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ABSTRACT

Neural Radiance Field (NeRF) models have gained significant attention in the
computer vision community in the recent past with state-of-the-art visual quality
and produced impressive demonstrations. Since then, technopreneurs have sought
to leverage NeRF models into a profitable business. Therefore, NeRF models
make it worth the risk of plagiarizers illegally copying, re-distributing, or mis-
using those models. This paper proposes a comprehensive intellectual property
(IP) protection framework for the NeRF model in both black-box and white-box
settings, namely IPR-NeRF. In the black-box setting, a diffusion-based solution
is introduced to embed and extract the watermark via a two-stage optimization
process. In the white-box setting, a designated digital signature is embedded into
the weights of the NeRF model by adopting the sign loss objective. Our exten-
sive experiments demonstrate that not only does our approach maintain the fidelity
(i.e., the rendering quality) of IPR-NeRF models, but it is also robust against both
ambiguity and removal attacks compared to prior arts.

1 INTRODUCTION

Neural Radiance Field (NeRF) Mildenhall et al. (2020) is a novel view synthesis that em-
ploys volume rendering and implicit neural representation (INR) through a neural network to
learn 3D scene geometry and lighting from camera-calibrated 2D images. Due to its im-
pressive photorealistic rendering performance, NeRF models have found lucrative business op-
portunities such as in autonomous driving (Sucar et al., 2021; Rosinol et al., 2022) and ur-
ban mapping (Xiangli et al., 2022; Rematas et al., 2022). Down the road, NeRF mod-
els could complement other techniques for representing 3D objects in the metaverse, vir-
tual/augmented reality, and digital twins more efficiently, accurately and realistically (Hong
et al., 2022; Zhao et al., 2022). Thus, the protection of Intellectual Property Rights (IPR)
of the NeRF models requires immediate attention as it is worth the risk of plagiarizers ille-
gally copying, re-distributing, or misusing those models for financial gain or personal interests.
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Figure 1: Preliminary results of conventional 2D
steganography methods resulted in an unrecoverable
watermark during NeRF rendering.

From the literature, a comprehensive IPR
protection framework for NeRF models
is yet to be established. It is impor-
tant to note that the current protection
schemes primarily target Convolutional
Neural Networks (CNNs) (Uchida et al.,
2017; Zhang et al., 2020; Fan et al., 2022),
Generative Adversarial Networks (GANs)
(Ong et al., 2021), and Recurrent Neural
Networks (RNNs) (Tan et al., 2022; Rathi
et al., 2022; He et al., 2022). Nonetheless,
there exist multiple challenges when de-
signing a protection framework for NeRF
models: (a) Existing black-box protection
schemes (e.g., (Merrer et al., 2017; Adi

et al., 2018; Quan et al., 2021)) cannot be directly applied to NeRF due to the distinct input-output
behaviour of NeRF models (i.e., coordinates and conditional information as input and RGB color as
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Figure 2: (Left) Overview of our proposed IPR protection framework (namely IPR-NeRF) in both
white and black box settings. The concept is to seamlessly embed a signature and a watermark
into a standard NeRF model without deteriorating its rendering performance. During ownership
verification, we extract the embedded signature and watermark for ownership claims. (Right) We
present a comparison of rendering quality between the original NeRF and our proposed IPR-NeRF.

output). (b) Simply watermarking the rendered samples with existing deep steganography methods
(e.g., HiDDeN (Zhu et al., 2018) and DeepStega (Baluja, 2020)) either having low rendering quality
or the watermark cannot be robustly extracted (see Fig. 1).

This paper introduces IPR-NeRF, a comprehensive IPR protection framework explicitly designed
for NeRF models as depicted in Fig. 2. For black-box ownership protection, we start by embedding
a designated watermark into the rendered scene by NeRF with jointly optimize a diffusion-based
watermark detector network to ensure precise watermark extraction from NeRF rendering. The
diffusion-based approach enhances the robustness of extraction from varying camera poses even in
cases of severe distortion (e.g., noise and compression), owing to its inherent resilience to noise. For
white-box ownership protection, we adopted a sign-loss objective (Fan et al., 2022) to incorporate
a designated digital signature into the NeRF model’s weights. This technique has demonstrated
resilience against both ambiguity and removal attacks.

Our contributions can be summarized as follows:

(i) This paper is among the pioneers in investigating IPR protection for NeRF, introducing
a comprehensive framework to protect NeRF in both black-box and white-box settings,
aiming to prevent misuse by unauthorized parties.

(ii) We propose a diffusion-based watermark detector to effectively extract watermarks from
the rendered images for black-box ownership protection (see Sec. 3.1 and Sec. 4.3).

(iii) Empirical results show that IPR-NeRF is robust against ambiguity and removal attacks,
thereby establishing ownership of the NeRF model. Notably, our method maintains high
fidelity compared to the original NeRF model, ensuring that rendering performance is not
compromised (see Sec. 4.2). Consequently, unauthorized use of the protected NeRF model
by illegal parties can be effectively prevented (see Sec. 4.4 and Sec. 4.5).

2 RELATED WORK

Ownership Protection and Verification. One of the pioneer works on white-box protection of the
CNN model watermarking was to impose additional regularization terms on the weights parameters
(Uchida et al., 2017). Nevertheless, this approach is constrained in that the internal model parameters
must be accessed to extract and verify the embedded watermark. In doing so, a method for protecting
the DNN model in a black-box setting has been proposed (Quan et al., 2021; Merrer et al., 2017; Adi
et al., 2018). This involves remotely verifying ownership through API calls by embedding water-
marks within the classification labels of adversarial examples present in a trigger set. Furthermore,
the protection scheme combines both black-box and white-box settings which are designed to effec-
tively withstand a range of potential attacks (Chen et al., 2019; Darvish Rouhani et al., 2019b;a; Guo
& Potkonjak, 2018). Lately, there has been a surge in the proposal of passport-based verification
schemes as white-box protection, aimed at enhancing robustness against ambiguity attacks (Zhang
et al., 2020; Fan et al., 2022). In addition to the protection framework for CNNs, comprehensive
black-box, and white-box protection frameworks have also been introduced for GANs (Ong et al.,
2021) and RNNs (Tan et al., 2022; Rathi et al., 2022; Lim et al., 2022; He et al., 2022). It’s important
to note that the existing works discussed so far have primarily focused on watermarking techniques
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for CNNs, GANs, RNNs, and 2D images instead of the NeRF model. In this work, we propose a
comprehensive framework to protect NeRF models that not only maintains high fidelity, but also
robust against ambiguity and removal attacks.

Watermarking by Steganography. An additional realm of embedding watermarks within images,
referred to as image steganography, has found widespread application in protecting the ownership
of digital media, particularly on 2D images (Cox et al., 2007; Wang et al., 2023; Subramanian et al.,
2021). Traditional steganography methods involve the incorporation of watermarks by altering the
host images, which often leads to partial distortion and a lack of robustness, even with minor mod-
ifications to the host images (Tamimi et al., 2013; Pan et al., 2011). To enhance robustness, a deep
learning-based approach to steganography has been introduced. This involves the utilization of an
encoder to produce a watermarked host image and a decoder to subsequently extract the embedded
watermark (Baluja, 2017; 2020; Zhu et al., 2018; Hayes & Danezis, 2017; Tang et al., 2017; Zhang
et al., 2019; Tancik et al., 2020). While applying a similar 2D steganography approach to water-
marking the NeRF model might appear reasonable, such a strategy proves ineffective in the NeRF
context. This is attributed to the embedded watermark becoming smoothed out during the rendering
of the NeRF model, as demonstrated in Fig. 1 of our preliminary result. Furthermore, NeRF’s repre-
sentation incorporates the concept of INR, whereas the 2D images merely constitute the final output
derived through NeRF’s rendering process. As a result, it is desired to design a specific protection
framework for NeRF models that can maintain fidelity while being robust against various attacks.

Watermarking for INR/NeRF. To the best of our knowledge, two recent works are closely related
to ours – StegaNeRF (Li et al., 2023) and CopyRNeRF (Luo et al., 2023). StegaNeRF uses a classi-
fier and a decoder to detect and reconstruct the watermarks that were embedded through fine-tuning
a well-trained NeRF. However, this affects the rendering quality. Hence, they have to use an adap-
tive gradient masking method so that more significant weights in the NeRF model are masked out to
minimize the impact on the rendering quality. Similarly, CopyRNeRF also has a message decoder
to extract M -bits message from rendered views which were embedded through a message feature
field as part of the NeRF model. Inspired by diffusion models (Ho et al., 2020; Song et al., 2021),
our IPR-NeRF also includes a detector trained through the diffusion process because of the gradual
introduction of noise during the diffusion process. This allows our IPR-NeRFnot only robust against
challenges such as noisy image transformations (e.g., Gaussian noise and JPEG compression) and
removal attacks (see Sec. 4.5) compared to StegaNeRF but also to embed high-dimensional images
instead of low-dimension message bits compared to CopyRNeRF.

3 IPR-NERF

This paper proposes a complete and effective ownership protection scheme for the NeRF model,
catering to both black-box and white-box settings as illustrated in Fig. 2. It consists of two stages
where, the former being the original NeRF training procedure. It involves the standard photometric
loss between the ground truth and the rendered pixels. We denote this trained model as θ0. This
is because we aim to embed our watermark into our typically trained but unmarked private/local1
NeRF models. In the latter, a designated watermark w and signature s are embedded into the NeRF
model through the proposed diffusion-based method described in Sec. 3.1 - Sec. 3.2. With this,
we will obtain a marked NeRF model θm and a detector d for ownership verification. The overall
training steps are depicted in Algorithm 1 in Appendix.

For verification purpose2, we recommend one can first run black-box ownership verification to ob-
tain evidence (i.e., the extracted watermark ŵ = d(θm) matches the designated watermark w); and
then follow by initiating a trial3 to inspect the inner weights of the NeRF model. By examining the
sign of the scales of all the normalization layers in ϕm, we obtain a signature ŝ. If ŝ matches s, we
can fully claim the ownership of the NeRF model.

1Note that once an unprotected NeRF model is released to the public, everyone may use the same technique
to embed watermarks. As a result, this leads to ambiguity problems as everyone can hypocritically claim
ownership of this public model.

2When we suspect an individual or organization posted their NeRF model without crediting the creator
3This is because black-box verification method may be prone to ambiguity attack (Fan et al., 2022), we need

more substantial evidence for proof.
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Figure 3: To retrieve the watermark from the IPR-NeRF model, our process begins by rendering
various views from distinct viewpoints, resulting in the acquisition of x0. Subsequently, we apply
a deterministic forward diffusion process to generate noisy samples xT using the trained diffusion-
based detector d. For each xT , equivalent to wT , we iteratively denoise the noisy samples through
d until we recover the watermark w0.

3.1 BLACK-BOX PROTECTION SCHEME

Let w ∈ RH×W as the watermark image to be embedded implicitly into a NeRF model θ0 where
H and W are the height and width of rendered views. We can recover w = d(θm(P )) from any
rendered views given any camera pose P ∈ P through our proposed detector d and P all possible
camera poses. At the end of training, the detector d and the watermarked NeRF model θm are
obtained. Inspired by (Ho et al., 2020), we propose a diffusion-based method to learn the detector d.
This is because the nature of diffusion models to gradually add noise to the image provides natural
robustness against various forms of image degradation attacks as the main objective of diffusion
models is denoising. Thanks to the powerful denoising ability of diffusion models, our idea is to
first convert the views x into Gaussian noises, then we denoise from these Gaussian noises into the
watermark w. As a result, we can seamlessly translate between x and w through d.

Diffusion-based Detector. To train the detector d, we first diffuse any rendered views x = θm(P ) ∈
RH×W , P ∈ P into a Gaussian distribution N . Then we reverse this process from the Gaussian
distribution into the designated watermark image w. It can be formulated as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√
αtxt−1, (1− αt)I), (1)

pd(w0:T ) := q(xT )

T∏
t=1

pd(wt−1|wt), pd(wt−1|wt) := N (wt−1;µd(wt, t), (1− αt)I) (2)

where q is the diffusion process that is fixed to a Markov chain that gradually adds Gaussian noise
to the rendered views x according to a variance schedule α1, · · · , αT (Ho et al., 2020), pd is the
reverse process that aims to denoise the Gaussian noise at any timestep t, and the denoiser d is a
learnable component that corresponds to our desired watermark detector. At timestep t = 0, the
watermark ŵ = w0 is extracted.

This diffusion process can be modeled by minimizing the following denoising objectives:

Ld(d, x, w) = Et,{εx,εw}∼N (0,I),P∼P

[
||d(
√
ᾱtx0 +

√
1− ᾱtεx, cx)− εx||2

+ ||d(
√
ᾱtw0 +

√
1− ᾱtεw, cw)− εw||2

]
, (3)

where ᾱt =
∏t

i=1 αi, cx, cw are conditional information for d to denoise for the rendered views x
or the watermark image w. Since q(xT ) is sampled from a Gaussian distribution, N (0, I), which is
the same as q(wT ), the denoiser d is to denoise from N (0, I) to respective image conditioned on c.
As a result, we can diffuse any rendered views into Gaussian noises, and then reverse the diffusion
into the watermark image.

Watermark Extraction. Instead of simply diffusing the rendered views into a Gaussian noise (i.e.,
Eq. 1), we compute it by a deterministic forward process (Song et al., 2021; Preechakul et al., 2022)
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given any rendered views x:

xt+1 =
√
αt+1

(
xt −

√
1− αt d(xt, t, cx)√

αt

)
+

√
1− αt+1 d(xt, t, cx). (4)

At the final timestep T , we obtain a noisy xT which we denote as ŵT . Then, we can extract the
watermark ŵ0 from the computed noisy ŵT by reversing deterministic diffusion as:

ŵt−1 =
√
αt−1

(
ŵt −

√
1− αt d(ŵt, t, cw)√

αt

)
+

√
1− αt−1 d(ŵt, t, cw). (5)

At timestep t = 0, we obtain the extracted watermark ŵ = ŵ0 and are ready to perform ownership
verification. See Fig. 3 for illustration.

Remark. As the detector d is overfitted to the distribution of x, it may not effectively denoise the
deterministic Gaussian noises from Eq. 1 in other random images (e.g., rendered views from an
unprotected NeRF model). Our experiments in Sec. 4.3 reveal that we cannot obtain the correct
Gaussian distribution by these alternative random images, thus preventing them from extracting
valid watermark images. This also effectively prevents false positive detection.

3.2 WHITE-BOX PROTECTION SCHEME

We further enhance the protection of a NeRF model by embedding a designated signature s into
it. We adopted the sign loss objective (Fan et al., 2022) to modify the scales of all normalization
layers in the NeRF model θm. To achieve this, normalization layers were appended to the MLP
implementation. The signature is encoded as ASCII codes, and subsequently translated into binary
format. For the scales of the all normalization layers γl

i ∈ R, i ∈ {1, · · · , D}, l ∈ {1, · · · , L} where
i and l represent i-th dimension and l-th layer, and D and L is the total number of dimensions and
layers respectively. The modified sign loss objective is formulated as follows:

Ls =

L∑
l=1

D∑
i=1

max(λs − γl
is

l
i, 0) (6)

where λs = 0.1 is to prevent the magnitude of γ from falling below λ and avoiding a value of
zero. Given a standard NeRF configuration encompassing L = 8 layers, with each layer comprising
D = 256 neurons, the model can accommodate 256 ASCII characters (2048 bits).

3.3 LEARNING OBJECTIVE

Photometric Error. To minimize the impact of the watermark embedding process (i.e., to prevent
overfitting on Ld and Ls) on the rendering quality, we employ a photometric loss as regularization:

Lphotometric = EP∼P ||θ0(P )− θm(P )||2 (7)

The total loss, L, at the second-stage optimization is formulated as:
L = Lphotometric + λdLd + Ls (8)

where λd is a hyperparameter that scales the denoising objective, ensuring a balanced optimization
of rendering and watermark quality within the loss function.

3.4 OWNERSHIP VERIFICATION

To verify a NeRF model in a black-box setting, this process involves the remote access of sus-
pected online NeRF models by the owner via API calls for evidence collection (Li et al., 2023).
With the extracted ŵ and our watermark w, we employ the Structural Similarity Index (SSIM) with
wSSIM = ssim(ŵ, w) to quantify the similarity between both extracted and ground-truth watermarks.
To enhance reliability, a threshold of 0.75 is set (as the visibility is still evident, see Fig. 13 in Ap-
pendix). If wSSIM > 0.75, we can claim the ownership of the NeRF model.

Meanwhile, to verify a NeRF model in a white-box setting, there are two possible scenarios: one
is we can directly obtain the suspected model (e.g., post the whole model online), or another one
is to get enough evidence from black-box verification and initiate law enforcement to access the
suspected model. Either way, we can inspect the sign of the scales and convert them into binary bits.
By calculating the bit error rate (BER), we can claim ownership iff BER ≈ 0%.
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NeRF (baseline) IPR-NeRF w/o s IPR-NeRF (Full)

NeRF-Synthetic
PSNR ↑ 31.21 (±0.28) 30.95 (±0.51) 31.05 (±0.46)
SSIM ↑ 0.9593 (±0.0048) 0.9541 (±0.0083) 0.9571 (±0.0062)
LPIPS ↓ 0.0528 (±0.0029) 0.0583 (±0.0037) 0.0573 (±0.0051)

LLFF-Forward
PSNR ↑ 27.59 (±0.21) 27.13 (±0.18) 27.39 (±0.0032)
SSIM ↑ 0.8293 (±0.0083) 0.8216 (±0.0105) 0.8237 (±0.0077)
LPIPS ↓ 0.1685 (±0.0025) 0.1731 (±0.0027) 0.1705 (±0.0042)

Table 1: Fidelity: Comparison of NeRF rendering quality in different protection settings and metrics.

4 EXPERIMENTAL RESULTS

This section presents the empirical analysis of the proposed IPR-NeRF framework in terms of fi-
delity, effectiveness, and robustness against unprotected standard NeRF (Mildenhall et al., 2020),
StegaNeRF (Li et al., 2023), and CopyRNeRF (Luo et al., 2023). While CopyRNeRF was initially
designed for text embedding, we have integrated it into this study for image embedding to facilitate
a more comprehensive analysis and comparison.

4.1 EXPERIMENTAL SETUP

Figure 4: Samples of
designated watermark
employed in this paper.

Dataset. We employ the LLFF and NeRF-Synthetic datasets, following
the original NeRF paper (Mildenhall et al., 2020). Four distinct scenes
were chosen from LLFF with forward scenes (namely, LLFF-Forward):
Fern, Fortress, Room, and Flower; while three distinct scenes were cho-
sen from NeRF-Synthetic with 360º scenes: Lego, Chair, and Drums.
The sample designated watermark used are shown in Fig. 4. In practice,
one can use any unique watermark image, such as a company logo, to
claim ownership and mitigate potential ambiguities.

Training and Hyperparameter. To train the NeRF in the first stage,
we follow the original implementation in (Mildenhall et al., 2020) for
all hyperparameters (e.g., number of layers of the MLP, and positional
embeddings). To train the diffusion-based detector in the second stage, we follow DDPM (Ho et al.,
2020) for all hyperparameters (e.g., the variance schedule, and number of timesteps). Unless men-
tioned explicitly, λd = 1.0 is used throughout our experiments and the default number of training
epochs is 1000 for each scene.

Evaluation metrics. To measure the fidelity of a NeRF model, the Peak signal-to-noise ratio
(PSNR), Structural Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018) are used. To quantify the similarity between both extracted and ground-truth
watermarks during black-box verification, we measure the SSIM and denote it as wSSIM. Finally,
we measure the bit error rate (BER) as the accuracy of the extracted signature during white-box
verification. For all metrics except BER, we randomly sample 100 different camera poses to render
each scene within each dataset with 5 trials and report the average score.

4.2 FIDELITY

This section assesses the fidelity of the proposed method in comparison to the original NeRF model,
where IPR-NeRF w/o s indicates embed with watermark only, and IPR-NeRF (Full) indicates em-
bed with both watermark + signature. Table 1 reveals the following key observations: (a) The
protected NeRF model closely mirrors the overall performance of the original NeRF model with
a minimal deviation across all metrics. See examples in Table 2. (b) Incorporating a white-box
protection scheme (signature) is deemed safe, as it exerts a negligible impact on the fidelity scores.
Consequently, we can affirm that IPR-NeRF effectively preserves the fidelity of NeRF models.

4.3 OWNERSHIP VERIFICATION

Black-box. In this setting, the ownership of the NeRF model can be verified by assess-
ing the similarity between the extracted watermark image and the ground truth watermark im-
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PSNR ↑ 31.08 31.45 30.97 31.36
SSIM ↑ 0.9568 0.9631 0.9507 0.9583 0.9527 0.9551 0.9531 0.9604
LPIPS ↓ 0.0572 0.0583 0.0580 0.0585

PSNR ↑ 27.47 27.28 27.58 27.24
SSIM ↑ 0.8394 0.9762 0.8284 0.9737 0.8399 0.9693 0.8261 0.9753
LPIPS ↓ 0.1692 0.1706 0.1673 0.1704

Table 2: Quantitative and qualitative results from our proposed IPR-NeRF framework involve ren-
dering with various camera poses (left) and embedded watermarks (right), along with the corre-
sponding extracted watermarks from NeRF-Synthetic (Lego) and LLFF-Forward (Flower) datasets.

age using the diffusion-based detector on the rendered scene of the protected NeRF model.
Table 3 illustrates that, across both datasets, our proposed IPR-NeRF framework consistently
achieves SSIM scores exceeding 0.95 for the extracted watermark images. This indicates a
substantial similarity between the extracted watermark image and the ground truth watermark
image, a similar result was also observed in StegaNeRF and CopyRNeRF. Consequently, this
high SSIM score is early solid evidence to establish ownership claims and promptly iden-
tify the suspect model. See Table 2 and Table 11 in the Appendix for more visual results.

IPR-NeRF (Ours) StegaNeRF CopyRNeRF

NeRF-Synthetic wSSIM ↑ 0.9653 0.9671 0.9531
BER ↓ 0 ✗ ✗

LLFF-Forward wSSIM ↑ 0.9781 0.9735 0.9692
BER ↓ 0 ✗ ✗

Table 3: Ownership Verification: Comparison of
the quality of the extracted watermark, and BER
between our proposed and prior arts.

White-box. In this setting, the NeRF model
ownership can be further verified by accessing
the weights within the normalization layers and
converting them into ASCII code to extract the
embedded signature, as demonstrated in Table
7 in Appendix. In practical scenarios, it is rec-
ommended to embed meaningful information
like the owner’s name as a signature to prevent
ambiguity. As observed in Table 3, the extracted signature from our proposed IPR-NeRF framework
achieves a BER of 0 in both datasets, demonstrating a 100% accuracy match with the embedded
signature to claim ownership.

4 2 0 2 4 6 8 100.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35 Random

Unprotected Model
Protected Model

Figure 5: Histogram
of xT for IPR-NeRF
protected model (red),
unprotected model yT
(green), and random im-
ages zT (blue). x-axis
represents the value and
y-axis represents the nor-
malized frequency.

False positive detection prevention on unprotected standard NeRF
model & any random images (see Appendix for experiment details).
This section aims to validate that our detector avoids detecting a wa-
termark (false positive) on an unprotected model (i.e. doesn’t contain an
embedded watermark - a model owned by someone else). Quantitatively,
the SSIM for extracted watermarks from any alternative images, when
compared to the ground-truth watermark, registers only approximately
0.05-0.10. Consequently, the false positive and false negative rates, uti-
lizing the proposed decision boundary (wSSIM > 0.75), yield a value of
0. To understand why false positives are absent, we examine histograms
from 100 views of each scene for xT /yT and 100 random images of
zT . Then, we calculate the Maximum Mean Discrepancy (MMD) and
Wasserstein distance (WD) between xT and yT , and zT . In Fig. 5, the
distinct differences in the distributions of yT and zT from xT are ev-
ident, with MMD/WD discrepancies of 0.2979/2.77 and 0.8238/10.16,
respectively. In summary, our detector exclusively extracts watermarks
from the deterministic forward distribution of the protected model.

4.4 RESILIENCE AGAINST AMBIGUITY ATTACKS

This section assesses the robustness of IPR-NeRF against attempts by illegal parties to distort the em-
bedded watermark and digital signature. These attempts may include image degradation in NeRF-
rendered scenes and forged signatures, aiming to create an ambiguous situation.
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Figure 6: Robustness against Gaussian Noise.

0.00 0.25 0.50 0.75 1.00
JPEG Compression Ratio

0.6

0.7

0.8

0.9

1.0

SS
IM

Ours
CopyRNeRF
StegaNeRF

(a) NeRF-Synthetic

0.00 0.25 0.50 0.75 1.00
JPEG Compression Ratio

0.6

0.7

0.8

0.9

1.0

SS
IM

Ours
CopyRNeRF
StegaNeRF

(b) LLFF-Forward

Figure 7: Robustness against JPEG Compression.
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Figure 8: Ambiguity Attack: Quality of the rendering and
extracted watermark for varying sign changes in IPR-NeRF.

Figure 9: Sample image pairs ren-
dered by IPR-NeRF with sign tog-
gled at 0% (left) and 10% (right).

Image Degradation. Here, we simulate a scenario where illegal parties attempt to distort the ren-
dered output of the protected NeRF model. Their goal is to prevent the embedded watermark from
being successfully extracted by a trained watermark detector, by degrading the rendered scene im-
age, resulting in an ambiguous situation. Doing so demonstrates that the embedded watermark can
be effectively extracted from the degraded rendered scene image.

As illustrated in both Figs. 6 - 7, our proposed diffusion-based watermark detector demonstrates
better resilience against degradation attacks like Gaussian noise and JPEG compression. It consis-
tently preserves a high-quality extracted watermark image, achieving an SSIM exceeding 0.9. In
contrast, the autoencoder-based watermark detector proposed in StegaNeRF deteriorates to below
SSIM = 0.7 under conditions where Gaussian noise and JPEG compression ratio are both set to
1. Although CopyRNerf performs well against image degradation attacks compared to StegaNeRF,
attributed to including a distortion layer in their study, it still falls short compared to our approach.
Particularly, CopyRNeRF only achieves an extracted watermark quality with an approximate 0.85.
This resilience arises from the inherent ability of the proposed diffusion-based watermark detector to
withstand various forms of degradation. In short, this shows that our proposed IPR-NeRF is robust
against a variety of degradation attacks as compared to StegaNeRF (Li et al., 2023) and CopyRNeRF
(Luo et al., 2023) watermark detection method.

Forged Signature. Herein, we simulate a scenario where the embedded signature was completely
exposed to the attacker. The attacker’s objective is to manipulate this signature by randomly toggle
its sign, thereby creating an ambiguous situation. Here, we demonstrate that altering the digital
signature proves challenging without sacrificing the model’s overall performance.

As observed in Fig. 8, the rendering quality of IPR-NeRF significantly decreases across both
datasets, despite only 10% of the sign being modified. Although the quality of the extracted wa-
termark image substantially decreases, the quality of the rendered scene also badly deteriorates as
shown qualitatively in Fig. 9. Doing so, the compromised model is essentially unusable for con-
sumers. In short, we conclude that the signs enforced this way remain persistent against ambiguity
attacks. Consequently, the illegal parties could not employ the model with a modified digital signa-
ture without compromising the rendering quality of the protected NeRF model.

4.5 ROBUSTNESS AGAINST REMOVAL ATTACKS

In this section, we evaluate the robustness of our proposed method in protecting the NeRF model to
defend against attempts by illegal parties to remove the embedded watermark and digital signature
using common model modification techniques like pruning, and overwriting.
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Figure 10: Removal Attack (model prun-
ing): Comparison of visual quality of rendering
(dashed line) and designated watermark (solid
line) against different pruning rates/methods.
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Figure 11: Removal Attack (model pruning):
BER of signature extraction against different
pruning rates in IPR-NeRF.

Model Pruning. In this section, we simulate a scenario where the attacker attempts to remove the
embedded watermark and digital signature from the protected NeRF model using a model pruning
technique. We employed a global unstructured L1 pruning technique with varying pruning rates.

As illustrated in Fig. 10, up to a model pruning rate of 30%, both the rendering quality of our ap-
proach and the extracted watermark image remain preserved across both datasets. However, beyond
a pruning rate of 30%, we observed a gradual reduction in both rendering quality and watermark
integrity. Note that a detector with low SSIM means it could not detect and extract the designated
watermarks, which is equivalent to a useless model. Moreover, Fig. 11 reveals that the accuracy of
the extracted digital signature from our approach remains unaffected, exhibiting a BER of 0 even at
a model pruning rate of 60%. In summary, our findings underscore the substantial impact of model
pruning on the overall performance of the protected NeRF model, particularly on the quality of the
extracted watermark way before the embedded digital signature can be removed. Consequently, our
approach demonstrates robustness against model pruning.

Overwriting. In this section, we simulate a scenario where the attacker possesses comprehensive
knowledge of the NeRF model protection methods outlined in Sec. 3 of this study. The objective of
the attacker is to overwrite the existing watermark and digital signature, and subsequently replace
them with a new watermark w′ and digital signature s′ within the protected NeRF model following
the training steps as shown in Algorithm 1 (see Appendix).

As illustrated in Table 13 (refer Appendix), the overwriting attack demonstrates a minimal impact
on the rendering quality of IPR-NeRF (i.e. rendering quality only experiences a slight decrease).
However, the embedded watermark is completely compromised, resulting in a substantial reduction
and significant deterioration in the quality of the extracted watermark. As such, the extracted water-
mark is unusable for ownership protection. Conversely, the digital signature in IPR-NeRF remains
highly persistent in protecting the ownership, showcasing a BER of 0. In summary, we can con-
clude that this overwriting attack effectively replaces the embedded watermark without significantly
compromising the rendering quality of the protected NeRF model. Nevertheless, it is ineffective in
overwriting the digital signature, which remains resilient to this overwrite attack. Hence, the own-
ership claim of the protected NeRF model remains valid through the embedded digital signature.

5 DISCUSSION AND CONCLUSION

This paper introduces a complete and robust NeRF-IPR protection scheme in both black-box and
white-box scenarios. Comprehensive experimental results demonstrate its effectiveness in resist-
ing ambiguity and removal attacks on the embedded watermark while maintaining rendering per-
formance. However, it has limitations in computational power and black-box protection against
overwriting attacks when the attacker possesses detailed knowledge about the protected model. Fu-
ture research will focus on improving these aspects. This study offers significant value to NeRF
model developers and researchers, providing a way to protect their intellectual property and gain
a competitive advantage in the market, considering the substantial resources required for develop-
ing a high-performing NeRF model. Strengthening NeRF models against IPR violations has broad
societal benefits, including preventing plagiarism, ensuring a competitive edge in dynamic market
competitiveness, and the burden of wasteful lawsuit cases.
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A APPENDIX

A.1 OVERVIEW OF IPR-NERF OWNERSHIP VERIFICATION PROCESS

Figure 12: The ownership verification process of the proposed IPR-NeRF framework involves two
key steps: black-box verification (Step 1) and white-box verification (Step 2). In step 1, a watermark
detector is employed on the rendered image of the suspected NeRF model to extract the embedded
watermark, forming the basis for preliminary evidence compilation. In step 2, the embedded signa-
ture within the model’s weights is extracted to enable advanced evidence collection.

A.2 PRELIMINARY RESULTS

Method Training
Image

Embedded
Watermark

Extracted
Watermark

DeepStega
Baluja
(2020)

HiDDen
Zhu et al.
(2018)

Table 4: Preliminary results of applying 2D steganography
methods by watermarking the training images, resulting in
an unrecoverable watermark during NeRF rendering.

Model BER↓
NeRF

with wm
0

NeRF
with wm′ 0

Table 5: Preliminary result of ap-
plying Uchida et al. (2017) method
to protect NeRF model with gen-
uine watermark, wm and forged
watermark, wm′. The result indi-
cate that the embedded watermark
is able to be counterfeit easily, po-
tentially leading to a situation of
ambiguity.
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A.3 SSIM VERSUS VISIBILITY

(a) 0.00 (b) 0.25 (c) 0.50 (d) 0.75 (e) 1.00

Figure 13: Varying perceived quality of the watermark image and the corresponding SSIM scores.

A.4 ALGORITHM AND IMPLEMENTATIONS

Algorithm 1 Training step of the two-optimization of IPR-NeRF

1: Input: Training images IT , Watermark image w, Original NeRF θo, Camera pose P , Signature
s, Learning rate η

2: Optimize θo to converged
3: Load well-trained θo to θm as initial weights
4: initialise detector d
5: for all number of training iterations do
6: Sample random P to render, x = θm(P )
7: Ld ← Ld(d, x, w) in Eq. 3
8: Lphotometric ← Lphotometric(P ) in Eq. 7
9: Ls ← Ls(s) in Eq. 6

10: L ← Lphotometric + λdLd + Ls in Eq. 8
11: Take gradient descent step on η · ∇θ(L) and η · ∇d(L) to update θm and d respectively
12: end for
13: Output: Optimized IPR-NeRF θm and diffusion-based watermark detector d

A.5 FALSE POSITIVE DETECTION PREVENTION
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(b) Unprotected model
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(c) Random images

Figure 14: Confusion matrix of the detected watermark from the rendered image of the protected
model, rendered image of the unprotected model and random images based on the proposed water-
mark decision threshold of wSSIM > 0.75 as discussed in Sec. 3.4.

The details of Fig. 5 are provided here. Let x be the rendered views of IPR-NeRF, y be the rendered
views of an unprotected standard NeRF (same dataset and same scene as a protected one), and z be
any random images (e.g., downloaded from the internet). Both the protected and unprotected NeRF
models in this experiment employed scenes from the NeRF-Synthetic 360 dataset, including Lego,
Chair, and Drum, as well as scenes from the LLFF-Forward dataset, namely Fern, Fortress, Room,
and Flower. We compute the deterministic Gaussian noise through Eq. 4 to obtain xT , yT and zT .
We then extract the watermark with Eq. 5 to obtain ŵx, ŵy and ŵz . To quantitatively evaluate the
false positive detection, we measure SSIM between the ground-truth watermark w and the extracted
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watermarks ŵy/ŵz . We find that the averaged SSIM is only ≈ 0.05 − 0.10, which is essentially a
noise image (see Fig. 13(a)). That is, we calculated the false positive rate (FPR) and false negative
rate (FNR) for watermark extraction using the trained watermark detector (wSSIM > 0.75), resulting
in a value of 0 for each as shown in Fig. 14. In simpler terms, our trained detector exclusively extract
watermarks from the deterministic forward distribution of the protected model. This capability
arises because the detector has been specifically tailored to the deterministic forward distribution
of the protected model through the proposed joint optimization process. Consequently, it may not
effectively remove the deterministic Gaussian noises present in other random images, such as those
generated from rendered views of an unprotected NeRF model. The quantitative and qualitative
results of the recovered watermark is shown in Tab. 6 and Fig. 15 respectively.

wSSIM

Protected model 0.9526±0.0218
Unprotected model 0.0593±0.0037

Random images 0.0847±0.0185

Table 6: Quantitative result of the var-
ious recovered watermarks from the
rendered image of the protected model,
rendered image of the unprotected
model and random images.

To further understand why the false positives did not hap-
pen, we compute the histogram of 100 different views
from each scene of xT /yT and 100 random images of zT .
We then measure the maximum mean discrepancy (MMD)
and Wasserstein distance (WD) between xT and yT and
zT . As illustrated in Fig. 5, the distribution of yT and zT is
very different from xT with the MMD/WD discrepancy of
0.2979/2.77 and 0.8238/10.16 respectively. Note that only
distribution of x is close to G. This empirically proves that
the detector can prevent a false positive detection.

Ground truth Protected model Unprotected model Random images

Figure 15: Qualitative result of the various recovered watermarks from the rendered image of the
protected model, rendered image of the unprotected model and random images.
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A.6 DIGITAL SIGNATURE EXTRACTION

B O B
γ bit ASCII γ bit ASCII γ bit ASCII

-0.40 0

66

-0.67 0

79

-0.37 0

66

0.31 1 0.58 1 0.31 1
-0.66 0 -0.39 0 -0.36 0
-0.68 0 -0.31 0 -0.34 0
-0.35 0 0.45 1 -0.63 0
-0.33 0 0.33 1 -0.45 0
0.72 1 0.37 1 0.74 1
-0.30 0 0.65 1 -0.33 0

Table 7: Example of the trained batch normalization weight γ of IPR-NeRF when embedded digital
signature, S = {BOB}.

A.7 FIDELITY ANALYSIS

NeRF (baseline) IPR-NeRF (Ours) StegaNeRF CopyRNeRF

NeRF-Synthetic
PSNR ↑ 31.21 (±0.28) 31.05 (±0.46) 31.14 (±0.42) 30.93 (±0.63)
SSIM ↑ 0.9593 (±0.0048) 0.9571 (±0.0062) 0.9585 (±0.0027) 0.9531 (± 0.0074)
LPIPS ↓ 0.0528 (±0.0029) 0.0573 (±0.0051) 0.0537 (±0.0039) 0.0584 (±0.0085)

LLFF-Forward
PSNR ↑ 27.59 (±0.21) 27.39 (±0.0032) 27.42 (± 0.0291) 27.21 (±0.0081)-
SSIM ↑ 0.8293 (±0.0083) 0.8237 (±0.0077) 0.8277 (±0.0049) 0.8224 (±0.0093)
LPIPS ↓ 0.1685 (±0.0025) 0.1705 (±0.0042) 0.1693 (±0.0053) 0.1718 (±0.0032)

Table 8: Fidelity: Comparison of the proposed IPR-NeRF rendering quality against StegaNeRF Li
et al. (2023) and CopyRNeRF Luo et al. (2023) in different metrics.

A.8 RENDERING RESULTS FROM DIFFERENT CAMERA POSES

PSNR↑ 31.08 31.45 30.97 31.36
SSIM↑ 0.9568 0.9631 0.9507 0.9583 0.9527 0.9551 0.9531 0.9604
LPIPS↓ 0.05721 0.05826 0.05803 0.05846

PSNR↑ 30.92 31.74 31.53 31.16
SSIM↑ 0.9493 0.9539 0.9548 0.9643 0.9527 0.9608 0.9498 0.9583
LPIPS↓ 0.0594 0.05801 0.05872 0.05887

PSNR↑ 31.52 31.08 30.93 31. 67
SSIM↑ 0.9548 0.9617 0.9527 0.9585 0.9484 0.9563 0.9568 0.9560
LPIPS↓ 0.0573 0.0587 0.0596 0.0562

Table 9: Quantitative and qualitative results from our proposed IPR-NeRF framework involve ren-
dering with various embedded watermarks and camera poses, along with the corresponding extracted
watermarks from the NeRF-Synthetic datasets. The rendering quality is assessed using PSNR,
SSIM, and LPIPS metrics. Simultaneously, the quality of the extracted watermark is evaluated
based on the SSIM metric.
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PSNR↑ 27.47 27.28 27.58 27.24
SSIM↑ 0.8394 0.9762 0.8284 0.9737 0.8399 0.9693 0.8261 0.9753
LPIPS↓ 0.1692 0.1706 0.1673 0.1704

PSNR↑ 27.21 27.07 27.37 27.04
SSIM↑ 0.8291 0.9759 0.8267 0.9704 0.8341 0.9683 0.8257 0.9736
LPIPS↓ 0.1703 0.1723 0.1684 0.1731

PSNR↑ 27.53 27.38 26.94 27.07
SSIM↑ 0.8286 0.9682 0.8257 0.9726 0.8201 0.9752 0.8217 0.9727
LPIPS↓ 0.1682 0.1726 0.1783 0.1752

Table 10: Quantitative and qualitative rendering results from our proposed IPR-NeRF framework
involve rendering with various embedded watermarks and camera poses, along with the correspond-
ing extracted watermarks from the LLFF-Forward datasets. The rendering quality is assessed using
PSNR, SSIM, and LPIPS metrics. Simultaneously, the quality of the extracted watermark is evalu-
ated based on the SSIM metric.

A.9 EXTENDED RENDERING RESULTS ON DIFFERENT SCENES

NeRF IPR-NeRF w/o s IPR-NeRF (Full)
Render Watermark Render Watermark Render Watermark

NeRF-
Synthetic 0.9582 N/A 0.9551 0.9639 0.9573 0.9658

0.9547 N/A 0.9521 0.9621 0.9538 0.9652

LLFF-
Forward 0.8274 N/A 0.8235 0.9781 0.8253 0.9729

0.8214 N/A 0.8193 0.9732 0.8208 0.9757

Table 11: The qualitative and quantitative results of the IPR-NeRF for different scenes in the two
datasets: NeRF-Synthetic (mic and ship scenes) and LLFF-Forward (orchid and trex scenes). Ac-
companying each set of rendering results is the corresponding extracted watermark image. The
performance is evaluated in SSIM.
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A.10 EXTENDED RENDERING RESULTS ON UNBOUND-360 DATASET

NeRF IPR-NeRF
Render Watermark Render Watermark

Garden PSNR↑ 22.38 22.16
SSIM↑ 0.5385 N/A 0.5359 0.9526
LPIPS↓ 0.4417 0.4483

Kitchen PSNR↑ 25.52 25.27
SSIM↑ 0.7219 N/A 0.7182 0.9625
LPIPS↓ 0.3789 0.3994

Table 12: The qualitative and quantitative rendering results of the NeRF and IPR-NeRF for garden
and kitchen scenes in Unbound-360 dataset Barron et al. (2022). The rendering quality is assessed
using PSNR, SSIM, and LPIPS metrics. Simultaneously, the quality of the extracted watermark is
evaluated based on the SSIM metric.

A.11 QUALITATIVE RESULTS ON MODEL PRUNING

(a) 0% (b) 10% (c) 20% (d) 30% (e) 40% (f) 50%

(g) 60% (h) 70% (i) 80% (j) 90% (k) 100%

Figure 16: Qualitative rendering results of different model pruning rates.

Although our approach successfully embeds a watermark, we observed that it became compromised
when the model was pruned at rates exceeding 40%. This resulted in the watermark becoming unex-
tractable, as demonstrated in Fig. 10 and Fig. 11. However, as depicted in Fig. 16, when the model
is pruned at rates exceeding 40%, not only does the embedded watermark become unextractable, but
the rendering quality of the NeRF model also significantly deteriorates. Consequently, it renders the
model unusable and diminishes its commercial value.
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A.12 QUANTITATIVE RESULTS ON REMOVAL ATTACKS

IPR-NeRF (Ours) StegaNeRF CopyRNeRF

NeRF-Synthetic
SSIM ↑ 0.9308 0.9273 0.9375
wSSIM ↑ 0.3517 0.2819 0.3216
BER ↓ 0 ✗ ✗

LLFF-Forward
SSIM ↑ 0.8174 0.7947 0.8061
wSSIM ↑ 0.4173 0.3602 0.3916
BER ↓ 0 ✗ ✗

Table 13: Comparatively analysis of our approach against StegaNeRF and CopyRNeRF on overwrite
attack.

A.13 TIME COMPLEXITY

As shown in Table 14, our approach requires sig-
nificantly more training time than the original NeRF
framework (Mildenhall et al., 2020). This is due to our
proposed two-stage optimization process for embed-
ding watermarks into rendering. However, it’s impor-
tant to note that our approach does not impact inference
time. The inference time of our approach remains the
same as that of the original NeRF framework. Given
that the inference process is a frequent operation for
users. In contrast, the watermark embedding process is
an infrequent task, we confidently affirm that our ap-
proach is exceptionally well-suited for real-world de-
ployment. It robustly safeguards intellectual property
rights and ownership of the NeRF model.

Relative Time

Training Inference

NeRF 1.00 1.00
IPR-NeRF w/o s 1.58 1.00
IPR-NeRF (Full) 1.59 1.00

Table 14: Comparative analysis of the train-
ing and inference times for the proposed
IPR-NeRFframework in comparison to the
original NeRF framework. The values pre-
sented are relative to those of the original
NeRF framework.

A.14 ABLATION STUDY OF COEFFICIENT λ

In Section 3.1, we introduced λ
to scale the watermark detection
term LD. This balance is pivotal
for the rendering quality of the
protected NeRF model and the
watermark image. We performed
an ablation study on λ, and the
results are in Table 15.

λd 0.1 0.5 1.0 2.5 5.0

SSIM ↑ 0.9784 0.9682 0.9541 0.9359 0.8715
wSSIM ↑ 0.9217 0.9437 0.9671 0.9751 0.9781

Table 15: Impact of λd on IPR-NeRFrendering performance and
quality of the extracted watermark image measured in SSIM.

From the data presented in Table 15, we can discern a clear relationship: when λ is set to a low
value, the rendering quality of the protected NeRF model is notably high, but this comes at the
expense of the quality of the extracted watermark image, which is generally lower and vice-versa.
In summary, our analysis reveals a tradeoff between the rendering quality of the protected NeRF
model and the quality of the extracted watermark image. Notably, our findings demonstrate that
an optimal balance between these two factors is achieved when λ is set to 1.0. At this value, the
quality of the extracted watermark image remains relatively good, without adversely impacting the
performance of the protected NeRF’s rendering quality.
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A.15 LIMITATION

Although our proposed approach of watermarking (black-box) on rendered scenes, coupled with
embedding a digital signature (white-box) into the NeRF model’s weights, demonstrates superior
performance in protecting against unauthorized usage, as demonstrated in Section 4, it comes with
some inevitable limitations.

Firstly, the current approach for watermarking the NeRF model demands substantial computational
power, as it necessitates a gradient descent update on the weights of the watermark NeRF model
during the proposed two-stage optimization process. Secondly, our suggested black-box protection
scheme is susceptible to overwriting attacks. In the worst-case scenario, where the attacker possesses
comprehensive knowledge about the model, the embedded watermark for black-box verification
can be entirely removed, as detailed in Section 4.5. This limitation imposes restrictions on open-
sourcing the protected NeRF model, as disclosing training steps is essential to prevent others from
compromising it. We anticipate that future research will address this issue by further reducing the
required computational resources, allowing users to protect their NeRF models more efficiently and
ensuring comprehensive defense against overwriting attacks.
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