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ABSTRACT

Mathematical problem solving is a task that examines the capacity of machine
learning models for performing quantitative and logical reasoning. Existing work
employed formulas as intermediate labels in this task to formulate the comput-
ing and reasoning processes and achieved remarkable performance. However, we
are questioning the limitations of existing methods from two perspectives: the ex-
pressive capacity of formulas and the learning capacity of existing models. In this
work, we proposed Memory-Interactive Learning Engine (MILE), a new frame-
work for solving mathematical problems. Our main contribution in this work in-
cludes a new formula representing technique and a new decoding method. In our
experiment on Math23K dataset, MILE outperformed existing methods on not
only question answering accuracy but also robustness and generalization capacity.
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1 INTRODUCTION

With the rapid development of deep learning in recent years, super-human level performance has
been achieved in more and more fields starting with computer vision and natural language process-
ing. Not satisfied by these achievements, researchers have also begun to question the capacity of
machine learning models for performing abstract and logical reasoning. Mathematical reasoning
is a field quite suitable for this study because of its high-level demand for analytical thinking. In
this field, early work tried to solve mathematical problems with language models by performing
end-to-end sequence-to-sequence prediction from question texts to answers. However, language
models such as LSTM (Hochreiter & Schmidhuber, 1997) and Transformer (Vaswani et al., 2017)
did not show desirable performance when there came problems that required relatively complicated
computations such as finding the greatest common divisor (gcd) and base conversion (Saxton et al.,
2019). Another approach to solving mathematical problems is to make use of some intermediate
labels known as formulas, templates, or equations (Wang et al., 2017; 2019; Liu et al., 2019; Xie
& Sun, 2019; Zhang et al., 2020). Some examples for mathematical problems and the formulas are
presented in Table 1. Under this approach, machine learning models are only expected to predict
formulas from questions, and these formulas can be calculated in a rule-based manner to acquire
the final answers. These formulas endow machine learning models with an outstanding capacity
for formulating and organizing abstract computing processes. Recent work also benefited from this
practice to achieve remarkable performance on solving mathematical problems.

However, in our study, we are also alert to some limitations exposed in existing work. The first defect
we are concerned about is the expressive capacity of existing formula representations. Most existing
work represents formulas with infix notation or prefix notation, while these representations are under
the assumption that the computations are tree-structured with algebraic operations at non-leaf nodes
and raw numbers at leaf nodes. However, these tree-structured computations are not competent
for solving all mathematical problems, and a simple exception is finding the gcd. The underlying
reason for this defect is that tree-structured algebraic computation is not Turing-complete, and this
representation does not truly support variables that can be referenced multiple times. This limits
the expressive capacity of the formulas. Besides, another issue that raised our concerns throughout
our study is that it seems that the existing formula predicting models may not truly understand the
underlying concepts and natures of the formulas. Their behavior is more similar to merely fitting

1We will release the software after this paper is published.
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Table 1: Two examples of mathematical problems together with their corresponding formulas and
computing graph. Note that the number and constant tokens in the formulas have been replaced with
corresponding values for better readability. In the second example, prefix notation is not applicable
because the computation is not tree-structured.

question Andy has 12 apples. Bob has 20 apples. Bob gives 2 apples to Andy. How many more
apples does Bob have than Andy now?

answer 4
fp [−, −, 20, 2, +, 12, 2]
fs [(−, 20, 2), (+, 12, 2), (−, M0, M1)]

computing
graph

question There are three classes in a school. Class one has 4 students. Class two has 6 students.
Class three has 8 students. If every student shakes hands with each other, how many
times of handshakes happen in total?

answer 153
fp N/A
fs [(+, 4, 6), (+, M0, 8), (−, M1, 1), (×, M1, M2), (÷, M3, 2)]

computing
graph

the formulas they saw in the training stage. Some evidence for this proposition is uncovered in our
experiment, and more discussion is going to be made in Section 5.

With an eye to these limitations of existing work, in this work, we are motivated to put forward a
new paradigm for formula representation and prediction for solving mathematical problems. We
first introduced a new approach for formula representation named segmented representation, and
then proposed Memory-Interactive Learning Engine (MILE), a new framework for formula learning
that cooperates with our segmented representation. Our major contributions in this work can be
summarized as follows:

• We introduced a new formula representing technique that supports non-tree-structured formulas.
• We proposed a new decoding method that is compatible with this new formula representation and

outperforms the formula predicting models developed in existing work.
• We illustrated that our proposed method is more robust and has better generalization capacity than

existing approaches.

2 RELATED WORK

2.1 MATHEMATICAL REASONING TASKS

Mathematical reasoning is a field that examines the capacity of machine learning models for per-
forming abstract, quantitative, and logical reasoning on mathematical problems. There are various
specific tasks within this field focusing on different reasoning abilities, while the solution to math-
ematical problems described in natural languages is most widely studied in recent years, and many
relevant datasets have been published. Math23K (Wang et al., 2017) is a dataset crawled from a
couple of online education websites consisting of 23,162 mathematical problems with formula an-
notations. MathQA (Amini et al., 2019) is a dataset consisting of 37,200 mathematical problems
collected from another former dataset AQuA (Ling et al., 2017). However, the formula annotations
for MathQA is imperfect and contains noise (Chen et al., 2020; Wu & Nakayama, 2022). This influ-
enced the effectiveness of formula learning. Mathematics (Saxton et al., 2019) is a comprehensive
dataset providing problems generated in various mathematical areas including polynomial and cal-
culus. However, this dataset is proposed to study the end-to-end reasoning capacity of language
models, so no formula annotations are involved. GSM8K (Cobbe et al., 2021) is a dataset that con-
tains 8,792 mathematical problems together with their solutions in natural languages. This dataset
has been used to study the chain-of-thought approach for solving mathematical problems in recent
work (Chowdhery et al., 2022; Wei et al., 2022).
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2.2 MATHEMATICAL PROBLEM SOLVERS

Generally, the existing approaches for solving mathematical problems can be categorized into three
families: end-to-end methods, formula-based methods, and chain-of-thought methods. The charac-
teristics of them are as follows.

As a basic and naive approach, end-to-end methods simply regard both the questions and answers as
sequences of alphabets, digits, and symbols, and conduct a sequence-to-sequence prediction (Saxton
et al., 2019). These methods are easier to be implemented and can be trained in an end-to-end man-
ner. However, the performance achieved by these methods on some problem categories requiring
relatively complicated computations, such as finding the gcd and base conversion, is not satisfying.
This exposed the insufficiency of language models in performing end-to-end logical reasoning.

On the other hand, formula-based methods employ formulas to formulate the computing and rea-
soning processes. Under this methodology, language models are only responsible for predicting
formulas from questions. These formulas are then calculated under pre-defined rules to acquire the
final answers. This approach was first proposed by Wang et al. (2017) and then get improved by
later work (Wang et al., 2019; Liu et al., 2019; Xie & Sun, 2019; Zhang et al., 2020). Formula-based
methods have achieved remarkable performance on challenging mathematical reasoning dataset rep-
resented by Math23K.

Chain-of-thought methods are another novel approach that devotes to solving mathematical prob-
lems step-by-step. These methods acquire solutions to problems by generating each of its interme-
diate reasoning steps with language models continuously. Recent work succeeded in implementing
this method by fine-tuning pretrained language models or performing few-shot prompting (Cobbe
et al., 2021; Chowdhery et al., 2022; Wei et al., 2022). Some work has also shown that language
models pretrained on a huge corpus can even be zero-shot learner (Shwartz et al., 2020; Reynolds
& McDonell, 2021; Kojima et al., 2022). However, the performance of these methods still may
not exceed specialized models working on predicting formulas and performing precise rule-based
calculations. As a result, we still consider formula-based approaches valuable for this task.

2.3 NEURAL NETWORKS WITH EXTERNAL MEMORY

Neural Networks with external memory, or what is known as Neural Turing Machine, is an approach
that endows Recurrent Neural Networks with the ability to write to or read from external memory
(Graves et al., 2014; 2016). This approach is proposed with the motivation to strengthen the capacity
of models for maintaining long-term information. The basic architecture of these models can be
described as a recurrent controller network along with an external memory space, which inspired
our idea of introducing memory mechanisms to MILE.

3 FORMULA REPRESENTATION

In formula-based methods, given a question denoted by q, the machine learning model is expected to
predict a formula f for q. The formula f can be formulated in multiple different fashions, while the
infix notation and prefix notation are most commonly adopted in existing work Wang et al. (2017;
2019). In the following discussion, we take prefix notation as an example, while infix notation
shares a similar idea. We let fp denote the formula f represented in prefix notation to distinguish
it from our representations. Generally, fp is made up of a sequence of tokens [t0, ..., tn]. Among
them, each token ti is an element from the union of three sets: Top, Tnum, Tcon. Here, Top is the
set of operator tokens, of which the elements are relevant to specific tasks and datasets. A simple
and typical example of Top is the set of the four basic arithmetic operations {+, −, ×, ÷}. Tnum

is the set of number tokens {N0, ..., Nm} that establish reference to the numbers appearing in the
question text. During data preprocessing, the numbers in the question text are extracted as [n0, ...,
nm]. In the calculation of formulas, Ni will be replaced by the i-th extracted number ni. Tcon is the
set of constant tokens that refer to the constants that are crucial for solving some problems but may
not explicitly appear in the question text. The composition of Tcon is also relevent to specific tasks
and datasets. An example can be {1, π, 60, 100}.

Nevertheless, as we indicated above, this prefix notation fp can only be utilized to represent tree-
structured computations, which limited the expressive capacity of formulas. To address this problem,
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Figure 1: The overview of our Memory-Interactive Learning Engine.

we proposed the segmented representation fs, a new practice for formula representation that is not
restricted to tree-sturctured computations.

Generally, the basic form of this representation is a sequence of terms [S0, ..., Sn]. Among them,
each term Si contains one operator and a certain number of operands. That is, with opr denotes the
operator and opd denotes the operands, Si = (opr, opd1, ..., opdk). Here, the number of operands k
is specific to the operator. For example, arithmetic operations take two operands and the logarithm
operation takes one. Compared to the prefix notation, the operator opr in fs is generated from
the same operator set Top, while the operand opd is generated from the union of Tnum, Tcon, and
another particular set Tref . Here, Tref = {M0, ..., Mn−1} is the set of reference tokens that establish
reference to the intermediate computing results of the previous terms. By the time of calculation,
each term of fs is calculated in order from S0 to Sn, while the last term Sn raises the final result of
the whole formula.

4 MEMORY-INTERACTIVE LEARNING ENGINE

Generally, MILE follows the encoder–decoder architecture as shown in Figure 1. Its computation
can be formulated with Equations 1 and 2.

ee, es = Encoder(q) (1)
f = Decoder(ee, es) (2)

MILE does not have selectivity to the encoder, as long as it encodes the question q to two tensors:
encoder embedding ee and encoder summary es. Here, ee ∈ RL×de , where L denotes the input
sequence length and de denotes the embedding dimension. es ∈Rds , where ds denotes the summary
dimension. Due to its compatibility, MILE can work on any common encoders such as LSTM
(Hochreiter & Schmidhuber, 1997), BERT (Devlin et al., 2019), or GNN (Scarselli et al., 2008;
Zhang et al., 2020).

4.1 MEMORY EMBEDDING POOL

As its name indicates, the most distinctive design of MILE is a latent space of memory that we call
Memory Embedding Pool. This design is inspired by existing work that extended Recurrent Neural
Networks with external memory (Graves et al., 2016) and implemented Neural Turing Machine
(Graves et al., 2014). Following a similar principle, our Memory Embedding Pool is developed to
assist the model to maintain long-term information better.

Generally, our Memory Embedding Pool is composed of three types of different embeddings cor-
responding to the three types of available operands: constant embedding, number embedding, and
reference embedding. It established a unified embedding space for all these available operands, of
which the underlying consideration is that these operands should share equal status throughout the
decoding even though their origins are different. With M denotes the Memory Embedding Pool, M
∈ R[Wc+Wn+Wr]×dm . Here, dm denotes the memory embedding dimension. Wc, Wn, and Wr are
the length of Tcon, Tnum, and Tref , respectively. They are also referred to as the widths of memory
embeddings. We generated the three types of embedding under the following principles.
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Constant Embedding We simply treat constant embeddings as trainable embedding vectors shared
across all questions. That is, with Mc denotes the constant embedding, Mc ∈ RWc×Hm is directly a
parameter to be optimized in our model.

Number Embedding We generate the number embeddings specific to each question basing on its
encoder embedding ee. They are calculated after the encoding is finished and before the decoding is
started. Details are presented in the Initialization paragraph in Section 4.2.

Reference Embedding We generate the reference embeddings continuously after the decoding of
each formula term. That is, its width Wr starts with zero and grows as the decoding goes on. Details
are presented in the Memory Update paragraph in Section 4.2.

4.2 FORMULA DECODING

As shown in Figure 1, the decoding of a formula is a recurrent process with each formula term Si

= (opri, opdi,1, ..., opdi,k) as basic decoding unit. In this process, each decoding loop contains
three subprocedures: operator decoding, operand decoding, and memory update. Their working
principles are presented as follows.

Initialization We first initialize the hidden state h ∈ Rdh and number embedding Mn ∈ RWn×dm

at the beginning of decoding. Their calculations are described by Equations 3 to 6.

h0 = Nhinit(es) (3)
masknum = [1 if is num(ti) else 0 for ti in q] (4)

ee|num = ee.gather(masknum) (5)

Mn = Nninit(ee|num) (6)

Here, Nhinit and Nninit are multilayer perceptrons (MLPs). is num() judges whether a token ti
in q is a number token. gather() gathers the embedding vectors on number tokens along the axis
of sequence length so that ee|num ∈ RWn×de . Note that ee|num is padded to Wn on the axis of
sequence length for the convenience of following calculations, even though there can be less than
Wn number tokens in some input sequences.

Operator Decoding The decoding process of operators is described by Equations 7 to 9. Here,
Mn+r is the variable part of the memory embedding, which contains the number embedding and
reference embedding and starts from the end of the constant embedding. Oi ∈Rdm is an observation
across Mn+r and is obtained simply with the attention mechanism, where W qk

opr ∈ Rdh×dm denote
the product of query and key matrixes. At last, Oi is concatenated to hi to be passed through a
MLP classifier Nopr to predict the operator opri. For short, We abbreviate opri to ô in the following
discussion.

Mn+r = M[Wc:] (7)

Oi = Attention(hi,Mn+r)

= softmax(hiW
qk
oprM

⊤
n+r)Mn+r (8)

opri = argmaxTop
Nopr([hi, Oi]) (9)

Operand Decoding The decoding process of operands is described by Equations 10 and 11. Note
that this process is repeated k times in each decoding loop because each operator is associated with
k operands, while for most arithmetic operations k = 2.

Pi,k = softmax(hiW
qk
opd|ô,kM

⊤) (10)

opdi,k = argmaxTcon∪Tnum∪Tref
Pi,k (11)

Here, Pi,k is the likelihood on each memory embedding terms of being the desirable k-th operand
for operator ô. Again, W qk

opd|ô,k ∈ Rdh×dm denote the product of query and key matrices. However,
unlike W qk

opr, which is a single parameter shared throughout the whole decoding process, there is
a set of W qk

opd|∗ = {W qk
opd|opr0,1, ..., W qk

opd|oprn,k} corresponding to each operand position of each
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operator. An exception here is that for the commutative operations like addition and multiplication,
a single W qk

opd|∗ is shared by the symmetric operands so that W qk
opd|+,1 ≡W qk

opd|+,2. This design helps
the model to better learn the underlying concepts of mathematical operations and prevent overfitting.

Memory Update After the operator and operands in each formula term Si is decoded, we update
the Memory Embedding Pool by two means. First, we update the embeddings of the memory terms
that are selected as operands. Then, we generate an embedding for the current formula term Si and
append it to the reference embedding. The memory update for operands follows Equations 12 to 14.

M ′
i,k = Nmupd|ô,k([hi,M[opdi,k]]) (12)

gi,k = Ngate|ô,k([hi,M[opdi,k]]) (13)

M[opdi,k] = gi,kM
′
i,k + (1− gi,k)M[opdi,k] (14)

Here, M is updated solely on its opdi,k slice M[opdi,k]. Its update follows a gate mechanism similar
to the one in GRU Chung et al. (2014). Nmupd|ô,k and Ngate|ô,k are the MLPs that calculate the up-
date and gate vectors, respectively, with the original M[opdi,k] concatenated to hi as inputs. Similar
to W qk

opd|∗, there are also two sets of Nmupd|∗ and Ngate|∗ corresponding to each operand position
of each operator, and the ones for symmetric operands are shared.

The generation of the new memory embedding for Si follows Equations 15 and 16.

M◦
i = Nemb|ô([hi,M[opdi,1], ...,M[opdi,k]]) (15)

M = [M,M◦
i ] (16)

Here, Nemb|ô is the MLP coming from set Nemb|∗ that calculates the new embedding vector M◦
i . It

takes as input the concatenation of hi and the k associated original memory embedding M[opdi,1] to
M[opdi,k]. M

◦
i is concatenated to M then, which makes the width of reference embedding Wr grow

by one in each decoding loop. At last, the hidden state is updated following Equation 17.

hi+1 = Nhupd|ô([hi,M[opdi,1], ...,M[opdi,k]]) (17)

As a summary, all the trainable parameters and modules in the decoding side of MILE include Mc,
Nhinit, Nninit, W qk

opr, Nopr, W qk
opd|∗, Nmupd|∗, Ngate|∗, Nemb|∗, and Nhupd|∗.

4.3 FORMULA MUTATION

Considering that the decoding mechanism of MILE is relatively more complex than that in existing
approaches like RNN decoder and Tree decoder Zhang et al. (2020) and MILE has more parameters,
the training of MILE is more challenging. Moreover, due to the cost of crafting formula annotations,
most publically available mathematical reasoning datasets with formula annotations only contain
from several thousands to tens of thousands of training samples. In our experiment, we also found
that such a limited amount of data may not satisfy the training demand on MILE. As a result, we
proposed formula mutation, a data augmentation approach to expand the scale of training data.

The idea of formula mutation is quite straightforward—generating functionally equivalent formulas.
This can also be easily implemented on formulas in segmented representation, for which we just
need to swap the symmetric operands in each formula term performing commutative operations.
To be more formally, with fs = [S0, ..., Sn], Si = (opri, opdi,1, ..., opdi,k), Top|c denotes the set
of commutative operators, and

∏
performs the Cartesian product, the mutation on fs is given by

Equations 18 and 19. An example of the mutation result on a formula with commutative operations
is provided in Appendix A.

S′
i =


{Si}, if opri /∈ Top|c
{(opri, opdi,1, opdi,2), (opri, opdi,2, opdi,1)}, if opri ∈ Top|c

(in this case k = 2 for certain)

(18)

Mut(fs) =

n∏
i=0

S′
i (19)
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Table 2: Question answering accuracy of baselines and MILE on Math23K dataset under 5-fold
cross validation and on a public test set.

5-fold public
DNS (Wang et al., 2017) 58.1% -
T-RNN (Wang et al., 2019) 66.9% -
TreeDecoder (Liu et al., 2019) - 69.0%
GTS (Xie & Sun, 2019) 74.3% 75.6%
Graph2Tree (Zhang et al., 2020) 75.5% 77.4%
LSTM / LSTM 65.2% 65.9%
LSTM / Tree 68.9% 69.7%
MILE (LSTM) 65.3% 66.1%
Graph / LSTM 71.2% 72.8%
Graph / Tree 75.1% 77.2%
MILE (Graph) 74.9% 77.0%
BERT / LSTM 78.0% 79.5%
BERT / Tree 81.7% 82.9%
MILE (BERT) 82.5% 83.6%

Formula mutation is utilized by default in MILE, while it can also be applied to other decoding
methods by transforming the formula in segmented representation fs back to prefix notation fp.
We conducted contrast experiments on the influence of formula mutation and report our interesting
findings in Section 5.2.

5 EXPERIMENTS

In our experiments, we studied the performance of MILE and compared MILE with existing decod-
ing methods on the Math23K dataset (Wang et al., 2017). We selected Math23K as the dataset for
our experiments because it is the largest officially published mathematical reasoning dataset with
complete formula annotation. Math23K is also the dataset on which most existing work reported
their result, which allows convenient comparisons. We show the experimental setup and primary
result in Section 5.1 and 5.2, and present our findings in further studies in Section 5.3 and 5.4.

5.1 EXPERIMENTAL SETUP

As we indicated above, MILE has an encoder–decoder architecture. For the encoder, we compared
the LSTM encoder Hochreiter & Schmidhuber (1997), the graph encoder introduced by Zhang et al.
(2020), and BERT Devlin et al. (2019). For the decoder, we compared our method to the LSTM
decoder and the tree decoder introduced by Zhang et al. (2020). Note that MILE predicts formulas
in segmented representation fs while other decoders predict formulas in prefix notation fp. The
implementation details are presented in Appendix B. We evaluate the performance of models with
the accuracy of final answers acquired from predicted formulas. Note that this accuracy is different
from and is not directly comparable with the formula matching accuracy applied in some existing
work, which does not tolerate the functionally equivalent formulas that lead to the same answers.

5.2 PRIMARY RESULT

Table 2 shows the question answering accuracy of baselines and MILE on Math23K dataset under
5-fold cross validation and on a public test set. Here, DNS is the original RNN-based learning
model proposed by Wang et al. (2017). T-RNN (Wang et al., 2019) predicts equation templates in
tree structure with recursive neural networks. TreeDecoder (Liu et al., 2019) implements a tree-
structured decoder to predict prefix templates. GTS (Xie & Sun, 2019) employs tree-structured
neural networks to predict expression trees in a goal-driven manner. Graph2Tree (Zhang et al., 2020)
introduces a novel approach with graph-based encoder and tree-based decoder to further improve the
performance. What follows are the nine model implementations in our experiment combining the
three encoders and three decoders mentioned in Section 5.1.
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Table 3: Question answering accuracy of different model implementations [without / with] formula
mutation under 5-fold cross validation.

LSTM Tree MILE
LSTM 65.2% / 65.5% 68.9% / 68.0% 63.1% / 65.3%
Graph 71.2% / 69.6% 75.1% / 72.0% 73.3% / 74.9%
BERT 78.0% / 75.9% 81.7% / 81.3% 81.6% / 82.5%

From this result, it can first be noticed that when MILE is working on the LSTM encoder or graph
encoder, its performance is even worse than the combination of these encoders and tree decoder.
However, when MILE is working with BERT, which is a much more powerful encoder, it shows
better performance than the tree decoder. We explain this result with the design of MILE. Note that
the decoding mechanism of MILE is relatively more complex, and MILE also contains components,
such as W qk

opd|∗, that are specific to every single valid operator. These characteristics make the train-
ing of MILE be faced with more difficulty and can get overfitted more easily. These challenges can
be further magnified by the deficiency of training data, which is the very case of Math23K—there
are only about 18k training samples under 5-fold cross validation. However, these problems can be
largely relieved by BERT, which is pretrained on a large enough corpus. A well-pretrained encoder
can make MILE focus on the training of the decoding side and thus achieve better performance.

Nevertheless, we want to clarify that because BERT included external training data in its pretraining
stage, the accuracies achieved by models involving BERT as encoders are not directly comparable
with the others above. However, considering that employing large-scale pretrained language models
has become a common practice in the solutions to NLP tasks nowadays, we still consider the results
on BERT meaningful and having reference value.

On the other hand, we studied the impact of the formula mutation technique introduced in Sec-
tion 4.3. The result is reported in Table 3. From this result, an interesting finding we obtained is
that MILE is the only model that stably benefits from the formula mutation. In the view of human
beings, the formula mutation is a quite natural practice, and the functionally equivalent formulas
would not injure our learning of arithmetic. Conversely, the variety of formulas imparts us a better
understanding of the nature of mathematics. However, this property does not hold for the existing
formula predicting models, which further indicates that these models may not truly grasp the un-
derlying concepts and natures of formulas and are simply fitting the formulas in the training set. In
contrast, the capacity of MILE for learning from mutated formulas suggests that MILE learns and
predicts formulas in a way more natural and close to human beings, which explained the reason that
MILE outperforms other decoding techniques from another aspect. To provide more evidence for
this proposition, we conducted some further studies and report the results in following sections.

5.3 GENERALIZATION CAPACITY

The first further question we want to investigate is the generalization capacity of different formula
predicting models. For this goal, we conducted experiments on different train–test set splits. In the
primary experiment presented in Section 5.2 under 5-fold cross validation and on the public test set,
the split of the training and test sets is conducted randomly. Whereas, in this experiment, we split
these two sets with two different metrics: number count and formula length. For number count split,
we sort the (q, f ) pairs by the count of number tokens in q. Then with proportion p, we use p of
samples with more number tokens in q as test data, and the rest (1-p) of samples with less number
tokens in q as training data. This split is denoted by number-p for short. For formula length split, we
sort the (q, f ) pairs by the length of f (i.e., the count of terms Si in f ). Then with proportion p, we
use p of samples with longer f as test data, and the rest (1-p) of samples with shorter f as training
data. This split is denoted by formula-p for short. All the other experiment settings except for the
train–test set split are the same as the primary experiment. The result is reported in Table 4.

From this result, it can first be noticed that there is a huge gap between the accuracies achieved
in 5-fold cross validation and our experimental splits. This is because our splits produce a highly
challenging test environment, where the models have to generalize to problems that have more num-
bers involved and need longer calculating flows to solve than all the problems seen in the training
stage. However, even in this challenging environment, MILE shows the best performance among
the compared methods, which verified its superior generalization capacity. More detailed analyses
of this result and a case study are presented in Appendix C and D.
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Table 4: Question answering accuracy of different inference models under different train–test set
splits.

split BERT / LSTM BERT / Tree MILE (BERT)
5-fold 78.0% 81.7% 82.5%

number-0.2 13.4% 23.5% 24.9%
number-0.3 31.1% 39.6% 41.5%
number-0.4 39.3% 46.0% 47.7%
formula-0.2 21.4% 24.0% 25.4%
formula-0.3 4.0% 3.8% 4.1%
formula-0.4 17.9% 19.2% 19.8%

Table 5: Question answering accuracy of different inference models with token replacement.

BERT / LSTM MILE (BERT)
original 78.0% 82.5%

replace-2x 30.6% 74.1%
replace-3x 10.3% 70.9%

5.4 ROBUSTNESS

The robustness of different formula predicting models is another question that raised our concerns.
To shed light on this question, we designed an experiment in which the word tokens in question
texts can be randomly replaced by number tokens. That is, with q = [t0, ..., tn], we have {t¬num}=
{ti for ti in q if not is num(ti)} denotes the set of non-number tokens. For each q, we randomly
sample r tokens from {t¬num} and replace them with r random tokens sampled from {tnum}. Here,
{tnum} denotes the collection of all number tokens from all q in the dataset. That is, {tnum} = ∪qi
{tj for tj in qi if is num(tj)}. In the experiment, we decide r for each q independently in line with
m, the count of number tokens in q. As for the two experiment settings replace-2x and replace-3x,
we let r = 2m and r = 3m, respectively. An additional restriction here is that at least half of the
word tokens in each q will be kept unchanged. After this replacement, the formulas are also updated
correspondingly to keep the number references accurate. The other settings in this experiment are
the same as the primary experiment. The result is reported in Table 5. 2

From this result, it is shown that the performance of the LSTM decoder is influenced by the token
replacement significantly. The reason here is that the number tokens Tnum distinguish numbers
appearing in question texts by their indexes in a hard-coded way, which is highly sensitive to the
absolute indexes of numbers instead of their relative contexts. As a result, this coding fails when
some word tokens are replaced by number tokens in the question texts, which changes the absolute
indexes of number tokens. This problem can be relieved to some extent by performing cross attention
mechanism with encoder (Xie & Sun, 2019; Zhang et al., 2020). Nevertheless, we go one step
further in the design of MILE, where the decoding of operands is fully powered by the attention
calculation on the Memory Embedding Pool. Owing to this characteristic, the influence brought by
token replacement is much less on MILE.

6 CONCLUSION

In this work, we discussed the limitations of existing techniques for solving mathematical problems
from two aspects: the expressive capacity and the learning effectiveness. To address these problems,
we first introduced the segmented representation technique to support non-tree-structured formulas,
and then proposed MILE to implement reasonable formula predictions with the segmented repre-
sentation. Our experiment on Math23K dataset verified the effectiveness of our proposed method
and illustrated its superiority in generalization capacity and robustness. In view of this, we consider
our proposals a rational approach toward the mathematical problem solving.

2We failed to conduct this experiment on the tree decoder because the modification of the tokens in questions
influences the relation between entities, which further changes some labels essential for the decoding named
number group. However, these labels were pre-generated and loaded in the published code of Graph2Tree,
which made it impossible for us to reproduce.
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A EXAMPLE OF FORMULA MUTATION

Table 6: Example of the mutation results on a formula.

original formula [(+, N0, N1), (−, N2,M0), (×,M1, N3)]
mutation results [(+, N0, N1), (−, N2,M0), (×,M1, N3)]

[(+, N1, N0), (−, N2,M0), (×,M1, N3)]
[(+, N0, N1), (−, N2,M0), (×, N3,M1)]
[(+, N1, N0), (−, N2,M0), (×, N3,M1)]

B IMPLEMENTATION DETAILS

For the LSTM encoder, we employed a two-layer Bidirectional LSTM Schuster & Paliwal (1997)
with hidden state size 256. For the LSTM decoder, we employed a two-layer LSTM with hidden
state size 512. For the graph encoder and the tree decoder, we followed the default implementations
and settings in the published code of Zhang et al. (2020). For BERT, we used the pretrained Chinese
BERT (HuggingFace, 2018) because all the questions in Math23K are written in Chinese. For
MILE, we have the memory embedding dimension dm = 128 and the dimension of hidden state dh
= 512. We employed two-layer MLPs for Nhinit, Nninit, Nopr, Nmupd|∗, and Nemb|∗ with hidden
layer dimension the same as output layers. We employed single layer fully connected networks for
Ngate|∗ and Nhupd|∗. The dimension of the query and key vectors of W qk

opr and W qk
opd|∗ is 128. We

optimized all the models with Adam (Kingma & Ba, 2015). The learning rate is 10−4 for all the
parameters in MILE’s decoding side, and 10−3 for parameters in all other parts of models.

As for the decoding, we let Top = {+, −, ×, ÷, =} and Tcon = {1, 2, π, 100} in line with the
demand of Math23K. Note that the operator = in Top is a special token for supporting the case that
the answers to some questions can directly be a number appearing in the question texts. There is no
arithmetic computation required in these cases, so we formulate fs with [(=, Ni)].

C DETAILED RESULT ANALYSES

An abnormal phenomenon observed in the experiment result in Section 5.3 is that, in number count
split, the accuracy achieved on number-0.3 and number-0.4, where 30% or 40% of samples are
utilized as test data, is even higher than number-0.2, where 20% of samples are utilized as test data.
In formula length split, these variations are not even monotonic. However, this phenomenon is not
incomprehensible. We analyzed the sliding window average accuracy on test samples in these test
sets and show the results in Figure 2 and 3. In these two figures, the solid gray lines show the
count of numbers and the length of formulas of test samples, which are also the evidence for our
sample sorting and set split. In both figures, the accuracy drops significantly when the count of
numbers or length of formulas grows. This illustrates the difficulty of generalizing to mathematical
problems that have more numbers involved and need longer calculating flows to solve. However,
compared with number-0.2, the 10% or 20% additional test data in number-0.3 and number-0.4 is
of lower difficulty and have higher accuracy. This is because the numbers in these samples are fewer
and there are also problems with three numbers in the training set, which makes the generalization
easier. As a result, including these additional samples into the test set thins the total difficulty of
testing and makes the final accuracy higher. Nevertheless, if we focus on the overlapping part of
test samples in number-0.2, number-0.3 and number-0.4 on the right side, the accuracy achieved on
number-0.2 is still higher than number-0.3 and number-0.4, which is a reasonable outcome. The
result on formula length split can be explained similarly, while things are a little more radical. The
train–test set split on formula-0.3 is almost right on the edge between problems with formula lengths
less than and not less than three. This makes the generalization extremely hard and leads to very
low accuracy. In contrast, a part of the problems with formula length three is split to the training set
in formula-0.2, so this makes the generalization much easier and the accuracy higher.
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Figure 2: The sliding window average accuracy on number-p with window width 200.

Figure 3: The sliding window average accuracy on formula-p with window width 200.
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D CASE STUDY

Table 7: Examples of the formulas predicted by different inference models on some problems. Note
that the questions in Math23K dataset are written in Chinese, we translate them into English only
for this demonstration.

test set number-0.2
question Lee deposits 400 dollar in the bank for 4 years. The annual interest rate is 2.80%.

How much after-tax interest can Lee get when it is due? (Deposit interest tax is
20%)

answer 35.84
BERT / LSTM (raw) [×, ×, N0, N1, −, 1, N2]

(flatten) (400× 4)× (1− 2.80%) (wrong)
BERT / Tree (raw) [×, ×, N0, N2, N1]

(flatten) (400× 2.80%)× 4 (wrong)
MILE (BERT) (raw) [(×, N0, N2), (×, M0, N1), (−, 1, N3), (×, M1, M2)]

(flatten) ((400× 2.80%)× 4)× (1− 20%)
test set number-0.4

question The distance from Lily’s house to the shopping mall is 2400 meters. She ran at a
speed of 150 meters per minute for 5 minutes, and then walked at a speed of 60
meters per minute for 16 minutes. How many meters does she still need to walk
to reach the shopping mall?

answer 690
BERT / LSTM (raw) [+, N0, ×, N1, N2]

(flatten) 2400 + (150× 5) (wrong)
BERT / Tree (raw) [−, N0, ×, N1, N4]

(flatten) 2400− (150× 16) (wrong)
MILE (BERT) (raw) [(×, N1, N2), (−, N0, M0), (×, N3, N4), (−, M1, M3)]

(flatten) 2400− (150× 5)− (60× 16)
test set formula-0.2

question Students in a school go to camp. There are 28 students in the lower grades. There
are 17 times as many as lower grades and 16 more students in the higher grades.
If every 13 students share a tent, how many tents do the lower grades students and
higher grades students need in total?

answer 40
BERT / LSTM (raw) [+, +, N0, ÷, N0, N1, N2]

(flatten) (28 + (28÷ 17)) + 16 (wrong)
BERT / Tree (raw) [÷, +, ×, N0, N1, N2, N3]

(flatten) ((28× 17) + 16)÷ 13 (wrong)
MILE (BERT) (raw) [(×, N0, N1), (+, N2, M0), (+, N0, M1), (÷, M2, N2)]

(flatten) (28 + (16 + (28× 17)))÷ 13
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