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Abstract.  

Crop yield estimation and mapping are important tools that can help growers efficiently use their 
available resources and have access to detailed representations of their farm. Technical 
advancements in computer vision have improved the detection, quality assessment and yield 
estimation processes for crops, including apples, citrus, mangoes, maize, figs and many other 
fruits. However, similar methods capable of exporting a detailed yield map for vegetable crops 
have not yet been fully developed. A machine vision-based yield monitor was designed to perform 
identification and continuous counting of shallot onions in-situ during the harvesting process. The 
system is composed of a video and position logger, coupled with acomputer software, and can 
be used within the tractor itself.  A modular camera bracket collected video data of the crops while 
positioned directly above the harvesting conveyor. Video data was collected in real-time with 
natural sunlight conditions and in a semi-controlled lighting environment using an artificial light 
source to enhance vegetable areas. Computational analysis was performed to track detected 
vegetables on the conveyor. The system is to be tested for a full continuous run during the 
summer 2018 harvesting season. Based on preliminary results, occasional occlusion of 
vegetables and inconsistent light conditions are the main limiting factors that may inhibit 
performance. Although further enhancements are envisioned for the prototype system developed, 
it has the potential to benefit many producers of small vegetable crops by providing them with 
useful harvest information in real time and can help to improve harvesting logistics. 
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1. Introduction  

Crop yield estimation and mapping are important tools that can help growers efficiently use their 
available resources and have access to detailed representations of their farm. Accurate yield 
estimation allows growers to efficiently manage their harvest logistics, crop storage and sales, 
and account for losses in a timelier manner (Nuske et al., 2014; Cheng et al., 2017; Bargoti and 
Underwood, 2017). Early and accurate predictions are also a key factor for market planning and 
trade (Bargoti and Underwood, 2017; Cheng et al., 2017). Currently, yield estimation is done by 
tedious manual sampling methods which are labour intensive, long and costly (Nuske et al., 2014; 
Dorj et al., 2017). Other methods rely heavily on imprecise historical or empirical data which is 
then extrapolated (Cheng et al., 2017). These calculations and measurements performed by 
humans are often prone to bias and sparsity, leading to false predictions (Bargoti and Underwood, 
2017). Machine vision is a valuable tool that provides precise measurements by extracting useful 
information from digital images or videos using computational methods, and it does so in a non-
destructive manner (AIA, 2017). It also remains easy to integrate in the various production 
processes of fruits and vegetables (Abdelhedi et al., 2012; Arakeri et al., 2016).  

This study focuses primarily on the use of machine vision to perform detection, crop-yield 
estimation and yield mapping for the French grey shallot (Allium oschaninii). Shallot onions grow 
in clusters, where separate bulbs rest on the surface of the soil. They are harvested uniformly 
using a windrower and trailer (Fig. 1). Spatial variabilities in soil type, soil fertility and other 
cropping conditions result in great variability in onion size, and onion size is an important limiting 
factor when determining the percentage of the harvest destined to external suppliers. Quality 
assessment of shallots is done by human visual inspection and usually only after harvesting is 
fully completed. Knowing yield and size distribution early can help prevent large losses in money 
when matching quotas. Although studies have been performed for quality inspection of sweet 
onions (Shahin et al., 2002; Wang and Li, 2014; Wang and Li, 2015), similar work facilitating the 
yield estimation of shallots remains scarce. Therefore, an over-the-row machine vision system 
was created to accelerate yield estimation by running visual inspection on the go during the 
harvesting process of shallots. 

The authors are solely responsible for the content of this paper, which is not a refereed publication. Citation of this work should state 
that it is from the Proceedings of the 14th International Conference on Precision Agriculture. EXAMPLE: Lastname, A. B. & Coauthor, 
C. D. (2018). Title of paper. In Proceedings of the 14th International Conference on Precision Agriculture (unpaginated, online). 
Monticello, IL: International Society of Precision Agriculture.  

Fig. 1. Shallot onion harvesting machine and trailer (left) and onion field (right).   
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The objective of this research was to develop an algorithm for the detection of shallot onions that 
will later be integrated in a yield mapping system for industrial harvesting conveyors. This paper 
is structured as follows: section 2 presents related work in the field of fruit and vegetable detection 
and mapping in outdoor scenes, section 3 outlines the experimental setup and structure of the 
algorithm, followed by section 4 presenting the results and deliberating on the relevance of the 
findings. Section 5 concludes the study.  

2. Related Work  

The design of diverse computer vision algorithms for fruit detection and counting has been an on-
going process. Developing appropriate feature extractors that provide fruit or vegetable 
identification is a challenge for many researchers aiming to devise robust detection algorithms. 
The most predominant applications of computer vision in agriculture have been in fruit detection, 
where the goal is to detect individual fruits, segment them from scenes with branches, foliage, 
sky, and localize them in a space for yield estimation or as an initial step to the development of 
robotic harvesting systems (Karpach et al., 2012).  

Among the most popular and extensive applications are methods for counting apple fruits using 
canopy images (Tabb et al., 2006, Linker et al., 2011; Wang et al., 2012; Zhou et al., 2012; Gongal 
et al., 2015). Stajnko et al. (2004) developed a method for detecting apple fruit using thermal 
imaging. Images were collected at five time periods to model a temperature gradient between 
apple fruits and foliage. Correlation coefficients (R2) between manually detected apples and the 
estimated number of apples ranged from 0.83 to 0.88. The images were also used to model 
average apple diameter over time with a maximum deviation from the mean of 6 mm.  Wang et 
al. (2011) created a similar stereo-vision based system using a two-camera stereo rig. This 
system was stationed on an autonomous orchard vehicle designed to work at night with artificial 
lighting. It converted apples to the Hue-Saturation-Value (HSV) color space, and then used color 
segmentation and specular reflection to separate both red and green apples from foliage. The 
error obtained for crop yield estimation was -3.2 % for red apple trees, and 1.2 % in green apple 
trees with additional calibration due to significant fruit occlusion. Gongal et al. (2015) later 
developed an over-the-row machine vision system using both an RGB and stereo camera which 
captured dual images from both sides of the plant canopy and localized them in space. The 
experiment was performed in a controlled environment using a covered system with artificial 
lighting and a tunnel structure. Using image processing and clustering, apples were identified in 
the images based on shape and color with an accuracy of 78.9%. More state-of-the-art methods 
(Bargoti and Underwood, 2017) have adapted machine learning techniques such as Multi-
Layered Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) to perform pixel level 
fruit-segmentation under natural sunlight in orchards. The binary images were processed using 
both a Watershed Segmentation (WS) and Circle Hough Transform (CHT). The WS algorithm 
was able to detect and count apples with a R2 value of 0.826 and output an apple yield map for 

Fig. 2.  Model of the machine vision camera bracket (left), (a) is a metal piece used to deflect incoming onions from the 
camera (b), and (c) is the external light source.  Right image is the setup positioned on the farm harvester.   

 

(a) 

(b) 

(c) 
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an orchard block using an integrated Global Positioning System (GPS) recording vehicle position 
with every image taken.  

Other studies have focused on the identification of citrus fruit in similar conditions (Sengupta and 
Lee, 2014; Dorj et al., 2017). Sengupta (2014) and Dorj (2017) developed computer vision 
algorithms to count citrus fruits on trees using image processing and estimate early overall yield. 
Sengupta and Lee used shape and texture analysis to detect immature green citrus fruit in a 
canopy. Texture classification was performed using a Support Vector Machine (SVM), Canny 
edge detection and a graph-based connect component algorithm and Hough line detection. The 
algorithm accurately detected 80.4 % of citrus fruit.  The study by Dorj et al. was based primarily 
on the color features of orange fruits. The algorithm consisted of converting the images to the 
HSV color space, thresholding, orange color detection, removal of noise using a median filter, 
watershed segmentation and counting. Overall, this algorithm obtained a high correlation (R2 = 
0.93) between the counting algorithm and human observation. 

Other studies include work by Kondo et al. (2009), who developed a machine vision system for 
autonomous harvesting of tomato fruit clusters using stereo images of tomatoes in a greenhouse. 
The images were converted to the Hue-Saturation-Intensity (HSI) color space and then 
chromacity distribution plots of H-versus-I were used to cluster fruit region properties and develop 
a classifier. The research results showed a 73% success rate in locating the stems of clusters. In 
contrast, experiments performed on vegetable crops in the field are not as common, since most 
studies have been performed on industrial conveyor systems for sorting (Arakeri and Lakshmana, 
2016; Wang and Li, 2015). However, Blok et al. (2016) developed a machine vision algorithm for 
identifying broccoli heads in the field for a fully autonomous harvester that could perform a 
selective harvesting process. Texture and color-based segmentation was used to isolate the 
heads from the background. The automatic segmentation was compared with results from two 
human experts by comparing the spatial overlap between both results and the individual broccoli 
head detection. The precision score of the segmentation was 99.5% and overall accuracy of the 
image segmentation was 92.4%.  

Although computer vision systems have proven to have high detection rates and show promising 
results, the presence of many external factors has often negatively influenced detection. Farm 
image data is prone to large intra-class variation primarily due to variable illumination conditions, 
occlusion by other crops or foliage, clustering of crops, camera view-point, and seasonal maturity 
levels leading crops of varying size, shape or color (Hannan et al., 2009; Sengupta and Lee, 2014; 
Bargoti and Underwood, 2016; Gongal et al., 2016). Changes in object reflectance can cause 
object detection to be somewhat unreliable and may lead to incorrect or incomplete segmentation 
due to a non-uniform distribution of light intensity (Gongal et al., 2016). This problem can be 
addressed by creating a controlled, uniform lightning environment from which visual data is taken. 
Examples of controlled lighting environments include an over the row platform with integrated 
LED lights (Gongal et al., 2016) a wooden box with a painted black interior (Ohali, 2010) or simply 
performing the experiment at nightfall (Wang et al., 2012, Nuske et al., 2014). Other alternative 
solutions include using a perimeter-based detection method on top of basic color detection 
(Hannan et al., 2009; Payne et al., 2013) when variable lighting conditions are unavoidable. Other 
existing challenges are the multiple detection of the same object within sequential images, or 
occlusion by other objects or fruits which can lead to miscounting in yield calculation applications.  
Gongal et al. (2016) used a 2D and 3D imaging approach where apples identified in multiple 
images were mapped together in a common coordinate system that correctly identified and 
removed duplicates. The apples in the orchard were represented in a 3-dimensional space where 
apples registered with the same X, Y and Z coordinates were considered as one fruit. Wang et 
al. (2012) developed a similar software that calculated the distance between every two apples, 
and then merged the apples as one whenever this distance was below a given threshold. Hannan 
et al. (2009) used a centroid-based detection method to identify fruit clusters as a single fruit, and 
a perimeter-based detection method to locate the individual fruits which had a success rate of 
93% and a false detection rate of 4%.  
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Extensive work has been done to perform detection of fruit in orchard environments such as for 
apples (Linker at al., 2012; Zhou et al., 2012; Wang et al., 2012; Gongal et al., 2016; Mizushima 
et al., 2013), oranges (Hannan et al., 2009; Dorj et al., 2017), mangoes (Payne et al., 2013), and 
berries (Nuske et al., 2014; Pothen and Nuske, 2016). Sorting processes have also been 
developed for fruits on conveyor systems (Sofu et al., 2016; Ohali, 2010); however, none have 
attempted to develop a system directly linked to industrial harvesters that can generate a yield 
map. The initiative to develop better automated crop-estimation systems for vegetables, such as 
a machine vision-based yield monitor for vegetable crops, is one that has yet to reach its full 
potential. Incorporating machine vision into everyday agricultural practices allows farmers to 
significantly reduce their labor requirement and processing time while providing better consistency 
and uniformity (Sun, 2008). It also allows them to analyze their fields on a higher level of precision.  

3. Materials and Methods 

3.1 System Design  

The system was mounted on a shallot onion harvesting conveyor on the agricultural farm Delfland, 
Inc. located in Napierville, Québec, Canada. Data acquisition was done in mid and late August 
(2017) during the end of the harvesting season.  A customized bracket (Fig. 2) provides a vertical 
camera orientation, capturing an image where the camera is facing downwards and directly on 
the conveyor. The bracket is positioned on the harvester right before the onions are deposited in 
the trailer to reduce the amount of onions falling backwards and being detected more than once 
by the algorithm. An on-board positioning system provides the geographic coordinates of the 
harvester which are used by the software to determine the coordinates of every detected onion in 
the field. Fig. 3 illustrates the system and its primary components. Shock absorbing pads made 
of Sorbothane™, a synthetic viscoelastic urethane polymer, are placed beneath all of the top 
pieces of the bracket to reduce vibration effects of the conveyor and help stabilize the camera.  

Fig. 3. Diagram of the machine vision yield mapping system. The camera records continuous video of the crops being 
collected by the harvester. Each frame is coupled with a location tag given by the GPS receiver. The data is analyzed 

using a computer vision software and exports a yield map showing the size distribution of the crops per unit area.   
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An accompanying software detects the onions. The software is written in the Python (version 
3.5.2) coding language (Python Software Foundation, Welmington, Delaware, USA) and the 
OpenCV (version 3.2.0) libraries (Itseez, Inc., San Francisco, California, USA). The software runs 
on a 64-bit PC with an Intel® Core™ i7-7500 CPU processor with a 2.70 GHz clock speed and 
8GB of RAM. 

3.2 Algorithm 

The proposed algorithm is developed using a pipeline similar to that stated in Gongal et al. (2015). 
The yield-monitoring system performs four main steps: 1) image acquisition, 2) image processing, 
3) differentiation between the shallot onions and background using segmentation and 4) noise 
filtering. 

3.2.1 Data Acquisition 

Video data is recorded at a resolution of 1920 x 1080 pixels and frame speed of 60 fps, but images 
are later downsized to a third of their width (640 x 360) to reduce processing time. A Nikon ® 
KeyMission 170 action camera is used due to its high reliability (weatherproof, waterproof, 
dustproof and shockproof). The camera has a 1/2.3” Red-Green-Blue (RGB) complementary 
metal-oxide semiconductor (CMOS) sensor, an aperture of f/2.8 mm and a 15 mm focal length. 
The camera’s field of view is 33.2 cm by 62.87 cm, capturing the distance between two conveyor 
paddles. The speed of the onions on the conveyor is set to 0.711 m/s. 

3.2.2 Image Preprocessing 

The captured images contain a large amount of distortion, where lines which are straight in the 
real-world deviate from their rectilinear projection in the image (Fig. 4). This distortion must be 
corrected to extract appropriate quantitative measurements corresponding to real-world 
dimensions (Balletti et al., 2014). These are corrected using distortion calibration methods in 
computer vision libraries such as OpenCV. This effect is due to the wide-angle lens of the action 
camera which is designed to have a large field of view despite its small focal length. The most 
predominant form of distortion observed was radially symmetric distortion or barrel distortion.  

3.2.3 Segmentation  

Segmentation is a process where regions of interest are extracted from an image by separating 
the foreground objects (in this case, shallot onions) from the background (conveyor). Accurate 
segmentation is crucial for it is a starting point for the succeeding steps such as size classification 
and counting (Bargoti and Underwood, 2016; Mizushima and Lu, 2013). Challenges including 
highly variable illumination and shadowing effects can significantly affect the segmentation 
process and make it ineffective. Performing data collection in a controlled lighting environment 
(i.e. nightfall) can help achieve better segmentation results (Wang et al., 2012; Nuske et al., 2014; 

Fig. 4. The distorted image (left) from the Nikon® camera and its undistorted (right) version. The undistorted image 
was created by calculating the intrinsic properties of the camera and using remapping functions in OpenCV. 



Proceedings of the 14th International Conference on Precision Agriculture 
June 24 – June 27, 2018, Montreal, Quebec, Canada Page 7 

Pothen and Nuske, 2016). However, in practice, onion harvesting usually occurs in natural 
daylight and incorporating cameras onto tractors will be easier for growers if large experiments 
are performed during normal operation times (Bargoti and Underwood, 2016).   

Digital cameras usually capture images in the RGB format, where each channel corresponds to 
the intensity of the three primary colors of light (red, green and blue). All colors are then created 
by the additive reproduction process of various amounts of red, green and blue, with brightness 
values ranging from 0 to 255.  For example, red, green and blue are defined by the vectors (255, 
0, 0), (0, 255, 0), and (0, 0, 255), respectively. White can be represented by combining all three 
components at their highest intensity (255, 255, 255), and black is the absence of all colors in 
each channel (0, 0, 0).  Fig. 5 (left) shows a model of the cartesian RGB color space. The RGB 
model is not the most intuitive model for discerning color from a perceptual point of view for it is 
difficult to extract characteristics such as lightness and intensity (Wang et al., 2011; Gongal et al., 
2015). Therefore, images are converted to the Hue-Saturation-Value (HSV) color space illustrated 
in Fig. 5 (right) using the following conversion formulae (Nishad and Manicka, 2013; Kobalicek 
and Bliznak, 2011). 

• The hue of a color is the pure color we are examining. All tones and shades of a given 
color correspond to the same unique hue. Hues are defined using an angle ranging 
between 0 and 360 along the horizontal cross-section of the cylinder. 

• The saturation of a color describes how much white is present within the color. A fully 
saturated color is strong in pigment. For example, tints of red have saturations ranging 
between 0 and less than 1, while white has a saturation of 0.  

• The value of a color describes its lightness, or how much black is present within the color. 
A value of 0 would be black, where lightness increases gradually as value goes towards 
1. 

To convert a color in the HSV space, we must first determine the maximum (𝑀) and minimum 

(𝑚) intensities of each pixel, and the difference between them also known as the chroma (∆). 

𝑀 = max(𝑅, 𝐺, 𝐵) 

                                                                                 𝑚 = 𝑚𝑖𝑛(𝑅, 𝐺, 𝐵)                                                               (1) 

∆ = 𝑀 −𝑚  

 

Fig. 5.  RGB (left) and HSV (right) color models.  
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H is represented by a step-wise function where the chromatic intensity is determined by a two-
color difference component. The function relies on the value of 𝑀, which gives the angular position 
of the color on the cylinder.    

                                                  𝐻′ =

{
 
 

 
 
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 ∆= 0
𝐺−𝐵

∆
𝑚𝑜𝑑6, 𝑖𝑓 𝑀 = 𝑅

𝐵−𝑅 

∆
+ 2, 𝑖𝑓 𝑀 = 𝐺

𝑅−𝐺

∆
+ 4, 𝑖𝑓 𝑀 = 𝐵

                                                                       (2) 

𝐻 = 60° × 𝐻′ 

 

V is defined as the largest component of a color, M. 

                                                                                       𝑉 = 𝑀                                                                      (3) 

Finally, to determine S, we divide ∆ by M. 

                                                          𝑆 = {
0,  𝑖𝑓 𝑉 = 0

 
 
∆

𝑀
,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                            (4)       

Once the images are converted to HSV, color thresholding is done using two methods. The first 
is Otsu’s thresholding selection method (1979) which has been largely used in computer vision 
applications in agriculture (Abdelhedi et al., 2012; Mizushima and Lu, 2013; Mollazade et al., 
2012; Gongal et al., 2016). Otsu’s method automatically determines a threshold using the 
histogram of a grayscale image. This threshold minimizes the weighted intra-class variance and 
is defined as a weighted sum of variance of the two classes: 

                                                𝜎𝑤
2(𝑡) =  𝜔0(𝑡)𝜎0

2(𝑡) + 𝑤1(𝑡)𝜎1
2(𝑡)                                               (5) 

where 𝜔0 and 𝜔1 are the probabilities of the two classes separated by a threshold t, and 𝜎0
2 and 

𝜎1
2 are the variances of these two classes. The algorithm was performed using the hue channel for 

it assumes the image contains two classes of pixels following the bi-modal histogram. In the second 
method, thresholding is done by applying a band pass filter to the hue channel, and a high pass filter 
on the saturation channel. A binary image is then presented where the partial solutions of both 
channels intersect. The threshold value was determined by analyzing the hue channel histogram and 
selecting the hue region corresponding to where most onions were located. Both methods are then 
joined with a segmentation based on texture properties using the magnitude of the red color intensity 
(Stajnko et al., 2009), and Canny edge detection finds the contour lines of the onions. Finally, shape 
properties are extracted from the binary image to identify regions corresponding to onions and 
eliminate those that are not.  

3.2.4 Noise Filtering  

Morphological operations, including erosion and dilation, were used to close holes within the 
vegetables and remove noise (Sonka et al., 2015). The kernel was shaped elliptically to preserve 
the circular shapes of the onions but was not chosen too large to avoid the merging of various 
regions together. Other preprocessing steps included Gaussian filtering using a 9x9 kernel with a 
sigma of 0 and standard deviation of 1, and median filtering with a 9x9 kernel. 
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4.  Results and Discussion 

Fig. 6. shows a hue channel histogram of a sample image. Since the range 0 to 360 cannot be 
represented using only 8-bit integers, in OpenCV hue values range from 0 to 180. The high bin 
count situated at the value 121 corresponds to a shade of blue violet, representing the surface 
behind the conveyor belt. The two modes in the histogram are located between 0-30 (left region) 
and 90-120 (right region). Otsu’s method determines an average threshold of 60, situated roughly 
in the middle of the two peaks, where the left region represents the shallot onions and the right 
region represents the light-green portions of the paddle and conveyor (see online version for color 
images). The manually determined threshold combined the left hue peak and the hue values from 
165-180 and are shown in Fig. 6.  

Fig. 7 shows an original image of the onions on the conveyor (Fig. 7a) and the results obtained 
from the various segmentation methods tried. A red color intensity texture image (Fig. 7b) is used 
to further extract regions that are high in red chroma after initial global thresholding. In most cases, 

Fig. 7. Segmentation results. (a) Original conveyor image and results (b, c, d) of the image processing and 
segmentation algorithm. (b) is the red color intensity image, (c) is the image segmented using Otsu’s method (d) is the 

segmentation performed using the manually selected hue and saturation thresholds.  

               (a)                                           (b)                                                (c)                            (d) 

 

Manually 

determined 

onion 

regions 

Fig. 6.  Hue intensity distribution of a sample image. 
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Otsu’s method (Fig. 7c) leads to over segmentation, capturing not only the onion regions but also 
much of the conveyor system and stems. This may be due to the varying number of onions in 
each image which affects the histogram distributions, and in some cases, making it unimodal 
when onion counts were unusually low.  Combining the HSV color threshold with the red texture 
image reduces the number of false positives for the algorithm first checks whether the object is 
within the proper color range, and then analyses the image further and searches for the distinct 
red intensity corresponding to onions. This method is often used in apple detection, since apple 
fruit have a very distinct red color when compared with green foliage in trees (Zhou et al., 2012; 
Stajnko et al., 2009).  

The approach used to validate the system consisted of gathering 34 random screenshots 
comparing the algorithm’s number of detected shallot onions and the true shallot onion count 
performed by manual observation. Examples of screenshots and results from this process are 
shown in Fig. 8. The detection rate proved to be relatively low: the mean number of manually 
counted onions per paddle section was equal to 16.05, ranging from 4 to 37 onions in observed 
examples with a standard deviation of 6.16, and the mean from the automatically detected onions 
was 7.17, with ranges between 1 and 15 correctly observed onions and standard deviation of 
3.10. Performance of the algorithm is illustrated in Fig. 9. Although the algorithm underestimated 
the true crop load (regression slope of 0.445), it is important to know that there was a high 
correlation between the manual count and algorithm count, with an R2 value of 0.762. By taking 

Fig. 8. Onion detection results. Onions identified by the algorithm are located on the image using ellipses. Colors 
represent size ranges. In this case, blue corresponds to small and green to medium sized onions.  

Fig. 9. Onion detection accuracy of the current machine vision algorithm (left) and accuracy obtained by doubling the 
output (right).  

SE = 3.32 

SE = 9.66 
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the automatically determined onion count and dividing it by 0.45, this increased the efficiency of 
predictions dramatically, raising the detection regression slope to 0.99.    

Under low onion count, the algorithm shows better results, missing at most 3 onions per frame, 
but falsely detected onion count remained between 0 and 7 (Fig. 10). High detection rates occur 
when the onions are not clustered together or superimposed, causing them to be segmented as 
a joint object and thereafter, making them difficult to isolate. The algorithm also misses onions 
located in shadowy regions which affects color thresholding, and onion stems that protrude and 
occlude other vegetables also contribute to inaccuracies in the detection rate. Most cases of 
falsely detected crops were onions that were detected twice, which was caused by improper 
boundary definition by edge detection. More precise analysis and stricter limitations on boundary 
properties such as shape and curvature could enhance object delimitation, as well as more 
rigorous image preprocessing to normalize the lighting influence. Despite these drawbacks, false 
detection was on average relatively low (3.11) and average deviation between the detection 
algorithm and manual count was 8.88. 

 Further enhancements of the algorithm must be made to better separate individual onion regions 
and increase overall accuracy. This is rendered difficult due to the high amount of overlap between 
individual onions and natural lightning or shade which blur the regions between adjacent onions 
and makes them hard to define. A way to enhance this could be to perform semantic segmentation 
of the onions by using a CNN structure like that of Bargoti and Underwood (2017). With enough 
examples of onions in clusters, in shade or occluded by stems, the algorithm might be able to 
learn features that could accommodate for all variabilities in onion appearance.   

 

 

Fig. 10. Shallot onions detected by the computer vision algorithm vs. manual count. 
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4. Conclusions  

A machine vision system for quantifying and sorting shallot onion crops during the harvesting 
process was developed. Based on preliminary evaluation, the total onion count per frame was 
about 45% lower than the actual onions that should have been detected. With compensation for 
this difference, standard error for onion count prediction was 3.32. Through interpolation, this is 
acceptable to generate overall yield production maps. However, correct accuracy is not sufficient 
to document spatially variable onion size distribution, which is important for improved farm 
management logistics. The next step in this research is to apply artificial intelligence to a library 
of preprocessed images exposing the unloading conveyor during various production and ambient 
conditions. Preliminary analysis of this methodology suggests the potential for a significant 
improvement in onion detection accuracy but will require substantial implementation efforts. 
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Nomenclature  

 

CHT Circular Hough Transform 

CNN Convolutional Neural Network 

CV Computer Vision 

GPS Global Positioning System 

HSI Hue-Saturation-Intensity 

HSV Hue-Saturation-Value 

MLP Multi-Layer-Perceptron 

RGB Red-Green-Blue         

WS Watershed Transform 

 


