Sudhir Kale. 2022.

Fair k-Center Clustering in MapReduce and Streaming Settings. In Proc. WWW.

ACM, 1414–1422.

[5] Ioana Oriana Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens

Rösner, Daniel R. Schmidt, and Melanie Schmidt. 2019. On the Cost of Essentially

Fair Clusterings. In Proc. APPROX-RANDOM (LIPIcs, Vol. 145). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 18:1–18:22.

[6] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. 2019. Solving

k-center Clustering (with Outliers) in MapReduce and Streaming, almost as

Accurately as Sequentially. Proc. VLDB Endow. 12, 7 (2019), 766–778.

[7] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. 2016. A

Practical Parallel Algorithm for Diameter Approximation of Massive Weighted

Graphs. In Proc. IPDPS. IEEE, 12–21.

[8] Matteo Ceccarello, Andrea Pietracaprina, Geppino Pucci, and Eli Upfal. 2017.

MapReduce and Streaming Algorithms for Diversity Maximization in Metric

Spaces of BoundedDoubling Dimension. Proc. VLDB Endow. 10, 5 (2017), 469–480.

[9] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. 2017.

Fair Clustering Through Fairlets. In Proc. NIPS. 5029–5037.

[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.

Zemel. 2012. Fairness through awareness. In Proc. ITCS. ACM, 214–226.

[11] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and

Suresh Venkatasubramanian. [n. d.]. Certifying and Removing Disparate Impact.

In Proc. KDD. ACM, 259–268.

[12] Teofilo F. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster

Distance. Theor. Comput. Sci. 38 (1985), 293–306.

[13] Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. 2014. Efficient

Classification for Metric Data. IEEE Trans. Information Theory 60, 9 (2014),

5750–5759.

[14] Elfarouk Harb and Ho Shan Lam. 2020. KFC: A Scalable Approximation Algo-

rithm for k-center Fair Clustering. In Proc. NeurIPS.

[15] S. Im, R. Kumar, S. Lattanzi, B. Moseley, and S. Vassilvitskii. 2023. Massive

Parallel Computation: Algorithms and Applications. In Foundations and Trends

in Optimization. Vol. 5. NOW Publishers, 340–417.

[16] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021.

Safe systems programming in Rust. Commun. ACM 64, 4 (2021), 144–152.

[17] Paolo Pellizzoni, Andrea Pietracaprina, and Geppino Pucci. 2020. Dimensionality-

adaptive k-center in sliding windows. In Proc. DSAA. IEEE, 197–206.

[18] Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, and

Eli Upfal. 2012. Space-round tradeoffs for MapReduce computations. In Proc. ICS.

ACM, 235–244.

[19] Clemens Rösner and Melanie Schmidt. 2018. Privacy Preserving Clustering with

Constraints. In Proc. ICALP (LIPIcs, Vol. 107). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 96:1–96:14.

[20] Dongkuan Xu and Yingjie Tian. 2015. A Comprehensive Survey of Clustering

Algorithms. Annals of Data Science 2 (2015), 165–193.

A TECHNICAL FACT

Fact 2. Let 𝑎1, . . . , 𝑎𝑘 and 𝑏1, . . . , 𝑏𝑘 be two sequences of numbers.

Then

min

𝑖

𝑎𝑖

𝑏𝑖
≤

∑
𝑖 𝑎𝑖∑
𝑖 𝑏𝑖
≤ max

𝑖

𝑎𝑖

𝑏𝑖

Proof. Let𝑀 = max𝑖
𝑎𝑖
𝑏𝑖
. By definition we have 𝑎𝑖/𝑏𝑖 ≤ 𝑀 , i.e.

𝑎𝑖 ≤ 𝑀 𝑏𝑖 for any 𝑖 . Therefore
∑
𝑖 𝑎𝑖 ≤ 𝑀

∑
𝑖 𝑏𝑖 , which implies∑

𝑖 𝑎𝑖∑
𝑖 𝑏𝑖
≤ 𝑀 = max

𝑖

𝑎𝑖

𝑏𝑖
.

By similar reasoning one can prove the lower bound. □

B PROCEDURE CORESETASSIGN

The output of the linear program LP-WFD is fractional, and thus

needs to be rounded. To this end, we use the iterative rounding

procedure presented in [4], which in turn is based on the approach

proposed in [3] and which we summarize here for completeness.

Let 𝑍𝐿𝑃−𝑊𝐹𝐷 = {𝑧 𝐽 ,𝑐 : 𝐽 ∈ J (𝑅) ∨ 𝑐 ∈ 𝐶} be a feasible (frac-
tional) solution of the LP-WFD problem. Following [4] we define

the following new variables:

𝑤 (𝐽) = 𝑤 (𝐽) −
∑︁
𝑐∈𝐶 𝐽

⌊
𝑧 𝐽 ,𝑐

⌋
∀𝐽 ∈ J (6)

𝑍𝑐 =
∑︁
𝐽 ∈J

(
𝑧 𝐽 ,𝑐 −

⌊
𝑧 𝐽 ,𝑐

⌋)
∀𝑐 ∈ 𝐶 (7)

𝑍𝑐,ℓ =
∑︁
𝐽 ′∈Jℓ

(
𝑧★𝐽 ′,𝑐 −

⌊
𝑧 𝐽 ′,𝑐

⌋)
∀ℓ ∈ Γ, 𝑐 ∈ 𝐶 (8)

Variables𝑤 (𝐽) are the residual weight of 𝐽 to distribute after round-
ing (note that they are integer, as𝑤 (𝐽) is integer).

Using these variables, we can set up the following linear program.

LP-RES:

0 ≤ 𝑧 𝐽 ,𝑐 ≤ 1 ∀ 𝐽 ∈J,∀𝑐∈𝐶 𝐽 (9)∑︁
𝑐∈𝐶 𝐽

𝑧 𝐽 ,𝑐 = 𝑤 (𝐽) ∀𝐽 ∈ J (10)

⌊𝑍𝑐 ⌋ ≤
∑︁
𝐽 ∈J

𝑧 𝐽 ,𝑐 ≤ ⌈𝑍𝑐 ⌉ ∀𝑐 ∈ 𝐶 (11)⌊
𝑍𝑐,ℓ

⌋
≤

∑︁
𝐽 ′∈ 𝐽ℓ

𝑧 𝐽 ′,𝑐 ≤
⌈
𝑍𝑐,ℓ

⌉
∀𝑐 ∈ 𝐶,∀ℓ ∈ Γ (12)

The solution of the above linear programmight still be fractional.

There are two key insights. First, for some 𝐽 , 𝑐 the variable 𝑧 𝐽 ,𝑐 could

be assigned 0 or 1. If the variable is 1, then we can increase 𝑧 𝐽 ,𝑐 by

one. In either case, the variable 𝑧 𝐽 ,𝑐 can be removed from the linear

program. Second, if the residual weight for a 𝐽 ∈ J (𝑅) is small,

then removing from the linear program the fairness constraints

involving 𝐽 leads only to a small fairness violation.

Given the above observations, the linear program LP-RES is

solved iteratively until there are no more variables. Bera et al. show

how the resulting integral solution𝑍 𝑖𝑛𝑡
𝐿𝑃−𝑊𝐹𝐷

= {𝑧𝑖𝑛𝑡
𝐽 ,𝑐

: 𝐽 ∈ J (𝑅)∨
𝑐 ∈ 𝐶} incurs an additive violation of the fairness constraints of up

to 4Δ + 3 [4, Theorem 3.6]. In particular, we have that ∀ℓ ∈ Γ and

∀𝑐 ∈ 𝐶
𝛽ℓ

∑︁
𝐽 ∈J

𝑧𝑖𝑛𝑡𝐽 ,𝑐 − 4Δ − 3 ≤
∑︁
𝐽 ′∈Jℓ

𝑧𝑖𝑛𝑡𝐽 ′,𝑐 ≤ 𝛼ℓ
∑︁
𝐽 ∈J

𝑧𝑖𝑛𝑡𝐽 ,𝑐 + 4Δ + 3 (13)

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Algorithm 6: CoresetAssign

/* Round the solution */

𝑧𝑖𝑛𝑡
𝐽 ,𝑐
←

⌊
𝑧 𝐽 ,𝑐

⌋
∀𝐽 ∈ J ;

Define𝑤 , 𝑍𝑐 , and 𝑍𝑐,ℓ as in equations (6), (7), and (8);

Construct LP-RES;

while ∃𝐽 ∈ J (𝑅) :

∑
𝑐∈𝐶 𝑧 𝐽 ,𝑐 ≠ 𝑤 (𝐽) do

𝑧← solution to LP-RES;

foreach 𝑧 𝐽 ,𝑐 = 0 do

Remove 𝑧 𝐽 ,𝑐 from LP-RES

foreach 𝑧 𝐽 ,𝑐 = 1 do

Remove 𝑧 𝐽 ,𝑐 from LP-RES;

𝑧𝑖𝑛𝑡
𝐽 ,𝑐
← 𝑧 𝐽 ,𝑐 + 1;

Decrease by 1 𝑍𝑐 and 𝑍𝑐,ℓ ;

foreach 𝑐 ∈ 𝐶 do

if |{𝐽 ∈ J : 0 < 𝑧 𝐽 ,𝑐 < 1}| ≤ 3 then

Remove from constraints (11) involving 𝑐;

foreach 𝑐 ∈ 𝐶, ℓ ∈ Γ do

if |{𝐽 ′ ∈ Jℓ : 0 < 𝑧 𝐽 ′,𝑐 < 1}| ≤ 3 then

Remove from RES constraints (12) involving 𝑐;

/* Build the weight distribution */

foreach 𝐽 ∈ J , 𝑐 ∈ 𝐶 𝐽 do

foreach 𝑡 ∈ 𝐽 do
ˆ𝜙 (𝑡, 𝑐) ← min{𝑤 (𝑡), 𝑧𝑖𝑛𝑡

𝐽 ,𝑐
};

𝑧𝑖𝑛𝑡
𝐽 ,𝑐
← 𝑧𝑖𝑛𝑡

𝐽 ,𝑐
− ˆ𝜙 (𝑡, 𝑐);

return
ˆ𝜙 (·, ·);

Algorithm 6 shows the implementation of this iterative rounding

procedure. The last step of Algorithm 6 builds the weight assign-

ment function. By construction we have that for each center, the

total weight assigned to 𝑐 ∈ 𝐶 by means of the function
ˆ𝜙 is∑︁

𝑡 ∈𝑇

ˆ𝜙 (𝑡, 𝑐) =
∑︁
𝐽 ∈J

𝑧𝑖𝑛𝑡𝐽 ,𝑐 ∀𝑐 ∈ 𝐶

and similarly, for any given color ℓ ∈ Γ∑︁
𝑡 ′∈𝑇ℓ

ˆ𝜙
(
𝑡 ′, 𝑐

)
=

∑︁
𝐽 ′∈Jℓ

𝑧𝑖𝑛𝑡𝐽 ′,𝑐 ∀𝑐 ∈ 𝐶,∀ℓ ∈ Γ

Therefore, we have that Inequality (13) holds for the weight distri-

bution function as well:

𝛽ℓ

∑︁
𝑡 ∈𝑇

ˆ𝜙 (𝑡, 𝑐) − 4Δ − 3 ≤
∑︁
𝑡 ′∈𝑇ℓ

ˆ𝜙
(
𝑡 ′, 𝑐

)
≤ 𝛼ℓ

∑︁
𝑡 ∈𝑇

ˆ𝜙 (𝑡, 𝑐) + 4Δ + 3

and thus Lemma 4.4 follows.

C PROOF OF THEOREM 6.1

For 𝑖 ∈ [𝑝], let 𝑆𝑖 ⊆ 𝑆 be the subset of the input set 𝑆 assigned

to the 𝑖-th worker, and let 𝜋𝑖 : 𝑆𝑖 → 𝑇𝑖 be the proxy function

associated to the coreset 𝑇𝑖 ⊆ 𝑆𝑖 extracted locally at each worker.

Letting 𝑇𝑘
𝑖
⊆ 𝑇𝑖 be the first 𝑘 centers computed by GMM on 𝑆𝑖 , by

Lemma 3.1 we have that 𝑟
𝑇𝑘
𝑖
,𝜙𝑢𝑛𝑓

≤ 2𝑂𝑃𝑇𝑢𝑛𝑓 , whence 𝑟𝑇𝑖 ,𝜙𝑢𝑛𝑓 ≤

((𝜀/2)/6) · 2𝑂𝑃𝑇𝑢𝑛𝑓 ≤ (𝜀/6) ·𝑂𝑃𝑇𝑢𝑛𝑓 . Recall that 𝑇 ′ = ∪1≤𝑖≤𝑝𝑇𝑖 .
It follows that for each 𝑥 ∈ 𝑆 :

𝑑 (𝑥,𝑇 ′) ≤ (𝜀/6)𝑂𝑃𝑇𝑢𝑛𝑓 .

The argument can now be repeated identically with respect to the

extraction of the coreset 𝑇 ′′ from 𝑇 ′. Thus, we have that for each
𝑡 ∈ 𝑇 ′, 𝑑 (𝑡,𝑇 ′′) ≤ (𝜀/6) ·𝑂𝑃𝑇𝑢𝑛𝑓 . Consider now the final coreset

𝑇 computed in the fourth round, and, for each 𝑥 ∈ 𝑆 let 𝜋 ′ (𝑥) be
the point in 𝑇 ′ closest to 𝑥 . We have that

𝑑 (𝑥,𝑇) ≤ 𝑑 (𝑥, 𝜋 ′ (𝑥)) + 𝑑 (𝜋 ′ (𝑥),𝑇) ≤ (𝜀/3)𝑂𝑃𝑇𝑢𝑛𝑓 .

Observe that coreset𝑇 satisfies the hypotheses of Lemma 4.3, which

in combination with Theorem 4.5 ensures the approximation factor.

For what concerns the bound on the local space, the local

space requirements per round is as follows: 𝑂 (|𝑆 |/𝑝) for Round 1,

𝑂

(
𝑘𝑝 (24/𝜀)𝐷

)
for Round 2, max{|𝑆 |/𝑝, 𝑘 (24/𝜀)𝐷 |C𝑆 |} for Round 3,

max{𝑘 |C𝑆 |𝑝 (24/𝜀)𝐷 , 𝑘 |Γ | |C𝑆 |min{2𝑘 , 𝑘 (24/𝜀)𝐷 }} for Round 4, and
max{|𝑆 |/𝑝, 𝑘2 (24/𝜀)𝐷 } for Round 5. The bound on the local space

follows by maximizing over the space requirements of each round.

D ADDITIONAL EXPERIMENTS

In this appendix we report the experiments and the information

omitted from the main paper for space reasons.

D.1 Experimental setup

We implement all the algorithms using Python 3.11.4, leveraging

the implementations provided by Harb and Lam [14]. Performance-

sensitive parts such as the coreset construction (in the sequential,

streaming, and MapReduce settings) are implemented using Rust

1.70.0 for efficiency, and made available to the Python code via

Python bindings. Rust provides a similar level of control to C++,

and thus allows to write code that is much more efficient than the

Python equivalent [16].

We use cplex 22.1.1.0 to solve the linear programs.

The streaming and MapReduce implementations of the algo-

rithms of [4] do not appear to be publicly available. We therefore

re-implemented them using Rust, applying the same optimizations

as on our own code.

All the code used to carry out the experimental evaluation is

publicly available
5
. Furthermore, the code repository provides in-

formation to download and preprocess all the datasets.

D.2 Experiments

Figure 5 reports the results for the experiment described in para-

graph Sequential setting of Section 7 for all the datasets reported in

Table 1. Panels in the Figure are arranged by decreasing size of the

corresponding dataset.

The same takeaways discussed in the main paper apply: increas-

ing the coreset size improves the quality of the radius of the cluster-

ing found by coreset; the running time is faster than the baselines;

the solution quality of coreset is comparable with the baselines.

We note that on smaller datasets the gap with the baselines in

terms of running time is less marked. This is not surprising, since

for small datasets the linear programs used by the baselines are

5
https://anonymous.4open.science/r/fair-clustering-C8EF/

10

https://anonymous.4open.science/r/fair-clustering-C8EF/

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Fast and Accurate Fair 𝑘-Center Clustering in Doubling Metrics Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

algorithm Bera−et−al coreset (1k) coreset (32k) KFC unfair

adult creditcard bank victorian reuter

hmda census1990 athlete diabetes 4area

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

7.5

10.0

12.5

15.0

2

3

500

1K

4

6

8

50

100

0

20K

40K

60K

50

100

150

200

500K

1.0M

1.5M

2.0M

2.5M

0

2.5M

5.0M

7.5M

10.0M

0

500K

1M

ra
di

us

adult creditcard bank victorian reuter

hmda census1990 athlete diabetes 4area

4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

0.01

1.00

100.00

0.01

1.00

100.00

k

tim
e

(s
)

Figure 5: Performance of sequential algorithms in terms of radius (top two rows of plots) and running time (bottom two rows

of plots, in logarithmic scale) against 𝑘 (in logarithmic scale)

small enough to allow a fast solution. We stress, however, that our

coreset construction scales to large instances.

As for the streaming and MapReduce settings, we remark that

in Section 7 we report results on the two largest datasets in the

testbed. Given that the other datasets are comparatively very small,

they do not provide any meaningful insight on the behavior of the

MapReduce and Streaming algorithms.

11

	Abstract
	1 Introduction
	1.1 Our contribution

	2 Related work
	3 Preliminaries
	3.1 Big-data models of computation

	4 Sequential Algorithm
	4.1 Step 1: Coreset construction
	4.2 Step 2: creating the clustering skeleton
	4.3 Step 3: Final assignment
	4.4 Putting all pieces together

	5 Streaming algorithm
	6 MapReduce algorithm
	7 Experiments
	References
	A Technical fact
	B Procedure CoresetAssign
	C Proof of Theorem 6.1
	D Additional experiments
	D.1 Experimental setup
	D.2 Experiments

