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Abstract

We explore the viability of casting foundation models as generic reward functions
for reinforcement learning. To this end, we propose a simple pipeline that interfaces
an off-the-shelf vision model with a large language model. Specifically, given a
trajectory of observations, we infer the likelihood of an instruction describing the
task that the user wants an agent to perform. We show that this generic likelihood
function exhibits the characteristics ideally expected from a reward function: it
associates high values with the desired behaviour and lower values for several
similar, but incorrect policies. Overall, our work opens the possibility of designing
open-ended agents for interactive tasks via foundation models.

1 Introduction
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Figure 1: Reward functions in RL can be con-
structed explicitly by humans (top), learned from
trajectory datasets (middle), or extracted from the
world knowledge internalized by foundation mod-
els (bottom).

Recent advances in reinforcement learning (RL)
algorithms have significantly simplified the de-
sign of data-driven, interactive agents [1–12].
Such algorithms generally rely on a reward func-
tion that captures a notion of “desirable behav-
ior” to learn policies that output actions for
engaging with the environment—which, itself,
may [6, 7, 13–17] or may not be explicitly mod-
eled [18–23]—in a manner that maximizes the
reward. Though an integral component of the
RL pipeline, the reward function is generally
assumed to be provided by the user. However,
designing a mathematically expressible reward
function that can be optimized using RL algo-
rithms is difficult for most real-world applica-
tions: e.g., even for the simple task of making
a good cup of coffee, how does one mathemat-
ically express if a cup of coffee made by a robot
is “good”? Heuristically designed reward func-
tions based on domain expertise can often allow
hacking in even fairly simple scenarios, i.e., they
can enable learning of policies that maximize the reward, but do not engage in the desired behavior
of interaction with the environment [24–27]. Research on reward modeling [28–35] and imitation
learning [36–43] has tried to address this situation, using offline trajectories of desirable behavior to
either learn a reward function or to imitate behavior of the agent that produced the trajectories. Such
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frameworks however inherit the usual issues witnessed in learning-based systems; e.g., existence of
shortcut solutions that lead to lack of robustness under domain shifts [44–53]. Moreover, collecting
offline trajectories makes these strategies expensive for several real-world applications; e.g., teaching
a robot to not hurt a human by bumping into them is a difficult task to collect trajectories for.

Foundation models (FoMos), especially large language models (LLMs), pretrained on huge, web-
crawled datasets have revolutionized several fields of machine learning [54–58, 58–62]. Demonstrat-
ing unprecedented capabilities for data-driven systems [63–66], the downstream adaptation of an
off-the-shelf LLM has become the norm in most fields [67–75]. In fact, recent work has demon-
strated LLMs can be integrated with other modalities, such as vision, by training of minimalistic
interface components that transform the output of modality-specific models to a representation
space “legible” to the LLM [76–80]. Used alongside pretrained large vision models (LVMs), this
interfacing pipeline further enables the use of LLMs in extremely broad applications that they were
never trained for, e.g., text based image editing [81, 82] or generation of 3D graphics [83, 84].
Given the large amount of internalized knowledge in an LLM [85–87], its ability to reason and
plan (to an extent) [63, 88–94], and a capability to “perceive” the real world via interfacing with
perception models such as LVMs [77, 79, 95–97], we argue foundation models are starting to elicit
qualitative capabilities expected to be useful for design of generalist agents that can robustly function
in open-ended scenarios.

Motivated by the above, in this work, we aim to assess if the framework of RL can benefit from the
use of foundation models as well. Specifically focusing on the task of reward modeling, we make the
following contributions.

• FoMo as Rewards: A framework for eliciting reward functions from foundation models
(Sec. 3). Focusing on scenarios where the task of interest can be described via natural language,
we propose a framework for casting decoder-based LLMs, the workhorse of SOTA language
models, into reward functions. The assumption underlying our framework is that the LLM’s
input embedding space is “approximately grounded” [76, 77, 98], i.e., a pretrained LVM’s
outputs can be accurately processed by the LLM by learning a relatively light-weight interface
model. Accordingly, our framework involves computing representations of observations from a
trajectory via an LVM, using a learned interface to morph these representations to the LLM’s
input embedding space, and evaluating the likelihood of the task’s description using the LLM.

• Extensive qualitative analysis of FoMo as rewards (Sec. 5). We perform an extensive
evaluation to assess whether the rewards elicited by foundation models are sensible. Specifically,
we use an oracle policy that engages in desired behavior and several adversarially perturbed
versions thereof that, to different extents, differ in behavior from the desired one. For example,
in a simple pick-and-place task, instead of picking the correct object, the agent might pick a
different object from the scene. As we show, such adversarial policies achieve worse rewards
than the correct one, indicating the use of FoMo Rewards is in fact viable for practical RL
scenarios.

Before proceeding, we emphasize that our work is currently focused on qualitative assessment of
how to retrieve rewards from foundation models, i.e., we do not train RL policies from scratch and
rely only on procedural environments to demonstrate that the use of foundation models for design of
reward functions is in fact viable. We do believe evaluating RL policies trained using these rewards
and demonstration of the pipeline on real world tasks, e.g., via use of an ego-centric dataset for
interfacing LLMs and LVMs, is both feasible and important. We leave this analysis for future work.

2 Related Work

Several recent works have explored the use of foundation models for interactive tasks, generally
focusing on learning policies based on behavior cloning [99–118], pretraining representations for
improved sample complexity [102, 119–134], or for designing a world model for model-based
RL [17, 135, 136]. A few works have considered the task of reward modeling for training RL policies
using foundation models [137–140]; we discuss approaches most relevant to our work below.

Rewards from foundation models. Assuming access to task descriptions, prior work has consid-
ered the use of vision-language foundation models, e.g., CLIP [141], to infer the representational
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Figure 2: Casting FoMo as Rewards. Our proposed pipeline for casting pretrained foundation
models involves learning an interface model that maps representations of visual observations ({vi})
extracted via pretrained LVMs into a space “legible” to the LLM ({vli}). This interface is a minimal,
1-layer Transformer in our experiments, allowing accommodation of temporal information. The
remapped visual representations are added to a context (ctx ) inspired by instruction induction tasks
for fine-tuning LLMs on downstream settings [156]. Finally, the likelihood of an instruction
describing the desired task is evaluated by inputting the context into a pretrained LLM via Eq. 1.

similarity between a task’s description and the trajectory followed by an agent in the pursuit of per-
forming that task [142–148]. Generally the vision component of these foundation models is trained
on static images, which does not bode well for RL tasks where temporal information is important to
account for. Hence, the works above retrain the vision pipeline from scratch on egocentric datasets
such as Ego4D or on manually collected text-video pairs for the task of interest [121, 149]. A possible
pitfall of such similarity based frameworks is that the training objective for CLIP-like pretraining
has been shown by prior work to yield a “bag-of-words” model that is unable to capture concepts
defined relatively between two objects; e.g., in an image of a person wearing a hat, the model enables
recognizing the person and the hat, but not the fact that the hat is worn by the person [150–153].
As shown by Huang et al. [154], this bag-of-words pitfall leads to a lack of ability to encode tem-
poral constraints in such vision-language models. For example, the representation for instructions
Do A then B and Do B then A, where A and B are two specific tasks, will be extremely close. As
expected, this can lead to undesirable behavior in the learned policies [154].

Success detection. Arguably most relevant to our work, Du et al. [155] investigate the use of multi-
modal foundation models based on a vision-interfaced decoder-only LLM, specifically Flamingo [79].
Flamingo models are trained via learning of a cross-attention interface on top of a PaLM model [61],
yielding a highly performant baseline for multimodal tasks. Du et al. exploit Flamingo models and
assess the successful completion of a task, i.e., provided a trajectory of visual observations from an
agent executing a policy alongside the query “has the task finished yet?”, does the model produce
True or does it produce False? Such a binary success token can be considered a reward function
akin to commonly used success based rewards in learning board game agents [6, 7]. However, success
based rewards can be extremely sparse, limiting their usability in several tasks of interest. In contrast,
our proposed pipeline utilizes likelihood of the task description based on the trajectory up to the
current instant, enabling a dense reward.

3 Proposed framework: FoMo rewards

We next propose our framework for casting pretrained foundation models as reward functions (FoMo
Rewards), which involves assessing the likelihood of an instruction describing the task, provided
representations of visual observations encompassing a trajectory of behavior (see Fig. 2 for an
overview). We exploit the emergent grounding of LLMs, whereby a minimal transformation of a
visual input’s (or in fact other modalities’ inputs) representation can be processed via an LLM to
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perform extremely involved tasks such as visual question answering [77, 98]. Broadly, we perform
the following steps.

1. Infer visual representation of trajectory. Given a set of frames from the agent’s interaction
with the environment up to the current instant t, we use an LVM to transform the frames into
visual embeddings {v1, v2, . . . , vt}.

2. Process visual representations via a pretrained interface model. Trained using a dataset of
instruction-trajectory data (training protocols discussed in Sec. 3.1), the interface transforms
the visual representations to a space processable by the LLM, denoted Trajt = {vl1, vl2, . . . , vlt}.
We emphasize that prior works have trained interfaces as simple as a linear layer to enable
language processing of visual scenes [77]; however, these works focus on static image tasks,
such as Visual Question Answering. We find incorporating temporal information can be difficult
for a mere linear interface and address this by using a 1-layer decoder-only transformer.

3. Infer likelihood of task description given the trajectory’s representation. Finally, inspired
by the “instruction induction” format of Honovich et al. [156], we embed the remapped visual
representations into a broader context, denoted ctxt (see Fig. 2), which is defined by (i)
the phrase “Task: Infer instruction given trajectory”, (ii) the interfaced visual trajectory’s
representation (Trajt), and (iii) a prompt “Instruction:”. We then infer the log-likelihood of the
instruction I = {i1, i2, . . . iN}, where in denotes the nth token in the instruction, as follows.

logP(I|ctxt) =
∑
n

logP (in|ctxt, i1, i2, . . . , in−1) . (1)

The likelihood computed in Eq. 1 acts as our notion of reward. The intuition herein is that a grounded
LLM can exploit its world knowledge to reason how likely is it that the agent is trying to engage in
behavior described in the solve the task description provided by the user. For example, if the user
says “pick up the cup” and the agent picks up a plate, ideally, the likelihood of the instruction should
be lower in this scenario than the one in which the agent actually picks up the cup. This ideally
implies if an agent were to engage in behavior described using the task description, the likelihood of
the description would improve. Our experimental evaluation tests this intuition in extensive detail.

3.1 Interfacing protocols

Unlike prior work that interfaces static images with an LLM to perform tasks such as Visual Question
Answering, our goal is to interface a trajectory of observations that are temporally correlated. To this
end, we use a 1-layer decoder-only Transformer model that involves sinusoidal positional encodings,
a causal Attention module, and a 1-layer MLP to map representations from a VLM to an output with
dimensions equal to that of the LLM’s embeddings. In the benchmark we utilize in this paper (see
Sec. 4), the complexity of a task is often correlated with the number of actions required to solve
it; correspondingly, the length of the trajectory can be used as a shortcut solution to output some
paraphrase of the ground-truth instruction that specifies the task. It is easy to imagine such an issue
emerging with realistic data involving, e.g., egocentric videos, where pick-and-place snippets may be
smaller than movement from one place to another. We hence propose and evaluate three different
protocols for training our interface models, as specified below (see Fig. 3 for an overview).

Maximum likelihood: The simplest of our protocols, herein we train the interface to minimize
the negative log-likelihood of instruction I given a trajectory of observations that successfully solves
the task. The mapped representations are inputted to the LLM in a manner similar to Fig. 2, yielding
the following objective.

LML = − logP(I|ctx ). (2)

Contrastive training: Herein, we first define a set of positive and negative trajectories that,
respectively, correspond to an accurate versus inaccurate demonstration of the task specified by
instruction I. To define a negative trajectory, we (i) randomly choose and repeat an observation
up to the length of the positive trajectory or (ii) reverse the trajectory, preserving its length.
The negative log-likelihood of instruction is thus minimized for the positive trajectory, but
maximized for the negative one. Since negative log-likelihood is unbounded, we clamp the loss on
negative trajectories up to an upper bound (set to 0.5) in practice, yielding the following objective.

LContrast = − (logP(I|ctxP )− clamp (logP(I|ctxN ), 0.5)) , (3)
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Figure 3: Different protocols for training the interface models. (a) Maximum likelihood: The
interface is trained to map representations of the visual observations into a space such that the
log-likelihood of the instruction , given the trajectory, is maximized; this is the standard next
word prediction loss decoder-based LLMs are trained with. (b) Contrastive training: A pair of
positive and negative trajectories are defined, wherein the positive trajectory does perform the
desired task, while the negative trajectory does not. The loss focuses on maximizing the ratio of
the log-likelihood of the instruction given the positive trajectory with respect to the likelihood
given the negative trajectory. (c) Success detection: Similar to (b), positive / negative pairs are
used; similar to (a), the likelihood of the instruction is maximized only for the positive trajectory.
An auxiliary objective is added, which predicts the success (True / False ) of the positive/negative
trajectory in solving the task specified by the instruction .

where ctxP / ctxN denote the instruction induction context (see Sec. 2) with representations of the
positive / negative trajectory substituted within it.

Task: Does the given
trajectory solve
its instruction? 

Trajectory: 𝑣!" , 𝑣#" , … , 𝑣$" .
Instruction: Put all objects

into container.
Answer:

ct
x

Figure 4: Context used for success detec-
tion. The LLM is given the context above
and its likelihood of outputting the tokens
True / False is used to instantiate the loss
in Eq. 4.

Success detection: Finally, we evaluate the use of
an auxiliary loss that promotes a binary, True/False
distinction between the positive versus negative
trajectory alongside the negative log-likelihood max-
imization of the instruction I given the positive
trajectory. The primary benefit of this formalism is
that it avoids training instabilities associated with max-
imizing the negative log-likelihood of the negative
trajectories in Eq. 3. However, the use of a decoder
LLM makes instantiation of this framework in a stan-
dard manner of train a classifier on some representa-
tion infeasible. We thus cast this auxiliary task in the
instruction following format of Wei et al. [157] (see Fig. 4).

LSuccess = − (logP(I|ctxP ) + logP(True|I, ctxP ) + logP(False|I, ctxN )) . (4)

4 Experimental protocols

We next define the experimental setup used in this paper to evaluate the use of FoMo as rewards. As
noted in Sec. 1, our focus in this work is to perform a qualitative assessment of the question whether
FoMos can serve as reward functions. Accordingly, we also describe several evaluation protocols
aimed at systematically perturbing an oracle policy and assess the behavior of our pipeline under
these systematic perturbations.

Evaluation Benchmark. Our evaluation focuses on the recently proposed multimodal, goal-
directed RL benchmark VIMABench [100]. Specifically, VIMABench involves thirteen tabletop
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Figure 5: Perturbed trajectories. We perturb an oracle policy’s trajectory of observations in
systematic ways to assess if our pipeline elicits desirable behaviors expected from a reward function.
We specifically evaluate likelihood of instruction given the: (i) correct trajectory; (ii) its reverse;
(iii) an action-less trajectory where a randomly sampled observation from the correct trajectory is
repeated; and (iv) an entirely incorrect trajectory corresponding to another task or instruction.

manipulation tasks that are specified via the use of a “multimodal prompt”; e.g., the prompt may
specify a pick-and-place task that requires an object to be moved into a certain container in
the scene or a manipulation task that requires it to be rotated by a specific angle . Herein, both
the variables object and container are generally specified via an image. However, our proposed
pipeline focuses on likelihood evaluation of the instruction that specifies a task in language, making
VIMABench’s multimodal prompts infeasible for our setup. To circumvent this, we write a prepro-
cessing wrapper that transforms variables specified via images into text; e.g., an image of a blue-green
polka-dotted flower will be replaced with the text blue-green polka-dotted flower. This
yields us a unimodal version of the VIMABench benchmark. Note that only seven of VIMABench’s
tasks are feasible for easy conversion to such unimodal prompts (e.g., excluding when precise object
coordinates are needed, which cannot be cheaply extracted without running an object detection
module). For brevity, we often refer to this unimodal version of VIMA as VIMA(Uni).

In VIMA(Uni), objects (including containers) are denoted via a tuple of (chars, identifier). The
variable identifer takes values from a list of predefined object and container shapes, while the
variable chars takes values from a list of predefined characteristics that includes colors, textures,
and orientations. An example prompt and start/end frame from a top-view camera of a VIMA agent
performing the task specified by the prompt are shown in Fig. 5. The VIMA(Uni) tasks with their
variable prompts are listed below. Here subscripts indicate different objects in the scene, while
the variable direction is one of the ordinal directions, angle is a multiple of 30 degrees, and
constraint is an obstacle object with which interaction is to be avoided.

• Task 1: Same profile. Put all objects with the same attributes as chars container into it.
• Task 2: Manipulate old neighbor. First put chars 1 object into container 1, then put the

object that was previously at its direction into the same container.
• Task 3: Scene Understanding. Put the chars 1 object in scene into the chars 2 object.
• Task 4: Pick in order then restore. Put chars 1 object into the chars 2 container and then the
chars 3 container. Finally restore it into its original container.

• Task 5: Simple Manipulation. Put the chars 1 object into the chars 2 container.
• Task 6: Rotate. Rotate chars object by angle degrees.
• Task 7: Sweep without exceeding. Sweep chars 1 object into the chars 2 container with-

out exceeding constraint .

4.1 Systematic perturbations for evaluation

To evaluate if the recasting of FoMo as rewards is sensible, we evaluate the likelihood of several
systematically perturbed setups. Specifically, we evaluate the following two scenarios.

Perturbed Trajectories. In this evaluation, we alter the trajectory taken by an oracle policy to
perform the task specified by the instruction in the following different manners (see Fig. 5 for an
overview). We evaluate the likelihood of the instruction given these perturbed trajectories.
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Figure 6: Perturbed Instructions. We perturb the instruction corresponding to an oracle trajectory in
systematic ways to assess if our pipeline elicits desirable behaviors expected from a reward function.
Given the trajectory, we specifically evaluate likelihood of the following perturbed instructions: (i)
Object: objects/containers are altered to other objects/containers in the scene; (ii) Color: the color
specification of the target objects/containers is altered to other colors present in the scene; (iii) Texture:
the texture specification of the target objects/containers is altered to other textures present in the
scene; and (iv) Combined: all alteration are combined into a single, altered instructions.

1. PTRev: Reverse the oracle trajectory by rendering it from end to start.
2. PTRep: Randomly choose an observation (a frame) from the oracle trajectory and repeat it to

match the oracle trajectory in length.
3. PTLen: Randomly choose an observation from the oracle trajectory and replace it with an

observation from another trajectory that may or may not correspond to the same task.
4. PTInc: Use an entirely different oracle trajectory that may or may not correspond to the same

task.

Intuitively, the perturbations above are designed to assess if use of FoMo as rewards elicits desirable
behaviors expected from a reward function. For example, PTRev helps us assess whether our pipeline
assigns higher reward to appropriate temporal order of correct actions over just the presence of
correct actions. Indeed, in a pick and place task, the mere fact that the pick and place actions were
performed may be sufficient to judge that the task involves picking a certain object and placing it in a
specific place. However, an ideal reward function would assign higher reward to the correct temporal
order, than the mere use of pick and place actions.

Perturbed Instructions. Alter the instructions specifying the task such that identifying attributes
of the objects that the task is supposed to be performed on are converted to attributes of other objects
present in the scene. We specifically focus on the following perturbations (see Fig. 5 for an overview).

1. PIObj: Alter the value of object and container identifiers from target objects/containers to
another set of objects/containers present in the scene.

2. PICol: Alter the chars of target objects/containers by replacing their color with the color of
another object present in the scene.

3. PITex: Alter the chars of target objects/containers by replacing their texture with the texture of
another object present in the scene.

4. PIComb: Combine all alterations listed above into a single altered instruction.

The motivations behind defining the above perturbed instructions is similar to that of the perturbed
trajectories. For example, PIObj alters the instruction such that the task to be performed remains
the same, e.g., still a pick and place task, but the specific objects that are supposed to be acted
upon are changed. This implies the objects the oracle policy acts upon, i.e., the objects specified
in the original, unaltered instruction, will be different from the objects this perturbed instruction
specifies. Assigning a lower reward to this perturbed instruction–trajectory pair, when compared to
the correct one, indicates our pipeline yields a reward function that accounts for the precise physical
specification, i.e., the actions being performed and what objects they are performed on.
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Maximum likelihood Contrastive Success detection

Task Correct PTRev PTRep PTLen PTInc Correct PTRev PTRep PTLen PTInc Correct PTRev PTRep PTLen PTInc

T1 -0.80 -1.18 -1.14 -7.03 -37.49 -1.52 -77.28 -44.30 -25.49 -49.51 -1.25 -2.97 -2.28 -13.07 -39.51
T2 -3.60 -5.95 -6.59 -18.19 -63.92 -6.42 -93.89 -64.60 -38.71 -69.44 -7.14 -13.98 -10.92 -25.80 -77.56
T3 -1.79 -2.32 -2.59 -9.61 -33.85 -3.11 -45.90 -22.52 -15.99 -28.89 -3.18 -4.40 -3.80 -10.80 -38.85
T4 -6.22 -6.33 -7.53 -26.06 -87.25 -9.71 -9.83 -10.08 -43.20 -94.69 -9.84 -9.97 -10.04 -25.27 -101.98
T5 -4.56 -5.72 -7.16 -15.21 -37.85 -6.55 -32.30 -19.33 -19.21 -34.81 -6.84 -9.44 -8.58 -13.06 -35.60
T6 -4.10 -4.08 -4.12 -11.24 -34.83 -4.65 -4.61 -4.68 -10.26 -33.98 -4.92 -4.86 -4.88 -11.76 -32.94
T7 -1.84 -2.22 -2.72 -21.45 -99.06 -4.38 -19.04 -11.53 -45.36 -129.28 -4.07 -5.05 -4.89 -52.59 -147.13

Table 1: Average log likelihood of instruction given correct versus perturbed trajectories
(higher is better). We compute the likelihood of the instruction specifying the task given several
alterations of the correct trajectory, as specified in Sec. 4. The average is computed over all trajectories
corresponding to a task (∼4300 per task). Broadly, the results show the use of FoMo as rewards is
indeed inline with desired behavior when the interface is trained via the contrastive or success
detection protocol: for the correct trajectories, the average likelihood of the instruction is generally
much higher than the altered variants. For a subset of the tasks (e.g., T6 or Rotate), the pipeline
struggles with assigning noticeably higher reward to the correct trajectory compared with the reverse
or repeated one.

Maximum likelihood Contrastive Success detection

Task GT PIObj PICol PITex PIComb GT PIObj PICol PITex PIComb GT PIObj PICol PITex PIComb

T1 -0.81 -12.96 -4.17 -12.07 -30.06 -1.49 -12.34 -4.23 -11.24 -26.72 -1.24 -12.25 -4.11 -9.92 -27.00
T2 -3.61 -18.27 -8.60 -25.72 -47.75 -6.43 -21.87 -11.09 -23.86 -44.28 -7.15 -20.81 -11.07 -22.95 -38.51
T3 -1.84 -1.84 -7.36 -27.14 -31.58 -3.10 -3.10 -8.08 -24.15 -27.66 -3.23 -3.23 -8.08 -22.98 -26.49
T4 -6.18 -36.17 -14.20 -31.10 -68.44 -9.71 -40.91 -16.05 -28.34 -63.82 -9.87 -37.82 -16.11 -27.19 -59.78
T5 -4.50 -17.48 -8.91 -28.79 -48.45 -6.53 -18.54 -10.47 -25.18 -42.91 -6.81 -18.35 -10.62 -24.85 -42.25
T6 -4.10 -3.99 -6.38 -12.97 -23.88 -4.66 -4.67 -6.64 -12.43 -20.00 -4.92 -4.85 -7.02 -12.89 -20.05
T7 -1.85 -41.31 -10.76 -42.59 -86.14 -4.38 -39.83 -11.47 -35.48 -72.73 -4.07 -42.81 -11.25 -36.05 -78.31

Table 2: Average log likelihood of perturbed instructions given the correct trajectory (higher is
better). We compute the likelihood of instructions altered in the manner specified in Sec. 4, while
using the oracle trajectory corresponding to the unaltered instruction . The average is computed
over all trajectories corresponding to a task (∼4300 per task). Broadly, the results show the use of
FoMo as rewards is indeed inline with desired behavior: for all tasks, only for the correctly specified
instructions, the average likelihood of the instruction is higher than the altered variants. We show the
highest likelihoods in italics, but note that we are comparing likelihoods of texts of slightly varying
lengths (generally the difference is 2–4 tokens).

5 Results: FoMo is rewarding

With our experimental setup and evaluation protocols set up, we are now ready to answer our
motivating question: “Can foundation models be cast as reward functions?” We instantiate our
framework (see Sec. 3) by using an off-the-shelf, 300M parameter ViT from the PyTorch image
models library hosted on HuggingFace [158]. The model is trained on the ImageNet-21K dataset
using the protocol proposed by Steiner et al. [159]. We use the recently released Mosaic pretrained
transformers (MPT) [160] as the LLM workhorse in our pipeline, focusing on the 1B parameter
model that was pretrained using the RedPajama dataset [161] and further instruction fine-tuned using
the Databricks Dolly dataset [162]. We use approximately 270K offline trajectories from an oracle
policy from VIMA(Uni) to train our interface models and 30K trajectories to evaluate the overall
reward function it yields (trajectories are approximately uniformly distributed across tasks). Training
occurs at a batch-size of 8 for maximum likelihood and batch-size of 4 for contrastive and success
detection protocols. Note the LVM and LLM remain frozen and their parameters are not changed
at all. The oracle utilizes privileged state information to perform the specified task, though it can at
times fail due to imperfect inverse kinematics by the underlying PyBullet engine.

We report the following sets of results: (i) likelihood of instruction given the oracle versus
perturbed trajectories, averaged over all instruction–trajectory pairs of a task (Tab. 1); (ii) likelihood
of correct versus perturbed instruction given the oracle trajectory for the correct instruction,
averaged over all instruction–trajectory pairs of a task (Tab. 2); and (iii) progress of the likelihood of
the correct instruction given oracle versus perturbed trajectories is plotted as a function ofobservations
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(a) Maximum likelihood training.
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(b) Contrastive training.
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(c) Success detection.

Figure 7: FoMo rewards when training with different training protocols. We plot instruction
log-likelihoods as a function of actions taken in the environment in 7 trajectories, showing results for
the different training protocols proposed in Sec. 3.1. On most tasks and at most steps, the correct
policy achieves higher rewards than the perturbed behaviors when the interface is trained via the
contrastive or success detection training protocols. However, mere maximum likelihood training, the
simplest of our protocols, clearly suffers from shortcut solutions and yields similar results for both
correct and perturbed trajectories.

seen after the execution of an action (Fig. 7), an evaluation inspired by the “intentscoring” experiment
by Karamcheti et al. [125].

We find that across almost all tasks, the correct behaviours achieve higher likelihoods than all
perturbed trajectories when the contrastive and success detection training protocols are used. The
maximum likelihood objective, our simplest protocol, however clearly suffers from shortcut solutions:
indeed, in Tab. 1 and Fig. 7, we see this protocol yields similar likelihoods for both correct trajectories
and the perturbed ones (e.g., repeat frames yield very similar results). These results provide evidence
that while FoMo rewards are viable and that agents trained on them may learn the intended behaviours,
the training protocol must be devised with caution depending on the task and setup.

6 Future work

In this work, we focused on demonstrating the viability of using foundation models as reward
functions by comparing the rewards achieved from various policies. Motivated by the promising
results, the logical next step is to train agents on these reward functions with off-the-shelf RL
algorithms. The VIMA environment used in this study provided a practical benchmark, but is not
very representative of the real-world environments. Future work should study richer environments
and training on large egocentric datasets. Finally, the use of foundation models to define desirable
behaviors opens up the possibility of exploiting in-context learning as a means of adopting behaviours
out of domain.
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