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Abstract

We introduce the Retrieving Visual Facts
(RVF) framework for few-shot visual question
answering (VQA). The RVF framework rep-
resents an image as a set of natural language
facts; for example, in practice these could be
tags from an object detector. Critically, the
question is used to retrieve relevant facts: an
image may contain numerous details, and one
should attend to the few which may be use-
ful for the question. Finally, one predicts the
answer from the retrieved facts and the ques-
tion, e.g., by prompting a language model as
we do here. Compared to PICA (Yang et al.,
2021), the previous state-of-the-art in few-shot
VQA, a proof-of-concept RVF implementa-
tion improves absolute performance by 2.6%
and 1.5% respectively on the VQAv2 (Goyal
etal.,2017) and OK-VQA (Marino et al., 2019)
datasets. We also analyze our implementation’s
strengths and weaknesses on various question
types, highlighting directions for further study.

1 Introduction

Fully supervised performance on VQA datasets
has risen sharply due to recent advances in neural
architectures and feature representations (Anderson
et al., 2018; Wu et al., 2019; Zhang et al., 2021).
However, as labeled VQA data can be expensive to
annotate, there has been increasing interest in few-
shot VQA (Tsimpoukelli et al., 2021; Yang et al.,
2021), for which only a handful (e.g., 16) of labeled
training samples are provided. For example, the
previous state-of-the-art PICA method (Yang et al.,
2021) takes advantage of large pretrained models
for both vision (Zhang et al., 2021) and text (Brown
et al., 2020) to answer questions given only a few
labeled examples in the form of a prompt.

In this work, we propose the Retrieving Vi-
sual Facts (RVF) paradigm for few-shot VQA,
inspired by text-based question answering (QA)
methods such as Clark and Gardner (2017). Text
QA systems do not try to answer questions using
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Figure 1: A VQAv2 (Goyal et al., 2017) example for intuition.
We can view the image as a collection of facts. Looking first at
the image and only then at the question (see footnote'), it may
be difficult to recall the most relevant facts; this is analogous
to PICA’s operation. But the task is easier if one attends to
relevant facts with question in mind, akin to RVF.

a question-independent summary of a document.
Rather, systems first retrieve passage(s) that are
most relevant to the question. Here, we apply this
lens to VQA. Whereas systems like PICA reduce
an image to “facts” (e.g., captions or tags) without
seeing the query, RVF instead views the image as a
collection of facts, and retrieves the ones most rele-
vant to the query before using them to predict the
answer. Figure 1 illustrates RVF’s main intuition:
since an image has myriad details, one should use
the question to extract the most relevant ones.

We evaluate the RVF framework using a proof-
of-concept implementation RVF-P (Sec. 3), struc-
tured similarly to PICA to facilitate comparison.”
Concretely, RVF-P generates a caption and a list
of tags, with tags selected based on the question.
RVF-P improves over PICA by an absolute 2.6% on
the VQAV2 dataset (Goyal et al., 2017) and 1.5%
on OK-VQA (Marino et al., 2019), as shown in Sec.
4. However, if we limit the evaluation to questions
which are not already correctly answered by a triv-
ial text-only baseline, RVF-P outperforms PICA by
arelative 16% and 13% on the two datasets respec-
tively. Finally, our analysis in Sec. 4.1 highlights
several avenues for further improvement.

'Question for Fig. 1: What fruit can be seen on the table?
2All code will be open-sourced upon publication.
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Figure 2: Overview of RVFE-P, our implementation of the RVF framework. (a) An object detector extracts facts (here, tags),
scoring by confidence/salience. (b) The same tags are scored by question relevance; note PICA does not do this. (¢) Probabilities
from (a) and (b) are multiplied and renormalized. (d) The top tags from (c) are used in the prompt; for few-shot evaluation, the
process is repeated on some training set examples. The full prompt is finally fed to a language model.

2 Related Work

Recent work has substantially advanced VQA per-
formance, whether by modifying the model archi-
tecture (Anderson et al., 2018; Lu et al., 2019; Wu
etal., 2019, 2021), or improving underlying feature
representations (Li et al., 2020; Zhang et al., 2021).
In particular, Hu et al. (2019) explore question-
conditioned image processing, though not in a few-
shot setting. Additionally, the advent of large pre-
trained vision-language models such as CLIP (Rad-
ford et al., 2021) and GLIP (Li et al., 2021) sug-
gests leveraging a pretrained backbone for training
and/or fine-tuning (Shen et al., 2021).

Pretrained models have also enabled few-shot or
even zero-shot VQA (Tsimpoukelli et al., 2021;
Wang et al., 2021; Yang et al., 2021). For ex-
ample, SIMVLM (Wang et al., 2021) pretrains a
large vision-language model for use on downstream
tasks. Most similar to our approach is PICA (Yang
et al., 2021), which uses an off-the-shelf caption-
ing model to write a text description of the image
before querying a language model for the answer.
RVF also constructs a text description of the im-
age and then uses a language model to predict the
answer, but the key difference is that we condition
the description on the question.

Finally, RVF is inspired by question answer-
ing methods in text domains. Such methods typi-
cally use the question to select a relevant passage,
whether from a document (Lei et al., 2016; Clark
and Gardner, 2017) or from a large database (Chen
et al., 2017; Karpukhin et al., 2020), before extract-
ing the answer from the selected passage. RVF
uses a similar idea in VQA, using the question to
select facts about the image.

3 Retrieving Visual Facts

Below we describe our proposed Retrieving Visual
Facts (RVF) framework for few-shot VQA.

1. Generate a set F of natural language facts for
the given image.

2. Select the facts f from F most relevant to the
given question.

3. Answer the question using the selected f’s.

To analyze RVF empirically, we run a proof-of-
concept implementation (denoted RVF-P) of the
RVF framework. Concretely, RVF-P builds on
PicA (Yang et al., 2021), which first generates a
caption and a list of tags for the image using off-
the-shelf models, then concatenates that descrip-
tion with the question, and finally uses the result to
query GPT3 (Brown et al., 2020) for an answer.

Therefore, RVF-P works as follows. We can
view a tagging model as generating a subset of
possible facts about an image, i.e., facts about the
presence of particular objects. Thus we apply a
pretrained object detector D (Zhang et al., 2021) to
the image to obtain the set F, where each fact f is
a detected adjective-noun pair (e.g., “white wall”’;
Fig. 2a).> From D we obtain a probability D(f),
corresponding to the confidence of each tag f.

Next, different from P1CA, we apply a text en-
coder S designed for semantic relevance (Reimers
and Gurevych, 2019) to both the question as well
as each tag. The dot product of encoded represen-

Zhang et al. (2021) actually output noun tags with a list of
adjectives for each, and we consider all adjective-noun pairs.
The resulting tags differ slightly from those used in PICA,
which uses only nouns, but we observe that the question condi-
tioning aspect is the main driver of performance improvement
in our ablations (Sec. 4.1, Table 2).



tations yields a relevance score. The result is a
distribution over tags based on question relevance,
with probability S(f) for each f (Fig. 2b).

We combine the two distributions by assigning
tag probabilities proportional to D(f)xS(f) (Fig.
2c). The final tag list is created by greedily se-
lecting the top remaining tag until the cumulative
probability reaches 0.8, inspired by nucleus sam-
pling (Holtzman et al., 2019). In practice, this
procedure usually selects 2 to 4 tags. Following
PICA, these tags f are concatenated to a generated
image caption c, before being fed together with
the question ¢ to a language model (Fig. 2d). For
few-shot evaluation, the entire process is repeated
to yield text descriptions for several training set ex-
amples; their respective ¢, f’s, ¢, and answers a are
prepended to the prompt for the language model.

We emphasize that RVF-P is a proof of concept.
For instance, a more sophisticated implementation
of RVF might not limit the fact set F to tags, and
we leave such extensions to future work.

4 Experiments

Datasets. We evaluate on the VQAv2 (Goyal et al.,
2017) and OK-VQA (Marino et al., 2019) datasets
(both English). VQAv2 questions typically ask
about lower-level visual details of an image, while
OK-VQA questions generally require more com-
monsense knowledge. For each dataset, we evalu-
ate on a random size-3000 subset of the validation
set due to GPT3 API costs.

Methods Evaluated. We run the methods below.

1. NOIMAGE, a text-only baseline which pre-
dicts the answer from a language model using
just the question. This weak method can be
viewed as a per-question “majority baseline”
for the language model.

2. P1CA (Yang et al., 2021), the state-of-the-art
for few-shot VQA, which generates a caption
and tags for an image before predicting the
answer with a language model.

3. RVF-P, our implementation of RVF. It also
predicts the answer given a caption and tags
from the same models as PICA, but selects
tags conditioned on the question.

For fair comparison, all methods use GPT3-13B
as the language model (not GPT3-175B, due to
cost limitations). For both PICA and RVE-P, we
use Clipcap (Mokady et al., 2021) for captioning,
and the VinVL object detector (Zhang et al., 2021)

for tagging. We use models trained on Conceptual
Captions (Sharma et al., 2018) for both captioning
and tagging in keeping with a strict few-shot set-
ting for VQAv2 and OK-VQA, which are based on
COCO images (Lin et al., 2014). Note that these
latter models are smaller than those used in the orig-
inal P1ICA work (some of which are non-public),
so our numbers are systematically lower; indeed
RVF-P’s performance also varies based on choices
such as GPT3 size (Appendix A).

We evaluate each method in a 16-shot scenario,
prompting using random training set examples.

Results. RVF-P indeed significantly outperforms
PICA by 2.6% and 1.5% respectively on VQAv2
and OK-VQA (Table 1). We additionally observe
that most questions that both methods get right are
also answered correctly by the trivial NOIMAGE
“majority baseline.” Excluding these easy questions
where GPT3-13B predicts the correct answer with-
out even using the image, RVF-P gets 16% more
questions correct than PICA on VQAV2 and 13%
more on OK-VQA.

Method VQAv2 OK-VQA
NOIMAGE 40.4 23.6
Pica 48.9* 34.0*
RVE-P 51.5 35.5
SUPERVISED SOTA 77.5 54.4

Table 1: Main 16-shot results on VQAv2 and OK-VQA on
size-3000 samples of validation set, with supervised state-
of-the-art (Zhang et al., 2021; Gui et al., 2021) included
below for reference. RVF-P outperforms the previous few-
shot state-of-the-art, PICA, on both datasets (p < 10~* and
p < 0.02 respectively on a paired ¢-test). *Lower than orig-
inally reported in Yang et al. (2021) due to smaller caption-
ing/tagging/language models.

4.1 Analysis

We conduct additional analyses on VQAv2 to shed
light on where RVF-P improves over PICA and
where room for further improvement remains. See
Appendix A for further analyses on the contents of
the image description fed to the language model,
and the size of the language model itself.

Tag Selection. To confirm that it is the question
conditioning rather than our more detailed tags
(compared to PICA) which make the difference
in performance, we run a version of PICA (PICA-
MATCHTAGS) which selects the same number of
tags per question from the same set of tags as RVF-



b3
Context: portrait of a
man with glasses.

Context: a cat
sleeping on a pile of
shoes.

Context: a bowl of
creamy chicken and
cauliflower soup.

Context: a sign for
the restaurant.

Context: person and i
with the new mosaic.

Tags: white sign, red
sign.

Tags: big nose, large
nose.

Tags: green bowl. Tags: grassy ground,
grassy field, large
tree, grassy grass,

green grass.

Tags: white shoe,
black shoe, white
sneaker.

Q: What color is this
bowl?

Q: Could this terrain
support livestock?

Q: How many pairs of Q: What does the sign
shoes are there? say?

A: 2 X

Q: What's below his
nose?

A: green Vv A: yes V A: open X A: glasses X

Figure 3: Example outputs from RVF-P, illustrating strengths and failure modes. Far Left: RVE-P is good at simple attributes
(whereas PICA struggles). Center Left: RVF-P can identify relevant attributes (“grassy”) even when queried indirectly. Center:
RVF-P’s tags are not designed for counting. Center Right: RVF-P’s tags are not designed for reading text. Far Right: RVF-p

struggles with spatial/relational queries. Although these failures are a limitation of RVF-P, they are not necessarily a limitation of

the general RVF framework.

P, but which does not use relevance to the question
when selecting. Table 2 demonstrates that PICA-
MATCHTAGS remains worse than RVF-P.

Method VQAv2
RVE-P 51.5
PicA-MATCHTAGS 48.3

Table 2: Performance of RVF-P compared to a version of
P1cA which selects the same number of tags from the same
set of tags. RVE-P still performs better (p < 10™7).

Error Analysis. VQAv2 questions can be catego-
rized by answer format into three groups: “yes/no,”
“counting,” and “other” (OK-VQA questions are
almost exclusively “other”). We break down differ-
ent methods’ accuracy by category in Table 3.

RVF-P significantly improves over PICA on
“yes/no” and “other” questions. In particular, we ob-
serve that RVF-P performs well on questions about
attributes of objects (Fig. 3 far left). RVF-P can
also identify tags which are indirectly related to
the question (Fig. 3 center left). However, RVF-P
struggles on “counting” questions (“How many ele-
phants are there?”’), which are a systematic failure
mode of RVF-P (as well as PICA). Captions and
tags are a poor match for such questions. Figure
3 shows additional failure modes, such as reading
text and spatial/relational queries. But we empha-
size that while such failures are a limitation of our
implementation RVF-P, they could in principle be
handled consistently by the RVF framework if the
fact generator provided the necessary facts.

Method Yes/No Counting Other
Total 1149 390 1461
NoIMAGE  68.1 27.1 22.3
Pica 69.3 30.7 37.6
RVF-pP 714 322 41.0

Table 3: Accuracies on different VQAv2 question types for
different methods. On the two categories where we would
expect to see improvement—"yes/no” and “other” questions—
RVF-P improves over PICA with p < 0.01.

5 Discussion

We have proposed the RVF framework for few-shot
VQA, which uses the question to select relevant
facts about the image. Our implementation RVF-P
outperforms the previous state-of-the-art PICA, but
several avenues for improvement remain.

One major direction is to improve the set of ini-
tially extracted facts about the given image. The
tags output by an object detector represent only a
limited subset of true facts, resulting in failures on
certain types of questions as analyzed in Sec. 4.1.
More sophisticated methods for extracting facts re-
lating to e.g., object counts or spatial/relational
information could substantially improve perfor-
mance. Moreover, the initial fact extraction model
could itself be question-conditioned in principle.

Finally, due to the modular nature of the
approach—using several independent pretrained
models for tagging, captioning, question relevance,
and final answer extraction—one can improve per-
formance by exchanging any one of these models
for a better-performing version.



Ethical Considerations

As with any work relying heavily upon large pre-
trained models such as GPT3, we may inherit the
biases of such models (Brown et al., 2020). Never-
theless, we believe our work makes a positive im-
pact overall; for example, advances in VQA have
the potential to improve accessibility for the visu-
ally impaired.
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A Additional Analyses

Language Model Size. We run versions of RVF-
P with different sizes of GPT3 (our main results
use GPT3-13B). Table 4 demonstrates that the size
of the language model substantially impacts the
accuracy. We hypothesize that using the full GPT3-
175B would further improve performance; indeed,
the original PICA work obtains higher numbers
than our re-implementation due to their use of
larger models such as GPT3-175B. This analysis
also highlights the modularity of this approach:
any of the component models can be exchanged for
better-performing versions without affecting the
rest of the system.

Method VQAv2
RvVE-P-GPT3-13B 51.5
RVE-P-GPT3-6.7B 46.1
RvVE-P-GPT3-2.7B 41.2

Table 4: Comparison of RVF-pP with different language model
sizes. We use GPT3-13B for our main results. The perfor-
mance improves with better language models (p < 107 !1),
and we hypothesize that using the full GPT3-175B or an even
larger model would yield further benefits.

Context Components. We conduct further analy-
ses on which parts of the context are necessary for
GPT3 to extract the answer, by ablating the tags
(also explored in Yang et al. (2021)) and also the
caption itself. As shown in Table 5, removing ei-
ther component results in a drop in performance,
although it is interesting that one can obtain decent
performance with only a tagging model.

Method VQAv2
RVE-P 51.5
RVF-P-NOTAGS 47.6
RVF-P-NOCAPTION 48.7

Table 5: Ablations on the image description used as context
for GPT3. RVF-P uses both a caption and a list of tags; remov-
ing either the tags or the caption results in lower performance
(p<107%).

B Computational Details

Code primarily relies on four off-the-shelf models.
The captioning model Clipcap (Mokady et al.,
2021), trained on Conceptual Captions (Sharma
et al., 2018), has 156M parameters. The
object detector from VinVL (Zhang et al.,

2021) is also trained on Conceptual Captions
and is 147M parameters. The semantic rele-
vance model (Reimers and Gurevych, 2019)
can be found at https://huggingface.
co/sentence-transformers/
multi-ga-mpnet-base-dot-vl and
has 109M parameters. Finally, the GPT3 language
model (Brown et al., 2020) that we use has 13B
parameters.

The total computational budget was roughly
$600 for the GPT3 API and fewer than 100 GPU
hours for other models, including both preliminary
investigations and final experiments.
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