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ABSTRACT

This paper challenges the cross-species generalization problem for animal pose
estimation, aiming to learn a pose estimator that can be well generalized to novel
species. We find the relation between different joints is important with two-fold
impact: 1) on the one hand, some relation is consistent across all the species and
may help two joints mutually confirm each other, e.g., the eyes help confirm the
nose and vice versa because they are close in all species. 2) on the other hand,
some relation is inconsistent for different species due to the species variation and
may bring severe distraction rather than benefit. With these two insights, we pro-
pose a Decompose-to-Generalize (D-Gen) pose estimation method to break the
inconsistent relations while preserving the consistent ones. Specifically, D-Gen
first decomposes the body joints into several joint concepts so that each concept
contains multiple closely-related joints. Given these joint concepts, D-Gen 1) pro-
motes the interaction between intra-concept joints to enhance their reliable mutual
confirmation, and 2) suppresses the interaction between inter-concept joints to
prohibit their mutual distraction. Importantly, we explore various decomposition
approaches, i.e., heuristic, geometric and attention-based approaches. Experimen-
tal results show that all these decomposition manners yield reasonable joint con-
cepts and substantially improve cross-species generalization (and the attention-
based approach is the best).

1 INTRODUCTION

Animal pose estimation (Cao et al., 2019; Li & Lee, 2021b; Mu et al., 2020; Mathis et al., 2021) aims
to identify and localize the anatomical joints of animal bodies, and has received increasing attention
for its wide application, i.e., biology, zoology, and aquaculture. A critical challenge in realistic
animal pose estimation is the cross-species problem, i.e., using the already-learned pose estimator
for novel species. Specifically, it is infeasible to collect and annotate all the animal species, because
the animal kingdom is a vast group of millions of different species. Under this background, the
cross-species generalization is of great value for realistic applications.

This paper tackles the cross-species animal pose estimation from the domain-generalization (DG)
viewpoint (i.e., a species is a respective domain) and reveals a unique factor for this cross-species
generalization, i.e., the relation between different joints. The joint relation in our view can be visual
(e.g., the color relation between neighboring joints), structural (e.g., the nose is under the eyes) and
many more. Our focus on the joint relation is different from the popular concern in general domain
generalization (Ben-David et al., 2010; Blanchard et al., 2021; 2011; David et al., 2010), which
mainly considers the distribution shift between the source and the unseen target domain(s). The
generic DG methods usually learn domain-invariant representations (Muandet et al., 2013; Ghifary
et al., 2015; Li et al., 2018b;c; Bui et al., 2021; Yang et al., 2021; Gong et al., 2021), enhance the
generalizability through meta-learning (Dou et al., 2019; Balaji et al., 2018; Li et al., 2018a; 2019)
or data augmentation (Zhou et al., 2021; Shankar et al., 2018; Carlucci et al., 2019; Volpi et al.,
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Figure 1: Two reasons that bring domain gap to the joint relation. 1) structural discrepancy: the
part lengths (i.e. the distances between different joints) may vary for different species (left most); 2)
the visual similarities between some different joints are inconsistent for different species, e.g., the
visual similarities between faces and other body parts are different for tiger, fox, and the cow.

2018). While these methods are potential for cross-species generalization as well, the joint relation
is a unique viewpoint that has never been explored under other DG scenarios.

The importance of joint relation is two-fold: 1) on the one hand, some joint relation is consistent
across all the species and is beneficial. With consistent relation, two joints may mutually confirm
each other, e.g., the eye helps confirm the nose and vice versa, because they are consistently close
in all species. 2) on the other hand, some joint relation is inconsistent for different species due to
species variation and is thus harmful for generalization, e.g., the length of non-rigid body parts
such as legs. Such inconsistent relation makes the already-learned mutual confirmation become a
severe distraction rather than any benefit. We note that the latter (negative) impact has more or less
been recognized by some earlier literature (Cao et al., 2019), while the former (positive) impact was
neglected. In contrast to Cao et al. (2019), we argue that both two factors are important and should
be considered in combination.

With these two insights, we propose a Decompose-to-Generalize (D-Gen) pose estimation method
to break the inconsistent relations while preserving the consistent ones. Specifically, D-Gen first
decomposes the body joints into several joint concepts. The decomposition facilitates that each
individual concept contains multiple closely-related joints and that the joints in different concepts
are far away or prone to inconsistent relations. Given these joint concepts, D-Gen promotes the
interaction between intra-concept joints and meanwhile suppresses the interaction between inter-
concept joints. The approach for interaction promotion / suppression is very simple: D-Gen splits
the top layers of the backbone network into several pose-estimation branches, each one of which
is responsible for a corresponding joint concept. Intuitively, the joints in different branches have
less interaction, compared to the joints in the same branch. Consequently, D-Gen suppresses the
distraction from inconsistent joint relation and yet preserves the beneficial mutual confirmation of
consistent joint relation, thus improving cross-species generalization.

We explore three strategies for joint decomposition, i.e., heuristic, geometric and the attention-
based manner. The geometric manner clusters the joints based on their geometric distances. The
attention-based manner uses the attention mechanism to learn the affinity between joint features and
uses the affinity matrix for decomposition. Experimental results show that all these three strategies
substantially improve cross-species generalization, validating the effectiveness of our joint decom-
position. Another interesting observation is that the attention-based strategy surpasses the other two
strategies, indicating that attention-based concepts are better than the concept derived from human
intuition (i.e., heuristic) and the pure geometric relation. Since the attention-based approach com-
bines deep feature and geometric priors, its superiority against the geometric manner suggests that
there are multiple forms of joint relation beyond the structural relation.

2 RELATIVE WORKS

Our work is closely related to two research areas, i.e., pose estimation and domain generalization.

2D pose estimation for human and animals. 2D pose estimation refers to identifying all the
anatomical joints of bodies for images. There are mainly two paradigms, top-down and bottom-up.
The top-down paradigm (Huang et al., 2017; Papandreou et al., 2017; Zhang et al., 2020; Cai et al.,
2020; Newell et al., 2016; Moon et al., 2019; Khirodkar et al., 2021) fist detects the person and then
localize the joints for each detected person. The bottom-up paradigm (Sun et al., 2019a; Wang et al.,
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2019; Geng et al., 2021; Brasó et al., 2021; Jin et al., 2020; Wang et al., 2021; Tang & Wu, 2019;
Cao et al., 2017; Kreiss et al., 2019; Newell et al., 2017) first identifies joints in an identity-agnostic
manner, then derive poses with different grouping strategies. The top-down solutions are more
accurate while requiring higher computation due to the extra detection process, while the bottom-up
solutions are more popular for their lower computation cost. Here we adopt the bottom-up solution
for its efficiency and simplicity.

In terms of single-species pose estimation, Tang & Wu (2019) performs joint decomposition to
strengthen the part with close correlations. However, they only employ the geometric clue inside
single species while neglecting the structure variations across species and other forms of joint rela-
tions (e.g., visual). Empirical experiments prove it is sub-optimal for the cross-species scenario.

Domain adaptation and domain generalization. Domain adaptation aims to transfer the knowl-
edge learned from a labeled source domain to an unlabeled target domain, which has attained re-
markable progress in the past decades. Researches in domain adaptation overcome the distribution
shift via alignment in the feature space directly (Long et al., 2015; Sun & Saenko, 2016; Tzeng et al.,
2014), or employing adversarial training in the input space (Hoffman et al., 2018; Gong et al., 2019;
Li et al., 2020) or feature space (Luo et al., 2017; Chen et al., 2019; Ganin & Lempitsky, 2015; Li
et al., 2021a; Hu et al., 2022; 2023).

Domain generalization extends to a more universal scenario, where multiple source domains and
target domains are available and only source domains are accessible during the training. Researches
in this area can be categorized into two streams: one stream seeks to derive domain-invariant repre-
sentations (Zhao et al., 2020; Muandet et al., 2013; Ghifary et al., 2015; Li et al., 2018b;c; Huang
et al., 2020; Seo et al., 2020; Zhang et al., 2021a; Kim et al., 2021), and the other attempts to enhance
the generalizability of trained model parameters Wu & Gong (2021); Iwasawa & Matsuo (2021) via
meta-learning (Dou et al., 2019; Li et al., 2018a; Zhang et al., 2021b), or data augmentations (Zhou
et al., 2021; Carlucci et al., 2019; Li et al., 2021b; Chen et al., 2021; Zhou et al., 2020).

In terms of animal pose estimation, there are already some works considering the domain adaptation
problem for it. Mu et al. (2020) and Li & Lee (2021a) focus on the synthetic-to-real domain adapta-
tion inside the same species. Despite making progress, these methods typically mitigate the domain
gap induced by the difference in appearance and background, while the structural discrepancies in-
side the same species are negligible and are not considered as the main obstacle. Cao et al. (2019)
made the first attempt to mitigate the structural discrepancies between different species and realize
it with an adversarial training paradigm and pseudo labeling. However, we argue it is sub-optimal
because their work mainly alleviates the impact resulting from the parts that exhibit large variation
across species, while ignoring the parts holding stable inter-joint relationships.

3 METHOD

3.1 OVERVIEW

Preliminaries. From the perspective of domain generalization (DG), each animal species in pose es-
timation is within an independent domain. Let us assume the training set D contains M species (do-
mains), i.e., D = {D1, D2, ...DM}, forming a joint sample space X ×Y (X is the image space and
Y is the corresponding label space). Specifically, the i-th species (domain) Di contains Ni samples,
i.e., Di = {(x(i)

j , y
(i)
j )}Ni

j . The goal of cross-species pose estimation is to train a pose estimator on
D = {D1, D2, ...DM} and then directly apply it to a novel unseen species Du(u /∈ {1, 2, ...,M}),
which requires good cross-domain generalizability. The trained deep model consists of a feature
extractor F and an estimator head G, which are parameterized by ϕF and ϕG, respectively.

The framework of the proposed D-Gen is illustrated in Fig. 2. The key motivation is that some
joint relations are consistent across all the species and are thus beneficial for cross-species gener-
alization, while some other joint relations are inconsistent and harmful. Therefore, D-Gen seeks to
break the inconsistent relations while preserving the consistent ones. To this end, D-Gen consists
of two stages, i.e., joints decomposition (Section 3.2) and network split (Section 3.3). In the joint
decomposition stage, D-Gen divides the body joints into several joint concepts so that each con-
cept contains multiple closely-related joints. Section 3.2 introduces three different decomposition
strategies, i.e., heuristic, geometric and attention-based decomposition. Afterward, Section 3.3 pro-
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Figure 2: Overview of “Decompose to Generalize” (D-Gen) scheme. D-Gen consists of two stages,
i.e., joints decomposition (left) and the sub-sequential network split (right). 1) In the joints decompo-
sition stage, D-Gen leverages different strategies (e.g., heuristic, geometry-based or attention-based)
to divide the body joints into several joint concepts, so that each concept contains closely-related
joints (Section 3.2). 2) Given the decomposed joint concepts, D-Gen correspondingly splits the top
layers of the baseline network into multiple concept-specific branches (Section 3.3). This network
split suppresses the interaction between inter-concept joints and yet preserves the interaction within
each concept. 3) During inference, D-Gen concatenates the predictions of all the concept-specific
branches (step i) and averages them with the baseline prediction (step ii).

poses a very simple network split method that splits the top layers of the backbone network into
several concept-specific branches, corresponding to the decomposed joint concepts. Importantly,
Sec. 3.3 also investigates the mechanism through gradients analysis and reveals that the network
split suppresses the gradient conflict among inconsistently-related joints (i.e., different concepts).

3.2 JOINTS DECOMPOSITION

We employ three different concept decomposition strategies, i.e., the heuristic, geometry-based, and
the attention-based strategy. The attention-based decomposition is learned based on the baseline
network (i.e., we insert an attention module between the feature extractor and the estimation head in
the baseline, as in Fig. 3). The heuristic decomposition is drawn from the anatomy knowledge, and
the geometry-based decomposition is learned through the geometric distance. Empirically, we find
the latter two decomposition strategies are indeed inferior to the attention-based strategy. However,
we think the corresponding exploration is valuable for showing that joint decomposition can bring
general benefit to cross-species generalization (regardless of the decomposition strategy).

3.2.1 ATTENTION-BASED DECOMPOSITION.

We first learn a pixel-to-concept attention Fig. 3 (a) and then use the attention results to infer the
decomposition (Fig. 3 (b)).

Learning pixel-to-concept attention. As shown in Fig. 3 (a), we append an attention module
after the feature extractor to discover the correlation between different joint features. The attention
module takes the feature maps Z ∈ Rhw×d (h and w are the spatial size of the feature map with d
channels) as its input. Meanwhile, we pre-define that there are k concepts (k is a hyper-parameter)
and correspondingly provide k concept embeddings, i.e., E ∈ Rk×d for learning pixel-to-concept
attention. Given the feature maps Z and the concept embeddings E, the attention module uses three
linear projection to get the Query, Key and Value, respectively, which is formulated as:

Query = ZWq,Key = EWk,Value = EWv, (1)
where Wq/Wk/Wv ∈ Rd×dl are linear layers that project the inputs into the identical low dimension
space. We note that the concept embeddings E and the three linear projections are all learnable
through the attention mechanism.

The pixel-to-concept attention is defined as:

Z∗ = Z +Wm(softmax(
ZWq(EWk)√

dh
)(EWv)), (2)
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Figure 3: Attention-based decomposition. Left: Illustration of the proposed attention mechanism.
The attention module takes the feature map as query, and a learnable concept embedding as the key
for learning the affinity matrix, which is leveraged to promote the inter-joints interactions. Right:
Illustration of the concept generation. For the learned feature map, we first extract the joint features
based on the predicted joint location. Then with a simple nearest neighbor search with concept
embedding, we could obtain the concept label for each joint. The final division of concepts is
obtained from the voting from all training images.

⊗
denotes the matrix multiplication and

⊕
denotes the element-wise sum.

where Wm is a linear layer that maps the dimension of features back to d, and the residual connection
is added for training stability.

The above attention makes each pixel-level features absorb information from the shared set of con-
cept embeddings. The resulting feature maps Z∗ are then fed into the estimation head. We note
that while our intention is to use such pixel-to-concept attention as the clues for joint decomposi-
tion, the attention actually has another positive side-effect: it already promotes interaction among
closely-related joints in an implicit manner. It is because the closely-related joints are likely to
absorb information from the same concept embedding(s), thus gaining implicit interactions.

Decomposition by comparing pixel-wise features to concept embedding. After the model fin-
ishes learning the pixel-to-concept attention, we use the already-learned k concept embeddings
E ∈ Rk×d to infer the decomposition, as illustrated in Fig. 3 (b). Specifically, given an image
and the predicted position of each visible joint, we extract the corresponding joint features from the
feature maps Z. Let ẑ(i,m) denotes the extracted feature of the m-th joint from the i-th image.
According to the cosine similarity between ẑ(i,m) and the concept embeddings E = {ej}kj=1, the
concept-of-interest of the m-th joint in the i-th image is inferred by:

Ci,m = argmax
j

cos < ẑi,m, ej >, j = 1, 2...k, (3)

where the <,> denotes the operation of getting the angle of two vectors.

Finally, the concept-of-interest for the m-th joint is voted from all the training samples.

3.2.2 HEURISTIC AND GEOMETRY-BASED DECOMPOSITION.

In addition to the attention-based decomposition, we explore two alternatives, i.e., the heuristic and
geometry-based decomposition.

Heuristic decomposition. From the perspective of human knowledge, the joints could be sim-
ply divided according to anatomy. Therefore, the heuristic strategy draws the knowledge from the
human prior, and decomposes the body joints into three parts, i.e., head, hind leg, and foreleg. Intu-
itively, the joints within each single part have relatively consistent mutual relations. That being said,
experimental results (Sec. 4.2) show that the improvement achieved by heuristic decomposition is
relatively small, indicating that relying on intuition is a sub-optimal choice.

Geometry-based decomposition. considers the distances between every pair of joints and can be
viewed as a pure-structural strategy. The joint distances are derived from the ground-truth joint
position and are used to construct an affinity matrix of the joints. Given the affinity matrix, we
employ spectral clustering (Ng et al., 2001; Shi & Malik, 2000) to cluster all the joints into multiple
concepts. Some examples of the geometry-based concepts are shown in Fig. 6.
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Figure 4: Gradient conflict rate for three decomposition strategies. Generally, the gradient con-
flict among intra-concept joints is lower than the conflict among inter-concept joints. Moreover,
compared with the other two strategies, the attention-based decomposition achieves lower conflict
for intra-concept joints, indicating better decomposition. An effective approach to circumvent the
gradient conflict is to isolate the optimization of severely-conflicted joints into different branches.

3.3 NETWORK SPLIT

Given the joint concepts from a decomposition strategy, D-Gen correspondingly splits the top layers
of the baseline network into multiple concept-specific branches, as illustrated in Fig. 2 (the right
part). Specifically, the top layers refer to the last ltop residual blocks in the backbone (ResNet),
while the bottom layers are the rest. Here, we analyze the rationale for this simple network split
through gradient analysis.

To be concrete, we use gradient conflict (Yu et al., 2020) to estimate the inter-joint relationships
during the optimization. Assuming σij is the angle between the gradient of joint i and joint j, the
conflict rate is defined as the proportion of gradients holding different directions, i.e., cosσij < 0.
As shown in Fig. 4, the joints from the same concept exhibit higher consistency in the gradient space
(i.e., lower conflict rate) while joints from different concepts show a higher possibility to conflict
with each other, thus hampering the optimization. Therefore, an intuitive approach to circumvent
the gradient conflict is to isolate the optimization of severely-conflict joints (i.e., different concepts)
into different network branches, resulting in the proposed network split.

The overall training objective is formulated as:

L = LMSE(ϕG(ϕF (x)), y) +

k∑
i

LMSE(ϕ̂
i
G(ϕF (x)), y

i). (4)

where ϕ̂i
G denotes the feature extractor with the i th concept branch and yi denotes the ground truth

for the i th concept. We use LMSE() to denote the mean squared error.

During inference, we first concatenate the output of concept-specific branches and then average them
with the baseline branch to obtain the final prediction. Notably, before the concatenation, we first
sort them according to their original joint index as the joints are not sequentially divided.

Discussion: The improvement is NOT mainly due to model ensemble. A side effect of network
split is the increase of model size. More specifically, D-Gen splits the top layers of the baseline
network and thus can be viewed of the ensemble of multiple concept-specific branches. However, we
note that model ensemble (or increasing the model size) is not the major reason for our improvement.
An explicit evidence is that: if we replace the joints decomposition strategy with random strategy
(i.e., randomly dividing the joints into several concepts, as detailed in Sec. 4.2), the resulting D-Gen
only gains very slight improvement, i.e., +1.5% on Animal Pose Dataset (Table 3). In contrast,
using attention-based joint decomposition, D-Gen obtains +6.5 % improvement. This observation
confirms that model ensemble is only a trivial reason for the improvement of D-Gen.

4 EXPERIMENTS

4.1 SETUP

Dataset. We evaluate our method on two large-scale animal datasets. AP-10K (Yu et al., 2021) is a
large-scale benchmark for mammal animal pose estimation, and contains 23 animal families and 54
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Table 1: Intra-family DG results (AP) on AP-10K (Yu et al., 2021) with the leave-one-out manner.
K.C.=King Cheetah, S.L.=Snow Leopard, and A.S. = Argali Sheep. Num.= number of training
samples for this species.

Previous SOTA The proposed D-Gen

Family Target Num. ERM Oracle Oracle-F MixStyle GradSur SWAD Fish Random Heuristic Geometry Attention

Felidae

Bobcat 151 56.4 58.4 87.1 58.1 62.0 55.1 60.4 57.9 58.8 58.2 63.2
Cat 307 30.2 54.8 79.7 40.0 28.1 27.0 34.1 35.3 37.8 35.1 41.0
Cheetah 148 58.6 58.7 86.3 59.0 57.9 54.1 58.5 52.2 56.0 53.1 60.1
Jaguar 187 61.8 58.4 93.2 62.1 60.9 62.5 58.7 56.8 54.8 56.2 53.7
K. C 22 53.1 30.6 89.8 58.6 62.0 63.6 59.0 64.6 62.9 67.9 62.1
Leopard 142 57.8 51.1 88.1 60.4 57.7 64.3 60.4 57.7 57.1 58.2 55.4
Lion 177 40.3 45.3 84.9 45.7 34.7 40.9 41.4 40.3 36.6 37.4 38.8
Panther. 106 41.5 55.4 86.2 45.5 40.7 38.6 37.2 46.2 43.9 44.3 48.4
S.L. 73 65.4 54.8 95.4 69.0 73.7 67.3 61.0 61.2 62.0 63.9 64.9
Tiger 144 58.9 68.9 87.6 57.1 59.3 47.4 57.8 56.2 64.2 62.3 62.4

Average − 52.4 ± 0.6 53.6 ± 0.3 87.8 53.1 ± 0.9 53.7 ± 0.5 52.1 ± 0.6 53.9 ± 1.2 52.9 ± 1.0 53.4 ± 0.9 53.7 ± 0.3 55.0 ± 0.5

Ursidae

Black Bear 39 30.0 43.2 85.2 37.7 37.5 30.6 24.8 26.8 36.1 41.1 40.7
Brown Bear 171 15.5 42.2 83.1 14.9 17.6 24.1 23.7 15.8 28.0 20.4 24.8
Panda 164 9.0 46.9 79.0 13.9 7.5 11.1 17.5 13.8 13.2 12.7 14.5
Polar Bear 156 10.6 47.1 85.1 9.1 11.5 13.3 17.6 9.1 21.2 8.3 18.7

Average − 18.8 ± 0.4 44.9 ± 0.2 83.1 18.9 ± 0.3 18.6 ± 0.5 19.8 ± 0.4 20.4 ± 0.5 18.8 ± 0.9 21.0 ± 0.6 20.6 ± 0.4 24.7 ± 0.4

Bovidae

Antelope 298 51.3 63.1 88.4 52.6 53.4 52.4 56.2 56.0 53.4 53.9 60.9
A.S 268 69.7 70.1 95.6 71.3 74.1 67.6 75.1 72.6 73.6 74.3 77.3
Bilson 208 42.8 51.6 91.8 49.8 43.6 46.2 47.7 46.1 48.8 45.8 49.8
Buffalo 228 61.0 71.6 91.4 57.5 64.8 63.7 62.3 60.0 61.1 62.9 68.1
Cow 228 46.6 43.9 82.1 50.7 46.1 49.7 46.9 48.9 49.7 48.8 51.8
Sheep 355 41.7 57.4 85.0 41.0 42.1 45.1 41.6 40.6 41.0 41.2 40.1

Average − 52.2 ± 0.6 59.6 ± 0.3 89.1 53.8 ± 0.6 54.1 ± 0.4 53.9 ± 0.5 55.0 ± 0.4 53.8 ± 0.8 54.6 ± 0.3 54.5 ± 0.4 57.9 ± 0.4

species following the taxonomic rank. It annotates 10,015 images and provides annotations with 17
keypoints. Animal Pose Dataset (Cao et al., 2019) collects and annotates 5 species, i.e., cat, dog,
sheep, cow, and horse, from 3000+ images, where both bounding boxes and keypoints annotated (20
keypoints) are provided. Animal Kingdom (Ng et al., 2022) is another dataset with a higher diversity
that includes mammals, fishes, birds, amphibians, and reptiles with 23 keypoint annotations.

Evaluation. Follow Sun et al. (2019b), the evaluation metric is based on Object Keypoint Similarity
(OKS). We report the mean average precision (AP) at OKS=0.50, 0.55,...0.90, 0.95. The mean value
and standard error over three random runs are reported in all main results.

Implementation details. We start from ResNet50 (He et al., 2016) with the backbone pretrained
on ImageNet (Deng et al., 2009). The batch size is set to 64, and the learning rate for the first stage
and the second is set to 5 ×10−4 and 5 ×10−5, respectively. We optimize the model with Adam for
210 epochs, where the learned rate decrease (×10−1 ) at 170 and 200, respectively. The size of the
input image is 256 × 256 and the heatmap is with size 64 × 64. The number of the concept-specific
blocks is set to 2, and k is set to 3 for all transfer tasks.

4.2 MAIN RESULTS.

We evaluate our approach under two domain generalization (DG) scenarios, i.e., intra-family DG
and inter-family DG, where the latter involves larger domain gaps regarding both the visual and
structural knowledge. Following the common practice, we perform domain generalization with
the leave-one-out setting, i.e., selecting one species / family as the target domain and the rest as
the source domains. Since these two datasets are relatively new and only a few results have been
reported, we re-implement representative DG methods, i.e., Fish (Shi et al., 2022), SWAD (Cha
et al., 2021), MixStyle (Zhou et al., 2021), and GradSur (Mansilla et al., 2021) for comparison and
we adopt ERM (empirical risk minimization that trains on all source domains), Oracle (training on
target domains), and Oracle-Full (train on both source and target domains) as baselines. Moreover,
we use a random decomposition in addition to the three discussed decomposition strategies to show
that model ensemble (through random-decomposed branches) does not promise improvement.

Intra-family DG. For intra-family domain generalization, we evaluate our approach on the three
largest families in AP-10K, i.e., Bovidae, Canidae, and Ursidae. The results are summarized in
Table 1, from which we draw three observations.

1) Comparing “Previous SOTA” against the “ERM” baseline, we find the improvement achieved by
previous state-of-the-art DG methods is very trivial (if there is any). We infer it is because these
methods mainly focus on the style gap of the source and target domain, and are not capable to tackle
the distribution shift in terms of structural and visual relations.

2) Comparing the proposed D-Gen against the “ERM” baseline, we observe that all the three decom-
position strategies (heuristic, geometry-based, and attention-based) achieve consistent improvement.
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Table 2: Inter-family DG results (AP) on AP-10K (Yu et al., 2021) with the leave-one-out manner.
Cerc.=Cercopithecidae.

Previous SOTA The proposed D-Gen

Target Num. ERM Oracle Oracle-F MixStyle GradSur SWAD Fish Random Heuristic Geometry Attention

Bovidae 1467 48.2 64.8 90.3 49.6 47.0 48.8 49.3 48.6 46.0 49.9 52.1
Felidae 1457 39.7 64.4 87.3 43.1 34.2 42.4 39.8 43.0 42.8 41.9 47.7
Canidae 1130 50.2 65.9 88.8 48.2 46.8 53.6 50.6 53.3 49.7 53.9 54.8
Ursidae 530 30.3 68.8 83.7 31.3 34.5 31.4 32.3 31.5 30.7 28.4 31.1
Cerc. 623 19.9 67.9 84.2 20.3 19.1 21.8 24.4 24.7 40.8 23.0 27.2
Equidae 482 37.8 64.2 82.6 37.9 34.2 40.5 38.8 39.7 40.6 42.8 39.0
Hominidae 345 39.6 66.9 83.1 38.4 32.4 38.7 39.7 38.4 40.0 46.1 45.6

Average − 37.7 ± 0.4 66.1 ± 0.2 85.7 38.4 ± 0.4 35.5 ± 0.5 39.8 ±0.6 39.3 ± 0.5 39.6 ± 0.9 40.0 ± 0.7 40.9 ± 0.7 42.9 ± 0.6

Table 3: Results (AP) on Animal Pose Dataset (Cao et al., 2019) with the leave-one-out manner.
Previous SOTA The proposed D-Gen

Target Num. ERM Oracle MixStyle GradSur SWAD Fish Random Heuristic Geometry Attention

Cow 1214 22.6 36.8 25.0 24.4 18.8 27.8 26.7 29.9 25.7 29.6
Sheep 980 21.6 33.0 23.2 22.0 21.6 21.2 20.4 26.1 25.4 28.4
Horse 651 22.7 37.5 27.8 26.2 26.1 25.4 28.5 31.7 33.6 31.8
Cat 614 26.3 30.7 27.8 24.8 25.1 26.3 24.3 23.9 23.2 28.1
Dog 502 21.2 31.1 25.1 28.2 22.2 26.2 24.4 23.7 25.0 26.4

Average − 23.4 ± 0.4 33.8 ± 0.3 25.8 ± 0.6 23.9 ± 0.4 22.7 ± 0.5 25.4 ± 0.4 24.9 ± 0.8 27.1 ± 0.4 26.6 ± 0.5 28.9 ± 0.4

For example, within the Bovidae family, these three methods surpass the ERM baseline by +2.3%,
+3.2%, and +5.2%, respectively. This observation validates the effectiveness of D-Gen.

3) Comparing the three decomposition strategies against each other and the additional “Random”
strategy, we observe that the attention-based strategy is the best among all. It indicates that the
deep network is capable to discover better joint concepts than human intuition and pure-geometric
knowledge. Another important observation is that the “Random” strategy barely achieves any im-
provement over the baseline. It indicates that D-Gen barely benefits from the model ensemble,
because the random strategy already takes the advantage of model ensemble.

4) Under circumstances with fewer labeled samples, domain generalization can serve as a powerful
baseline for pose estimation. For example, our method surpasses the Oracle with 4.8 % on the
species Bobcat from the family Felidae, where only 150 images are provided with annotations.

Table 4: Results (PCK@0.05) on Animal King-
dom Dataset (Ng et al., 2022) with the leave-one-
out manner. AM=Amphibians.

Family Mammals AM Reptiles Birds Fishes Avg.

ERM 11.5 15.0 11.4 13.2 12.4 12.7
Oracle 37.3 69.1 66.5 52.0 45.5 54.1
SWAD 13.4 18.3 15.5 17.4 12.6 15.4
Fish 16.8 17.9 17.7 18.1 16.6 17.4

Heur. 16.6 16.9 18.1 18.8 15.1 17.1
Geom. 17.1 18.5 18.9 19.1 16.1 17.9
Att. 18.3 19.0 19.4 19.9 18.8 19.1

Inter-family DG. We further evaluate the pro-
posed D-Gen under the inter-family DG sce-
nario. Without loss of generality, we select
several animal families with relatively large di-
versity for each dataset (Table 2 for AP-10K
and Table 3 for Animal Pose Dataset). We
observe our method maintains its superiority
against previous methods, which is consistent
with the observation under the intra-family sce-
nario. Moreover, we observe that under the
inter-family scenario, the achieved results are
lower than the intra-family scenario. It con-
firms our intuition that inter-family generalization is more challenging due to larger cross-species
distribution shifts.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies under two scenarios, i.e., intra-family DG (within the
Bovidae family, in particular) and the inter-family DG, to further investigate the proposed method.

Different number of concepts (k). In Fig. 5 (a)(b), we report the results with varying k to evaluate
its influence. With k increasing, these decomposition solutions show different tendencies, i.e., the
attention-based variant only fluctuates in a small range, while the other two show degraded perfor-
mance. Such a phenomenon verifies that the attention-based solution is not sensitive to the selection
of k. Further investigation reveals that, as the k increased, the concept embedding still derives con-
cept groups with a stable number, i.e., from 3 to 5. The reason is that, when k is large, only part of
the concept embeddings attend and modulate the inter-joint interactions while others not.
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(a) (b) (c) (d)

l l

Figure 5: The impact of k (the number of concepts) and ltop (the number of concept-specific blocks)
with error bars. Both the intra-family (a and c) and the inter-family scenarios (b and d) are presented.
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Figure 6: Concept visualization on AP-10K, where different colors denote different mined concepts.

How does ltop (number of concept-specific blocks) influence the generalization results? In Fig. 5
(c)(d), we present the sensitivity analysis to the number of concept-specific blocks (ltop). As we
could observe, with increasing ltop, the performance improves constantly, justifying the necessity of
the network split pipeline. Especially, even with the shared backbone, our method still achieves very
competitive results, i.e., 40.6 for inter-family DG, proving its superiority against previous methods.
In contrast, the other two solutions only achieve very limited improvement with the increasing ltop.
The reason is that, as illustrated in Fig. 4, the joints of their mined concepts still exhibit high conflict
with each other, which is the network split cannot mitigate.

Visualization of the learned concepts. Fig. 6 compares three joint decomposition strategies
through visualization. For a clear comparison, we adopt three concepts (painted in red, blue, and
green color) for all the strategies. We observe that the attention-based decomposition tends to group
joints from comparably distant positions into a concept, benefiting from the learning of long-range
dependencies with the attention module. In contrast, the heuristic and geometry-based solutions
mainly focus on the local structures and tend to associate joints with their neighbors.

5 CONCLUSION

In this paper, we propose a “decompose to generalize” (D-Gen) scheme for cross-species animal
pose estimation. In contrast to generic domain generalization methods, D-Gen focuses on the joint
relation for improving the cross-species generalization. Specifically, D-Gen decomposes the body
joints into several joint concepts, so that the joints in a single concept have relatively consistent rela-
tions. Based on the joint concepts, D-Gen splits the feature extractor into multiple concept-specific
branches. This simple network split suppresses the inconsistent interactions between inter-concept
joints and yet maintains the consistent interactions between intra-concept joints. Experimental re-
sults validate the effectiveness of D-Gen. We hope our work on cross-species pose estimation can
provides a new viewpoint for understanding the domain generalization problem.
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ETHICS STATEMENT

Our method does not induce bias but cannot alleviate the bias from the training data. Thus,
with the proposed method, the model trained on source domains may still preserve the bias from the
source data, hence resulting inaccurate estimation results in the target domain.

Our method may fail under extreme scenarios with severe occlusion. The proposed method
mainly assumes an ideal scenario with no or slight occlusion. However, wild environments and ani-
mal habitats typically have various terrains and vegetation, which possibly causes severe occlusion.
Our method may fail to deliver reliable pose estimations under such extreme circumstances.

Our method assumes a well-align joint space. Under the diverse distribution of animal species,
our method may fail to generalize to species with novel keypoints. Due to the limited diversity of
current animal datasets, we cannot provide further analysis on the generalization to novel keypoints
or species, e.g., from four-leg animals to birds, but hope to explore it in future works.

We hope our work can help protect the animals on our planet. Animal pose estimation can
serve as an important tool for analyzing animal behaviors and protecting them. However, training
a reliable pose estimator requires massive fine-annotated datasets, which is unrealistic for wild ani-
mals, especially for rare species. Our method can help overcome this obstacle by learning species-
generalizable representations, thus reducing the need for labor-extensive collections and annotations.

REPRODUCIBILITY STATEMENT

The proposed method is reproducible. We have provided the PyTorch-style code for the proposed
attention module, and the detailed training strategies in the main text and the appendix.
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Table 5: Ablation studies on attention module for intra-family domain generalization (family Bovi-
dae). Experiments here are conducted on AP-10K (Yu et al., 2021) with the leave-one-out manner.
A.S. = Argali Sheep.

Decomposition With attention Target Domain Average
Antelope A.S. Bilson Buffalo Cow Sheep

Random 56.0 72.6 46.1 60.0 48.9 40.6 53.8
✓ 52.6 (↓) 67.7 (↓) 51.1 (↑) 60.0 (−) 43.7 (↓) 42.8 (↑) 53.0 (↓)

Heuristic 53.4 73.6 48.8 61.1 49.7 41.0 54.6
✓ 49.6 (↓) 69.8 (↓) 48.4 (↓) 58.9 (↓) 47.8 (↓) 39.7 (↓) 52.4(↓)

Geometry 53.9 74.3 45.8 62.9 48.8 41.2 54.5
✓ 55.4 (↑) 70.3 (↓) 47.0 (↑) 63.8 (↑) 48.8 (−) 44.8 (↑) 55.1 (↑)

Attention ✓ 60.9 77.3 49.8 68.1 51.8 40.1 57.9

Table 6: Ablation studies on attention module for inter-family domain generalization. Ex-
periments here are conducted on AP-10K (Yu et al., 2021) with the leave-one-out manner.
Cerc.=Cercopithecidae.

Decomposition With attention Target Domain Average
Bovidae Felidae Canidae Ursidae Cerc. Equidae Hominidae

Random 48.6 43.0 53.3 31.5 24.7 39.7 38.4 39.6
✓ 49.3 (↑) 42.0 (↓) 51.2 (↓) 32.0 (↑) 25.6 (↑) 40.6 (↑) 37.7 (↓) 39.8 (↓)

Heuristic 46.0 42.8 49.7 30.7 40.8 40.6 40.0 40.0
✓ 46.6 (↑) 43.9 (↑) 49.2 (↓) 32.8 (↑) 29.7 (↓) 42.2 (↑) 41.3 (↑) 40.8 (↑)

Geometry 49.9 41.9 53.9 28.4 23.0 42.8 46.1 40.9
✓ 50.8 (↑) 42.6 (↑) 54.8 (↑) 36.4 (↑) 25.2 (↑) 39.9 (↓) 42.6 (↓) 41.8 (↑)

Attenion ✓ 52.1 47.7 54.8 31.1 27.2 39.0 45.6 42.9

APPENDIX

A ADDITIONAL ANALYSIS AND RESULTS

Ablation of the pixel-to-concept attention mechanism. We note that the pixel-to-concept attention
mechanism actually has two impacts on the attention-based decomposition, i.e., 1) it learns clues for
joint decomposition, and 2) it incurs interaction between joints and concept proxies, while the other
two decomposition strategies do NOT have such effect. Therefore, although Table 1 and Table 2
in the manuscript show that the attention-based decomposition achieves the largest improvement
among all the four strategies, we are not clear what is the exact reason for its superiority. We answer
this question by adding the same attention module into the network under the other three decompo-
sition strategies (without changing their joint decomposition results). The results are summarized in
Table 5 (intra-family) and Table 6 (inter-family), from which we draw two observations as below:

First, we observe that adding the attention module for joint interaction does not promise improve-
ment. For example, it slightly compromises the random and the heuristic decomposition (53.8→53.0
and 54.6→52.4) under the intra-family DG scenario. Second, for geometry-based decomposition,
adding the attention module leads to a slight improvement, i.e., + 0.6 for geometry-based solution
in Table 5. However, it is worth noting that, even with the attention, it still cannot compete with the
attention-based decomposition. Combining these two observations, we conclude that the superiority
of the attention-based solution should not be mainly ascribed to the pixel-to-concept interactions but
to better joint concepts.

What if treat all joints as one concept or treat each joint as individual concepts? In Table 7, we
complement the results when manually set k = 1 and k = 17, which treats all joints one concept
or treat each joint as one concept. Despite the network split, the manual concept division barely
improves the performance over the ERM baseline, which again justifies the effectiveness of the
proposed D-Gen paradigm. These results also validate that simply increasing the model capacity
cannot promise improvement in the generalization.
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Table 7: DG results (AP) on AP-10K (Yu et al., 2021) under varying k (number of concepts) with
D-Gen paradigm or manual setting.

D-Gen Manual
Decom. 3 6 9 1 17

Intra-DG
Attention-based 57.9 57.1 56.9

52.8 51.9Geometry-based 54.2 53.9 51.0
Random 53.8 52.9 53.1

Inter-DG
Attention-based 42.5 42.0 42.1

38.0 38.2Geometry-based 40.9 40.8 39.5
Random 39.6 40.3 38.8

Table 8: Comparison on the training time of each iteration.
Method ERM MisStyle GradSur SWAD Fish Ours
Time of iteration (ms) 250 251 310 290 2246 280

Comparison on more datasets. In Table 10, we present the generalization results to Horse-C
dataset (Mathis et al., 2021). Following their evaluation protocol, we validate the effectiveness of
the proposed method on this benchmark and report the results, and again attains superior results.

Analysis on joint feature extraction In Table 11, we testify the sensitivity to the feature extrac-
tion process, i.e., localizing the joint features with ground truth or the prediction. The negligible
difference verifies that our method is robust to the choice on clues for feature extraction.

Analysis on model capacity In Table 9, we present the analysis of the model capacity, i.e., FLOPs
and inference speed. And in Table 8, we compare the time for each training iteration . Apparently,
our method does not require longer time even with two stages when compared with some previous
SOTAs. This is because some of them employ extra inner steps during the optimization. For exam-
ple, Fish (Shi et al., 2022) requires to perform n inner steps to aggregate the gradients of n domains
independently.

Evaluation of uncertainty. In Table 12, we repeat our experiments on two more data splits with
three different random seeds. Under such variation, we re-evaluate the uncertainty in two scenarios,
i.e., intra-family DG within Bovidae and inter-family DG on AP-10K. The results show consistent
uncertainty with the main paper on both scenarios.
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Table 9: Analysis on the model capacity.
Model configuration FLOPs (G) Inference speed(MS)
Original Network (ResNet-50) 21.0 9.2
with network split 24.8 12.4

Table 10: PCK@0.3(%) for out-of-distribution generalization to Horse-C (Mathis et al., 2021)
(FF=front foot; HF = Hind foot; HH = Hind Hock).

Method Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF Average

Mathis et al. (2021) 68.2 73.6 85.4 85.8 88.1 72.6 70.2 89.2 85.7 77.0 74.1 79.1
D-Gen (attention) 67.9 76.4 86.1 83.8 88.3 79.6 74.3 90.1 86.6 79.3 76.6 80.9

Table 11: Results with different clues for joint feature extraction. Experiments here are under the
inter-family DG scenario on AP-10K (Yu et al., 2021). Cerc.=Cercopithecidae.

Extraction clue Target Domain Average
Bovidae Felidae Canidae Ursidae Cerc. Equidae Hominidae

Ground truth 53.1 47.2 52.3 35.9 28.7 47.5 46.6 43.2
Prediction 52.1 47.7 54.8 31.1 27.2 39.0 45.6 42.9

Table 12: More random runs for uncertainty evaluation. Experiments here are conducted on AP-
10K (Yu et al., 2021) in the leave-one-out manner. The intra-family DG is performed on the family
Bovidae.

Transfer Data Split 1 Data Split 2
Random run 1 Random run 2 Random run 3 Average Random run 1 Random run 2 Random run 3 Average

Intra-Family DG 57.91 57.13 58.03 57.69 ± 0.49 57.47 58.34 57.32 57.81 ±0.47
Inter-Family DG 43.13 42.14 42.63 42.63 ± 0.50 42.92 43.31 41.98 42.73 ± 0.68
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More qualitative comparisons between different joint decomposition strategies. In Fig. 7, we
provide more visualizations of the mined concepts with different decomposition strategies, and we
make the following observations:

1) Despite being intuitively reasonable, heuristic decomposition may induce ambiguity between
some hard-to-distinguish joints. For example, the left and right forelegs are assigned to the same
concept, while distinguishing them within the same concept might not be easy.

2) For the geometry-based solution, we notice that it tends to focus on and identify closely-related
structures in the geometric space, i.e., the forelegs and the hind legs.

3) In Fig. 7 (c), we find that the left eye and the right eye are assigned to different concepts. This
result may seem counter-intuitive at first glance but is actually reasonable from a closer look. It is
because the left and right eyes are very small and hard to distinguish. Therefore, associating the left
and right eyes with some different easy-to-distinguish joints helps to discriminate them, as well. On
the contrary, both the heuristic and geometry-based strategies assign the left and right eyes to the
same concept and are actually inferior.

Qualitative comparisons on pixel-to-concept attention. To better understand the pixel-to-concept
attention, we present the visualization of the learned attention maps in Fig. 8. As we could ob-
server, each concept embedding apparently favors specific regions, and such preference is consistent
over different species. Such a phenomenon verifies that the proposed attention mechanism indeed
encourages the inter-joint relationships that can benefit the generalization.

Qualitative comparison with previous solutions on pose estimation results. In Fig. 9 and Fig. 10,
we present the qualitative results on intra-family and inter-family DG, respectively, and compare
with previous solutions. Compared with the previous solution, the proposed D-Gen paradigm can
deliver more accurate estimations, proving the effectiveness of the proposed method. Concretely,
the larger variation in appearance and shape renders previous solutions less effective, especially on
the joints from non-rigid parts, e.g., legs. In contrast, our method, especially the attention-based
variant, shows stronger robustness to them and delivers more accurate estimations on both intra-DG
and inter-DG scenarios.

(a) Heuristic decomposition

(b) Geometry-based decomposition

(c) Attention-based decomposition

Figure 7: Concept visualization on AP-10K (Yu et al., 2021), where different mined concepts are
in different colors. A noticeable observation is that the attention-based strategy assigns the left and
right eyes to different concepts. This decomposition result seems counter-intuitive but is actually
reasonable: it associates the hard-to-distinguish left and right eyes with different easy-to-distinguish
joints, so that the latter joints provide clues for distinguishing the left and right eyes.
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Figure 8: Attention weight visualization on AP-10K (Yu et al., 2021), where the bottom two rows
correspond to the heatmap of different concepts. With a variety of animal species, i.e., cow, wolf,
sheep, and dog, the concept embedding can effectively attend and associate specific keypoints, which
further justifies the effectiveness of the proposed approach.

Fish SWAD GeometryHeuristic Attention. Ground Truth

102

112

162

174

Figure 9: Pose estimation result under the intra-family DG on AP-10K (Yu et al., 2021). Experi-
ments here follow the leave-one-out protocol on Family Bovidae and with the Antelope as the target
domain. Compared with solutions, our method demonstrates stronger capability on joint localization
and identification, especially on joints from non-rigid part, e.g., legs.
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Figure 10: Pose estimation result under the inter-family DG on AP-10K (Yu et al., 2021). Experi-
ments here follow the leave-one-out protocol and the target domain is Bovidae. Under a larger gap
between species, our method maintains its superiority against previous solutions.
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Algorithm A PyTorch-style pseudocode for pixel-to-concept attention

import torch
import torch.nn as nn
import torch.nn.functional as F

class Pixel2Concept_Attention(nn.Module):
def __init__(self, q_dim, k_dim, v_dim, hid_dim, out_dim, dropout=0.05):

super(Pixel2Concept_Attention, self).__init__()
# q_dim = k_dim = v_dim = hid_dim = out_dim = 256
self.hid_dim = hid_dim
self.w_query = nn.Linear(k_dim, hid_dim)
self.w_key = nn.Conv2d(in_channels=q_dim, out_channels=hid_dim,

kernel_size=1, stride=1, padding=0)
self.w_value = nn.Linear(k_dim, hid_dim)
self.W = nn.Conv2d(in_channels=hid_dim,out_channels=out_dim,

kernel_size=1, stride=1, padding=0)
self.dropout = nn.Dropout(dropout)
self.W = nn.Conv2d(out_dim, out_dim, kernel_size=1, padding=0)
# Concept embedding, where k is the number of concepts
self.conceptEmb =nn.Parameter(torch.FloatTensor(self.config.k, 256))

def forward(self, feats):
B, C, H, W = feats.shape
q = self.w_query(self.concept_emb)
k = self.w_key(feats)
v = self.w_value(self.concept_emb)
k = k.permute(0, 2, 3, 1)
q = q.permute(1,0).unsqueeze(0)
simi = torch.matmul(k, q)
simi = simi * (self.hid_dim**(-.5))
simi = F.softmax(simi, dim=-1)
simi = self.dropout(simi)
out = torch.matmul(simi, v)
out = out.permute(0, 3, 1, 2)
out = feats + self.W(out)
return out

B MORE IMPLEMENTATION DETAILS

Experimental setup. All the presented solutions are re-implemented with their released code.

MixStyle (Zhou et al., 2021): We find the default config works best: set the probability to 0.5, α
is set to 0.3, and employ the random style augmentation.

GradSur (Mansilla et al., 2021): We adopt the default module, i.e., “PCGrad” function from the
original code, which mitigates the gradient conflicts according to their inner product. No extra
hyper-parameters is required to set.

SWAD (Cha et al., 2021): We report the best results from its presented variants, and no extra hyper-
parameters are required to tune.

Fish (Shi et al., 2022): The meta-learning rate is set to 0.001. Other parameters for optimization
are the same as our default setting.

Training. The training process consists of twos stages, i.e., the first stage derives the concept divi-
sion with the learned concept embeddings, and the second stage optimizes with the concept-specific
branches. To be specific, the first stage takes 60 epochs and the second takes 150 epochs. As for our
one-stage solutions, we optimize them for 210 epochs. For the attention-based decomposition, the
attention module is activated for both stages.

Evaluation. Following (Sun et al., 2019b; Cheng et al., 2020), we evaluate the pose similarities
with OKS =

∑
i exp(−d2

i /2s
2k2

i )δ(vi>0)∑
i δ(vi>0) . Here di denotes the Euclidean distance between a detected

keypoint and its corresponding ground truth, vi is the visibility flag of the ground truth, s is the
object scale, and ki is a per-keypoint constant that controls falloff. The reported average precision
is the average of AP scores at OKS = (0.50, 0.55, ..., 0.90, 0.95.)

Data augmentation. In training, we employ the following data augmentation: random rotation
([−30°, 30°]), random scale ([0.75, 1.5]), random translation ([−40, 40]) to crop an input image
patch of size 256× 256 and random flip. In inference, only resize and normalization is performed.

Attention module. In Algo. A, we provide the implementation of the pixel-to-concept attention.
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