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ABSTRACT

This paper explores the generalization loss of linear regression in variably parame-
terized families of models, both under-parameterized and over-parameterized. We
show that the generalization curve can have an arbitrary number of peaks, and
moreover, locations of those peaks can be explicitly controlled. Our results high-
light the fact that both classical U-shaped generalization curve and the recently
observed double descent curve are not intrinsic properties of the model family. In-
stead, their emergence is due to the interaction between the properties of the data
and the inductive biases of learning algorithms.

1 INTRODUCTION

The main goal of machine learning methods is to provide an accurate out-of-sample prediction,
known as generalization. For a fixed family of models, a common way to select a model from this
family is through empirical risk minimization, i.e., algorithmically selecting models that minimize
the risk on the training dataset. Given a variably parameterized family of models, the statistical
learning theory aims to identify the dependence between model complexity and model performance.
The empirical risk usually decreases monotonically as the model complexity increases, and achieves
its minimum when the model is rich enough to interpolate the training data, resulting in zero (or near-
zero) training error. In contrast, the behaviour of the test error as a function of model complexity
is far more complicated. Indeed, in this paper we show how to construct a model family for which
the generalization curve can be fully controlled (away from the interpolation threshold) in both
under-parameterized and over-parameterized regimes. Classical statistical learning theory supports
a U-shaped curve of generalization versus model complexity (Geman et al., 1992; Hastie et al.,
2009). Under such a framework, the best model is found at the bottom of the U-shaped curve,
which corresponds to appropriately balancing under-fitting and over-fitting the training data. From
the view of the bias-variance trade-off, a higher model complexity increases the variance while
decreasing the bias. A good choice of model complexity achieves a relatively low bias while still
keeping the variance under control. On the other hand, a model that interpolates the training data is
deemed to over-fit and tends to worsen the generalization performance due to the soaring variance.

Although classical statistical theory suggests a pattern of behavior for the generalization curve up to
the interpolation threshold, it does not describe what happens beyond the interpolation threshold,
commonly referred to as the over-parameterized regime. This is the exact regime where many
modern machine learning models, especially deep neural networks, achieved remarkable success.
Indeed, neural networks generalize well even when the models are so complex that they have the
potential to interpolate all the training data points (Zhang et al., 2017; Belkin et al., 2018b; Ghorbani
et al., 2019; Hastie et al., 2019).

Modern practitioners commonly deploy deep neural networks with hundreds of millions or even
billions of parameters. It has become widely accepted that large models achieve performance supe-
rior to small models that may be suggested by the classical U-shaped generalization curve (Bengio
et al., 2003; Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2016; Huang et al., 2019). This
indicates that the test error decreases again once model complexity grows beyond the interpolation
threshold, resulting in the so called double-descent phenomenon described in (Belkin et al., 2018a),
which has been broadly supported by empirical evidence (Neyshabur et al., 2015; Neal et al., 2018;
Geiger et al., 2019; 2020) and confirmed empirically on modern neural architectures by Nakkiran
et al. (2019). On the theoretical side, this phenomenon has been recently addressed by several works
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on various model settings. In particular, Belkin et al. (2019a) proved the existence of double-descent
phenomenon for linear regression with random feature selection and analyzed the random Fourier
feature model (Rahimi & Recht, 2008). Mei & Montanari (2019) also studied the Fourier model and
computed the asymptotic test error which captures the double-descent phenomenon. Bartlett et al.
(2020); Tsigler & Bartlett (2020) analyzed and gave explicit conditions for “benign overfitting” in
linear and ridge regression, respectively. In a recent work, Caron & Chretien (2020) provided a
finite sample analysis of the nonlinear function estimation and showed that the parameter learned
through empirical risk minimization converges to the true parameter with high probability as the
model complexity tends to infinity, implying the existence of double descent.

Among all the aforementioned efforts, one particularly interesting question is whether one can ob-
serve more than two descents in the generalization curve. In a recent work, d’Ascoli et al. (2020)
empirically showed a sample-wise triple-descent phenomenon under the random Fourier feature
model. Similar triple-descent was also observed for linear regression (Nakkiran et al., 2020). More
rigorously, Liang et al. (2020) presented an upper bound on the risk of the minimum-norm inter-
polation versus the data dimension in Reproducing Kernel Hilbert Spaces (RKHS), which exhibits
multiple descent. However, a multiple-descent upper bound without a properly matching lower
bound does not imply the existence of a multiple-descent generalization curve. In this work, we
study the multiple descent phenomenon by addressing the following questions:

• Can the existence of a multiple descent generalization curve be rigorously proven?
• Can an arbitrary number of descents occur?
• Can the generalization curve and the locations of descents be designed?

In this paper, we show that the answer to all three of these questions is yes. Further related work is
presented in Appendix A.

Our Contribution. We consider the linear regression model and analyze how the risk changes as
the dimension of the data grows. In the linear regression setting, the data dimension is equal to the
dimension of the parameter space, which reflects the model complexity. We rigorously show that
the multiple descent generalization curve exists under this setting. To our best knowledge, this is the
first work proving a multiple descent phenomenon for any learning model.

Our analysis considers both the underparameterized and overparameterized regimes. In the over-
parameterized regime, we show that one can control where a descent or an ascent occurs in the
generalization curve. This is realized through our algorithmic construction of a feature-revealing
process. To be more specific, we assume that the data is in RD, where D can be arbitrarily large
or even essentially infinite. We view each dimension of the data as a feature. We consider a linear
regression problem restricted on the first d features, where d < D. New features are revealed by
increasing the dimension of the data. We then show that by specifying the distribution of the newly
revealed feature to be either a standard Gaussian or a Gaussian mixture, one can determine where an
ascent or a descent occurs. In order to create an ascent when a new feature is revealed, it is sufficient
that the feature follows a Gaussian mixture distribution. In order to have a descent, it is sufficient
that the new feature follows a standard Gaussian distribution. Therefore, in the overparameterized
regime, we can fully control the occurrence of a descent and an ascent. As a comparison, in the
underparameterized regime, the generalization loss always increases regardless of the feature distri-
bution. We also consider a dimension-normalized version of the generalization loss, under which
we show that the generalization curve exhibits multiple descent in the underparameterized regime.
Generally speaking, we show that we are able to design the generalization curve.

On the one hand, we show theoretically that the generalization curve is malleable and can be con-
structed in an arbitrary fashion. On the other hand, we rarely observe complex generalization curves
in practice, besides carefully curated constructions. Putting these facts together, we arrive at the
conclusion that realistic generalization curves arise from specific interactions between properties of
typical data and the inductive biases of algorithms. We should highlight that the nature of these
interactions is far from being understood and should be an area of further investigations.

2 PRELIMINARIES AND PROBLEM FORMULATION

Notation. For x ∈ RD and d ≤ D, we let x[1 : d] ∈ Rd denote a d-dimensional vector with x[1 :
d]i = xi for all 1 ≤ i ≤ d. For a matrix A ∈ Rn×d, we denote its Moore-Penrose pseudoinverse by
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A+ ∈ Rd×n. We use the big O notation O and write variables in the subscript of O if the implicit
constant depends on them. For example,On,d,σ(1) is a constant that only depends on n, d, and σ. If
f(σ) and g(σ) are functions of σ, write f(σ) ∼ g(σ) if lim f(σ)

g(σ) = 1. It will be given in the context
how we take the limit.

Distributions. Let N (µ, σ2) (µ, σ ∈ R) and N (µ,Σ) (µ ∈ Rn, Σ ∈ Rn×n) denote the univariate
and multivariate Gaussian distributions, respectively, where µ ∈ Rn and Σ ∈ Rn×n is a positive
semi-definite matrix. We define a family of trimodal Gaussian mixture distributions as follows

Nmix
σ,µ ,

1

3
N (0, σ2) +

1

3
N (−µ, σ2) +

1

3
N (µ, σ2) .

For an illustration, please see Fig. 1.
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(a) N (0, 1) feature
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(b) Nmix
σ,1 feature, (σ = 0.3)
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(c) Nmix
σ,1 feature, (σ = 0.2)

Figure 1: Density functions of theN (0, 1) andNmix
σ,1 feature. A new entry is independently sampled

from the 1-dimensional distribution being either a standard Gaussian or trimodal Gaussian mixture.
Smaller σ leads to higher concentration around each modes.

Let χ2(k, λ) denote the noncentral chi-squared distribution with k degrees of freedom and the non-
centrality parameter λ. For example, if Xi ∼ N (µi, 1) (for i = 1, 2, . . . , k) are independent Gaus-
sian random variables, we have

∑k
i=1X

2
i ∼ χ2(k, λ), where λ =

∑k
i=1 µ

2
i . We also denote

by χ2(k) the (central) chi-squared distribution with k degrees and the F -distribution by F (d1, d2)
where d1 and d2 are the degrees of freedom.

Problem Setup. Let x1, . . . , xn ∈ RD be column vectors that represent the training data of size
n and let xtest ∈ RD be a column vector that represents the test data. We assume that they are all
independently drawn from a distribution

x1, . . . , xn, xtest
iid∼ D .

Let us consider a linear regression problem on the first d features, where d ≤ D for some arbitrary
large D. Here, d can be viewed as the number of features revealed. The design matrix A equals
[x1[1 : d], . . . , xn[1 : d]]> ∈ Rn×d. The true linear model is β∗ ∈ Rd. The noise ε ∈ Rn follows
the multivariate standard Gaussian distribution N (0, η2In). Let x = xtest[1 : d] denote the first d
features of the test data.

For the underparameterized regime where d < n, the least square solution on the training data is
A+(Aβ∗+ε). For the overparameterized regime where d > n, A+(Aβ∗+ε) is the minimum-norm
solution. In both regimes we consider the solution β̂ , A+(Aβ∗ + ε). The excess generalization
loss on the test data is then given by

Ld , E
[(
y − x>β̂

)2

−
(
y − x>β∗

)2]
= E

[(
x>(β̂ − β∗)

)2
]

= E
[(
x>
(
(A+A− I)β∗ +A+ε

))2]
= E

[
(x>(A+A− I)β∗)2

]
+ E

[
(x>A+ε)2

]
= E

[
(x>(A+A− I)β∗)2

]
+ η2E

∥∥(A>)+x
∥∥2

,
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where y = x>β∗ + εtest and εtest ∼ N (0, η2). We call the term E
[
(x>(A+A− I)β∗)2

]
the bias

and call the term η2E
∥∥(A>)+x

∥∥2
the variance.

In this paper, we assume β∗ = 0 and the noise level η = 1. In this settings, we get

Ld = E‖(A>)+x‖2 .

Remark 1. In the underparametrized regime, if D is a continous distribution (our construction
presented later satisfies this condition), the matrix A has independent column almost surely. In this
case, we have A+A = I and therefore the bias E

[
(x>(A+A− I)β∗)2

]
vanishes irrespective of the

true linear model β∗. In other words, in the underparametrized regime, Ld equals η2E‖(A>)+x‖2
for all β∗.

We would like to study the change in the loss caused by the growth in the number of features re-
vealed. Note that the product (A+)>x sums over d dimensions. Once we reveal a new feature, which

is equivalent to adding a new row b> to A> and a new component y to x, the product
[
A>

b>

]+ [
x
y

]
sums over d+ 1 dimensions. As a result, to compare quantities of different dimensions, we need to
normalize the generalization loss by the dimension. We define the dimension-normalized general-
ization loss L′d as follows

L′d , E
∥∥∥∥1

d
(A>)+x

∥∥∥∥2

=
1

d2
Ld .

Local Maximum and Multiple Descent. We say that a local maximum occurs at a dimension d ≥ 1
if L′d−1 < L′d and L′d > L′d+1. Intuitively, a local maximum occurs if there is an increasing stage
of the generalization loss, followed by a decreasing stage, as the dimension d grows. Additionally,
we define L′0 , −∞. If the generalization loss exhibits a single descent, based on our definition, a
unique local maximum occurs at d = 1. For a double-descent generalization curve, a local maximum
occurs at two different dimensions. In general, if we observe a local maximum at K different
dimensions we call it a K-descent.

3 UNDERPARAMETERIZED REGIME

First, we present our main theorem for the underparametrized regime below, whose proof is deferred
to the end of Section 3. It states that the un-normalized generalization loss Ld is always non-
decreasing as d grows. Moreover, it is possible to have an arbitrarily large ascent, i.e., Ld+1−Ld >
C for any C > 0.
Theorem 1 (Proof in Appendix B.1). If d < n, we have Ld+1 ≥ Ld irrespective of the data
distribution. Moreover, for any C > 0, there exists a distribution D such that Ld+1 − Ld > C.

For the dimension-normalized generalization loss L′d, there can be both ascents and descents. And
it is possible to specify where the local peaks in the generalization curve occur.

Theorem 2 (Underparameterized regime). Let D+ 2 <
√

2n. For any 1 < d1 < d2 < · · · < dK <
D where dj+1 − dj ≥ 2, there exists a distribution D such that a local maximum of the L′d curve
occurs at dj .

Note that the assumption dj+1−dj ≥ 2 is necessary because two local maxima may not be adjacent.
We present an example in Fig. 2.
Remark 2 (D can be a product distribution). As will be clear later in the proof of Theorem 2, the
distribution D can be made as simple as a product distribution D = D1 × · · · × DD such that
xi,j

iid∼ Dj for all 1 ≤ i ≤ n, where Dj is either sampled from N (0, 1) or a Gaussian mixture Nmix
σj

for some σj > 0. As a consequence, by permuting the order of Di’s in the product distribution, we
can change the order of revealing the features.
Remark 3 (Kernel regression on Gaussian data). In light of Remark 2, D can be chosen to be
a product distribution that consists of only N (0, 1) and Nmix

σj . Note that one can simulate Nmix
σ,1
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Figure 2: Illustration of multiple descent for the dimension-normalized generalization loss L′d as a
function of the dimension d. A local maximum occurs at d if L′d−1 < L′d > L′d+1. The triplet
L′d−1, L

′
d, L

′
d+1 then form an ascent/descent, which is marked by the shaded area. Local maxima

are marked by the dotted lines. Adding a new feature with a Gaussian mixture distribution increases
the loss, while adding one with a univariate Gaussian distribution decreases the loss. Therefore, a
Gaussian mixture feature followed by a Gaussian feature creates one ascent/descent.

with N (0, 1) through the inverse transform sampling. To see this, let FN (0,1) and FNmix
σ,1

be the
cdf of N (0, 1) and Nmix

σ,1 , respectively. If X ∼ N (0, 1), we have FN (0,1)(X) ∼ Unif((0, 1))

and therefore ϕσ(X) , F−1
Nmix
σ,1

(FN (0,1)(X)) ∼ Nmix
σ,1 . In fact, we can use a multivariate Gaussian

D′ = N (0, ID×D) and a sequence of non-linear kernels k[1:d](x, y) , 〈φ[1:d](x), φ[1:d](y)〉, where
the feature map is φ[1:d](x) , [φ1(x1), φ2(x2), . . . , φd(xd)]

> ∈ Rd. Here is a simple rule for
defining φj : If Dj = N (0, 1), we set φj to the identity function. If Dj = Nmix

σj , we set φj to ϕσj .
Thus, the problem becomes a kernel regression problem on the standard Gaussian data.

Getting back Theorem 2, let us discuss how we will construct such a distribution D inductively.
We fix d. Again, denote the first d features of xtest by x , xtest[1 : d]. Let us consider adding
an additional component to the training data x1[1 : d], . . . , xn[1 : d] and test data x so that we
increment the dimension d by 1. Let bi ∈ R denote the additional component that we add to the
vector xi (so that the new vector is [xi[1 : d]>, bi]

>. Similarly, let y ∈ R denote the additional
component that we add to the vector x. We form the column vector b = [b1, . . . , bn]> ∈ Rn that
collects all additional components that we add to the training data.

We consider the change in (dimension-normalized) generalization loss as follows

Ld+1 − Ld = E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 ,
L′d+1 − L′d = E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 .

(1)

Note that the components b1, . . . , bn, y are i.i.d. Lemma 3 relates the pseudo-inverse of [A, b]> to
that of A>.
Lemma 3 (Proof in Appendix B.2). Let A ∈ Rn×d and 0 6= b ∈ Rn×1, where n ≥ d + 1.
Additionally, let P = AA+ and Q = bb+ = bb>

‖b‖2 , and define z , b>(I−P )b
‖b‖2 . If z 6= 0 and the

columnwise partitioned matrix [A, b] has linearly independent columns, we have[
A>

b>

]+

=
[(
I − bb>

‖b‖2

)(
I + AA+bb>

‖b‖2−b>AA+b

)
(A+)>, (I−AA+)b

‖b‖2−b>AA+b

]
=
[
(I −Q)(I + PQ

1−tr(PQ) )(A+)>, (I−P )b
b>(I−P )b

]
=
[
(I −Q)(I + PQ

z )(A+)>, (I−P )b
b>(I−P )b

]
.
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In our construction ofD, the componentsDj are all continuous distributions. The matrix I−P is an
orthogonal projection matrix and therefore rank(I −P ) = n− d. As a result, it holds almost surely
that b 6= 0, z 6= 0, and [A, b] has linearly independent columns. Thus the assumptions of Lemma 3
are satisfied almost surely. In the sequel, we assume that these assumptions are always fulfilled.
Lemma 4 (Proof in Appendix B.3). Assume d, n > d+ 2 and P are fixed, where P ∈ Rn×n is an
orthogonal projection matrix whose rank is d. Define z , b>(I−P )b

‖b‖2 , where b = [b1, . . . , bn]> ∈ Rn.

If y, b1, · · · , bn
iid∼ Nmix

σ,1 , we have E[1/z] = On,d,σ(1) and E[y2/b>(I − P )b] = On,d,σ(1).

Theorem 5 provides an upper bound for the following quantity

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
∣∣∣∣∣∣A, x


if b1, . . . , bn, y are i.i.d. according to N (0, 1) or Nmix

σ,1 . This quantiry is similar to the difference
between the dimension-normalized generalization loss L′d+1 − L′d but with expectation only over b
and y.
Theorem 5 (Proof in Appendix B.4). Conditioned on A and x, the following statements hold:

(a) If d+ 2 <
√

2n and b1, . . . , bn, y
iid∼ N (0, 1), we have

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 < d− ‖(A+)>x‖2(2n− (d+ 2)2)

d(d+ 1)2(n− d− 2)
. (2)

(b) If d+ 2 < n and b1, . . . , bn, y
iid∼ Nmix

σ,1 , we have

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

≤
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

+On,d,σ(1) ,

where On,d,σ(1) is a universal constant that only depends on n, d, and σ.

Corollary 6. Assume d + 2 <
√

2n. If either b1, . . . , bn, y
iid∼ N (0, 1) or b1, . . . , bn, y

iid∼ Nmix
σ,1 ,

and by taking expectation over all random variables, we have

E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

= On,d,σ

(
E
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
)
.

We will use Theorem 5 in two different ways. The first way is presented in Corollary 6. We would
like to show inductively (on d) that L′d is finite for every d. Provided that we are able to guarantee
finite L′1, Corollary 6 implies that L′d is finite for every d if the components are always sampled from
N (0, 1) or Nmix

σ,1 .

Alternatively, we can use Theorem 5 to create a descent, i.e., make L′d+1 < L′d. In light of (2), to
make the left-hand side negative, we need

d− ‖(A+)>x‖2(2n− (d+ 2)2) < 0,

which is equivalent to ∥∥∥∥1

d
(A+)>x

∥∥∥∥2

>
1

d(2n− (d+ 2))2
.

One we take expectation over A and x, we need the above equation to hold in expectation in order
to create a descent, i.e.,

L′d >
1

d(2n− (d+ 2))2
.

Provided that L′d can be made sufficiently large, letting L′D satisfy the above inequality and then
adding an additional N (0, 1) entry will lead to L′d+1 < L′d. Making a large L′d, in turn, can be
achieved by adding an entry sampled from Nmix

σ,1 when the data dimension increases from d − 1 to
d in the previous step. Indeed, Theorem 7 shows that adding aNmix

σ,1 feature can increase the loss by
arbitrary amount.
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Theorem 7 (Proof in Appendix B.5). For any C > 0 and E
∥∥(A+)>x

∥∥2
< +∞, there exists a

σ > 0 such that if b1, . . . , bn, y
iid∼ Nmix

σ,1 , we have

E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 > C ,

E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 > C .

We are now ready to prove Theorem 2.

Proof of Theorem 2. We construct D inductively. Let D1 = N (0, 1). When d = 1, we have

A = [x1[1 : d], . . . , xn[1 : d]]> = [x1,1, . . . , xn,1]> ∈ Rn,

which is a column vector. Therefore, A+ = A>

‖A‖2 . As a result, we get

L′1 = E
∥∥(A+)>x

∥∥2
= E

|x|2

‖A‖2
=

1

n− 2
,

where x ∼ N (0, 1) and ‖A‖2 ∼ χ2(n).

Since we will set Dj (for j ≥ 2) to either N (0, 1) or Nmix
σ,1 , by Corollary 6, we have L′j+1 =

On,j,σj+1
(L′j). By induction, we obtain that L′j is finite for all 1 ≤ j ≤ D.

We define d0 , 0. Assume that we have determined distributions D1, . . . ,Ddj+1, where 0 ≤ j <
K. We set Ddj+2, . . . ,Ddj+1−1 to N (0, 1). For Ddj+1

, by Theorem 7, we pick σdj+1
such that if

Ddj+1 = Nmix
σdj+1

, we have

L′dj+1
> max

{
L′dj+1−1,

1

dj+1(2n− (dj+1 + 2)2)

}
. (3)

Next, we set Ddj+1+1 = N (0, 1). Taking the expectation of (2) in Theorem 5 over all random
variables, we have

L′dj+1+1 − L′dj+1
≤
dj+1 − d2

j+1L
′
dj+1

(2n− (dj+1 + 2)2)

dj+1(dj+1 + 1)2(n− dj+1 − 2)
< 0 ,

where the last inequality is due to (3). So far we have constructed a local maximum at dj+1. By
induction, we conclude that a local maximum occurs at every dj .

Remark 4. From Remark 2 and the proof of Theorem 2 it is clear that D = D1 × · · · × DD is
a product distribution. The construction in the proof also shows that the generalization curve is
actually determined by the specific choice of the Di’s. Note that permuting the order of Di’s is
equivalent to changing the order by which the features are being revealed (i.e., permuting the entries
of the data xi’s). Therefore, given the same data points x1, · · · , xn ∈ RD, we can create many
different generalization curves simply by changing the order of the feature-revealing process.

4 OVERPARAMETERIZED REGIME

In this section, we study the multiple decent phenomenon in the overparameterized regime. Note
that as stated in Section 2, we consider the minimum-norm solution here. As stated in the following
theorem, we require d ≥ n+8, which means d starts at roughly the same order as n. In other words,
the result covers almost the entire spectrum of the overparameterized regime.
Theorem 8 (Overparameterized regime). Let n < D − 9. Given any sequence ∆n+8,∆n+9, . . . ,
∆D−1 where ∆d ∈ {↑, ↓}, there exists a distribution D such that for every n+ 8 ≤ d ≤ D − 1, we
have

Ld+1

{
> Ld, if ∆d = ↑
< Ld, if ∆d = ↓ , L′d+1

{
> L′d, if ∆d = ↑
< L′d, if ∆d = ↓ .

7
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Figure 3: Illustration of the multiple descent phenomenon for the generalization loss Ld (or the
dimension-normalized generalization loss L′d) versus the dimension of data d in the overparameter-
ized regime starting from d = n + 8. One can fully control the generalization curve to increase or
decrease as specified by the sequence ∆ = {↓, ↑, ↓, ↓, ↑, ↓, . . . }. Adding a new feature with Gaus-
sian mixture distribution increases the loss, while adding one with Gaussian distribution decreases
the loss.

In Theorem 8, the sequence ∆n+8, ∆n+9, · · · , ∆D−1 is just used to specify the increas-
ing/decreasing behavior of the L′d sequence for d > n + 8. Compared to Theorem 2 for the un-
derparameterized regime, where one is able to fully control the ascents but only partially control
the descents, Theorem 8 indicates that one is able to fully control both ascents and descents in the
overparameterized regime by placing an ascent/descent wherever one desires. Fig. 3 illustrates an
example.

Lemma 9 gives the pseudo-inverse of A when d > n.
Lemma 9 (Proof in Appendix C.1). Let A ∈ Rn×d and b ∈ Rn×1, where n ≤ d. Assume that
matrix A and the columnwise partitioned matrix B , [A, b] have linearly independent rows. Let
G , (AA>)−1 ∈ Rn×n and u , b>G

1+b>Gb
∈ R1×n. We have[

A>

b>

]+

=
[
(I − bu)>(A+)>, u>

]
.

Lemma 10 establishes finite expectation for several random variables. These finite expectation re-
sults are necessary for Theorem 11 and Theorem 12 to hold. Technically, they are the dominating
random variables needed in Lebesgue’s dominated convergence theorem. Lemma 10 indicates that
to guarantee these finite expectations, it suffices to set the first n + 8 distributions to the standard
normal distribution and then set Dn+8, . . . ,DD to either a Gaussian or a Gaussian mixture distribu-
tion. In fact, in Theorem 11 and Theorem 12, we always add a Gaussian distribution or a Gaussian
mixture.
Lemma 10 (Proof in Appendix C.2). Let D = D1 × · · · × DD be a product distribution where

(a) Dd = N (0, 1) if d = 1, . . . , n+ 8; and

(b) Dd is either N (0, σ2
d) or Nmix

σd,µd
for d > n+ 8.

Let D[1:d] denote D1 × · · · × Dd. Assume that every row of A ∈ Rn×d and x ∈ Rd×1 are i.i.d. and
follow D[1:d]. For any d such that n+ 8 ≤ d ≤ D, all of the followings hold:

E[‖(A+)>x‖2] < +∞ ,

E[λ2
max((AA>)−1)] < +∞ ,

E[λmax((AA>)−1)‖(A+)>x‖2] < +∞ ,

E[λ2
max((AA>)−1)‖(A+)>x‖2] < +∞ .

(4)

Theorem 11 shows that in order to have Ld+1 < Ld and L′d+1 < L′d, it suffices to add a Gaussian
feature.

8
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Theorem 11 (Appendix C.3). If E[‖(A>A)+x‖2] > 0 and all equations in (4) hold, there exists

σ > 0 such that if y, b1, . . . , bn
iid∼ N (0, σ2), we have

Ld+1 − Ld = E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

− E
∥∥(A+)>x

∥∥2
< 0 ,

L′d+1 − L′d = E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

− E
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

< 0 .

Theorem 12 shows that adding a Gaussian mixture feature can make Ld+1 > Ld and L′d+1 > L′d.

Theorem 12 (Proof in Appendix C.4). Assume E‖(A+)>x‖2 < +∞. For any C > 0, there exist

µ, σ > 0 such that if y, b1, . . . , bn
iid∼ Nmix

σ,µ , we have

Ld+1 − Ld = E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

− E
∥∥(A+)>x

∥∥2
> C ,

L′d+1 − L′d = E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

− E
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

> C .

The proof of Theorem 8 immediately follows from Theorem 11 and Theorem 12.

Proof of Theorem 8. We construct the product distribution D =
∏D
d=1Dd. We set Dd = N (0, 1)

for d = 1, . . . , n+ 8. For n+ 8 < d ≤ D, Dd is eitherN (0, σ2
d) orNmix

σd,µd
depending on ∆d being

either ↓ or ↑.
First we show that for each step d, the assumption E[‖(A>A)+x‖2] > 0 of Theorem 11 is sat-
isfied. If E[‖(A>A)+x‖2] = 0, we know that (A>A)+x = 0 almost surely. Since D is a con-
tinuous distribution, the matrix A has full row rank almost surely. Therefore, rank((A>A)+) =
rank(A>A) = n almost surely. Thus dim ker(A>A)+ = d − n ≤ d − 1 almost surely, which
implies x /∈ ker(A>A)+. In other words, (A>A)+x 6= 0 almost surely. We reach a contradiction.
Moreover, by Lemma 10, the assumption E‖(A+)>x‖2 < +∞ of Theorem 12 is also satisfied.

If ∆d−1 = ↓, by Theorem 11, there exists σd > 0 such that if Dd = N (0, σ2
d), then Ld < Ld−1 and

L′d < L′d−1. Similarly if ∆d−1 = ↑, by Theorem 12, there exists σd and µd such that Dd = Nmix
σd,µd

guarantees Ld > Ld−1 and L′d > L′d−1.

5 CONCLUSION

Our work proves that the expected risk of linear regression can manifest multiple descents when
the number of features increases and sample size is fixed. This is carried out through an algorith-
mic construction of a feature-revealing process where the newly revealed feature follows either a
Gaussian distribution or a Gaussian mixture distribution. Notably, the construction also enables us
to control local maxima in the underparameterized regime and control ascents/descents freely in
the overparameterized regime. Overall, this allows us to design the generalization curve away from
the interpolation threshold. We conjecture that the same multiple-descent generalization curve can
occur in non-linear neural networks and we humbly suggest that entities with infinite computational
powers investigate this phenomenon.
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A FURTHER RELATED WORK

Our work is directly related to the recent line of research in the theoretical understanding of the
double descent (Belkin et al., 2019a; Hastie et al., 2019; Xu & Hsu, 2019; Mei & Montanari, 2019)
and the multiple descent phenomenon (Liang et al., 2020). Here we briefly discuss some other work
that is closely related to this paper.

Least Square Regression. In this paper we focus on the least square linear regression with no
regularization. For the regularized least square regression, De Vito et al. (2005) proposed a selection
procedure for the regularization parameter. Advani & Saxe (2017) analyzed the generalization of
neural networks with mean squared error under the asymptotic regime where both the sample size
and model complexity tend to infinity. Richards et al. (2020) proved for least square regression in
the asymptotic regime that as the dimension-to-sample-size ratio d/n grows, an additional peak can
occur in both the variance and bias due to the covariance structure of the features. As a comparison,
in this paper the sample size is fixed and the model complexity increases. Rudi & Rosasco (2017)
studied kernel ridge regression and gave an upper bound on the number of the random features to
reach certain risk level. Our result shows that there exists a natural setting where by manipulating
the random features one can control the risk curve.

Over-Parameterization and Interpolation. The double descent occurs when the model com-
plexity reaches and increases beyond the interpolation threshold. Most previous works focused on
proving an upper bound or optimal rate for the risk. Caponnetto & De Vito (2007) gave the optimal
rate for least square ridge regression via careful selection of the regularization parameter. Belkin
et al. (2019b) showed that the optimal rate for risk can be achieved by a model that interpolates
the training data. In a series of work on kernel regression with regularization parameter tending
to zero (a.k.a. kernel ridgeless regression), Rakhlin & Zhai (2019) showed that the risk is bounded
away from zero when the data dimension is fixed with respect to the sample size. Liang & Rakhlin
(2019) then considered the case when d � n and proved a risk upper bound that can be small given
favorable data and kernel assumptions. Instead of giving a bound, our paper presents an exact com-
putation of risk in the cases of underparameterized and overparameterized linear regression, and
proves the existence of the multiple descent phenomenon. Wyner et al. (2017) analyzed AdaBoost
and Random Forest from the perspective of interpolation. There has also been a line of work on
wide neural networks (Arora et al., 2019a;b;c; Du et al., 2019; Allen-Zhu et al., 2019; Wei et al.,
2019; Cao & Gu, 2019; Advani et al., 2020; Chen & Xu, 2020; Zou et al., 2020).

Sample-wise Double Descent and Non-monotonicity. There has also been recent development
beyond the model-complexity double-descent phenomenon. For example, regarding sample-wise
non-monotonicity, Nakkiran et al. (2019) empirically observed the epoch-wise double-descent and
sample-wise non-monotonicity for neural networks. Chen et al. (2020) and Min et al. (2020) iden-
tified and proved the sample-wise double descent under the adversarial training setting, and Javan-
mard et al. (2020) discovered double-descent under adversarially robust linear regression. Loog
et al. (2019) showed that empirical risk minimization can lead to sample-wise non-monotonicity in
the standard linear model setting under various loss functions including the absolute loss and the
squared loss, which covers the range from classification to regression. We also refer the reader to
their discussion of the earlier work on non-monotonicity of generalization curves. Dar et al. (2020)
demonstrated the double descent curve of the generalization errors of subspace fitting problems.

B PROOFS FOR UNDERPARAMETRIZED REGIME

B.1 PROOF OF THEOREM 1

Proof. We follow the notation convention in (1):

Ld+1 − Ld = E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A>)+x

∥∥2

 .
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Recall d < n and the matrix B′ ,
[
A>

b>

]
is of size (d+ 1)× n. Both matrices B′ and B , A> are

fat matrices. As a result, if x′ ,
[
x
y

]
, we have

‖B′+x′‖2 = min
z:B′z=x′

‖z‖2 , ‖B+x‖2 = min
z:Bz=x

‖z‖2 .

Since {z | B′z = x′} ⊆ {z | Bz = x}, we get ‖B′+x′‖2 ≥ ‖B+x‖2. Therefore, we obtain
Ld+1 ≥ Ld.

The second part of the theorem, which says that for any C > 0 there exists a distribution such that
Ld+1 − Ld > C, follows directly from Theorem 7.

B.2 PROOF OF LEMMA 3

Proof. By (Baksalary & Baksalary, 2007, Theorem 1), we have[
A>

b>

]+

=
[
(I −Q)A(A>(I −Q)A)−1, (I−P )b

b>(I−P )b)
.
]

Define r , A>b ∈ Rd. Since A has linearly independent columns, the Gram matrix G = A>A is
non-singular. The Sherman-Morrison formula gives

(A>(I −Q)A)−1 =

(
A>A− rr>

‖b‖2

)−1

= G−1 +
G−1rr>G−1

‖b‖2 − r>G−1r
= G−1 +

G−1rb>(A+)>

‖b‖2 − r>G−1r
,

where we use the facts r = A>b and AG−1 = (A+)> in the last equality. Therefore, we deduce

A(A>(I −Q)A)−1 = AG−1 +
AG−1rb>(A+)>

‖b‖2 − r>G−1r

= (A+)> +
AG−1A>bb>(A+)>

‖b‖2 − r>G−1r

=

(
I +

AA+bb>

‖b‖2 − r>G−1r

)
(A+)>

=

(
I +

PQ

1− r>G−1r
‖b‖2

)
(A+)> .

Observe that

1− r>G−1r

‖b‖2
= 1− b>A(A>A)−1A>b

‖b‖2
= 1− b>Pb

‖b‖2
= z .

Therefore, we obtain the desired expression.

B.3 PROOF OF LEMMA 4

Lemma 13 shows that a noncentral χ2 distribution first-order stochastically dominates a central χ2

distribution of the same degree of freedom. It will be needed in the proof of Lemma 4.

Lemma 13. Assume that random variables X ∼ χ2(k, λ) and Y ∼ χ2(k), where λ > 0. For any
c > 0, we have

P(X ≥ c) > P(Y ≥ c).

In other words, the random variable X (first-order) stochastically dominates Y .

Proof. Let Y1, X2, . . . , Xk
iid∼ N (0, 1) and X1 ∼ N (

√
λ, 1) and all these random variables are

jointly independent. Then X ′ ,
∑k
i=1X

2
i ∼ χ2(k, λ) and Y ′ , Y 2

1 +
∑k
i=2X

2
i ∼ χ2(k).
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It suffices to show that P(X ′ ≥ c) > P(Y ′ ≥ c), or equivalently, P(|N (µ, 1)| ≥ c) >

P(|N (0, 1)| ≥ c) for all c > 0 and µ ,
√
λ > 0. Denote Fc(t) = P(|N (µ, 1)| ≥ c) and we

have

Fc(µ) = 1− 1√
2π

∫ c

−c
exp

(
− (x− µ)2

2

)
dx = 1− 1√

2π

∫ c−µ

−c−µ
exp

(
−x

2

2

)
dx,

and thus

dFc(µ)

dµ
=

1√
2π

[
exp

(
− (c− µ)2

2

)
− exp

(
− (c+ µ)2

2

)]
> 0.

This shows P(|N (µ, 1)| ≥ c) > P(|N (0, 1)| ≥ c) and we are done.

Proof of Lemma 4. Since bi
iid∼ Nmix

σ,1 , we can rewrite b = u + w where w ∼ N (0, σ2In) and the

entries of u satisfy ui
iid∼ Unif({−1, 0, 1}). Furthermore, u and w are independent. Note that for

any fixed n and d, the support of u is finite and its cardinality only depends on n. Therefore, we
only need to show that conditioning on u, the expectation over w is On,d,σ(1). In other words, for

any fixed u, we want to show Ew[1/z | u] = On,d,σ(1) and Ew
[

y2

b>(I−P )b

∣∣∣u] = On,d,σ(1).

Note that since y2/σ2 is first-order stochastically dominated by χ2(1, 1), we have

E[y2 | u] = E[y2] ≤ σ2E[χ2(1, 1)] = 2σ2.

Therefore, it remains to show Ew[1/z | u] = On,d,σ(1) and Ew
[

1
b>(I−P )b

∣∣∣u] = On,d,σ(1).

Note that
1

z
=

b>Ib

b>(I − P )b
= 1 +

(u+ w)>P (u+ w)

(u+ w)>(I − P )(u+ w)
.

Since P is an orthogonal projection, there exists an orthogonal transformation O depending only on
P such that

(u+ w)>P (u+ w) = [O(u+ w)]>Dd[O(u+ w)]

where Dd = diag([1, . . . , 1, 0 . . . , 0]) with d diagonal entries equal to 1 and the others equal to 0.
We denote ũ = O(u), which is fixed (as u and O are fixed), and w̃ = O(w) ∼ N (0, σ2In). It
follows that

1

z
= 1 +

(ũ+ w̃)>Dd(ũ+ w̃)

(ũ+ w̃)>(I −Dd)(ũ+ w̃)
= 1 +

∑d
i=1(ũi + w̃i)

2∑n
i=d+1(ũi + w̃i)2

= 1 +

∑d
i=1(ũi + w̃i)

2/σ2∑n
i=d+1(ũi + w̃i)2/σ2

.

Observe that

d∑
i=1

(ũi + w̃i)
2/σ2 ∼ χ2

d,
√√√√ d∑

i=1

ũ2
i


n∑

i=d+1

(ũi + w̃i)
2/σ2 ∼ χ2

n− d,
√√√√ n∑
i=d+1

ũ2
i

 ,

and that these two quantities are independent. It follows that

E

[
d∑
i=1

(ũi + w̃i)
2/σ2

∣∣∣∣∣u
]

= d+

√√√√ d∑
i=1

ũ2
i .

By Lemma 13, the denominator
∑n
i=d+1(ũi + w̃i)

2/σ2 first-order stochastically dominates χ2(n−
d). Therefore, we have

E
[

1∑n
i=d+1(ũi + w̃i)2/σ2

∣∣∣∣u] ≤ E
[

1

χ2(n− d)

]
=

1

n− d− 2
.
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Putting the numerator and denominator together yields

E
[

1

z

∣∣∣∣u] ≤ 1 +
d+

√∑d
i=1 ũ

2
i

n− d− 2
≤ 1 +

d+
√
d

n− d− 2
= On,d,σ(1) .

Similarly, we have

E
[

1

b>(I − P )b

∣∣∣∣u] = E
[

1

[O(u+ w)]>(I −Dd)[O(u+ w)]

∣∣∣∣u]
= E

[
1/σ2∑n

i=d+1(ũi + w̃i)2/σ2

∣∣∣∣u]
≤ 1

σ2
E
[

1

χ2(n− d)

]
=

1

σ2
· 1

n− d− 2

= On,d,σ(1) .

B.4 PROOF OF THEOREM 5

Proof. First, we rewrite the expression as follows∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

=
1

(d+ 1)2

∥∥∥∥(I −Q)(I + PQ/z)(A+)>x+
(I − P )b

b>(I − P )b
y

∥∥∥∥2

− 1

d2
‖(A+)>x‖2 ,

(5)

where P,Q, z are defined in Lemma 3. Since y has mean 0 and is independent of other random
variables, so that the cross term vanishes under expectation over b and y:

Eb,y
[〈

(I −Q)(I + PQ/z)(A+)>x,
(I − P )b

b>(I − P )b
y

〉]
= 0 ,

where 〈·, ·〉 denotes the inner product. Therefore taking the expectation of (5) over b and y yields

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 (6)

= Eb,y

[
1

(d+ 1)2
‖(I −Q)(I + PQ/z)(A+)>x‖2 − 1

d2
‖(A+)>x‖2 +

1

(d+ 1)2

∥∥∥∥ (I − P )b

b>(I − P )b
y

∥∥∥∥2
]

(7)

=
1

(d+ 1)2
Eb,y

[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − (1 +

1

d
)2‖(A+)>x‖2 +

∥∥∥∥ (I − P )b

b>(I − P )b
y

∥∥∥∥2
]
.

(8)

We simplify the third term. Recall that I − P = I − AA+ is an orthogonal projection matrix and
thus idempotent∥∥∥∥ (I − P )b

b>(I − P )b
y

∥∥∥∥2

=
y2

(b>(I − P )b)2
‖(I − P )b‖2 =

y2

b>(I − P )b
. (9)
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Thus we have

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 (10)

=
1

(d+ 1)2
Eb,y

[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − (1 +

1

d
)2‖(A+)>x‖2 +

y2

b>(I − P )b

]
.

(11)

We consider the first and second terms. We write v = (A+)>x and define z = b>(I−P )b
‖b‖2 . The sum

of the first and second terms equals

‖(I −Q)(I + PQ/z)v‖2 − (1 +
1

d
)2‖v‖2 = −v>(M + δI)v , (12)

where δ = 2
d + 1

d2 and

M , Q− PQ+QP

z
+

(
2

z
− 1

z2

)
QPQ+

QPQPQ

z2
.

The rank of M is at most 2. To see this, we re-write M in the following way

M =

[
Q

(
−P
z

+

(
2

z
− 1

z2

)
PQ+

PQPQ

z2

)]
+

[
−PQ

z

]
,M1 +M2 .

Notice that rank(M1) ≤ rank(Q), rank(M2) ≤ rank(Q), and rank(Q) = 1. It follows that
rank(M) ≤ rank(M1) + rank(M2) = 2. The matrix M has at least n − 2 zero eigenvalues. We
claim that M has two non-zero eigenvalues and they are 1− 1/z < 0 and 1.

Since
rank(PQ) ≤ rank(Q) = 1

and

tr(PQ) =
b>Pb

‖b‖2
= 1− z,

thus PQ has a unique non-zero eigenvalue 1 − z. Let u 6= 0 denote the corresponding eigenvector
such that PQu = (1− z)u. Since u ∈ imP and P is a projection, we have Pu = u. Therefore we
can verify that

Mu = (1− 1

z
)u .

To show that the other non-zero eigenvalue of M is 1, we compute the trace of M

tr(M) = tr(Q)− 2 tr(PQ)

z
+

(
2

z
− 1

z2

)
tr(PQ) +

tr((PQ)2)

z2
= 2− 1

z
,

where we use the fact that tr(Q) = 1, tr(PQ) = 1− z,

tr((PQ)2) = tr

(
Pbb>Pbb>

‖b‖4

)
= tr

(
(b>Pb)(b>Pb)

‖b‖4

)
= (1− z)2 .

We have shown that M has eigenvalue 1 − 1/z and M has at most two non-zero eigenvalues.
Therefore, the other non-zero eigenvalue is tr(M)− (1− 1/z) = 1.

We are now in a position to upper bound (12) as follows:

−v>(M + δI)v ≤ −(1− 1/z + δ)‖v‖2 < −(1− 1/z + 2/d)‖v‖2 .
Putting all three terms of the change in the dimension-normalized generalization loss yields

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2


≤ 1

(d+ 1)2
Eb,y

[
−(1− 1/z + 2/d)‖v‖2 +

y2

b>(I − P )b

]
.
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For b1, . . . , bn, y
iid∼ N (0, 1), we have E[y2] = 1. Moreover, b>(I − P )b follows χ2(n − d) a dis-

tribution. Thus 1
b>(I−P )b

follows an inverse-chi-squared distribution with mean 1
n−d−2 . Therefore

the expectation E[ y2

b>(I−P )b
] = 1

n−d−2 . Notice that 1/z follows a 1 + d
n−dF (d, n− d) distribution

and thus E[1/z] = 1 + d
n−d−2 . As a result, we obtain

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2


≤ 1

(d+ 1)2

[(
d

n− d− 2
− 2

d

)
‖v‖2 +

1

n− d− 2

]
<
d− ‖v‖2(2n− (d+ 2)2)

d(d+ 1)2(n− d− 2)
.

For b1, . . . , bn, y
iid∼ Nmix

σ,1 , Lemma 4 implies that

Eb,y[1/z] < On,d,σ(1),

and

Eb,y[
y2

b>(I − P )b
] < On,d,σ(1).

Therefore, we conclude that

Eb,y

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

≤
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

+On,d,σ(1) .

B.5 PROOF OF THEOREM 7

Proof. We start from (11). Taking expectation over all random variables gives

E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2


=
1

(d+ 1)2
E
[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − (1 +

1

d
)2‖(A+)>x‖2 +

y2

b>(I − P )b

]
≥ 1

(d+ 1)2

(
−(1 +

1

d
)2E‖(A+)>x‖2 + E

[
y2∑n
i=1 b

2
i

])
.

Our strategy is to choose σ so that E
[

y2∑n
i=1 b

2
i

]
is sufficiently large. This is indeed possible as we

immediately show. Define independent random variables u ∼ Unif({−1, 0, 1}) and w ∼ N (0, σ2).
Since y has the same distribution as u+ w, we have

E[y2] = E[(u+ w)2] = E[u2] + E[w2] ≥ 2

3
.

On the other hand,

E
[

1∑n
i=1 b

2
i

]
≥ P(max

i
|bi| ≤ σ) E

[
1∑n
i=1 b

2
i

∣∣∣∣max
i
|bi| ≤ σ

]
= [P(|b1| ≤ σ)]

n E
[

1∑n
i=1 b

2
i

∣∣∣∣max
i
|bi| ≤ σ

]
≥
[

1

3
√

2πσ2

∫ σ

−σ
exp

(
− t2

2σ2

)
dt

]n
1

nσ2

≥ 1

5nnσ2
.
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Together we have

E
[

y2∑n
i=1 b

2
i

]
≥ 1

5n+1nσ2
.

Since

E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 ≥ d2E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 ,

we have

lim
σ→0+

E

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2


= lim

σ→0+
E

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2
 = +∞ ,

which completes the proof.

C PROOFS FOR OVERPARAMETRIZED REGIME

C.1 PROOF OF LEMMA 9

Proof. Since A and B have full row rank, (AA>)−1 and (BB>)−1 exist. Therefore we have

B+ = B>(BB>)−1.

The Sherman-Morrison formula gives

(BB>)−1 = (AA> + bb>)−1 = G− Gbb>G

1 + b>Gb
= G−Gbu = G(I − bu) .

Hence, we deduce

B+ = [A, b]>G(I − bu) =

[
A>G(I − bu)
b>G(I − bu)

]
=

[
A+(I − bu)
b>G(I − bu)

]
=

[
A+(I − bu)

u

]
.

Transposing the above equation yields to the promised equation.

C.2 PROOF OF LEMMA 10

Proof. Let us first denote
v , (A+)>x

and
G , (AA>)−1 ∈ Rn×n.

First note that by Cauchy-Schwarz inequality, it suffices to show there exists D such that
E[λ4

max(G)] < +∞ and E‖v‖4 < +∞.

We define Ad ∈ Rn×d to be the submatrix of A that consists of all n rows and first d columns.
Denote

Gd , (AdA
>
d )−1 ∈ Rn×n.

We will prove E[λ4
max(G)] < +∞ by induction.

The base step is d = n+ 8. Recall D[1:n+8] = N (0, In+8). We first show E[λmax(Gn+8)]4 < +∞.
Note that since Gn+8 is almost surely positive definite,

E[λ4
max(Gn+8)] = E[λmax(G4

n+8)] ≤ E tr(G4
n+8) = E tr((An+8A

>
n+8)−4) = tr(E[(An+8A

>
n+8)−4]) .
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By our choice of D[1:n+8], the matrix (An+8A
>
n+8)−1 is an inverse Wishart matrix of size n × n

with (n+ 8) degrees of freedom, and thus has finite fourth moment (see, for example, Theorem 4.1
in (von Rosen, 1988)). It then follows that

E[λ4
max(Gn+8)] ≤ tr(E[(An+8A

>
n+8)−4]) < +∞ .

For the inductive step, assume E[λmax(Gd)]
4 < +∞ for some d ≥ n+ 8. We claim that

λmax(Gd+1) ≤ λmax(Gd) ,

or equivalently,
λmin(AdA

>
d ) ≤ λmin(Ad+1A

>
d+1) .

Indeed, this follows from the fact that

AdA
>
d 4 AdA

>
d + bb> = Ad+1A

>
d+1 ,

under the Loewner order, where b ∈ Rn×1 is the (d+ 1)-th column of A. Therefore, we have

E[λ4
max(Gd+1)] ≤ E[λ4

max(Gd)]

and by induction, we conclude that E[λ4
max(G)] < +∞ for all d ≥ n+ 8.

Now we proceed to show E‖v‖4 < +∞. We have

‖v‖4 = ‖(AA>)−1Ax‖4 ≤ ‖(AA>)−1A‖4op · ‖x‖4 ,

where ‖ · ‖op denotes the `2 → `2 operator norm. Note that

‖(AA>)−1A‖4op = λ2
max

((
(AA>)−1A

)>
(AA>)−1A

)
= λ2

max

(
A>(AA>)−2A

)
= λmax

((
A>(AA>)−2A

)2)
,

where the last equality uses the fact that A>(AA>)−2A is positive semidefinite. Moreover, we
deduce

‖(AA>)−1A‖4op = λmax
(
A>(AA>)−3A

)
≤ tr

(
A>(AA>)−3A

)
= tr

(
(AA>)−3AA>

)
= tr

(
(AA>)−2

)
.

Using the fact that AdA>d 4 Ad+1A
>
d+1 established above, induction gives

(AA>)−2 4 (An+8A
>
n+8)−2.

It follows that

E
[
‖(AA>)−1A‖4op

]
≤ E

[
tr
((
An+8A

>
n+8

)−2
)]

= tr
(
E
[(
An+8A

>
n+8

)−2
])

< +∞ , (13)

where again we use that fact that inverse Wishart matrix
(
An+8A

>
n+8

)−1
has finite second moment.

Next, we demonstrate E‖x‖4 < +∞. Recall that every Di is either a Gaussian or a Gaussian
mixture distribution. Therefore, every entry of x has a subgaussian tail, and thus E‖x‖4 < +∞.
Together with (13) and the fact that x and A are independent, we conclude that

E‖v‖4 ≤ E
[
‖(AA>)−1A‖4op

]
· E
[
‖x‖4

]
< +∞ .
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C.3 PROOF OF THEOREM 11

Proof. The randomness comes from A, x, y and b. We first condition on A and x being fixed.

Let G , (AA>)−1 ∈ Rn×n and u , b>G
1+b>Gb

∈ R1×n. Define

v , (A+)>x , r , 1 + b>Gb , H , bb> .

We compute the left-hand side but take the expectation over only y for the moment

Ey

∥∥∥∥∥
[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

= Ey
∥∥(I − bu)>v + u>y

∥∥2 − ‖v‖2

= ‖(I − bu)>v‖2 + Ey‖u>y‖2 − ‖v‖2 (E[y] = 0)

= ‖(I − bu)>v‖2 + Ey[y2]
‖Gb‖2

r2
− ‖v‖2 .

Let us first consider the first and third terms of the above equation:

‖(I − bu)>v‖2 − ‖v‖2 = v>
(
(I − bu)(I − bu)> − I

)
v

= − v>
(
bu+ u>b> − buu>b>

)
v

= − v>
(
HG+GH

r
− HG2H

r2

)
v .

Write G = V ΛV >, where Λ = diag(λ1, . . . , λn) ∈ Rn×n is a diagonal matrix (λi > 0) and
V ∈ Rn×n is an orthogonal matrix. Recall b ∼ N (0, σ2In). Therefore w , V >b ∼ N (0, σ2In).
Taking the expectation over b, we have

Eb
[
HG+GH

r

]
= Eb

[
V
V >bb>V Λ + ΛV >bb>V

1 + b>V ΛV >b
V >
]

= V Ew
[
ww>Λ + Λww>

1 + w>Λw

]
V > .

Let R , Ew
[
ww>Λ+Λww>

1+w>Λw

]
. We have

Rii = Ew
[

2λiw
2
i

1 +
∑n
i=1 λiw

2
i

]
= σ2Eν∼N (0,In)

[
2λiν

2
i

1 + σ2
∑n
i=1 λiν

2
i

]
> 0

and if i 6= j,

Rij = Ew
[

(λi + λj)wiwj
1 +

∑n
i=1 λiw

2
i

]
.

Notice that for any w and j, it has the same distribution if we replace wj by −wj . As a result,

Rij = Ew
[

(λi + λj)wi(−wj)
1 +

∑n
i=1 λiw

2
i

]
= −Rij .

Thus the matrix R is a diagonal matrix and

R = 2σ2 Λ diag(ν)2

1 + σ2ν>Λν
.

Thus we get

Eb,A
[
HG+GH

r

]
= 2σ2Eν∼N (0,In),A

[
GV diag(ν)2V >

1 + σ2ν>Λν

]
Moreover, by the monotone convergence theorem, we deduce

lim
σ→0+

Eν∼N (0,In),A,x

[
−v>GV diag(ν)2V >

1 + σ2ν>Λν
v

]
= Eν∼N (0,In),A,x

[
−v>GV diag(ν)2V >v

]
= E[−v>Gv] .
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It follows that as σ → 0+,

E
[
−v>HG+GH

r
v

]
∼ −2σ2E[v>Gv] = −2σ2E

[
v>(AA>)−1v

]
= −2σ2E[‖(A>A)+x‖2] .

Moreover, by (4), we have
E
[
v>(AA>)−1v

]
≤ E

[
λmax

(
(AA>)−1

)
‖(A+)>x‖2

]
< +∞ .

Next, we study the term HG2H/r2:

Eb,A
[
HG2H

r2

]
= Eb,A

[
V
V >bb>V Λ2V >bb>V

(1 + b>V ΛV >b)2
V >
]

= Ew∼N (0,σ2In),A

[
V
ww>Λ2ww>

(1 + w>Λw)2
V >
]

= σ4Eν∼N (0,In),A

[
V

νν>Λ2νν>

(1 + σ2ν>Λν)2
V >
]
.

Again, by the monotone convergence theorem, we have

lim
σ→0+

Eν∼N (0,In),A,x

[
v>V

νν>Λ2νν>

(1 + σ2ν>Λν)2
V >v

]
= Eν∼N (0,In),A,x

[
v>V νν>Λ2νν>V >v

]
= EA,x

[
v>V

(
2Λ2 + In

n∑
i=1

λ2
i

)
V >v

]
= E

[
v>
(
2G2 + tr(G2)In

)
v
]
.

It follows that as σ → 0+,

Eb,A,x
[
HG2H

r2

]
∼ σ4E

[
v>
(
2G2 + tr(G2)In

)
v
]

= σ4E
[
2‖(AA>)−1v‖2 + tr((AA>)−2)‖v‖2

]
.

Moreover, by (4), we have
E
[
2‖(AA>)−1v‖2 + tr((AA>)−2)‖v‖2

]
≤ (n+ 2)E

[
λ2

max((AA>)−1)‖(A+)>x‖2
]
< +∞ .

We apply a similar method to the term ‖Gb‖2
r2 . We deduce

‖Gb‖2

r2
=

b>G2b

(1 + b>Gb)2
=

b>V Λ2V >b

(1 + b>V ΛV >b)2
.

It follows that

E
[
‖Gb‖2

r2

]
= Ew∼N (0,σ2In),A

[
w>Λ2w

(1 + w>Λw)2

]
= σ2Eν∼N (0,In),A

[
ν>Λ2ν

(1 + σ2ν>Λν)2

]
The monotone convergence theorem implies

lim
σ→0+

Eν∼N (0,In),A

[
ν>Λ2ν

(1 + σ2ν>Λν)2

]
= E[ν>Λ2ν] = E[tr(G2)] .

Thus we get as σ → 0+

Ey[y2]
‖Gb‖2

r2
∼ σ4E[tr(G2)] ,

where E[tr(G2)] ≤ nE[λ2
max((AA>)−1)] < +∞.

Putting all three terms together, we have as σ → 0+

Ld+1 − Ld ∼ −2σ2E[‖(A>A)+x‖2] .

Therefore, there exists σ > 0 such that Ld+1 − Ld < 0. Furthermore, we deduce

L′d+1 − L′d =
1

d2
(Ld+1 − Ld) < 0 .
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C.4 PROOF OF THEOREM 12

Proof. Again we first condition on A and x being fixed. Let G , (AA>)−1 ∈ Rn×n and u ,
b>G

1+b>Gb
∈ R1×n as defined in Lemma 9. We also define the following variables:

v , (A+)>x , r , 1 + b>Gb.

We compute L′d+1 − L′d but take the expectation over only y for the moment

Ey

∥∥∥∥∥ 1

d+ 1

[
A>

b>

]+ [
x
y

]∥∥∥∥∥
2

−
∥∥∥∥1

d
(A+)>x

∥∥∥∥2

=
1

(d+ 1)2

(
Ey
∥∥(I − bu)>v + u>y

∥∥2 − (1 + 1/d)2‖v‖2
)

=
1

(d+ 1)2

(
‖(I − bu)>v‖2 + Ey‖u>y‖2 − (1 + 1/d)2‖v‖2

)
(E[y] = 0)

=
1

(d+ 1)2

(
‖(I − bu)>v‖2 + Ey[y2]

‖Gb‖2

r2
− (1 + 1/d)2‖v‖2

)
. (14)

Our strategy is to make E[y2 ‖Gb‖2
r2 ] arbitrarily large. To this end, by the independence of y and b we

have

Ey,b
[
y2 ‖Gb‖2

r2

]
= Ey[y2]Eb

[
‖Gb‖2

r2

]
.

By definition of Nmix
σ,µ , with probability 2/3, y is sampled from either N (µ, σ2) or N (−µ, σ2),

which implies E[y2] ≥ 1
3µ

2. For each bi, we have

P(|bi| ∈ [σ, 2σ]) ≥ 1

3
× 1

4
.

Also note that G is positive definite. It follows that

Eb
[
||Gb||2

r2

]
= Eb

[
||Gb||2

(1 + b>Gb)2

]
≥ Eb

(λmin(G)||b||)2

(1 + λmax(G)||b||2)2
≥
(

1

12

)n
λ2

min(G)nσ2

(1 + 4λmax(G)nσ2)
2 .

Altogether we have

Ey,b
[
y2 ‖Gb‖2

r2

]
≥ 1

3 · 12n
nλ2

min(G)µ2σ2

(1 + 4nλmax(G)σ2)2
.

Let µ = 1/σ2 and we have

lim
σ→0+

E
[
y2 ‖Gb‖2

r2

]
≥ lim
σ→0+

EA,xEy,b
[

1

3 · 12n
nλ2

min(G)

σ2(1 + 4nλmax(G)σ2)2

]
= EA,xEy,b lim

σ→0+

[
1

3 · 12n
nλ2

min(G)

σ2(1 + 4nλmax(G)σ2)2

]
= +∞ ,

where we switch the order of expectation and limit using the monotone convergence theorem. Taking
full expectation over A, x, b and y of (14) and using the assumption that E‖v‖2 < +∞ we have

L′d+1−L′d =
1

(d+ 1)2

(
EA,x,b‖(I − bu)>v‖2 + E

[
y2 ‖Gb‖2

r2

]
− (1 + 1/d)2EA,x‖v‖2

)
→ +∞

as σ → 0+. In addition, we have as σ → 0+,

Ld+1 − Ld ≥ d2(L′d+1 − L′d)→ +∞ .
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