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Abstract

We introduce the Retrieving Visual Facts001
(RVF) framework for few-shot visual question002
answering (VQA). The RVF framework rep-003
resents an image as a set of natural language004
facts; for example, in practice these could be005
tags from an object detector. Critically, the006
question is used to retrieve relevant facts: an007
image may contain numerous details, and one008
should attend to the few which may be use-009
ful for the question. Finally, one predicts the010
answer from the retrieved facts and the ques-011
tion, e.g., by prompting a language model as012
we do here. Compared to PICA (Yang et al.,013
2021), the previous state-of-the-art in few-shot014
VQA, a proof-of-concept RVF implementa-015
tion improves absolute performance by 2.6%016
and 1.5% respectively on the VQAv2 (Goyal017
et al., 2017) and OK-VQA (Marino et al., 2019)018
datasets. We also analyze our implementation’s019
strengths and weaknesses on various question020
types, highlighting directions for further study.021

1 Introduction022

Fully supervised performance on VQA datasets023

has risen sharply due to recent advances in neural024

architectures and feature representations (Anderson025

et al., 2018; Wu et al., 2019; Zhang et al., 2021).026

However, as labeled VQA data can be expensive to027

annotate, there has been increasing interest in few-028

shot VQA (Tsimpoukelli et al., 2021; Yang et al.,029

2021), for which only a handful (e.g., 16) of labeled030

training samples are provided. For example, the031

previous state-of-the-art PICA method (Yang et al.,032

2021) takes advantage of large pretrained models033

for both vision (Zhang et al., 2021) and text (Brown034

et al., 2020) to answer questions given only a few035

labeled examples in the form of a prompt.036

In this work, we propose the Retrieving Vi-037

sual Facts (RVF) paradigm for few-shot VQA,038

inspired by text-based question answering (QA)039

methods such as Clark and Gardner (2017). Text040

QA systems do not try to answer questions using041

clear glass

buttoned shirt

purple grapes

sliced meat

…
Figure 1: A VQAv2 (Goyal et al., 2017) example for intuition.
We can view the image as a collection of facts. Looking first at
the image and only then at the question (see footnote1), it may
be difficult to recall the most relevant facts; this is analogous
to PICA’s operation. But the task is easier if one attends to
relevant facts with question in mind, akin to RVF.

a question-independent summary of a document. 042

Rather, systems first retrieve passage(s) that are 043

most relevant to the question. Here, we apply this 044

lens to VQA. Whereas systems like PICA reduce 045

an image to “facts” (e.g., captions or tags) without 046

seeing the query, RVF instead views the image as a 047

collection of facts, and retrieves the ones most rele- 048

vant to the query before using them to predict the 049

answer. Figure 1 illustrates RVF’s main intuition: 050

since an image has myriad details, one should use 051

the question to extract the most relevant ones. 052

We evaluate the RVF framework using a proof- 053

of-concept implementation RVF-P (Sec. 3), struc- 054

tured similarly to PICA to facilitate comparison.2 055

Concretely, RVF-P generates a caption and a list 056

of tags, with tags selected based on the question. 057

RVF-P improves over PICA by an absolute 2.6% on 058

the VQAv2 dataset (Goyal et al., 2017) and 1.5% 059

on OK-VQA (Marino et al., 2019), as shown in Sec. 060

4. However, if we limit the evaluation to questions 061

which are not already correctly answered by a triv- 062

ial text-only baseline, RVF-P outperforms PICA by 063

a relative 16% and 13% on the two datasets respec- 064

tively. Finally, our analysis in Sec. 4.1 highlights 065

several avenues for further improvement. 066

1Question for Fig. 1: What fruit can be seen on the table?
2All code will be open-sourced upon publication.
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Context: the clock tower in the town.
Tags: brick building, stone statue, stone wall.
Q: What kind of stone is the building made of?
A: brick

Context: the door to the kitchen.
Tags: gray refrigerator, silver refrigerator
Q: What color is the fridge?
A: silver

Context: person sleeping in the bedroom. 
Tags: brown hair, sleeping kid.
Q: What color is the child’s hair?
A: 

brown

(a) Fact Extraction

(b) Question Relevance
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(c) Multiply + Renormalize

...

(d) Language Model Prompting

Figure 2: Overview of RVF-P, our implementation of the RVF framework. (a) An object detector extracts facts (here, tags),
scoring by confidence/salience. (b) The same tags are scored by question relevance; note PICA does not do this. (c) Probabilities
from (a) and (b) are multiplied and renormalized. (d) The top tags from (c) are used in the prompt; for few-shot evaluation, the
process is repeated on some training set examples. The full prompt is finally fed to a language model.

2 Related Work067

Recent work has substantially advanced VQA per-068

formance, whether by modifying the model archi-069

tecture (Anderson et al., 2018; Lu et al., 2019; Wu070

et al., 2019, 2021), or improving underlying feature071

representations (Li et al., 2020; Zhang et al., 2021).072

In particular, Hu et al. (2019) explore question-073

conditioned image processing, though not in a few-074

shot setting. Additionally, the advent of large pre-075

trained vision-language models such as CLIP (Rad-076

ford et al., 2021) and GLIP (Li et al., 2021) sug-077

gests leveraging a pretrained backbone for training078

and/or fine-tuning (Shen et al., 2021).079

Pretrained models have also enabled few-shot or080

even zero-shot VQA (Tsimpoukelli et al., 2021;081

Wang et al., 2021; Yang et al., 2021). For ex-082

ample, SIMVLM (Wang et al., 2021) pretrains a083

large vision-language model for use on downstream084

tasks. Most similar to our approach is PICA (Yang085

et al., 2021), which uses an off-the-shelf caption-086

ing model to write a text description of the image087

before querying a language model for the answer.088

RVF also constructs a text description of the im-089

age and then uses a language model to predict the090

answer, but the key difference is that we condition091

the description on the question.092

Finally, RVF is inspired by question answer-093

ing methods in text domains. Such methods typi-094

cally use the question to select a relevant passage,095

whether from a document (Lei et al., 2016; Clark096

and Gardner, 2017) or from a large database (Chen097

et al., 2017; Karpukhin et al., 2020), before extract-098

ing the answer from the selected passage. RVF099

uses a similar idea in VQA, using the question to100

select facts about the image.101

3 Retrieving Visual Facts 102

Below we describe our proposed Retrieving Visual 103

Facts (RVF) framework for few-shot VQA. 104

1. Generate a set F of natural language facts for 105

the given image. 106

2. Select the facts f from F most relevant to the 107

given question. 108

3. Answer the question using the selected f ’s. 109

To analyze RVF empirically, we run a proof-of- 110

concept implementation (denoted RVF-P) of the 111

RVF framework. Concretely, RVF-P builds on 112

PICA (Yang et al., 2021), which first generates a 113

caption and a list of tags for the image using off- 114

the-shelf models, then concatenates that descrip- 115

tion with the question, and finally uses the result to 116

query GPT3 (Brown et al., 2020) for an answer. 117

Therefore, RVF-P works as follows. We can 118

view a tagging model as generating a subset of 119

possible facts about an image, i.e., facts about the 120

presence of particular objects. Thus we apply a 121

pretrained object detector D (Zhang et al., 2021) to 122

the image to obtain the set F , where each fact f is 123

a detected adjective-noun pair (e.g., “white wall”; 124

Fig. 2a).3 From D we obtain a probability D(f), 125

corresponding to the confidence of each tag f . 126

Next, different from PICA, we apply a text en- 127

coder S designed for semantic relevance (Reimers 128

and Gurevych, 2019) to both the question as well 129

as each tag. The dot product of encoded represen- 130

3Zhang et al. (2021) actually output noun tags with a list of
adjectives for each, and we consider all adjective-noun pairs.
The resulting tags differ slightly from those used in PICA,
which uses only nouns, but we observe that the question condi-
tioning aspect is the main driver of performance improvement
in our ablations (Sec. 4.1, Table 2).
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tations yields a relevance score. The result is a131

distribution over tags based on question relevance,132

with probability S(f) for each f (Fig. 2b).133

We combine the two distributions by assigning134

tag probabilities proportional to D(f)×S(f) (Fig.135

2c). The final tag list is created by greedily se-136

lecting the top remaining tag until the cumulative137

probability reaches 0.8, inspired by nucleus sam-138

pling (Holtzman et al., 2019). In practice, this139

procedure usually selects 2 to 4 tags. Following140

PICA, these tags f are concatenated to a generated141

image caption c, before being fed together with142

the question q to a language model (Fig. 2d). For143

few-shot evaluation, the entire process is repeated144

to yield text descriptions for several training set ex-145

amples; their respective c, f ’s, q, and answers a are146

prepended to the prompt for the language model.147

We emphasize that RVF-P is a proof of concept.148

For instance, a more sophisticated implementation149

of RVF might not limit the fact set F to tags, and150

we leave such extensions to future work.151

4 Experiments152

Datasets. We evaluate on the VQAv2 (Goyal et al.,153

2017) and OK-VQA (Marino et al., 2019) datasets154

(both English). VQAv2 questions typically ask155

about lower-level visual details of an image, while156

OK-VQA questions generally require more com-157

monsense knowledge. For each dataset, we evalu-158

ate on a random size-3000 subset of the validation159

set due to GPT3 API costs.160

Methods Evaluated. We run the methods below.161

1. NOIMAGE, a text-only baseline which pre-162

dicts the answer from a language model using163

just the question. This weak method can be164

viewed as a per-question “majority baseline”165

for the language model.166

2. PICA (Yang et al., 2021), the state-of-the-art167

for few-shot VQA, which generates a caption168

and tags for an image before predicting the169

answer with a language model.170

3. RVF-P, our implementation of RVF. It also171

predicts the answer given a caption and tags172

from the same models as PICA, but selects173

tags conditioned on the question.174

For fair comparison, all methods use GPT3-13B175

as the language model (not GPT3-175B, due to176

cost limitations). For both PICA and RVF-P, we177

use Clipcap (Mokady et al., 2021) for captioning,178

and the VinVL object detector (Zhang et al., 2021)179

for tagging. We use models trained on Conceptual 180

Captions (Sharma et al., 2018) for both captioning 181

and tagging in keeping with a strict few-shot set- 182

ting for VQAv2 and OK-VQA, which are based on 183

COCO images (Lin et al., 2014). Note that these 184

latter models are smaller than those used in the orig- 185

inal PICA work (some of which are non-public), 186

so our numbers are systematically lower; indeed 187

RVF-P’s performance also varies based on choices 188

such as GPT3 size (Appendix A). 189

We evaluate each method in a 16-shot scenario, 190

prompting using random training set examples. 191

Results. RVF-P indeed significantly outperforms 192

PICA by 2.6% and 1.5% respectively on VQAv2 193

and OK-VQA (Table 1). We additionally observe 194

that most questions that both methods get right are 195

also answered correctly by the trivial NOIMAGE 196

“majority baseline.” Excluding these easy questions 197

where GPT3-13B predicts the correct answer with- 198

out even using the image, RVF-P gets 16% more 199

questions correct than PICA on VQAv2 and 13% 200

more on OK-VQA. 201

Method VQAv2 OK-VQA

NOIMAGE 40.4 23.6
PICA 48.9∗ 34.0∗

RVF-P 51.5 35.5

SUPERVISED SOTA 77.5 54.4

Table 1: Main 16-shot results on VQAv2 and OK-VQA on
size-3000 samples of validation set, with supervised state-
of-the-art (Zhang et al., 2021; Gui et al., 2021) included
below for reference. RVF-P outperforms the previous few-
shot state-of-the-art, PICA, on both datasets (p < 10−4 and
p < 0.02 respectively on a paired t-test). ∗Lower than orig-
inally reported in Yang et al. (2021) due to smaller caption-
ing/tagging/language models.

4.1 Analysis 202

We conduct additional analyses on VQAv2 to shed 203

light on where RVF-P improves over PICA and 204

where room for further improvement remains. See 205

Appendix A for further analyses on the contents of 206

the image description fed to the language model, 207

and the size of the language model itself. 208

Tag Selection. To confirm that it is the question 209

conditioning rather than our more detailed tags 210

(compared to PICA) which make the difference 211

in performance, we run a version of PICA (PICA- 212

MATCHTAGS) which selects the same number of 213

tags per question from the same set of tags as RVF- 214
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Context: a bowl of 
creamy chicken and 
cauliflower soup.

Tags: green bowl.

Q: What color is this 
bowl?

A: green ✓

Context: person and i
with the new mosaic.

Tags: grassy ground, 
grassy field, large 
tree, grassy grass, 
green grass.

Q: Could this terrain 
support livestock?

A: yes ✓

Context: a cat 
sleeping on a pile of 
shoes.

Tags: white shoe, 
black shoe, white 
sneaker.

Q: How many pairs of 
shoes are there?

A: 2 ╳

Context: a sign for 
the restaurant.

Tags: white sign, red 
sign.

Q: What does the sign 
say?

A: open ╳

Context: portrait of a 
man with glasses.

Tags: big nose, large 
nose.

Q: What's below his 
nose?

A: glasses ╳

Figure 3: Example outputs from RVF-P, illustrating strengths and failure modes. Far Left: RVF-P is good at simple attributes
(whereas PICA struggles). Center Left: RVF-P can identify relevant attributes (“grassy”) even when queried indirectly. Center:
RVF-P’s tags are not designed for counting. Center Right: RVF-P’s tags are not designed for reading text. Far Right: RVF-P
struggles with spatial/relational queries. Although these failures are a limitation of RVF-P, they are not necessarily a limitation of
the general RVF framework.

P, but which does not use relevance to the question215

when selecting. Table 2 demonstrates that PICA-216

MATCHTAGS remains worse than RVF-P.217

Method VQAv2

RVF-P 51.5
PICA-MATCHTAGS 48.3

Table 2: Performance of RVF-P compared to a version of
PICA which selects the same number of tags from the same
set of tags. RVF-P still performs better (p < 10−7).

Error Analysis. VQAv2 questions can be catego-218

rized by answer format into three groups: “yes/no,”219

“counting,” and “other” (OK-VQA questions are220

almost exclusively “other”). We break down differ-221

ent methods’ accuracy by category in Table 3.222

RVF-P significantly improves over PICA on223

“yes/no” and “other” questions. In particular, we ob-224

serve that RVF-P performs well on questions about225

attributes of objects (Fig. 3 far left). RVF-P can226

also identify tags which are indirectly related to227

the question (Fig. 3 center left). However, RVF-P228

struggles on “counting” questions (“How many ele-229

phants are there?”), which are a systematic failure230

mode of RVF-P (as well as PICA). Captions and231

tags are a poor match for such questions. Figure232

3 shows additional failure modes, such as reading233

text and spatial/relational queries. But we empha-234

size that while such failures are a limitation of our235

implementation RVF-P, they could in principle be236

handled consistently by the RVF framework if the237

fact generator provided the necessary facts.238

Method Yes/No Counting Other

Total 1149 390 1461

NOIMAGE 68.1 27.1 22.3
PICA 69.3 30.7 37.6
RVF-P 71.4 32.2 41.0

Table 3: Accuracies on different VQAv2 question types for
different methods. On the two categories where we would
expect to see improvement—“yes/no” and “other” questions—
RVF-P improves over PICA with p < 0.01.

5 Discussion 239

We have proposed the RVF framework for few-shot 240

VQA, which uses the question to select relevant 241

facts about the image. Our implementation RVF-P 242

outperforms the previous state-of-the-art PICA, but 243

several avenues for improvement remain. 244

One major direction is to improve the set of ini- 245

tially extracted facts about the given image. The 246

tags output by an object detector represent only a 247

limited subset of true facts, resulting in failures on 248

certain types of questions as analyzed in Sec. 4.1. 249

More sophisticated methods for extracting facts re- 250

lating to e.g., object counts or spatial/relational 251

information could substantially improve perfor- 252

mance. Moreover, the initial fact extraction model 253

could itself be question-conditioned in principle. 254

Finally, due to the modular nature of the 255

approach—using several independent pretrained 256

models for tagging, captioning, question relevance, 257

and final answer extraction—one can improve per- 258

formance by exchanging any one of these models 259

for a better-performing version. 260
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Ethical Considerations261

As with any work relying heavily upon large pre-262

trained models such as GPT3, we may inherit the263

biases of such models (Brown et al., 2020). Never-264

theless, we believe our work makes a positive im-265

pact overall; for example, advances in VQA have266

the potential to improve accessibility for the visu-267

ally impaired.268
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A Additional Analyses388

Language Model Size. We run versions of RVF-389

P with different sizes of GPT3 (our main results390

use GPT3-13B). Table 4 demonstrates that the size391

of the language model substantially impacts the392

accuracy. We hypothesize that using the full GPT3-393

175B would further improve performance; indeed,394

the original PICA work obtains higher numbers395

than our re-implementation due to their use of396

larger models such as GPT3-175B. This analysis397

also highlights the modularity of this approach:398

any of the component models can be exchanged for399

better-performing versions without affecting the400

rest of the system.401

Method VQAv2

RVF-P-GPT3-13B 51.5
RVF-P-GPT3-6.7B 46.1
RVF-P-GPT3-2.7B 41.2

Table 4: Comparison of RVF-P with different language model
sizes. We use GPT3-13B for our main results. The perfor-
mance improves with better language models (p < 10−11),
and we hypothesize that using the full GPT3-175B or an even
larger model would yield further benefits.

Context Components. We conduct further analy-402

ses on which parts of the context are necessary for403

GPT3 to extract the answer, by ablating the tags404

(also explored in Yang et al. (2021)) and also the405

caption itself. As shown in Table 5, removing ei-406

ther component results in a drop in performance,407

although it is interesting that one can obtain decent408

performance with only a tagging model.409

Method VQAv2

RVF-P 51.5
RVF-P-NOTAGS 47.6
RVF-P-NOCAPTION 48.7

Table 5: Ablations on the image description used as context
for GPT3. RVF-P uses both a caption and a list of tags; remov-
ing either the tags or the caption results in lower performance
(p < 10−4).

B Computational Details410

Code primarily relies on four off-the-shelf models.411

The captioning model Clipcap (Mokady et al.,412

2021), trained on Conceptual Captions (Sharma413

et al., 2018), has 156M parameters. The414

object detector from VinVL (Zhang et al.,415

2021) is also trained on Conceptual Captions 416

and is 147M parameters. The semantic rele- 417

vance model (Reimers and Gurevych, 2019) 418

can be found at https://huggingface. 419

co/sentence-transformers/ 420

multi-qa-mpnet-base-dot-v1 and 421

has 109M parameters. Finally, the GPT3 language 422

model (Brown et al., 2020) that we use has 13B 423

parameters. 424

The total computational budget was roughly 425

$600 for the GPT3 API and fewer than 100 GPU 426

hours for other models, including both preliminary 427

investigations and final experiments. 428
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