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ABSTRACT

Personalized medicine is a groundbreaking healthcare framework for the 21st cen-
tury, tailoring medical treatments to individuals based on unique clinical charac-
teristics, including diverse medical imaging modalities. Given the significant dif-
ferences among these modalities due to distinct underlying imaging principles,
generalization in multi-modal medical image tasks becomes substantially chal-
lenging. Previous methods addressing multi-modal generalization rarely consider
personalization, primarily focusing on common anatomical information. This pa-
per aims to bridge multi-modal generalization with the concept of personalized
medicine. Specifically, we propose a novel approach to derive a tractable form of
the underlying personalized invariant representation Xh by leveraging individual-
level constraints and a learnable biological prior. We demonstrate the feasibility
and benefits of learning a personalized Xh, showing that this representation is
highly generalizable and transferable across various multi-modal medical tasks.
Our method is rigorously validated on medical imaging modalities emphasizing
both physical structure and functional information, encompassing a range of tasks
that require generalization. Extensive experimental results consistently show that
our approach significantly improves performance across diverse scenarios, con-
firming its effectiveness.

1 INTRODUCTION
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Figure 1: Diagrams of medical
modalities and individual differ-
ences. The individual variations
may be significant and warrant fur-
ther research attention from the
medical intelligence community.

Personalized medicine represents a transformative framework
for 21st century healthcare, tailoring medical treatments to
each patient’s unique characteristics (Whitcomb, 2012; Kat-
sanis et al., 2008; Chan & Ginsburg, 2011). This approach ne-
cessitates diverse information, including clinical data such as
radiological images. Three-dimensional medical images, gen-
erated through specialized techniques and radiopharmaceuti-
cals, excel at highlighting specific anatomical features. Col-
lectively, different medical image modalities provide a com-
prehensive view of a patient’s structural and functional charac-
teristics. However, this distinction between medical modalities
creates significant generalization challenges in medical image
analysis, especially when certain modalities may be inaccessi-
ble due to an individual’s financial constraints or physical limi-
tations, thereby complicating the effectiveness of personalized
medicine.

As illustrated in Fig. 1, contemporary research in medical intelligence is mainly concentrated on
structural modalities that depict physical anatomy. This includes Magnetic Resonance Imaging
(MRI) scans (Zhao et al., 2022), which use strong magnetic fields and radiofrequency currents
yielding distinct sequences, and Computed Tomography (CT) scans (Özbey et al., 2023; Zhan et al.,
2024), which employ X-rays to measure its attenuation. Other studies (Yousefirizi et al., 2021) focus
on the functional modalities associated with biochemistry, such as Positron Emission Tomography
(PET) scans. PET scans are expensive functional imaging scans that employ radiotracers emitting
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gamma rays to visualize and measure metabolic processes. The differing imaging principles result
in substantial modality gaps, presenting a critical challenge for model generalization. For clarity,
we categorize these modalities for generalization tasks into two types: homogeneous generalization,
which pertains to generalizing within structural or functional modalities (e.g., T1, T2, T1ce, and
Flair in MRI, as shown in Fig. 1); and heterogeneous generalization, which involves generalizing
across both structural and functional modalities, such as CT and PET.

As each person is fundamentally different from the average of the population (Whitcomb, 2012),
the concept of multi-modality generalization needs comprehensive discussion within the scope of
personalization, an area scarcely addressed in previous research. An ideally well-generalized per-
sonalized medical model across modalities should (1) provide additional insights derived from all
modalities when only a subset is accessible and (2) seamlessly transfer across domains while main-
taining the capacity to achieve (1). While pre-training can significantly enhance downstream gen-
eralization, some recent approaches concentrate on learning common physical anatomy invariance
at the class level (Jiang et al., 2023), which may overlook the individual variations. Another line
of research (Tang et al., 2022; Wu et al., 2024; Jiang et al., 2023) primarily addresses the transfer-
ability of single-modal tasks and may not be suitable for multi-modal scenarios. In addition, most
research on homogeneous generalization for medical tasks focuses on structural sequences of MRI
or CT, employing strategies such as cross-modality transfer (Liu et al., 2023b; Kim & Park, 2024;
Zhan et al., 2024) or targeting challenges like missing modality segmentation (Liu et al., 2021;
Chen et al., 2023; Qiu et al., 2023a;b; Zhan et al., 2024). Heterogeneous generalization presents
a greater challenge due to the disparities between structural and functional information. Despite
its significance, very few efforts (Pan et al., 2023) have addressed heterogeneous generalization,
mainly focusing on one-directional modality transfer (e.g., PET to CT or MRI), and rarely exploring
the model’s generalizability and transferability for other tasks in this context.

To address multi-modality generalization issue for personalization under both homogeneous and het-
erogeneous settings, we formally introduce the concept of the personalized invariant representation
for multi-modal generalization, denoted as Xh, and its constraints as outlined in Hypothesis 3.1.
Furthermore, personalized invariant Xh, which learns aggregated biological information from all
possible modalities specific to the individual, is likely to enhance performance across various medi-
cal tasks for that person. Building on this hypothesis, this paper proposes a general approach aimed
at enhancing the generalization of various medical imaging tasks through personalization. Specifi-
cally, our method constructs an approximation of Xh using the learnable biological prior knowledge
O, via decomposition, invariance, and equivariance constraints during pre-training (refer to Sec-
tion 3.2). The learned approximation of Xh can then be utilized to enhance performance in down-
stream generalization tasks, irrespective of whether a domain gap exists between the pre-training
data and downstream data.

Importantly, this paper demonstrates that obtaining a personalized invariant representation, Xh, is
feasible through our approach, and such invariance leads to generalization improvements across var-
ious medical tasks. To validate our methodology, we conduct experiments on modality transfer and
missing modality segmentation tasks, addressing not only the homogeneous generalization of MRI
but also the rarely explored heterogeneous generalization, such as generalization between PET and
CT. Our findings reveal that our approach successfully captures comprehensive personalized infor-
mation even when only partial modalities are available for a given individual (see Fig. 3). Moreover,
extensive experiments on both homogeneous (Section 4) and heterogeneous (Section 6) general-
ization demonstrate that our approach can be adapted for downstream tasks and surpasses current
state-of-the-art (SOTA) methods in multiple tasks, validating its superiority. We will publicly release
our code, checkpoints and data upon acceptance.

2 RELATED WORK

Medical generalization tasks. Most current work focuses on homogeneous generalization, intro-
ducing tasks such as modality transfer and missing modality segmentation. The most commonly
employed structural modalities — Flair, T1, T2, and T1ce of MRI — are used for brain tumor seg-
mentation (Zhao et al., 2022), or between MRI and CT (Zhan et al., 2024) for modality transfer. Pan
et al. (2023) propose an approach for heterogeneous generalization in terms of modality transfer, but
only tailored for transferring PET to CT.
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Figure 2: Left: Overall framework of learning Xh. Right: Diagrams of differences between previous
learning Zh and our proposed method of learning Xh.

Self-supervised medical pre-train models for medical generalization. Our approach aims to
learn the Xh through pre-training, we list related medical pre-training work Tang et al. (2022); Wu
et al. (2024); Chen et al. (2020b); Jiang et al. (2023) here. A notable work among them is Jiang
et al. (2023), which extracts class-specific anatomical invariance. However, they only focus on a
single modality. Such single-modality approaches may not be able to construct Xh for improving
the generalization across modalities.

Generalization for medical translation. Typical modality transfer approaches are based on GAN
models (Isola et al., 2017; Zhu et al., 2017; Fu et al., 2019; Park et al., 2020; Kong et al., 2021).
In contrast to these GAN-based approaches, some work adopts transformer models (Liu et al.,
2023b; Shi et al., 2023), while others, such as Dhariwal & Nichol (2021); Özbey et al. (2023);
Kim & Park (2024); Xing et al. (2024), explore diffusion-based approaches. The methods such as
MedM2G (Zhan et al., 2024) further incorporate textual information for modality transfer. Ad-
ditionally, UNET-like architectures, which can also be applied to these tasks, are highlighted
in (Hatamizadeh et al., 2022b;a). Most current modality transfer research focuses on improving syn-
thesis quality. Our approach, however, demonstrates that full-modality transfer, when accompanied
by specific constraints, not only enhances generation but also improves downstream generalization.

Alignment in multi-domain generalization. The issue of cross-modality generalization is similar
to the problem of multi-domain generalization, which aims to extract domain invariant represen-
tations (Ganin et al., 2016; Li et al., 2018b;a; Hu et al., 2020; Tan et al., 2024). Most of these
approaches focus on learning invariance across different domains, which may not fit the scope of
personalization.

Generalization for medical segmentation. There are three main types of approaches to missing
modality segmentation. Knowledge distillation-based approaches transfer knowledge from models
with complete modality information (teachers) to models with missing modality information (stu-
dents) (Chen et al., 2021; Wang et al., 2023b). (Ding et al., 2021; Zhang et al., 2022) recover missing
information by leveraging the multimodal latent feature space. Domain adaptation-based methods
aim to reduce the gap between models with complete and incomplete modalities by aligning their
domains Wang et al. (2021). One prominent shared latent space method, MmFormer (Zhang et al.,
2022), exploits intra- and inter-modality dependencies for feature fusion, which is closely related to
our work. Our work reveals that our pre-train model with basic segmentation tuning exceeds these
approaches.

3 LEARNING Xh FOR MEDICAL GENERALIZATION

Preliminaries. In this paper, we denote the encoder as E and its corresponding decoder as D.
For an individual human being h ∈ H, the corresponding medical images are represented as
Xh = Xi

h, X
j
h, . . . , X

k
h , where i, j, . . . , k ∈ M, andM represents the set of all possible modality

combinations. We denote the intermediate features produced by E(Xh) and E(Xi
h) as xh and xi

h,
respectively. The final layer features from the encoder are represented as zh and zih. The learned
approximation of Xh is denoted as Xh

′. Additionally, we define the geometric warping function

3
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ϕi ∈ Φ, where ϕi(Xi
h) ∈ X , and Φ denotes the set of all possible geometric warping functions.

Finally, I(·; ·) and P (·) represent mutual information and probability distribution, respectively.

Before addressing the problem for both homogeneous and heterogeneous generalization, we intro-
duce the Xh Hypothesis for medical imaging:
Hypothesis 3.1 ( Xh Hypothesis). Consider the setM of all possible modality combinations and the
set Φ of all possible geometric transformations (e.g., SO(3)) transformations, for example, rotations
corresponding to different poses of the person. There exists a personalized invariant representation
Xh for an individual from the population h ∈ H, which can be decomposed into modality-specific
images Xi

h given a modality combination i ∈M as a condition:

Xi
h = Xh|i; i ∈M, h ∈ H, s.t.,Xh ⊥⊥M,Φ. (1)

Despite potential differences in modalities and individual variations, clinical diagnoses focus on the
biological conditions of a certain patient, which remain mostly invariant during a single hospital
visit. Thus, the Xh Hypothesis holds in most cases. Our method aims to obtain an accurate approx-
imation of Xh. The overall learning framework for Xh is illustrated on the left-hand side of Fig. 1.
Data from each modality are encoded by E , and the encoded features are used to retrieve knowl-
edge from the learnable biological prior O. The features and retrieved knowledge are then fused.
By applying constraints of decomposition, equivariance, and invariance on the fused features, we
approximate Xh effectively.

As illustrated in Fig. 2 right-hand side top, previous approaches (Liu et al., 2021; Chen et al., 2023;
Qiu et al., 2023a;b) learn invariant representations Zh across modalities through the encoder E for
generalization: E(Xm

h ) → Zh,Zh ⊥⊥ M,m ∈ M, h ∈ H during pre-training or training. Is Zh

a good approximation of Xh, and does it benefit the generalization of different downstream tasks?
The answer might be negative because such an approach may erase modal-specific information in
Z, making it impossible to be decomposed back into different modalities as shown in Eq. (1). More-
over, while current studies Havaei et al. (2016); Varsavsky et al. (2018); Zhang et al. (2022); Ding
et al. (2021) also disentangle modality-dependent features alongside the invariant representation Z to
enhance transferability, this strategy may compromise the generalization ability of Z. The reason is
that the transferred targets become constrained by the learned modal-dependent features, potentially
limiting their broader applicability.

3.1 USING GLOBAL PRIOR O FOR BETTER Xh

To learn a better approximation of Xh, we leverage a global biological prior, denoted as O. If O can
be learned, representations from any modality can complete themselves by retrieving the missing
knowledge from O, forming a better approximation of Xh. Empirically, we initialize a learnable
tensor as O. As shown in Fig. 1, the representation zih retrieves its missing knowledge from O
via attention: zih

′
:= attn(query : zih, key : O, value : O). The original representation and the

retrieved knowledge are then fused through convolution: Xi
h := conv(zih

′
, zih). If the model is

well-trained under the constraints of equivariance, invariance, and decomposition, the fused feature
Xi

h becomes X′
h, a good approximation of Xh. The details of these constraints are discussed in

Section 3.2.

3.2 LEARNING Xh BY PRIOR O THROUGH CONSTRAINTS OF EQUIVARIANCE, INVARIANCE
AND DECOMPOSITION

Contrastive learning. Before we introduce the constraints, we include the contrastive loss as our
baseline. During the pre-training stage, we follow previous work (Chen et al., 2020b; Tang et al.,
2022) and employ the contrastive learning loss. Specifically, the positive pairs are constructed as
augmented samples from the same sub-volume, while the negative pairs are the views from different
sub-volumes. Similar to (Tang et al., 2022), the contrastive coding is obtained by attaching a linear
layer to the zh, z

+
h , and z−h . Hence, the contrastive loss is then defined as:

Lcontrast = − log exp
(
sim

(
zh, z

+
h

)
/t
)
/exp

(
sim

(
zh, z

−
h

)
/t
)
, (2)

where t is the measurement of the normalized temperature scale and sim(·, ·) denotes the dot product
between normalized embeddings as the similarity.
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As discussed in Section 3.1, the Xh can be obtained through a model trained under the constraints of
equivariance, invariance, and decomposition. The following part presents details of those constraints
according to the Xh hypothesis.

Invariance constraint. We constrain the invariance for Xh where Xh ⊥⊥M,Φ through alignment.
The zih firstly uses attention to fetch the knowledge from the prior: zih

′
= attn(zih,O) and then

they are concatenated and fused through convolution Xi
h
′
= conv(zih ⊕ zih

′
). Despite the different

modality combinations and geometric transformations, Xh should be invariant for the person:

Linv =
∑
||Xi

h

′
,Xh

′||2, i ∈M. (3)

While it is well aligned, Xi
h
′
= Xj

h

′
= ... = Xh

′ where j ∈ M. Empirically, we use Xh
′ ≜

mean(Xi
h
′
,Xj

h

′
, ...) and mean(·) refers the averaging of the input sequence.

Equivariance constraint. To learn better O and Xh
′ as the personalized invariant representation,

we constrain the geometric equivariance and representation invariance. Consider the sample space
of all modalities Xi

h ∈ X , i ∈ M, the geometric equivariance constraint forces that the geometry
of the generated medical image is equivariant to ϕi, which can be constrained by the MSE loss in
Eq. (6). Furthermore, such equivariance demands that ϕ(xi

h) and zih contain the information of the
geometric transformation ϕi, inferring that it is able to extract the ϕi from ϕi(xi

h) and zih. Therefre,
if ϕi can be extracted from the last-layer output zih, it can also be extracted from the ϕi(xi

h) from
the previous layers:

min
D,F

Dis(ϕi,F(zih)), (4)

where F : F(zih) → ϕi′ extracts the geometric transformation and Dis(,̇)̇ denotes the distance
measurement between ϕi′ and ϕi. Empirically, following (Tang et al., 2022), we also adopt rotation
as the geometric transformation, predicting the angle categories of input sub-volume is rotated.
Under this case, ΦR is defined as rotations at [0, 90, 180, 270] degrees along the z-axis, and ϕi

r ∈ ΦR

is the ground truth rotation categories. Fzih produces the softmax probabilities of rotation categories.
The loss is in the form of:

Lequ = −
∑|ΦR|

r=1
ϕi
r logF(zih). (5)

Decomposition constraint. As shown in Eq. (1) of Xh Hypothesis, the Xh
′ need to be able to

be decomposed as different modalities, which refers: minE,D,O I(P (Xh
′|i);P (Xi

h)). An intuitive
approach is reconstructing all possible modalities by using Xh, whose objective can be formed as:

Ldecom =
∑|M|

1

∥∥∥ϕi−1 (D (
Xh

′|ϕi(xi
h)
))

, Xh

∥∥∥2 , i ∈M, (6)

where ϕi(xi
h) represents intermediate representations produced during E(ϕi(Xi

h)) and Xh denotes
all possible modalities. Intuitively, ϕi(xi

h) from earlier layers of the encoder constrains modality
information thus D(Xh

′|ϕi(xi
h)) ≜ D(Xh

′|i). Specifically, the generated medical image is trans-
formed back by using the inverse of ϕi to align with the inputs.

Final loss for learning Xh. The final loss for pre-training is the combination of above losses:

Lpre = Lcontrast + Ldecom + Lequ + Linv, (7)

where the weight of each loss is omitted here.

3.2.1 THE CONNECTION BETWEEN THE CONSTRAINTS AND O

It is important to note that the above constraints are closely interconnected, as they align with Eq. (1).
After obtaining additional knowledge from O, the invariance constraint ensures that the representa-
tions from each modality for a given individual are the same, such that Xi

h
′ and Xh

′ can be consid-
ered equivalent. Combined with the decomposition constraint, which enforces that Xh

′ is shared for
the generation of all possible modalities, Xh

′ is thus able to generalize across modalities.

Additionally, the equivariance and decomposition constraints implicitly maintain SO(3)-
equivariance by satisfying the relation D ◦ E(ϕi(Xi

h); θ) = ϕi(D ◦ E(Xi
h; θ))

1, where θ represents
1The SO(3) transformations are left-multiplication; they are expressed here in a simplified form, using ϕi(·).
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Table 1: Modality transfer results of MRI on BRATS23: Comparison between previous methods
and our method. The best results are highlighted in blue. Results denoted with ∗ are gained from Kim
& Park (2024), while the results denoted with † are gathered from Xing et al. (2024).

Task T1→T2 T2 → Flair T1 → T1ce
Method PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ SSIM↑
Pix2Pix (Isola et al., 2017) 24.624∗ 0.109∗ 0.874∗ 24.82† 0.0250† 0.846† 27.05† 0.858†

CycleGAN (Zhu et al., 2017) 23.535∗ 0.155∗ 0.837∗ 23.418∗ 0.164∗ 0.825∗ 30.13† 0.906†

NICEGAN (Chen et al., 2020a) 23.721∗ 0.148∗ 0.840∗ 23.643∗ 0.148∗ 0.829∗ - -
GcGAN (Fu et al., 2019) - - - 29.98† - 0.917† 25.98† 0.872†

CUT (Park et al., 2020) - - - 23.54† - 0.819† 26.27† 0.846†

RegGAN (Kong et al., 2021) 24.884∗ 0.094∗ 0.881∗ 24.576∗ 0.112∗ 0.852∗ 31.36† 0.930†

ResViT (Dalmaz et al., 2022) 25.578∗ 0.088∗ 0.895∗ 24.825∗ 0.108∗ 0.861∗ 31.46† 0.932†

Diffusion (Dhariwal & Nichol, 2021) - - - 31.98† - 0.930† 29.22† 0.921†

2D

MD-Diff (Xing et al., 2024) - - - 30.76† - 0.934† 33.08† 0.948†

Pix2Pix 23.740∗ 0.138∗ 0.835∗ 23.508∗ 0.152∗ 0.822∗ - -
CycleGAN 25.181∗ 0.097∗ 0.887∗ 24.602∗ 0.113∗ 0.854∗ - -
EaGAN (Yu et al., 2019) 24.884∗ 0.094∗ 0.881∗ 24.576∗ 0.112∗ 0.852∗ - -
MS-SPADE (Kim & Park, 2024) 25.818∗ 0.079∗ 0.904∗ 25.074∗ 0.098∗ 0.867∗ 26.119∗ 0.912∗

3D

Ours 30.756 0.065 0.944 32.224 0.046 0.941 34.547 0.955

the model parameters after training. This ensures that geometric transformations are preserved in
the latent features zih, such that F(zih) = ϕi. The invariance constraint then requires that zih with
geometric transformations can retrieve features from O to form Xi

h
′, which remains invariant to any

geometric transformation. This implicitly constrains O to contain comprehensive biological infor-
mation, including other potential geometric transformations, thereby improving the X′

h through O
in approximating Xh and enhancing the robustness of Xh

′.

3.3 APPLYING Xh FOR DIFFERENT MODALITIES AND TASKS

After pre-training with the loss function Lpre, the model is then utilized for downstream tasks such
as segmentation or generation. We denote the commonly used loss functions for these tasks, such as
dice loss, cross-entropy loss, or mean squared error (MSE) loss, asLori, where paired data and labels
(X,Y ) ∈ (X ,Y) are provided. In addition to Lori, we incorporate the invariance loss, denoted as
Linv, as part of the fine-tuning process for downstream tasks:

Ldown = Lori + Linv. (8)

Empirically, we adopt the SwinUNETR architecture (Hatamizadeh et al., 2022a) as the backbone
of the encoder E , and implement the proposed components. The model is trained with Lpre

during the pre-training phase, users have the option to either use the standard SwinUNETR by
loading only our pre-trained encoder weights or to employ our proposed model structure with
all pre-trained weights for downstream tasks. Notably, all modalities for a given individual,
Xh = Xi

h, X
j
h, ..., X

k
h , i, j, ..., k ∈ M, share the same encoder, with the encoder’s channel size

set to match the number of modality types. The input volume size for all experiments is fixed at
96×96×96. Further empirical details on how Xh is leveraged for homogeneous and heterogeneous
generalization are provided in Sections 4 and 6.

4 HOMOGENEOUS GENERALIZATION: STRUCTURAL MODALITIES OF MRI

This section demonstrates that our approach enhances the homogeneous generalization across struc-
tural modalities in MRI. To validate that our method captures personalized information, especially
anatomical structure features, during the pre-training stage, we first apply it to modality transfer
tasks. Next, we adapt the pre-trained model for the downstream missing modality segmentation
task. Experimental results indicate that our approach outperforms state-of-the-art (SOTA) methods
in both tasks, thereby supporting the Xh Hypothesis and confirming the effectiveness of our method.

4.1 PRE-TRAINING FOR MODALITY TRANSFER

Modality transfer tasks focus on converting medical images from multiple modalities to other modal-
ities. We test our approach on the structural modalities of MRI. This task aligns seamlessly with
our pre-training objective, and the quality of the generated modalities serves as a validation of the

6
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Table 2: Modality transfer results of MRI on BRATS23: Comparison between the previous
method and ours for transfer between all four modalities. The averaged results of metrics for all
validation samples are listed. The best results are highlighted in blue. Please refer to Appendix 9
for the standard derivations according to each result. Please refer to Appendix Table 9 for standard
derivations of the results.

Target T1 T1ce T2 Flair
Source PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

SwinUNETR 32.815 0.092 0.941 31.655 0.202 0.912 24.650 0.361 0.857 27.593 0.202 0.883
MS-SPADE 29.001 0.055 0.942 26.119 0.078 0.912 25.818 0.103 0.904 24.842 0.113 0.859T1

Ours 43.472 0.003 0.996 34.547 0.045 0.955 30.756 0.065 0.944 31.693 0.049 0.937
SwinUNETR 32.456 0.100 0.929 33.001 0.156 0.926 25.125 0.366 0.859 27.699 0.211 0.882
MS-SPADE 26.228 0.076 0.922 28.759 0.060 0.937 25.990 0.092 0.907 25.204 0.092 0.881T1ce

Ours 34.077 0.020 0.962 46.663 0.003 0.996 30.775 0.063 0.942 32.224 0.046 0.941
SwinUNETR 30.102 0.171 0.896 30.354 0.283 0.883 26.831 0.268 0.887 27.234 0.242 0.872
MS-SPADE 25.422 0.085 0.908 25.234 0.087 0.895 29.230 0.048 0.942 25.074 0.098 0.867T2

Ours 32.646 0.028 0.955 33.857 0.051 0.949 43.653 0.006 0.991 32.224 0.046 0.941
SwinUNETR 31.371 0.135 0.916 31.285 0.240 0.905 25.579 0.338 0.867 29.092 0.148 0.923
MS-SPADE 25.186 0.090 0.905 25.899 0.094 0.906 26.146 0.086 0.913 28.608 0.058 0.938Flair

Ours 32.752 0.026 0.951 33.471 0.055 0.944 30.571 0.068 0.940 43.624 0.004 0.995
(1) Without 

prior
(2) With 

prior
(2) – (1) (3)-(1)(3) GT (1) Without prior (2) With prior (2) – (1) (3)-(1)(3) GT

T1

T1ce

T2

Flair

Figure 3: Visualization of the efficacy of prior O. Displayed are the generated modalities on the
input Flair modality of a testing sample on the BTATS21 dataset. Columns show: the generated
images of the model (1) without prior O and (2) with prior O are aligned with (3) the GT images.
Typically, the differences between without and with prior O (the (2)-(1) column) are visualized to
compare with the differences between without O and GT (the (3)-(1) column). Red and blue refer
to the positive (accomplishment) and negative (refinement) values of the differences, respectively.

anatomical knowledge captured by our pre-trained model. Importantly, our approach can generate
all modalities without knowing the exact modalities where the input form, as the learned represen-
tation Xh

′ encompasses comprehensive information across all possible modalities.

Experimental settings. Following previous methods (Kim & Park, 2024), we utilize the multi-
modal brain tumor segmentation challenge 2023 (BRATS23) dataset (Baid et al., 2021; Menze
et al., 2014; Bakas et al., 2017b;a). BRATS23 includes four structural MRI modalities (T1, T1ce,
T2, and FLAIR) for each individual. Our model is tested on the BRATS23 validation set, which
contains these four modalities for 219 individuals. We evaluate the quality of synthesis using
peak signal-to-noise ratio (PSNR), normalized mean squared error (NMSE), and structural simi-
larity index (SSIM) (Yi et al., 2019). To provide comprehensive results, we separately compare the
translation results for T1 → T2 and T2 → FLAIR, as some previous methods are only capable of
single-modality transfer. These include both 2D and 3D generation methods, as shown in Table 1.
Additionally, we employed SwinUNTER for multi-modality translation comparisons. All evalua-
tions were performed on 3D volumes; for the 2D methods, synthesized target images were stacked
to form a 3D volume for comparison. Please refer to model training details to Appendix B.

Results. Table 1 exhibits the transfer results of T1→ T2 and T2→ Flair. Our approach significantly
surpasses previous 2D and 3D generation methods, including single- and multi-modality translation
methods. Specifically, our approach exceeds current SOTA diffusion-based methods, such as 2D-
based MD-Diff and 3D-based MS-SPADE. In terms of multi-modality translation, as Table 2 shows,
our approach performs better than MS-SPADE and SwinUNETR across all metrics under all set-
tings. Moreover, for all settings, it can be seen that our method significantly improves the SSIM,
indicating a better anatomy structure obtained by our approach. These results indicate that the Xh

Hypothesis is plausible for homogeneous generalization, and our personalized approach is able to
obtain its approximation.

Analysis of O. We show that using O for Xh mainly accomplishes the personalized knowledge of
each sequence from MRI modalities. Those modalities are mainly focused on the physical anatomy.
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Table 3: Missing modality segmentation results of MRI on BRATS18: Num denotes the number
of missing modalities for different settings. We report mean and standard deviations of DICE results
of all experimental combinations under the same Num. The best results are highlighted in blue.
Please refer to Appendix Table 10 for detailed results of each setting.

All settings Full Modality Missing Num =1 Missing Num =2 Missing Num =3Method Mean Std. - Mean Std. Mean Std. Mean Std.
RFNET (Ding et al., 2021) 76.08 6.99 83.40 80.63 4.53 76.57 7.15 68.95 6.07

mmFormer Zhang et al. (2022) 76.43 5.83 82.22 79.78 4.33 76.55 6.03 71.45 6.80
SPA (Wang et al., 2023a) 74.80 6.95 82.23 78.99 5.38 75.01 8.31 68.44 8.88
M3AE (Liu et al., 2023a) 72.67 7.43 80.29 77.61 4.59 73.37 7.96 64.79 9.85

M2F (Shi et al., 2023) 73.69 6.83 80.34 77.48 5.19 74.17 6.88 67.51 6.63

Tumor core

Ours 79.78 4.55 86.72 83.64 2.29 79.56 3.28 74.51 3.87
RFNET 59.31 15.10 73.65 66.91 12.90 59.17 14.50 48.35 13.86

mmFormer 62.14 18.60 79.91 71.54 15.94 61.77 19.65 48.86 20.73
SPA 58.92 17.68 73.40 68.44 17.11 58.05 19.77 47.10 19.99

M3AE 55.98 17.45 73.79 65.09 14.54 55.53 20.37 43.09 22.03
M2F 58.84 16.58 75.26 66.67 13.83 58.99 16.19 46.70 15.97

Enhancing tumor

Ours 63.49 7.58 70.64 64.44 6.62 63.87 11.45 60.19 11.31
RFNET 83.92 6.14 89.27 87.25 2.94 84.95 3.81 77.70 7.46

mmFormer 84.84 5.35 88.26 87.59 2.40 85.36 5.60 80.45 4.64
SPA 84.52 5.48 89.03 87.81 1.25 85.26 4.69 78.98 7.32

M3AE 81.52 6.71 86.82 85.64 1.36 82.43 6.08 74.74 8.69
M2F 83.88 5.79 88.72 87.30 1.99 84.62 2.57 78.13 7.81

Whole tumor

Ours 87.63 3.25 91.19 89.49 1.82 87.45 1.03 85.17 3.93

For the Flair modality in MRI, which mainly highlights the lesion but suppresses structures like
bones, Fig. 3 shows that without O, the main difference between the generated images and ground
truth (GT) images is the personalized structure. Prior O for Xh accomplishes and refines the personal
level anatomical information, mitigating the gap between them with the GT, so it can be better
transferred to other structural focusing modalities.

4.2 TUNING FOR MISSING MODALITY SEGMENTATION

Experimental settings. To validate the generalization ability of the pre-trained model, we fine-tune
the model obtained from Section 4.1 on the BRATS18 (Menze et al., 2014) from the Multimodal
Brain Tumor Segmentation Challenge. Similar to BRATS23, BRATS18 also consists of the same
four structural modalities. We employ the Dice similarity coefficient (DICE) as the metric for eval-
uation. For a fair comparison, we follow data splits of Shi et al. (2023) and reproduce the results
of previous methods () on these splits by using their released code and following their original set-
tings 2. Additional experimental details can be seen in Appendix B.

Results. Table 3 presents the segmentation results of our approach compared to previous methods.
We also compute the standard deviation of DICE scores under various missing modality settings,
which highlights the robustness of our model. Notably, our approach outperforms previous meth-
ods in most missing modality scenarios, particularly when the number of missing modalities is
large. Our method shows significant improvements in enhancing tumor segmentation, especially
when Missing Num = 3. Moreover, the reduced standard deviation of DICE scores under differ-
ent missing modality settings indicates that our personalized approach consistently delivers superior
segmentation results. This performance improvement stems from the enhanced generalization of
our model, which is rooted in the learned Xh

′.

5 HETEROGENEOUS GENERALIZATION: PET AND CT MODALITIES

Given the differing imaging principles, the modality gap in heterogeneous generalization may be
more pronounced than that in homogeneous generalization, making the former tasks more challeng-
ing. In this section, we evaluate our approach for heterogeneous generalization.

5.1 PRE-TRAINING FOR MODALITY TRANSFER

Experimental settings. We utilize the AutoPET-II dataset Gatidis et al. (2022) from the Automated
Lesion Segmentation in PET/CT challenge for pre-training. The AutoPET-II dataset includes AC-

2Though we tried our best, it can be noticed some reproduced results are lowered than their reported results
in their original paper. It should be clarified that our results also exceed those reported results. However, for
a comprehensive study, we mainly report our reproduced results.
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Table 4: Ablation study - Modality transfer results of PET and CT on AutoPET-II: Ablation
results of models trained under different combinations of constraints. The best and second results
are highlighted in blue and cyan, respectively.

SSIM↑ PSNR↑
+ Contrastive
+ Decomposition • • • • • • • • • • • •
+ Equivariance • • • • • • • •
+ Invariance • • • • • • • •
+ O • • • • • •
PET→ PET 0.9903 0.9835 0.9955 0.9931 0.9957 0.9969 44.8811 42.2223 46.5603 45.5829 47.4198 49.5473
CT→ CT 0.9739 0.9475 0.9419 0.9437 0.9664 0.9780 37.2309 32.0777 31.2692 33.1866 35.4194 37.0989
PET→ CT 0.9161 0.9148 0.9215 0.9070 0.9121 0.9282 28.1046 29.3181 29.6694 26.8885 27.2708 30.1548
CT→ PET 0.9884 0.9824 0.9851 0.9834 0.9842 0.9883 39.8490 39.0795 39.1718 39.4528 39.4348 41.5840
Avg. 0.9672 0.9571 0.9610 0.9568 0.9646 0.9728 37.5164 35.6744 36.6677 36.2777 37.3862 39.5963

Table 5: Segmentation results of PET and CT on AutoPET-II: Comparison between the previous
method and ours. The best results are highlighted in blue.

Method Dice↑ Dice-↑ TPR↑ TNR↑ FNR↓ FPR↓
nnUnet (Isensee et al., 2021) 33.10 - - - - -
UNETR (Hatamizadeh et al., 2022b) 10.81 23.14 80.65 3.64 19.35 96.36
SwinUNETR (Hatamizadeh et al., 2022a) without pre-train 43.45 62.60 90.32 62.73 9.68 37.27
SwinUNETR with its pre-train (Tang et al., 2022) 44.06 57.79 89.25 73.64 10.75 26.36
Ours 48.20 61.16 88.17 77.27 11.83 22.72

PET and CT pairs, where the PET scans adopt FDG tracers, and their attenuation is corrected using
the corresponding CT scans. Specifically, we divide the AutoPET-II dataset into training and testing
sets. Similar to our approach for heterogeneous generalization, we adopt the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) as evaluation metrics. In this section, we
present the results of models that employ different combinations of the constraints and the set O. We
use both contrastive loss and the decomposition constraint as our baseline. Please refer to training
details in Appendix B.

CT

PET

CT PET

GT 

Target

In
pu

t

Figure 4: Gener-
ated samples on
AUTOPET-II.

Results. As shown in Table 4 and generated examples in Fig. 4, incorporat-
ing O with different combinations of constraints improves generation qual-
ity across most metrics. Specifically, using the constraints without O does
not guarantee improvements, as discussed in Section 3.2.1. Ultimately, em-
ploying all constraints along with O yields the best average results across all
translations, validating that our approach performs well in heterogeneous gen-
eralization settings. These results indicate that our method under the scope of
personalization bridges the gap between structural and functional modalities.
We validate the transferability of all these pre-train models in Appendix A.1,
where additionally analysis are provided.

5.2 TUNING FOR SEGMENTATION

Experimental settings. We utilize the AutoPET-II Gatidis et al. (2022) dataset for segmentation,
evaluating performance using the DICE metric. It is important to note that we employ the same
training and testing splits as in Section 5.1 to avoid data leakage. Specifically, we adhere to the
settings from the official challenge; DICE is calculated in the standard manner but is set to zero for
false negatives and true negatives. Additionally, we introduce DICE- to include the mean across all
samples, along with true positive rate (TPR), true negative rate (TNR), false negative rate (FNR),
and false positive rate (FPR) for the missing modality segmentation evaluation. Our method is
compared against nnUNET (Isensee et al., 2021), UNETR (Hatamizadeh et al., 2022b), and Swin-
UNETR (Hatamizadeh et al., 2022a), which are trained directly on the dataset without pre-training.
Notably, we also compare our approach with SwinUNETR using its pre-training strategy (Tang
et al., 2022). Please refer to training details in Appendix B.

Results. The full modality segmentation results are exhibited in Table 5. The results indicate that
with proper model architecture, such as SwinUNETR, using both two modalities usually outper-
forms solely using PET. It can be observed that models using our pre-train improve the results
across all metrics. Typically, SwinUNETR using our pre-train significantly exceeds it without our
pre-trained model, indicating the personalized invariant learned by our pre-train generalizes to the
downstream well and can boost the downstream tasks. Moreover, using our proposed components
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Table 6: Modality transfer results of NAC-PET to
AC-PET and CT that tuned on HNSCC and evalu-
ated on HNSCC validation set and NSCLC: Compari-
son between the previous method and ours for transfer
between different modalities. The best results are high-
lighted in blue.

SSIM↑ PSNR↑
HNSCC validation NAC→CT NAC →AC Avg. NAC→CT NAC→AC Avg.
UNETR 0.4899 0.8998 0.6949 21.7330 42.8557 32.2944
SwinUNETR 0.5853 0.9265 0.7559 23.5628 42.5495 33.0561
Ours 0.6939 0.9516 0.8227 25.8498 46.4658 36.1578

SSIM↑ PSNR↑
NSCLC NAC→CT NAC →AC Avg. NAC→CT NAC→AC Avg.
UNETR 0.4476 0.8703 0.6590 20.6182 40.8570 30.7376
SwinUNETR 0.4476 0.8705 0.6591 22.5086 41.3272 31.9179
Ours 0.4744 0.8853 0.6798 22.7791 42.7687 32.7739

NAC
Input

AC
(GT)

NAC→AC
Generated

NAC
Input

AC
(GT)

NAC→AC
Generated

Figure 5: Modality transfer results of
NAC-PET to AC-PET: Generated exam-
ples on the NSCLC dataset for NAC→AC
across individuals.

with the pre-train leads to the best DICE and DICE-. This validates that using the prior further
emphasizes the personalized invariant, which yields the most segmentation improvements.

6 SPECIAL CASE: A MORE COMPLEX SCENARIO

We introduce a more complex scenario, in which the pre-trained model for heterogeneous general-
ization settings is tuned downstream that span both heterogeneous and homogeneous generalization.

Experimental settings. The pre-train model we adopted is from that trained on AC-PET and
CT. Specifically, we tune the model by using the Head and Neck Squamous Cell Carcinoma
(HNCSS) dataset (Grossberg et al., 2020) as the training set and the Non-Small Cell Lung Can-
cer (NSCLC) dataset as the testing set. Both datasets are sourced from The Cancer Imaging Archive
(TCIA) (Clark et al., 2013), and they contain paired non-attenuation-corrected PET (NAC-PET),
attenuation-corrected PET (AC-PET), and CT scans. The model is pre-trained for heterogeneous
generalization between AC-PET and CT. It is tuned for both homogeneous generalization between
AC-PET and NAC-PET and heterogeneous generalization between NAC-PET and CT. Similar to the
previous translation experiments, we use SSIM and PSNR as evaluation metrics. Performance in this
scenario further validates the model’s generalization capabilities. Note here the training and testing
data in the downstream task come from different domains. See training details in Appendix B.

Results. Table 6 presents the results on the HNSCC dataset, while Fig. 5 displays generated sample
images for homogeneous generalization. Our approach achieves superior results across both het-
erogeneous and homogeneous generalizations. For heterogeneous generalization, our method con-
sistently improves SSIM for NAC-PET to CT, indicating that the learned Xh

′ successfully captures
and emphasizes anatomical structures in the generated images, as indicated by improved SSIM.
Moreover, though the model is pre-trained between AC-PET and CT, the improvements are also
consistent for NAC-PET and AC-PET. These findings confirm that our personalized approach is ef-
fective for a complex real-world scenario, demonstrating the transferability and generalizability of
the pre-trained model to downstream tasks under various scenarios.

7 CONCLUSION

This paper proposes a universal approach to tackle multi-modality generalization by approximating
personalized invariant representation Xh through invariance, equivariance, and decomposition con-
straints with a learnable biological prior. We specifically unveil that learning Xh is feasible, and it
would significantly benefit the generalization in medical tasks.

Limitations, challenges, and future work. To enhance the validation of our approach, we adhere to
commonly used settings during the tuning stage. Exploring alternative strategies, such as knowledge
distillation, could further improve downstream performance. Our approach requires datasets where
all modalities are instance-level matched, which can be a stringent condition and may be unattainable
for certain modalities. Future research should explore methods to achieve personalized invariance
without relying on instance-level matched datasets. Additionally, we advocate for the availability of
more open-source multi-modal medical datasets, particularly for functional modalities, as these are
not widely accessible to researchers.
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A SOCIAL IMPACT

This work presents an approach to tackle multi-modality generalization through personalization.
We hope our work can encourage the community to work towards practical, personalized medical
models with border generalization ability.

A.1 DOWNSTREAM SEGMENTATION ABLATION STUDY

Table 7: Ablation study - Segmentation results of using different pre-train models on AutoPET-
II: Comparison between the pre-train models with different settings and ours. The best results are
highlighted in blue and cyan.

ID Pretrian DICE↑ DICE-↑ TPR↑ TNR↑ FNR↓ FPR↓
1 + Contrastive + Decomposition + Equivariance 40.85 55.79 81.72 69.09 18.28 30.91
2 + Contrastive + Decomposition + Invariance 44.34 48.63 77.42 91.82 22.58 8.18
3 + Contrastive + Decomposition + Equivariance + Invariance 42.42 60.67 89.25 63.64 10.75 36.36
4 + Contrastive + Decomposition + Equivariance + O 46.31 55.77 83.87 82.73 16.13 17.27
5 + Contrastive + Decomposition + Invariance + O 44.42 57.80 88.17 74.55 11.83 25.45
6 + Contrastive + Decomposition + Equivariance + Invariance + O 48.20 61.16 88.17 77.27 11.83 22.72

We demonstrate the effectiveness of our proposed components and discuss the process of learning
an anatomy-invariant representation. Experimental results for downstream segmentation tasks and
visualizations of the pre-trained models are presented in Table 7. All experiments are conducted
under consistent settings to ensure a fair comparison.

Using all constraints together with O yields the best results. Consistent with Section 3.2.1, the
results indicate that using different constraints alone may not guarantee improvements; however,
incorporating all constraints along with O results in the best outcomes. This validates the plausi-
bility of the Xh Hypothesis and demonstrates that achieving good approximation of it significantly
enhances generalization.

Using prior O with decomposition constraint improves the model performance for different
settings. Despite different settings, additionally using O with decomposition improves the down-
stream model performance. Combined with the improvements from modality transfer results in
Table 4, it suggests that O helps with better obtaining anatomical structure.

The invariance and equivariance constraints can not be applied to the same feature. It needs to
be highlighted that invariance and equivariance constraints can not be applied to the same features
as they conflict with each other. As shown in task 3, without O, invariance and equivariance con-
straints are applied to the latent feature simultaneously, leading to a significant performance drop. In
comparison, apply equivariance constraint before using O and applying invariance constraint after
using O yields the best results. This is because the geometrical transformation contained in zih needs
to be accomplished by fetching other possible geometrical transformation information form O and
then fused to be invariant.

B EXPERIMENTAL DETAILS

The model and data loaders are built by using MONAI https://docs.monai.io/en/
stable/index.html. Please refer to all the details of the implementation in the code. We
present some key implementations below.

B.1 OVERALL TRAINING PROCEDURE

We provide a pseudo-code for our approach. The loss calculation for Pre-training procedure is
simplified as Algorithm 1 and Downstream tuning as Algorithm 2. It is notable that the empirical
procedure is flexible as long as the O is properly used to construct X′

h and those constraints are
applied to X′

h.
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Algorithm 1: Calculate losses during one step for pre-training
Data: X ∈ X , epoch
Initialize learnable O E(·),D(·);
while i ̸= epoch do

X ′
h ← None;

for h ∈ H do
for i ∈M do
Lpre ← 0;
Xi

h ∼ X , ϕi ∼ Φ;
Xi

h
+
, Xi

h
−
= Augment(ϕi(Xi

h));
(zih, x

i
h), (z

i
h
−
, xi

h
−
), (zih

+
, xi

h
+
)← E(ϕi(Xi

h)), E(Xi
h
−
), E(Xi

h
+
);

Calculate Lcontrast(z
i
h, z

i
h
+
, zih

−
), Lpre+ = Lcontrast;

F(zih)→ ϕi′;
Calculate Lequ(ϕ

i′, ϕi), Lpre+ = Lequ;
zih

′
:= Attn(query : zih, key : O, value : O);

Xi
h
′
:= Conv(zih

′, zih) ;
if X ′

h is not None ; /* For saving memory */
then

Calculate Linv(X
i
h
′, X ′

h), Lpre+ = Linv;
X ′

h := (Xh +Xi
h
′)/2;

else
X ′

h := Xi
h
′ ;

end
Xi

h
′ := D(Xi

h
′, xi

h);
Calculate Ldecom(ϕi−1(Xi

h
′), Xh), Lpre+ = Ldecom;

end
end

end

B.2 HOMOGENEOUS GENERALIZATION: STRUCTURAL MODALITIES IN MRI

B.2.1 PRE-TRAINING AND MODALITY TRANSFER.

Experimental settings. We use four A100 GPUs for training. The learning rate we used for the
modality transfer is set to 0.0002, and the training epoch is set to 1000. Both the number of input
and out channels is set as 4.

Training details. For the model, both the input and output channels are set to 4, corresponding to the
four MRI modalities. All modalities are loaded and cropped to a size of 96×96×96 simultaneously.
Following (Kim & Park, 2024), we also normalize each MRI modality to have zero mean and unit
variance. During training, the background is excluded for modal generation. A single modality is
repeated four times to create four channels during training to obtain Xi

h
′. The training loss follows

the Lpre, whose calculation details during the training phase can be seen in Algorithm 1.

B.2.2 MISSING MODALITY SEGMENTATION.

We use four A100 GPUs for tuning. The learning rate we used for the modality transfer is set to
0.0002, and the training epoch is set to 1000. Both the number of input and out channels is set as 4.

Training details. Following Shi et al. (2023), we also normalize each MRI modality to zero mean
and unit variance. For the fine-tuning, we employ Dice loss, the weighted cross-entropy loss that is
adopted by Shi et al. (2023), and the additional Linv .
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Algorithm 2: Calculate losses during one step for fine-tuning
Data: (X,Y ) ∈ (X ,Y), epoch
Load pre-trained O E(·),D(·);
while i ̸= epoch do

X ′
h ← None;

for h ∈ H do
for i ∈M do
Ldown ← 0;
(Xi

h, Yh) ∼ X,Y ;
(zih, x

i
h)← E(Xi

h);
zih

′
:= Attn(query : zih, key : O, value : O);

Xi
h
′
:= Conv(zih

′, zih) ;
if X ′

h is not None ; /* For saving memory */
then

Calculate Linv(X
i
h
′, X ′

h), Ldown+ = Linv;
X ′

h := (Xh +Xi
h
′)/2;

else
X ′

h := Xi
h
′ ;

end
Y ′
h := D(Xi

h
′, xi

h);
Calculate Lori(Y

′
h, Yh), Ldown+ = Lori;

end
end

end

B.3 HETEROGENEOUS GENERALIZATION: PET AND CT MODALITIES

B.3.1 MODALITY TRANSFER

All models are trained using A100 GPUs. Training details. All models are trained under the same
situations, using the same data pre-processing transforms.

B.3.2 DOWNSTREAM SEGMENTATION

Training details. All training and fine-tuning experiments use the same losses, while the approaches
with our pre-train additionally use Linv for downstream fine-tuning. Moreover, we also compare the
original architecture of SwinUNETR using our pre-trained weights with fully using our architecture
and our weights for fine-tuning.

B.4 SPECIAL CASE: TUNING FROM HETEROGENEOUS TO HOMOGENEOUS GENERALIZATION
WITH DOMAIN GAP

Training details. For the fine-tuning stage, we use the decoder architecture of SwinUNETR, which
is randomly initialized. The training procedure is similar to the above modality transfer experiments,
with the primary difference being that the input and output channels are set to two. Additionally,
we reproduced the results of UNETR and SwinUNETR for comparison, ensuring that the same loss
functions were applied across models.

C MORE RESULTS

C.1 MODALITY TRANSFER RESULTS ON BRATS22:

Table 8 and Table 9 presents the generation result with standard derivations. The results of our
method and SwinUNETR are produced by ourselves, while the rest of the results are gathered from
Kim & Park (2024). Generated examples are presented in Figs. 6 to 8.
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Table 8: Modality transfer results of MRI on BRATS23: Comparison between previous methods
and our method. The best results are highlighted in blue.

Task T1→T2 T2 → Flair
Dimension Method PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

Pix2Pix 24.624 ± 0.962 0.109 ± 0.028 0.874 ± 0.015 24.361 ± 1.061 0.117 ± 0.021 0.846 ± 0.019
CycleGAN 23.535 ± 1.334 0.155 ± 0.035 0.837 ± 0.028 23.418 ± 0.944 0.164 ± 0.033 0.825 ± 0.035
NICEGAN 23.721 ± 1.136 0.148 ± 0.029 0.840 ± 0.029 23.643 ± 1.045 0.148 ± 0.022 0.829 ± 0.033
RegGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

2D

ResViT 25.578 ± 0.812 0.088 ± 0.021 0.895 ± 0.018 24.825 ± 1.030 0.108 ± 0.018 0.861 ± 0.021
CycleGAN 25.181 ± 0.861 0.097 ± 0.031 0.887 ± 0.012 24.602 ± 1.181 0.113 ± 0.021 0.854 ± 0.018

Pix2Pix 23.740 ± 1.198 0.138 ± 0.032 0.835 ± 0.019 23.508 ± 1.301 0.152 ± 0.039 0.822 ± 0.024
EaGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

MS-SPADE 25.818 ± 0.857 0.079 ± 0.016 0.904 ± 0.012 25.074 ± 1.085 0.098 ± 0.021 0.867 ± 0.018
3D

Ours 30.756 ± 1.950 0.065 ± 0.034 0.944 ± 0.031 32.224 ± 2.518 0.046 ± 0.029 0.941 ± 0.025

Table 9: Modality transfer results of MRI on BRATS23: The averaged results with standard
derivations of metrics between all modalities.

Target T1 T1ce T2 Flair
Source PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

SwinUNETR 32.815 0.092 0.941 31.655 0.202 0.912 24.650 0.361 0.857 27.593 0.202 0.883
Std. 0.968 0.043 0.049 1.062 0.067 0.052 1.008 0.069 0.077 1.144 0.072 0.050

MS-SPADE 29.001 0.055 0.942 26.119 0.078 0.912 25.818 0.103 0.904 24.842 0.113 0.859
Std. 0.643 0.025 0.022 0.816 0.022 0.015 0.857 0.030 0.014 0.728 0.034 0.019

Ours 43.472 0.003 0.996 34.547 0.045 0.955 30.756 0.065 0.944 31.693 0.049 0.937

T1

Std. 2.495 0.004 0.011 1.956 0.030 0.018 1.950 0.034 0.031 2.287 0.024 0.019
SwinUNETR 32.456 0.100 0.929 33.001 0.156 0.926 25.125 0.366 0.859 27.699 0.211 0.882

Std. 1.018 0.044 0.048 0.889 0.055 0.051 0.964 0.071 0.074 1.129 0.071 0.049
MS-SPADE 26.228 0.076 0.922 28.759 0.060 0.937 25.990 0.092 0.907 25.204 0.092 0.881

Std. 0.794 0.027 0.033 0.885 0.019 0.015 0.859 0.032 0.908 0.811 0.050 0.037
Ours 34.077 0.020 0.962 46.663 0.003 0.996 30.775 0.063 0.942 32.224 0.046 0.941

T1ce

Std. 2.484 0.012 0.017 3.240 0.004 0.008 1.812 0.030 0.028 2.518 0.029 0.025
SwinUNETR 30.102 0.171 0.896 30.354 0.283 0.883 26.831 0.268 0.887 27.234 0.242 0.872

Std. 1.405 0.056 0.050 1.249 0.086 0.054 1.144 0.054 0.075 1.154 0.073 0.051
MS-SPADE 25.422 0.085 0.908 25.234 0.087 0.895 29.230 0.048 0.942 25.074 0.098 0.867

Std. 0.852 0.026 0.020 1.152 0.034 0.025 0.720 0.018 0.915 1.085 0.021 0.018
Ours 32.646 0.028 0.955 33.857 0.051 0.949 43.653 0.006 0.991 32.224 0.046 0.941

T2

Std. 2.391 0.028 0.028 1.925 0.040 0.027 3.467 0.024 0.038 2.518 0.029 0.025
SwinUNETR 31.371 0.135 0.916 31.285 0.240 0.905 25.579 0.338 0.867 29.092 0.148 0.923

Std. 1.198 0.051 0.054 1.161 0.077 0.053 0.956 0.064 0.073 0.974 0.055 0.049
MS-SPADE 25.186 0.090 0.905 25.899 0.094 0.906 26.146 0.086 0.913 28.608 0.058 0.938

Std. 0.759 0.028 0.048 1.039 0.025 0.027 0.636 0.028 0.944 0.769 0.025 0.028
Ours 32.752 0.026 0.951 33.471 0.055 0.944 30.571 0.068 0.940 43.624 0.004 0.995

Flair

Std. 2.399 0.020 0.022 1.634 0.035 0.021 1.951 0.035 0.034 2.441 0.008 0.013

C.2 MISSING MODALITY SEGMENTATION RESULTS ON BRATS18:

We provide detailed segmentation results on BRATS18 as Table 10.

Table 10: Missing modality segmentation results of MRI on BRATS18: Num denotes the number
of missing modalities for different settings. The used modalities are highlighted with gray boxes
and the missing ones remain as blank. The results of each setting are presented accordingly.

Missing Num =3 =2 =1 =0
flair
T1

T1ceModality

T2
SPA 65.86 65.27 78.26 66.4 72.99 83.23 70.66 81.25 70.66 80.63 83.22 73.89 83.36 82.05 83.4

M3AE 69.4 65.45 79.12 71.84 79.9 70.45 82.79 81.17 71.62 73.35 81.78 82.42 73.31 81.61 82.22
mmFormer 67.8 77.32 64.56 64.08 81.51 79.43 69.14 70.63 68.6 80.75 81.75 70.92 81.74 81.55 82.23

RFNET 64.03 74.53 58.63 61.95 79.2 77.45 69.25 67.48 67.98 78.85 80.15 70.75 79.4 80.15 80.29
M2F 65.79 63.29 77.31 63.64 70.38 79.93 68.01 79.62 67.68 79.37 80.65 69.73 80.01 79.53 80.34

Tumour Core

Ours 75.83 71.2 75.29 75.71 80.66 83.6 79.23 74.83 79.51 79.52 83.92 82.78 86.65 81.22 86.72
SPA 39.85 41.39 70.43 41.72 45.99 73.07 45.25 72.87 45.25 72.59 73.52 47.56 73.01 73.55 73.65

M3AE 37 38.41 75.8 44.22 78.09 45.2 79.36 78.16 41.71 48.12 79.14 80.06 47.63 79.31 79.91
mmFormer 40.08 72.19 38.89 37.23 73.11 73.06 40.64 42.27 43.65 75.56 43.34 81.74 73.36 75.31 73.4

RFNET 38.69 69.22 30.89 33.56 71.4 70.9 38.53 41.91 40.9 69.51 71.61 43.37 71.17 74.2 73.79
M2F 37.99 37.79 71.74 39.28 43.37 74.66 45.42 73.48 43.5 73.48 73.56 45.93 73.15 74.03 75.26

Enhancing tumour

Ours 67.45 54.83 70.86 47.63 69.38 52.91 70.1 59.45 67.44 63.91 70.79 57.78 69.42 59.76 70.64
SPA 85.77 72.69 71.95 80.4 87.82 87.97 88.27 75.57 88.27 81.8 88.3 88.78 89.06 82.87 89.27

M3AE 87.78 74.69 74.91 84.43 76.09 84.48 89.63 84.4 88.64 88.91 84.04 89.29 88.58 88.45 88.26
mmFormer 84.09 72.85 73.37 85.6 85.97 76.93 87.09 86.09 87.55 87.94 88.36 88.16 88.74 85.96 89.03

RFNET 80.52 67.06 68.42 82.96 82.57 71.97 85.82 83.25 86 84.94 86.06 86.53 86.34 83.61 86.82
M2F 85.72 72.48 71.78 82.53 87.73 87.66 84.35 76.03 87.69 84.27 88.17 88.22 88.47 84.32 88.72

Whole tumour

Ours 89.23 81.73 82.26 87.45 89.74 89.03 88.00 81.92 89.72 86.27 89.12 90.5 91.25 87.1 91.19
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Figure 6: Generated images of our proposed method: slices across ventricles.
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Figure 7: Generated images of our proposed method: slices across cerebral sulcus.
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Figure 8: Generated images of our proposed method: slices across cerebellar hemisphere. Our
method is able to generate defined cerebellar folia.
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