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ABSTRACT

Training and fine-tuning Large Language Models (LLMs) demand significant
computational resources and time due to their large model sizes and optimizer
states. To mitigate these challenges and improve accessibility, several memory-
efficient methods have been developed. Methods such as Low-Rank Adaptation
(LoRA) optimize model weights within a low-rank subspace, while Gradient Low-
Rank Projection (GaLore) projects gradients into a lower-dimensional space to de-
crease memory footprint. In this paper, we propose Gradient Subspace Tracking
(SubTrack-Grad), a method that confines optimization to a compact core subspace
of the gradient matrices and dynamically tracks its changes using the geometry of
Grassmannian manifolds. SubTrack-Grad efficiently updates its subspace estima-
tion by leveraging estimation errors and previously identified subspaces. Specifi-
cally, SubTrack-Grad reduces wall-time by up to 20.57% on GLUE tasks (15%
average reduction) and up to 65% on SuperGLUE tasks (22% average reduc-
tion). Notably, for a 3B parameter model, GaLore incurred a substantial 157%
increase in wall-time compared to full-rank training, whereas SubTrack-Grad ex-
hibited only a 31% increase—representing a 49% reduction in wall-time com-
pared to GaLore. Additionally, the memory required for storing optimizer states
in SubTrack-Grad is equivalent to GaLore’s, and it exhibits only a minimal in-
crease in peak memory consumption.

1 INTRODUCTION

Large Language Models (LLMs) have achieved state-of-the-art performance across various tasks
and are rapidly growing in popularity. However, their training and fine-tuning demand substantial
resources, such as hardware and time, making them impractical for many applications and contribut-
ing to a larger carbon footprint (Zhao et al., 2024; Jaiswal et al., 2024; Muhamed et al., 2024; Miles
et al., 2024; Modoranu et al., 2024; Hao et al., 2024; Li et al., 2024). As a result, there is an acute
need to develop memory- and time-efficient methods to democratize their use and mitigate environ-
mental impact. Various techniques have been proposed to reduce memory usage, such as gradient
checkpointing (Chen et al., 2016) and memory offloading (Rajbhandari et al., 2020). In this con-
text, several Parameter-Efficient Fine-Tuning (PEFT) approaches aim to reduce memory usage by
optimizing a subset of model parameters or operating within a lower-dimensional space (Dettmers
et al., 2024; Yaras et al., 2024; Lialin et al., 2023; Renduchintala et al., 2024; Xia et al., 2024; Miles
et al., 2024; Hu et al., 2021). Notably, the well-known method LoRA (Hu et al., 2021) decomposes
weight matrices into two low-rank trainable matrices, optimizing network parameters within a small
subspace, which significantly reduces the memory footprint.

Memory requirements extend beyond trainable parameters, with a significant portion consumed by
optimizers for storing element-wise states and parameters (Zhao et al., 2024). To address this, re-
cent efforts have focused on reducing the memory footprint of optimizer parameters (Li et al., 2023;
Anil et al., 2019; Lv et al., 2024; Dettmers et al., 2022; Zhang et al., 2024; Modoranu et al., 2024;
Zhao et al., 2024; Muhamed et al., 2024). GaLore (Zhao et al., 2024) reduces the memory usage
of optimizers by projecting gradient matrices into a low-rank subspace and tracking changes via
periodic Singular Value Decomposition (SVD) to obtain a rank-r approximation. However, this ap-
proach faces several challenges. First, SVD is computationally expensive, and if the gradient does
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Figure 1: Visualization of the SubTrack-Grad method: Between subspace update steps, gradients are projected
onto a fixed subspace. The tangent vector ∇F is computed via the derivative of a loss function that measures the
subspace estimation error between updates. The subspace is then updated by moving along the corresponding
geodesic, determined by ∇F , on the Grassmannian manifold to minimize the measured error.

not evolve within a nearly constant subspace, GaLore must increase the frequency of SVD opera-
tions, significantly increasing the amount of computation. This is problematic because not all layers’
gradients converge to a stable subspace early in training (Jaiswal et al., 2024). Moreover, applying
SVD to a single gradient matrix is susceptible to data noise (Vaswani et al., 2018), and GaLore does
not leverage 1) information from the orthogonal space as feedback to adjust the subspace (Modoranu
et al., 2024) or 2) previously computed subspaces to incorporate past knowledge, which could help
mitigate these effects and improve convergence speed.

To address these challenges, we propose Gradient Subspace Tracking (SubTrack-Grad), a
Grassmannian-based subspace tracking method that efficiently updates the subspace using rank-1
updates. SubTrack-Grad leverages information from the orthogonal complement to improve sub-
space estimation through simple linear algebra operations, which are computationally more efficient
than GaLore as they avoid periodic SVD on the main gradient matrices. Furthermore, SubTrack-
Grad dynamically adapts to changes in the gradient subspace, reducing abrupt shifts in subspace
updates for faster convergence. Our main contributions are as follows:

• We introduce SubTrack-Grad, a computationally and memory-efficient method that
projects gradients onto a core subspace and dynamically adjusts this subspace using Grass-
mannian manifold geometry, leveraging estimation errors as a signal for adjustment.

• We demonstrate that SubTrack-Grad achieves performance comparable to or better than
GaLore, with a significant reduction in runtime and minimal memory overhead.

• We show that tracking the gradient subspace helps reduce abrupt changes in the optimiza-
tion process, thereby accelerating convergence.

• We prove that our method aligns with GaLore’s convergence guarantees while enabling
more frequent subspace updates by exercising greater control over subspace adjustments
through the use of prior knowledge and errors from the orthogonal space.

An overview of the proposed method is provided in Figure 1.

2 RELATED WORKS

Several works aim to improve the efficiency of training and fine-tuning LLMs, addressing a growing
demand as their popularity rapidly increases. LoRA (Hu et al., 2021), a widely recognized method
for reducing the number of trainable parameters, projects model weights into a lower-dimensional
space, resulting in two trainable low-rank matrices. This approach optimizes the matrices and sig-
nificantly reduces memory requirements for fine-tuning large models. Dettmers et al. (2024) builds
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on LoRA by employing quantization techniques and paged optimizers to further reduce memory us-
age. Additionally, Yaras et al. (2024) introduces Deep LoRA, which uses deep matrix factorization
for low-rank optimization, addressing overfitting issues and reducing the need for precise tuning
of the rank parameter. Several other works have also extended LoRA to enhance the efficiency
of training and fine-tuning large models (Lialin et al., 2023; Renduchintala et al., 2024; Xia et al.,
2024; Pan et al., 2024). Miles et al. (2024) proposes compressing intermediate activation vectors
and reconstructing them during backpropagation to enhance memory efficiency. Additionally, Hao
et al. (2024) demonstrates that full-parameter fine-tuning is feasible by using random projections
on the gradient matrix, showing that LoRA essentially performs a down-projection of the gradient.
BAdam (Luo et al., 2024) leverages the block coordinate descent framework to achieve low memory
consumption while maintaining optimization capabilities comparable to Adam.

Several approaches aim to reduce memory consumption in optimizers, as optimizers like Adam
(Kingma & Ba, 2017) account for a significant portion of memory usage due to their storage of
element-wise states to improve the optimization process (Li et al., 2023; Anil et al., 2019; Lv et al.,
2024; Dettmers et al., 2022). MicroAdam (Modoranu et al., 2024) tackles this issue by compressing
the gradient space for optimization and utilizing the resulting compression error through feedback
loops to improve the optimization process. Adam-mini (Zhang et al., 2024) partitions model param-
eters into blocks, assigning a single learning rate to each block. This design achieves a significant
reduction in memory usage while maintaining performance. Gur-Ari et al. (2018) suggests that a
substantial portion of gradients lies within a small, largely consistent subspace, a finding also re-
ported by other studies, including Schneider et al. (2024); Yaras et al. (2023). GaLore (Zhao et al.,
2024) leverages this property to reduce the memory requirements of optimizers by projecting gra-
dients into a lower-dimensional subspace and then projecting them back for complete parameter
tuning. This approach has been effectively integrated with other methods to further reduce memory
usage during training and fine-tuning of LLMs (Li et al., 2024). However, not all layers’ gradients
evolve within a stable low-rank subspace. Jaiswal et al. (2024) identifies layers with constantly
changing gradients where low-rank projection may be inefficient for tuning. By analyzing the dis-
tribution of singular values across different layers, they select those that evolve within a small sub-
space for fine-tuning while freezing the remaining layers. Gradient Structured Sparsification (Grass)
(Muhamed et al., 2024) further reduces memory usage by applying sparse projection matrices to the
gradient, transforming the gradient matrix into a sparse vector space. This approach leverages sparse
representations to significantly decrease the memory footprint. In Ramesh et al. (2024) the authors
propose an approach that dynamically selects and updates a small subset of parameters, leading to
faster and more memory-efficient training without altering the model’s structure.

When working with high-dimensional data, a common approach is to project the data into a lower-
dimensional space, and many studies focus on tracking these subspaces as they evolve over time.
Balzano et al. (2011) introduces an incremental method for updating subspaces on the Grassmannian
manifold when data is partially observed. Zhang & Balzano (2016) and Kasai (2017) address the
challenges posed by noise in data streams and evolving environments, proposing methods to handle
such noise. Additionally, Blocker et al. (2023) presents a method for time-varying data based on
geodesics in Grassmannian space to track changes and update the subspace effectively.

3 SUBTRACK-GRAD: TRACKING THE GRADIENT SUBSPACE

Since gradients typically evolve within a small subspace, compressing this space can significantly
reduce the memory footprint of the optimizer. As demonstrated in Zhao et al. (2024) whenever the
gradient takes the general form

G =
∑
i

Ai +
∑
i

BiWCi (1)

where i denotes the batch index, and Bi and Ci are positive semi-definite (PSD) matrices, this
gradient can be projected onto a small subspace that remains nearly stable while ensuring that the
optimization process continues to converge, as discussed in Section 4 and Appendix A. However,
the gradient’s subspace is not always stable, making it crucial to track its changes for effective
optimization. GaLore (Zhao et al., 2024) addresses this by periodically performing SVD on gradient
matrices, while keeping the update frequency low to align with the assumption of a stable subspace.
This approach poses several challenges: 1) not all gradients converge to a stable subspace within
a few iterations, 2) SVD is computationally expensive, and increasing the frequency of updates to
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Algorithm 1 SubTrack-Grad

Require: Sequence of m × n gradients Gt with m ≤ n (w.l.o.g.), step-size η, rank r, subspace
update steps k
Initialize Subspace via SVD Decomposition:
P0 ← U [:, : r] , where U, S, V ← SVD(G0)
S0 ← P0 {The initial subspace}
for t = 1, . . . , T do

if t mod k = 0 then
Update subspace:
Glr = argminA ∥(St−1A−Gt)∥2 {Solving the least square problem}
R = Gt − St−1Glr {Computing the residual}
∇F = −2RG⊤

lr ≈ ÛF Σ̂F V̂
⊤
F {Computing the rank-1 estimation of tangent vector}

St = (St−1V̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St−1(I − V̂F V̂

⊤
F ) {Updating the subspace}

else
Keep using previous subspace: St = St−1

Return final projected gradient to the optimizer: S⊤
t Gt

capture changes significantly raises both runtime and environmental costs, and 3) increasing the
update frequency contradicts the assumption of a stable subspace, as SVD is sensitive to noise and
does not account for the previously computed subspace or estimation error to regulate the extent of
change applied.

We propose Gradient Subspace Tracking, or SubTrack-Grad, a computationally efficient method for
tracking gradient subspaces. SubTrack-Grad utilizes both the orthogonal space and the previously
computed subspace to update the core subspace. Also, ass illustrated in 4, increasing the update
frequency does not significantly impact runtime. This approach effectively controls the amount of
change in the subspace, enabling more frequent updates without compromising the stability assump-
tion. The subspace is initialized using SVD as follows:

G0 = USV ⊤ ≈
r∑

i=1

siuiv
⊤
i , P0 = [u1, u2, ..., ur], Q0 = [v1, v2, ..., vr]. (2)

Here, G0 is an m × n gradient matrix at step 0, and U , S, and V are its SVD components, with r
denoting the specified rank. At each optimization step, the gradients are projected onto the subspace
of the left singular vectors if m ≤ n, or onto the right singular vectors otherwise, thereby optimizing
memory usage (Zhao et al., 2024). The optimization is performed within this subspace, after which
the gradient is projected back to allow full parameter tuning. For simplicity, we assume m ≤ n
without loss of generality, implying that S0 = P0, an m × r orthonormal matrix whose columns
span the underlying subspace.

At each iteration of pre-training or fine-tuning, the matrix St, representing the subspace at step t,
projects the gradient matrix Gt onto the subspace by G̃t = S⊤

t Gt, where G̃t will be a reduced r×n
matrix representing the projection of the original gradient onto a rank-r subspace. The optimizer
then performs optimization within this low-rank space, which substantially reduces the number of
state parameters and thus the memory usage. The optimizer outputs G̃O

t , which is then projected
back to the original space by Ĝt = StρtG̃

O
t , where ρt is a scalar representing the entry-wise regu-

larizer used in the optimizer, to be passed to the network.

As previously discussed, the gradient does not always evolve within a stable low-rank subspace;
hence, St, the orthonormal matrix spanning the core subspace, must be appropriately updated. In
SubTrack-Grad, we propose updating the subspace by moving along Grassmannian geodesics. This
approach leverages the previously computed subspace and the estimation error from earlier steps to
minimize abrupt changes and noise effects, as illustrated in Figure 2.

The underlying subspace is updated after a fixed subspace update interval of k steps. Let Ti denote
the i-th subspace update step for i ∈ {1, 2, 3, . . .}. To mitigate the impact of noise, we can com-
pute an accumulated gradient by averaging gradients across consecutive subspace update steps, as
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Figure 2: Comparison of the Adam Optimizer Combined with GaLore and SubTrack-Grad on the Ackley
Function. Both optimizers took 100 steps, with the subspace update interval set to 10. As demonstrated, when
the scale factor is equal to 1, GaLore could not reach the global minimum of the function within 100 iterations
due to more frequent jumps compared to SubTrack-Grad. For a scale factor of 3, the length of jumps increases
further in Adam combined with GaLore. The 3D plots provide a clearer visualization of the dynamics of the
Ackley function and the optimization paths followed by each method in a single plot.

described in equation 3. However, our experiments, summarized in Table 1, indicate that in most
cases, using only the latest gradient achieves comparable results while reducing memory usage as
shown in Table 4. Furthermore, as evidenced in Tables 1, 2, and 3, this approach either outperforms
GaLore or delivers similar performance, even without relying on the accumulated gradient.

Gacc =
1

Tn − Tn−1

Tn∑
t=

Tn−1

Gt (3)

We frame the problem of identifying the subspace as selecting the appropriate element from the
Grassmannian, the set of all d-dimensional subspaces within an n-dimensional vector space (Ben-
dokat et al., 2024). Our objective is to minimize the Euclidean distance between the current subspace
and the observed gradient at each update step. The cost function is defined as:

F (St) = min
A
∥StA−Gt∥2F , (4)

where A is the solution to the least squares problem. The derivative of this function with respect to
St is given in equation 5, and R = Gt − StA lies in the orthogonal complement of St. To update
the subspace in the appropriate direction, we compute the tangent vector ∇F on the Grassmannian
manifold, as shown in equation 6 based on Edelman et al. (1998), where the second equality holds
because R is orthogonal to StS

⊤
t .
∂F

∂St
= 2(StA−Gt)A

⊤ = −2RA⊤ (5)

∇F = (I − StS
⊤
t )

∂F

∂St
=

∂F

∂St
= −2RA⊤ ≈ ÛF Σ̂F V̂

⊤
F (6)

The tangent vector∇F provides the direction for adjusting the subspace by accounting for the error
lying in the orthogonal complement. However, to minimize changes to the subspace, SubTrack-
Grad first computes a rank-1 approximation of∇F , determined by its largest singular value and the
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corresponding singular vectors obtained from its SVD, represented as ÛF Σ̂F V̂
⊤
F in the final equality

of equation 6. This approximation is then used to update the subspace.

As shown by Edelman et al. (1998); Bendokat et al. (2024), from which we have included the
necessary definitions and theorem in section 4, we can move along the Grassmannian geodesic in
the direction of the computed tangent vector, taking a step of size η, as presented in equation 7.

St+1(η) = (StV̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F ) (7)

This update step preserves the orthonormality of St+1, ensuring it remains on the Grassmannian
manifold. The last term in equation 6, which is required when using thin-SVD instead of compact-
SVD, projects the previous subspace onto the orthogonal complement of V̂F . This ensures that the
portion of the subspace of St not updated in this step is still included. By leveraging the geometry
of the Grassmannian manifold, SubTrack-Grad effectively tracks the underlying subspace of the
gradient space. The pseudo-code for this method is provided in Algorithm 1.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence of SubTrack-Grad using theoretical analysis. To begin,
using SubTrack-Grad, the update rule for the weights of the networks is as follows:

Wt = W0 +

t′=t−1∑
t′=0

Ĝt′ (8)

As previously mentioned, we use left projection if m ≤ n, where m and n are the dimensions of
the original gradient matrix, and right projection otherwise. Thus, Ĝt′ can be computed as shown in
equation 9.

Ĝt′ =

{
St′ρt′(S

⊤
t′ Gt′), if m ≤ n

ρt′(Gt′St′)S
⊤
t′ , otherwise

(9)

Here, St′ is the projection matrix that projects the gradient onto the subspace, and ρt′ is a scalar
representing the entry-wise regularizer used in the optimizer. If we use the full projection, then Ĝt′

will be computed as shown below:

Ĝt′ = Sl
t′ρt′(S

l
t′
⊤
Gt′S

r
t′)S

r
t′
⊤ (10)

where Sl
t′ and Sr

t′ are the rank-r left and right projection matrices.

Definition 4.1 ( L-continuity) A function f(X) has Lipschitz-continuity (L-continuity) if for any
X1 and X2, ∥f(X2)− f(X1)∥F ≤ L∥X2 −X1∥F

Theorem 4.1 (Convergence of SubTrack-Grad) Suppose gradient has the following form (also
equation 1) with functions Ai, Bi, and Ci being L-continuous as per Def. B.1 with constants LA,
LB , and LC w.r.t. weight matrix Wt; and ∥Wt∥F ≤ M ; where Wt denotes the weight matrix at
step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and N representing the number
of samples in a batch. Assuming that the projection matrices remain constant during the training.
Then for learning-rate µ and min(κt) > (LA +2LBLCM

2), the SubTrack-Grad, with ρt ≡ 1 (the
element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack-Grad converges.
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The proof of Theorem 4.1 is provided in Appendix A, based on Zhao et al. (2024). Note that while
both GaLore and SubTrack-Grad assume that the projection matrices remain unchanged for the proof
of convergence, GaLore must limit the number of updates to ensure convergence, as each update can
potentially change the subspace entirely. In contrast, SubTrack-Grad leverages only rank-1 updates
to the subspace, preventing drastic changes with each update. While a deeper analysis of slowly
changing subspaces and their impact on convergence remains an open problem, in practice, this
allows SubTrack-Grad to perform more updates than GaLore.

The Grassmannian update rule presented in equation 7 is a direct application of Grassmann geometry
(Edelman et al., 1998; Bendokat et al., 2024).

Definition 4.2 (Exponential Map) The exponential map expp : TpM → M on a Riemannian
manifold M is a mapping that assigns to each tangent vector ∆ ∈ TpM the point γ(1) ∈ M ,
where TpM is the tangent space of M at p, and γ is the unique geodesic originating at p with initial
velocity ∆. This map establishes a relationship between geodesics and the Riemannian exponential,
such that γ(t) = expp(t∆) for t ∈ R.

Definition 4.3 (Stiefel Manifold) The Stiefel manifold St(n, p) parametrizes the set of all n × p
matrices U , with orthonormal columns, each representing a rank-p subspace of Rn.

Definition 4.4 ( Grassmann Manifold) The Grassmannian manifold Gr(n, p) parametrizes the set
of all p-dimensional subspaces of Rn. Each point can be represented by a projection matrix P =
UUT , where U ∈ St(n, p).

Theorem 4.2 (Grassmann Exponential) Let P = UUT ∈ Gr(n, p) be a point on the Grass-
mannian manifold, where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace.
Consider a tangent vector ∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the
horizontal space at U in the Stiefel manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by
∆hor

U = Q̂ΣV T , where Q̂ ∈ St(n, r), Σ = diag(σ1, . . . , σr) contains the nonzero singular values of
∆hor

U with r = min(p, n− p), and V ∈ St(p, r). The Grassmann exponential map, representing the
geodesic emanating from P in the direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

The proof of Theorem 4.2 can be found in Appendix B. Leveraging this theorem, and incorporating
our notation in section 3, one can easily verify that the subspace update rule is as follows:

St+1(η) = (StV̂F ÛF )

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F )

This update rule generally converges to a stable subspace if the step size η decreases over time
(Balzano et al., 2011). However, a decreasing step size can impair the ability to accurately track and
adapt to subspace changes. Consequently, SubTrack-Grad uses a constant step size during training
and fine-tuning to effectively adjust subspaces. This approach does not hinder convergence, as
proved in Theorem 4.1, which guarantees convergence as long as changes are controlled to maintain
the stable subspace assumption.

5 EXPERIMENTS AND RESULTS

To ensure a fair comparison between SubTrack-Grad and baselines, we conducted fine-tuning and
pre-training experiments across various architectures and datasets; to measure performance, wall-
time, and memory consumption, while all shared hyperparameters remaine consistent.

Fine-Tuning Experiments. RoBERTa-Base was fine-tuned on GLUE tasks, while RoBERTa-Large
was used for fine-tuning on SuperGLUE datasets. For performance evaluation, the models were
fine-tuned on each task for 30 epochs, with the results for GLUE tasks presented in Table 1, and Su-
perGLUE results shown in Table 2. Table 1 compares the performance between using accumulated
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Table 1: Evaluating the performance of SubTrack-Grad and other baselines when fine-tuning RoBERTa-Base
on GLUE tasks for different ranks r. All hyperparameters are the same for each rank. The performance is
measured via Accuracy for QNLI, MNLI, SST-2, and RTE tasks, F1 for QQP and MRPC, Pearson Correlation
for STS-B, and Matthews Correlation for COLA, after fine-tuning for 30 epochs.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg

Full-Rank 62.57 91.03 91.32 77.98 94.27 87.83 92.71 89.21 85.86

GaLore, r=4 (Zhao et al., 2024) 60.34 90.58 92.58 76.53 94.27 87.12 92.20 87.86 85.18

SubTrack(Acc)-Grad, r=4 (Ours) 61.32 90.64 92.66 77.98 94.15 86.85 91.85 87.50 85.37
SubTrack(Last)-Grad, r=4 (Ours) 61.07 90.63 92.83 76.89 93.81 87.20 91.73 86.73 85.11

GaLore, r=8 (Zhao et al., 2024) 58.54 90.61 91.30 74.37 94.50 87.34 92.71 87.99 84.67

SubTrack(Acc)-Grad, r=8 (Ours) 58.54 90.87 91.43 76.53 94.27 87.09 92.49 87.57 84.85

SubTrack(Last)-Grad, r=8 (Ours) 58.03 90.76 91.81 77.62 94.38 87.15 92.31 87.26 84.91

Table 2: Evaluating the performance of SubTrack-Grad and other baselines when fine-tuning RoBERTa-Large
on SuperGLUE tasks with rank 8. All hyperparameters are consistent across different methods. The perfor-
mance is measured via Accuracy for COPA, WIC, WSC, BoolQ, and AXg tasks, F1 for CB, and Matthews
Correlation for AXb, after fine-tuning for 30 epochs.

BoolQ CB COPA WIC WSC AXb AXg Avg

Full-Rank 85.29 91.76 48.00 71.94 63.46 57.68 100 74.02

GaLore (Zhao et al., 2024) 86.42 88.97 48.00 71.32 63.46 45.92 98.15 71.75

SubTrack-Grad (Ours) 85.81 91.76 53.00 71.47 63.46 47.93 100 73.35

Table 3: Evaluation loss comparison for pre-training different Llama-based architectures on C4 dataset after
10K iterations.

60M 130M 350M 1B 3B Avg
rank=128 rank=256 rank=256 rank=512 rank=512 -

Full-Rank 6.27 6.60 6.40 6.06 6.42 6.35

GaLore (Zhao et al., 2024) 3.65 3.44 3.52 5.59 5.90 4.42
SubTrack-Grad (Ours) 3.72 3.48 3.53 6.03 6.00 4.55

gradients and the last gradient matrix. In other experiments, we report results without gradient ac-
cumulation, increasing memory efficiency while maintaining performance. Figures 3b, 3e, 3c, and
3f compare wall-time and memory consumption during fine-tuning, with detailed reports provided
in Appendix C. For wall-time comparisons, models were fine-tuned up to a number of iterations
ensuring exactly five subspace updates, excluding evaluation steps, to provide an accurate runtime
comparison. SubTrack-Grad demonstrates significant efficiency improvements, reducing wall-time
by up to 20.57% on GLUE tasks (15% average reduction) and up to 65% on SuperGLUE tasks
(22% average reduction). Despite limiting updates to rank-1 modifications of the previous sub-
space, Tables 1 and 2 shows that SubTrack-Grad achieves comparable or even superior performance
compared to GaLore. Details of hyperparameters are provided in Appendix D.

Pre-Training Experiments. Different Llama-based architectures were pre-trained on C4 datasets.
Each architecture was trained for 10K steps, and their evaluation losses are reported in Table 3. The
diminishing increase in evaluation loss with larger model sizes highlights the importance of subspace
tracking in mitigating abrupt changes, particularly when modeling more complex architectures using
low-rank representations. For wall-time comparison, each architecture was trained for 2K iterations,
with the subspace update interval set to 200, ensuring exactly 10 subspace updates. For memory
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(a) (b) (c)

(d) (e) (f)

Figure 3: Comparing the peak memory consumption and wall-time on different architecture and datasets. (a)
and (d) show the memory and wall-time measured on pretraining different Llama-architectures sizing from 60M
to 3B. (b) and (e) show the memory and wall-time measured on fine-tuning RoBERTa-Large on SuperGLUE
tasks. (c) and (f) show the memory and wall-time measured on fine-tuning RoBERTa-Base on GLUE tasks.
As demonstrated, GaLore can lead to 2.5 times longer wall-time in training Llama with 3B parameters, while
SubTrack-Grad significantly reduces this overhead, and shows minor additional memory requirements.

comparison, we used a batch size of 8, the largest size feasible on an NVIDIA A100 GPU with
40GB memory for the Llama model with 3B parameters. Figures 3a and 3d illustrate the memory
and wall-time comparisons, with detailed reports provided in Appendix C. Notably, GaLore incurred
a substantial 157% increase in wall-time compared to full-rank training for the model of size 3B,
whereas SubTrack-Grad exhibited only a 31% increase—representing a 49% reduction in wall-
time compared to GaLore. On average, SubTrack-Grad required 27% less training time across
these models, while exhibiting at most 3.7% memory overhead on the model with 3B parameters.
Additional architectural details for the Llama-based models are provided in Appendix E.

Time and Space Complexity. Table 4 provides memory requirements of the optimizer states and
the time complexity of the SVD operation considering an m × n gradient matrix with m ≤ n. As
discussed earlier, GaLore performs SVD on the gradient matrix to estimate the underlying subspace,
whereas SubTrack-Grad performs SVD on the rank-r tangent vector to update the subspace. Since
SVD is the a computationally expensive operation, comparing its time complexity highlights why
SubTrack-Grad is significantly more efficient than GaLore. As shown in Figure 3d, for pre-training
a Llama model of size 3B, GaLore incurs over 157% wall-time overhead, compared to 31% for
SubTrack-Grad. This demonstrates a 49% wall-time reduction compared to GaLore. Additionally,
the memory required for storing optimizer states in SubTrack-Grad, using the last gradient matrix,
is equivalent to GaLore’s, as confirmed experimentally in Figures 3a, 3b, and 3c.

Reducing Optimization Jumps. We argue that GaLore, which relies on a single gradient matrix
at each subspace update step for adjustment via SVD, is susceptible to noise from data and less im-
portant features. Figure 2 compares SubTrack-Grad and GaLore on the Ackley function to illustrate
potential jumps and deviations in the optimization process caused by GaLore’s projection approach.
These jumps prevent GaLore from reaching the global minimum within 100 steps when the scale
factor is set to 1. While increasing the scale factor to 3 enables GaLore to reach the global minimum,
it also results in larger jumps due to the higher scale factor. Additionally, Figure 5 in Appendix G
illustrates that the overall convergence during both pre-training and fine-tuning is similar to other
methods when using SubTrack-Grad.

9
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Table 4: Optimizer’s memory requirement in each method along with the time complexity of involved SVD
operations, considering a gradient matrix of dimension m× n and projection rank r where r ≪ m ≤ n.

Optimizer Memory SVD Time Complexity
Adam 2mn −
GaLore mr + 2nr O(nm2)

SubTrack(Acc)-Grad mn+mr + 2nr O(mr2)

SubTrack(Last)-Grad mr + 2nr O(mr2)

Runtime Consistency. Figure 4 compares the wall-times of GaLore and SubTrack-Grad across
subspace update intervals ranging from 50 to 500 while fine-tuning RoBERTa-Base on the COLA
task with an NVIDIA T4 GPU and pre-training a Llama-based architecture with 60M parameters
on the C4 dataset using an NVIDIA A100 GPU. The subspace update interval denotes the num-
ber of iterations between two updates; thus, increasing this interval reduces the update frequency.
As shown, GaLore’s runtime significantly increases with more frequent subspace updates, whereas
SubTrack-Grad maintains minimal runtime overhead regardless of the update frequency. In Table
14 different performance achieved on COLA dataset for different subspace update intervals can be
compared, illustrating that increasing the update frequency significantly raises GaLore’s runtime,
while the performance of the two methods remains very similar.

Figure 4: Comparing runtimes of GaLore and SubTrack-Grad. RoBERTa-Base is fine-tuned for 10 epochs
on COLA and Llama-60M is pre-trained for 2500 iterations on C4 dataset. Subspace update intervals range
from 50 to 500 in both experiments. Notice that by increasing subspace update interval, the update frequency
actually decreases, as it indicates the number of iterations between two subspace update steps. As demonstrated,
GaLore’s wall-time can increase drastically when update frequency increases.

6 DISCUSSION AND CONCLUSION

We proposed a computationally efficient method that projects gradients into a lower-dimensional
subspace, and preserves the previously computed subspace to incorporate gradient components from
the orthogonal complement to perform rank-1 updates. This approach reduces the frequency of
abrupt transitions between iterations and leverages the available information effectively.

In some cases, the extent of changes in the subspace may require updates of rank greater than 1;
the pre-training of Llama-based architectures is a clear example of this need. During our experi-
ments, we observed that applying updates as per equation 7, using the full-rank SVD of the tangent
vector from equation 6, can hinder convergence if the singular values of the tangent vector become
very small. Furthermore, simultaneously updating vector spaces associated with different singular
values caused convergence issues in some cases. Therefore, we restricted updates to rank-1 in this
paper, as this approach still enabled SubTrack-Grad to achieve performance comparable to or better
than GaLore, with reduced runtime. In future work, we plan to explore increasing the rank of up-
dates without compromising convergence. Additionally, dynamically selecting the step size could
eliminate the need for manual tuning as a hyperparameter and further enhance convergence.
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A CONVERGENCE OF SUBTRACK-GRAD

Theorem 4.1 (Convergence of SubTrack-Grad) Suppose gradient has the following form (also
equation 1) with functions Ai, Bi, and Ci being L-continuous as per Def. B.1 with constants LA,
LB , and LC w.r.t. weight matrix Wt; and ∥Wt∥F ≤ M ; where Wt denotes the weight matrix at
step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and N representing the number
of samples in a batch. Assuming that the projection matrices remain constant during the training.
Then for learning-rate µ and min(κt) > (LA +2LBLCM

2), the SubTrack-Grad, with ρt ≡ 1 (the
element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack-Grad converges.

proof. To demonstrate that SubTrack-Grad converges to the global minimum during training, we
begin by deriving the recursive form of the gradients.

Let ⊗ denote the Kronecker product. Then, vec(AXB) = (B⊤ ⊗A)vec(X).

By applying vec to the gradient form given in the theorem, we obtain:

gt = vec(Gt) = vec(
∑
i

Ai +
∑
i

BiWCi) = at −Dtwt (11)

where gt := vec(Gt), wt := vec(Wt), at := 1
N

∑
i vec(Ai,t), and Dt =

1
N

∑
i Ci,t ⊗Bi,t.

As defined in the theorem, let Pt = Sl
t
⊤
GtS

r
t . Its vectorized form can be expressed using the

Kronecker product as follows:

pt = vec(Pt) = vec(Sl
t

⊤
GtS

r
t ) = (Sr

t
⊤ ⊗ Sl

t

⊤
)vec(Gt)

= (Sr
t ⊗ Sl

t)
⊤
vec(Gt) = (Sr

t ⊗ Sl
t)

⊤
gt

(12)

Now recalling Ĝt from equation 10, it can be written as:

Ĝt = Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤

Thus, its vectorized form will be:

vec(Ĝt) = ĝt = vec(Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤) = vec(Sl

tPtS
r
t
⊤)

= (Sr
t ⊗ Sl

t)vec(Pt) = (Sr
t ⊗ Sl

t)pt
(13)

This is where the constant subspace assumption becomes necessary. To derive the recursive form
of gt, we assume that the projection matrices remain fixed throughout training, i.e., Sr

t = Sr and
Sl
t = Sl. Consequently, we can restate equations equation 12 and equation 13 as follows:

pt = (Sr ⊗ Sl)
⊤
gt (14)

ĝt = (Sr ⊗ Sl)pt (15)

Then we can write the recursive form of gt:

gt = at −Dtwt = (at − at−1) + (Dt−1 −Dt)wt + at−1 −Dt−1wt

= et + at−1 −Dt−1(wt−1 + µĝt−1) = et + gt−1 − µDt−1ĝt−1
(16)

where et := (at − at−1) + (Dt−1 −Dt)wt.
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Note that in deriving equation 16, we utilized the general form of the weight update rule, wt+1 =
wt−µgt, which can be rewritten as wt = wt+1+µgt. By applying this rule along with equation 11,
we arrive at the second equality in equation 16 as follows:

gt = at −Dtwt = at −Dtwt − gt−1 + gt−1

= at −Dtwt − at−1 +Dt−1wt−1 + at−1 −Dt−1wt−1

= at −Dtwt − at−1 +Dt−1(wt + µgt−1) + at−1 −Dt−1(wt + µgt−1)

= at −Dtwt − at−1 +Dt−1wt + µDt−1gt−1 + at−1 −Dt−1wt − µDt−1gt−1

= at − at−1 + (Dt−1 −Dt)wt + at−1 −Dt−1

To obtain pt from this recursive formulation, we can left-multiply by (Sr ⊗ Sl)
⊤, as shown in

equation 15:

pt = (Sr ⊗ Sl)
⊤
et + (Sr ⊗ Sl)

⊤
gt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1ĝt−1 (17)

Now, based on equation 14 and equation 15, pt can be written as:

pt = (Sr ⊗ Sl)
⊤
et + pt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1(S

r ⊗ Sl)pt−1 (18)

Let define:

D̂t := (Sr ⊗ Sl)
⊤
Dt(S

r ⊗ Sl) =
1

N

∑
i

(Sr ⊗ Sl)
⊤
(Ci,t ⊗Bi,t)(S

r ⊗ Sl)

=
1

N

∑
i

(Sr⊤Ci,tS
r)⊗ (Sl⊤Bi,tS

l)

(19)

Then we can expand equation 18 and show that:

pt = (I − µD̂t−1)pt−1 + (Sr ⊗ Sl)⊤et (20)

Note that Sl and Sr are orthonormal matrices. This is ensured because the subspace is initialized
using the SVD of G0, and the Grassmannian update rule provided in equation 7 preserves the or-
thonormality of the subspace matrices throughout training. Since Sl and Sr are orthonormal, we
have Sl⊤Sl = I and Sr⊤Sr = I . Consequently, we can bound the norm of the second term in
equation 20 as follows:

∥(Sr ⊗ Sl)⊤et∥2 = ∥vec(Sl⊤EtS
r)∥2 = ∥Sl⊤EtS

r∥F ≤ ∥Et∥F (21)

Here Et is the matrix form of et, and as declared before, et := (at− at−1) + (Dt−1−Dt)wt, thus:

Et :=
1

N

∑
i

(Ai,t −Ai,t−1) +
1

N

∑
i

(Bi,t−1WtCi,t−1 −Bi,tWtCi,t) (22)

Next, we need to find an upper bound for the norm of each term in equation 22 to establish an upper
bound for ∥Et∥F . Based on the assumptions of the theorem, Ai, Bi, and Ci exhibit L-Lipschitz
continuity with constants LA, LB , and LC , respectively. Additionally, ∥Wt∥F is bounded by a
scalar M . We have:

∥At −At−1∥F ≤ LA∥Wt −Wt−1∥F = µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F (23)

In the first equality, we apply equation 8, while the last equality holds due to equation 15 and the
orthonormality of the projection matrices. The subsequent two inequalities can be derived similarly
using these equations.

∥(Bt −Bt−1)WtCt−1∥F ≤ LB∥Wt −Wt−1∥F ∥Wt∥F ∥Ct−1∥F
= µLBLCM

2∥Pt−1∥F
(24)

∥BtWt(Ct−1 − Ct)∥F ≤ LC∥Bt∥F ∥Wt∥F ∥Wt−1 −Wt∥F
= µLBLCM

2∥Pt−1∥F
(25)
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We can now derive the bound for ∥Et∥F as follows:

∥Et∥F ≤ µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F + µLBLCM
2∥Pt−1∥F + µLBLCM

2∥Pt−1∥F
= µ(LA + 2LBLCM

2)∥Pt−1∥F
(26)

To calculate the norm bound for the first term in equation 20, we first need to establish the bounds
for D̂t. This involves estimating the minimum eigenvalue of D̂t.

If we define γmin,i,t = λmin(S
l⊤Bi,tS

l)λmin(S
r⊤Ci,tS

r), then it follows that
λmin((S

l⊤Bi,tS
l) ⊗ (Sr⊤Ci,tS

r)) = γmin,i,t. Consequently, D̂t will satisfy the following
inequality for every unit vector v:

v⊤D̂tv =
1

N

∑
i

v⊤
[
(Sl⊤Bi,tS

l)⊗ (Sr⊤Ci,tS
r)
]
v ≥ 1

N

∑
i

γmin,i,t (27)

this actually provides a lower bound for eigenvalues of D̂t, thus:

λmax(I − µD̂t−1) ≤ 1− µ

N

∑
i

γmin,i,t−1 (28)

considering the definition of κt in the theorem, we can now easily show that:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

and completing the proof.

While SubTrack-Grad utilizes right/left projections to reduce memory consumption, the proof is
presented using both projection matrices to ensure generality. Here, we demonstrate how the proof
proceeds under the assumption m ≤ n (without loss of generality), which allows the use of the left
projection matrix.

Using the left projection matrix, the current formulation of Pt, defined as Pt = Sl
t
⊤
GtS

r
t , simplifies

to Pt = Sl
t
⊤
Gt. Similarly, Ĝt = Sl

tS
l
t
⊤
GtS

r
t S

r
t
⊤ reduces to Ĝt = Sl

tS
l
t
⊤
Gt. From this point, the

proof continues by substituting Sr
t with the identity matrix, allowing the derivation of the vectorized

forms of gt, ĝt, pt, and related terms.

The remainder of the proof remains largely unaffected. It can be readily verified that the recursive
formulation of gt is unchanged. Although the definition of Pt is modified, it continues to satisfy the
bounds required for convergence, ensuring that Pt converges to 0 when the left projection matrix is
used.

B GRASSMANN EXPONENTIAL

Theorem 4.2 (Grassmann Exponential) Let P = UUT ∈ Gr(n, p) be a point on the Grass-
mannian manifold, where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace.
Consider a tangent vector ∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the
horizontal space at U in the Stiefel manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by
∆hor

U = Q̂ΣV T , where Q̂ ∈ St(n, r), Σ = diag(σ1, . . . , σr) contains the nonzero singular values of
∆hor

U with r = min(p, n− p), and V ∈ St(p, r). The Grassmann exponential map, representing the
geodesic emanating from P in the direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

proof. Using Grassmannina mathematics, we know that every ∆ ∈ TPGr(n, p) is of the form

∆ = Q

(
0 BT

B 0

)
QT =

[
Q

(
0 −BT

B 0

)
QT , P

]
(29)
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Then the lift of ∆ ∈ TPGr(n, p) to Q = (U U⊥) can also be calculated explicitly as follows:

∆hor
Q = [∆, P ]Q = Q

(
0 −BT

B 0

)
(30)

To resume our proof, we need to define the orthogonal group and specifying its tangent space.

Definition B.1 ( Orthogonal Group) The orthogonal group O(n) is defined as the set of all n× n
matrices Q over R such that QTQ = QQT = In, where QT is the transpose of Q and In is the
n× n identity matrix:

O(n) = {Q ∈ Rn×n | QTQ = In = QQT }.

Then the tangent space of the orthogonal group O(n) at a point Q, denoted TQO(n), is defined as
the set of matrices of the form QΩ, where Ω ∈ Rn×n is a skew-symmetric matrix, i.e., ΩT = −Ω:

TQO(n) = {QΩ | Ω ∈ Rn×n,ΩT = −Ω}.

The geodesic from Q ∈ O(n) in direction QΩ ∈ TQO(n) is calculated via

ExpO
Q(tQΩ) = Q expm(tΩ), (31)

If P ∈ Gr(n, p) and ∆ ∈ TPGr(n, p) with ∆hor
Q = Q

(
0 −BT

B 0

)
, the geodesic in the Grassman-

nian is therefore

ExpGr
P (t∆) = πOG

(
Q expm

(
t

(
0 −BT

B 0

)))
. (32)

where πOG is the projection from O(n) to Gr(n, p). If the thin SVD of B is given by

B = UT
⊥∆hor

U = UT
⊥Q̂ΣV T

with W := UT
⊥Q̂ ∈ St(n − p, r),Σ ∈ Rr×r, V ∈ St(p, r). Let W⊥, V⊥ be suitable orthogonal

completions. Then,

expm

(
0 −BT

B 0

)
=

(
V V⊥ 0 0
0 0 W W⊥

)cos(Σ) 0 − sin(Σ) 0
0 Ip−r 0 0

sin(Σ) 0 cos(Σ) 0
0 0 0 In−p−r



V T 0
V T
⊥ 0
0 WT

0 WT
⊥

 ,

which leads to the desired result when inserted into equation 32. For more mathematical details, you
can refer to Edelman et al. (1998), Bendokat et al. (2024), or other useful resources on Grassmann
geometry.

C MEMORY AND TIME COMPARISON

Table 5 presents the wall-times measured to compare the computational efficiency of SubTrack-
Grad and GaLore. Additionally, Table 6 shows the peak memory consumption for each architecture
during training, using the hyperparameters detailed in 13, on an NVIDIA A100 GPU with 40GB
of memory. These values were used to create the bar plots shown in 3a and 3d. For wall-time
comparisons, each architecture was trained for 2,000 steps, ensuring exactly 10 subspace updates
while excluding evaluation steps. The number of subspace updates was doubled compared to the
fine-tuning experiments because larger models and more complex tasks naturally require more fre-
quent updates. This adjustment allowed for more accurate measurements considering this demand.
For memory comparisons, a batch size of 8 was used across all architectures to maintain almost
consistent memory requirements for the input data.

Table 7 and Table 8 present the wall-time and peak memory consumption, respectively, for fine-
tuning RoBERTa-Base on GLUE tasks. These values were used to generate the bar plots shown
in 3c and 3f. For wall-time comparisons, the same settings were used, but evaluation steps were
excluded, and fine-tuning was limited to 2500 iterations to ensure exactly 5 subspace update steps
during the process.
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Table 5: Wall-time comparison for pre-training Llama-based architectures with varying model sizes on the C4
dataset. The experiments consist of 2000 iterations, corresponding to exactly 10 subspace update steps. The last
two columns present the average percentage change in runtime relative to Full-Rank and GaLore, respectively.

60M 130M 350M 1B 3B w.r.t FR w.r.t GaLore
rank=128 rank=256 rank=256 rank=512 rank=512

Full-Rank 524.0 1035.1 1396.4 974.9 1055.9 - -

GaLore 547.8 1094.2 1589.0 1729.5 2715.5 +53.94% -

SubTrack-Grad 534.9 1061.0 1465.9 1191.1 1385.7 +13.08% -26.54%

Table 6: Peak memory consumption comparison when pre-training Llama-based architectures with different
sizes on C4 dataset. The last two columns present the average percentage change in memory consumption
relative to Full-Rank and GaLore, respectively.

60M 130M 350M 1B 3B w.r.t FR w.r.t GaLore
rank=128 rank=256 rank=256 rank=512 rank=512

Full-Rank 2.47 3.67 7.24 18.48 34.57 - -

GaLore 2.36 3.47 6.42 14.88 25.81 -20.32% -

SubTrack-Grad 2.39 3.48 6.55 15.39 26.76 -17.91% +3.02%

Table 9 and Table 10 present the wall-time and peak memory consumption for each method when
fine-tuning RoBERTa-Large on SuperGLUE tasks. These values were used to generate the bar plots
shown in 3b and 3e. For wall-time comparisons, as with GLUE tasks, evaluation steps were omitted
to ensure accurate measurements of fine-tuning time, and the number of iterations was adjusted to
include exactly 5 subspace updates during fine-tuning.

D FINE-TUNING ROBERTA

RoBERTa-Base was fine-tuned on GLUE tasks using the hyperparameters detailed in Table 11,
matching those reported in the GaLore (Zhao et al., 2024) for rank-4 and rank-8 subspaces, with a
subspace update interval set at 500 iterations.

We also fine-tuned RoBERTa-Large on SuperGLUE tasks using the hyperparameters from Luo et al.
(2024), as detailed in Table 12, with the exception that we fine-tuned each task for 30 epochs.

E PRE-TRAINING LLAMA-BASED ARCHITECTURES

To manage resources, we pre-trained all five Llama-based architectures for 10,000 iterations using
hyperparameters reported in Table 13. While larger models typically require more iterations, this
setup was sufficient for comparing methods rather than creating perfectly optimized models.

F TIME AND PERFORMANCE CONSISTENCY

Table 14 demonstrates that increasing the update frequency significantly increases GaLore’s runtime,
while the performance of both methods remains comparable. This underscores SubTrack-Grad’s
efficiency in reducing runtime without sacrificing performance. Notably, this advantage becomes
even more pronounced for tasks that demand more frequent updates.
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Table 7: Wall-time comparison when fine-tuning RoBERTa-Base on GLUE tasks for different ranks r up to
a number of iterations to exactly include 5 subspace update steps. The last two columns present the average
percentage change in runtime relative to Full-Rank and GaLore, respectively.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP w.r.t FR w.r.t GaLore

Full-Rank 114.5 131.5 146.4 279.0 107.1 152.3 167.4 126.8 - -

GaLore (r=4) 195.7 195.1 200.2 325.8 185.7 206.8 216.5 190.4 +40.20% -

SubTrack(Acc)-Grad (r=4) 155.7 158.0 172.7 305.7 147.5 175.0 192.2 155.8 +19.40% -14.78%

SubTrack(Last)-Grad (r=4) 152.6 161.1 170.2 303.8 155.0 178.5 191.8 157.3 +20.05% -14.31%

GaLore (r=8) 188.0 195.6 196.5 328.3 187.1 208.0 217.1 189.4 +39.58% -

SubTrack(Acc)-Grad (r=8) 149.4 159.1 171.2 304.9 148.9 177.1 192.1 156.8 +19.14% -14.65%

SubTrack(Last)-Grad (r=8) 151.2 160.8 170.6 305.1 151.0 177.1 193.0 158.9 +19.86% -14.13%

Table 8: Peak memory consumption when fine-tuning RoBERTa-Base on GLUE tasks for different ranks r.
The last two columns present the average percentage change in memory consumption relative to Full-Rank and
GaLore, respectively.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP w.r.t FR w.r.t GaLore

Full-Rank 3.55 4.05 3.85 13.39 3.42 21.97 14.92 11.08 - -

GaLore (r=4) 3.23 3.93 3.52 12.45 3.68 21.73 14.59 10.26 -3.78% -

SubTrack(Acc)-Grad (r=4) 3.45 4.17 3.90 12.31 3.17 19.85 14.29 10.14 -6.51% -2.84%

SubTrack(Last)-Grad (r=4) 3.23 3.62 3.52 12.45 2.93 21.84 13.86 9.93 -6.40% -2.73%

GaLore (r=8) 3.23 3.93 3.53 12.45 3.68 21.74 14.59 10.26 -3.67% -

SubTrack(Acc)-Grad (r=8) 3.45 4.18 3.90 12.32 3.18 19.86 14.29 10.15 -6.40% -2.83%

SubTrack(Last)-Grad (r=8) 3.23 3.62 3.53 12.45 2.93 21.84 13.86 9.94 -6.40% -2.83%

G CONVERGENCE VS. WALL-TIME

Figure 5 depicts the changes in the training loss function relative to wall-time. The results demon-
strate that SubTrack-Grad’s wall-time reduction has minimal impact on the learning process, show-
casing a convergence pattern comparable to other methods without introducing significant compu-
tational overhead.

Figure 5: The figures present changes in training loss relative to wall-time for pre-training the Llama-3B
architecture on the C4 dataset and fine-tuning RoBERTa-Large on the BoolQ dataset. They demonstrate that
SubTrack maintains the overall learning process for both pre-training and fine-tuning while avoiding significant
computational overhead.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Wall-time comparison when fine-tuning RoBERTa-Large on SuperGLUEup to a number of iterations
to exactly include 5 subspace update steps. The last two columns present the average percentage change in
runtime relative to Full-Rank and GaLore, respectively.

BoolQ CB COPA WIC WSC AXb AXg w.r.t FR w.r.t GaLore

Full-Rank 1406.3 171.5 35.1 250.4 216.4 470.7 52.1 - -

GaLore (r=8) 1536.8 272.2 235.3 483.0 393.2 661.4 219.9 +46.07% -

SubTrack-Grad (r=8) 1468.0 198.1 82.2 326.1 266.7 542.0 86.6 +14.09% -21.89%

Table 10: Peak memory consumption comparison when fine-tuning RoBERTa-Large on SuperGLUE. The last
two columns present the average percentage change in memory consumption relative to Full-Rank and GaLore,
respectively.

BoolQ CB COPA WIC WSC AXb AXg w.r.t FR w.r.t GaLore

Full-Rank 20.16 15.15 7.86 7.96 9.11 11.51 7.81 - -

GaLore (r=8) 19.08 12.53 5.32 5.94 7.26 7.98 5.34 -20.32% -

SubTrack-Grad (r=8) 19.09 12.40 5.12 5.95 7.06 8.00 5.35 -20.84% -0.66%

Table 11: Hyperparameters of fine-tuning RoBERTa-Base on GLUE tasks.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
SubTrack(Acc)-Grad Step-Size 0.001 0.001 1.5 0.1 0.0001 0.001 1.0 1.0
SubTrack(Last)-Grad Step-Size 0.1 0.001 5.0 5.0 0.01 1.0 8.0 10.0

Rank Config. r = 4
α 4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
SubTrack(Acc)-Grad Step-Size 0.001 0.01 15.0 3.0 0.001 0.001 1.0 1.0
SubTrack(Last)-Grad Step-Size 0.1 0.1 5.0 13.0 0.1 1.0 5.0 10.0

Rank Config. r = 8
α 2

Max Seq. Len. 512

Table 12: Hyperparameters of fine-tuning RoBERTa-Large on SuperGLUE tasks.

BoolQ CB COPA WIC WSC AXb AXg

Batch Size 16 16 16 16 16 16 16
# Epochs 30 30 30 30 30 30 30

Learning Rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SubTrack-Grad Step-Size 0.1 1.0 50.0 50.0 1 1.0 1.0
Subspace Update Interval 500 100 100 500 250 500 100

Rank Config. r = 8
α 4

Max Seq. Len. 512
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Table 13: Hyperparameters of pre-training Llama-based architectures.

60M 130M 350M 1B 3B

Hidden 512 768 1024 2048 4096
Intermediate 1376 2048 2736 5461 11008

Heads 8 12 16 24 32
Layers 8 12 24 32 32

Batch Size 256 128 64 8 8
Rank 128 256 256 512 512
Steps 10K 10K 10K 10K 10K

Table 14: Comparing changes in performance while decreasing the subspace update interval (increasing the
frequency of subspace updates) on fine-tuning RoBERTa-Base on COLA task.

500 450 400 350 300 250 200 150 100 50

GaLore’s Wall-Time 458.79 460.19 471.36 483.04 495.83 520.28 556.14 605.1 715.87 1038.79
GaLore’s Performance 0.5358 0.5285 0.5385 0.5356 0.5309 0.54821 0.5332 0.5387 0.5463 0.5463

SubTrack-Grad’s Wall-Time 408.22 408.44 408.47 409.25 409.17 409.76 410.29 411.77 413.35 417.07
SubTrack-Grad’s Performance 0.5332 0.5382 0.5364 0.5385 0.5354 0.5364 0.5416 0.5385 0.5364 0.5673

20


	Introduction
	Related Works
	SubTrack-Grad: Tracking the Gradient Subspace
	Theoretical Analysis
	Experiments and Results
	Discussion and Conclusion
	Convergence of SubTrack-Grad
	Grassmann Exponential
	Memory and Time Comparison
	Fine-Tuning RoBERTa
	Pre-Training LLama-Based Architectures
	Time and Performance Consistency
	Convergence vs. Wall-Time

