
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUBTRACK YOUR GRAD: GRADIENT SUBSPACE
TRACKING FOR MEMORY-EFFICIENT LLM TRAINING
AND FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training and fine-tuning Large Language Models (LLMs) demand significant
computational resources and time due to their large model sizes and optimizer
states. To mitigate these challenges and improve accessibility, several memory-
efficient methods have been developed. Methods such as Low-Rank Adaptation
(LoRA) optimize model weights within a low-rank subspace, while Gradient Low-
Rank Projection (GaLore) projects gradients into a lower-dimensional space to de-
crease memory footprint. In this paper, we propose Gradient Subspace Tracking
(SubTrack-Grad), a method that confines optimization to a compact core subspace
of the gradient matrices and dynamically tracks its changes using the geometry of
Grassmannian manifolds. SubTrack-Grad efficiently updates its subspace estima-
tion by leveraging estimation errors and previously identified subspaces. Specifi-
cally, SubTrack-Grad reduces wall-time by up to 20.57% on GLUE tasks (15%
average reduction) and up to 65% on SuperGLUE tasks (22% average reduc-
tion). Notably, for a 3B parameter model, GaLore incurred a substantial 157%
increase in wall-time compared to full-rank training, whereas SubTrack-Grad ex-
hibited only a 31% increase—representing a 49% reduction in wall-time com-
pared to GaLore. Additionally, the memory required for storing optimizer states
in SubTrack-Grad is equivalent to GaLore’s, and it exhibits only a minimal in-
crease in peak memory consumption.

1 INTRODUCTION

Large Language Models (LLMs) have achieved state-of-the-art performance across various tasks
and are rapidly growing in popularity. However, their training and fine-tuning demand substantial
resources, such as hardware and time, making them impractical for many applications and contribut-
ing to a larger carbon footprint (Zhao et al., 2024; Jaiswal et al., 2024; Muhamed et al., 2024; Miles
et al., 2024; Modoranu et al., 2024; Hao et al., 2024; Li et al., 2024). As a result, there is an acute
need to develop memory- and time-efficient methods to democratize their use and mitigate environ-
mental impact. Various techniques have been proposed to reduce memory usage, such as gradient
checkpointing (Chen et al., 2016) and memory offloading (Rajbhandari et al., 2020). In this con-
text, several Parameter-Efficient Fine-Tuning (PEFT) approaches aim to reduce memory usage by
optimizing a subset of model parameters or operating within a lower-dimensional space (Dettmers
et al., 2024; Yaras et al., 2024; Lialin et al., 2023; Renduchintala et al., 2024; Xia et al., 2024; Miles
et al., 2024; Hu et al., 2021). Notably, the well-known method LoRA (Hu et al., 2021) decomposes
weight matrices into two low-rank trainable matrices, optimizing network parameters within a small
subspace, which significantly reduces the memory footprint.

Memory requirements extend beyond trainable parameters, with a significant portion consumed by
optimizers for storing element-wise states and parameters (Zhao et al., 2024). To address this, re-
cent efforts have focused on reducing the memory footprint of optimizer parameters (Li et al., 2023;
Anil et al., 2019; Lv et al., 2024; Dettmers et al., 2022; Zhang et al., 2024; Modoranu et al., 2024;
Zhao et al., 2024; Muhamed et al., 2024). GaLore (Zhao et al., 2024) reduces the memory usage
of optimizers by projecting gradient matrices into a low-rank subspace and tracking changes via
periodic Singular Value Decomposition (SVD) to obtain a rank-r approximation. However, this ap-
proach faces several challenges. First, SVD is computationally expensive, and if the gradient does

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

S1...St

Gt Gt+1

Gt+kG1
~

~ ~

~

St+1...St+k
Geodesic

∇F(Tangent Vector)

Subspace one

Subspace

Update Step

Subspace two
Projected Gradients on Subspace One

Projected Gradients on Subspace Two

Geodesic Line

The shortest path betwen two points on a manifold

New Point on Grassmannian Manifold 
Achieved by moving from on the geodesic

in the direction specified by the tangent vector

Figure 1: Visualization of the SubTrack-Grad method: Between subspace update steps, gradients are projected
onto a fixed subspace. The tangent vector ∇F is computed via the derivative of a loss function that measures the
subspace estimation error between updates. The subspace is then updated by moving along the corresponding
geodesic, determined by ∇F , on the Grassmannian manifold to minimize the measured error.

not evolve within a nearly constant subspace, GaLore must increase the frequency of SVD opera-
tions, significantly increasing the amount of computation. This is problematic because not all layers’
gradients converge to a stable subspace early in training (Jaiswal et al., 2024). Moreover, applying
SVD to a single gradient matrix is susceptible to data noise (Vaswani et al., 2018), and GaLore does
not leverage 1) information from the orthogonal space as feedback to adjust the subspace (Modoranu
et al., 2024) or 2) previously computed subspaces to incorporate past knowledge, which could help
mitigate these effects and improve convergence speed.

To address these challenges, we propose Gradient Subspace Tracking (SubTrack-Grad), a
Grassmannian-based subspace tracking method that efficiently updates the subspace using rank-1
updates. SubTrack-Grad leverages information from the orthogonal complement to improve sub-
space estimation through simple linear algebra operations, which are computationally more efficient
than GaLore as they avoid periodic SVD on the main gradient matrices. Furthermore, SubTrack-
Grad dynamically adapts to changes in the gradient subspace, reducing abrupt shifts in subspace
updates for faster convergence. Our main contributions are as follows:

• We introduce SubTrack-Grad, a computationally and memory-efficient method that
projects gradients onto a core subspace and dynamically adjusts this subspace using Grass-
mannian manifold geometry, leveraging estimation errors as a signal for adjustment.

• We demonstrate that SubTrack-Grad achieves performance comparable to or better than
GaLore, with a significant reduction in runtime and minimal memory overhead.

• We show that tracking the gradient subspace helps reduce abrupt changes in the optimiza-
tion process, thereby accelerating convergence.

• We prove that our method aligns with GaLore’s convergence guarantees while enabling
more frequent subspace updates by exercising greater control over subspace adjustments
through the use of prior knowledge and errors from the orthogonal space.

An overview of the proposed method is provided in Figure 1.

2 RELATED WORKS

Several works aim to improve the efficiency of training and fine-tuning LLMs, addressing a growing
demand as their popularity rapidly increases. LoRA (Hu et al., 2021), a widely recognized method
for reducing the number of trainable parameters, projects model weights into a lower-dimensional
space, resulting in two trainable low-rank matrices. This approach optimizes the matrices and sig-
nificantly reduces memory requirements for fine-tuning large models. Dettmers et al. (2024) builds

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

on LoRA by employing quantization techniques and paged optimizers to further reduce memory us-
age. Additionally, Yaras et al. (2024) introduces Deep LoRA, which uses deep matrix factorization
for low-rank optimization, addressing overfitting issues and reducing the need for precise tuning
of the rank parameter. Several other works have also extended LoRA to enhance the efficiency
of training and fine-tuning large models (Lialin et al., 2023; Renduchintala et al., 2024; Xia et al.,
2024; Pan et al., 2024). Miles et al. (2024) proposes compressing intermediate activation vectors
and reconstructing them during backpropagation to enhance memory efficiency. Additionally, Hao
et al. (2024) demonstrates that full-parameter fine-tuning is feasible by using random projections
on the gradient matrix, showing that LoRA essentially performs a down-projection of the gradient.
BAdam (Luo et al., 2024) leverages the block coordinate descent framework to achieve low memory
consumption while maintaining optimization capabilities comparable to Adam.

Several approaches aim to reduce memory consumption in optimizers, as optimizers like Adam
(Kingma & Ba, 2017) account for a significant portion of memory usage due to their storage of
element-wise states to improve the optimization process (Li et al., 2023; Anil et al., 2019; Lv et al.,
2024; Dettmers et al., 2022). MicroAdam (Modoranu et al., 2024) tackles this issue by compressing
the gradient space for optimization and utilizing the resulting compression error through feedback
loops to improve the optimization process. Adam-mini (Zhang et al., 2024) partitions model param-
eters into blocks, assigning a single learning rate to each block. This design achieves a significant
reduction in memory usage while maintaining performance. Gur-Ari et al. (2018) suggests that a
substantial portion of gradients lies within a small, largely consistent subspace, a finding also re-
ported by other studies, including Schneider et al. (2024); Yaras et al. (2023). GaLore (Zhao et al.,
2024) leverages this property to reduce the memory requirements of optimizers by projecting gra-
dients into a lower-dimensional subspace and then projecting them back for complete parameter
tuning. This approach has been effectively integrated with other methods to further reduce memory
usage during training and fine-tuning of LLMs (Li et al., 2024). However, not all layers’ gradients
evolve within a stable low-rank subspace. Jaiswal et al. (2024) identifies layers with constantly
changing gradients where low-rank projection may be inefficient for tuning. By analyzing the dis-
tribution of singular values across different layers, they select those that evolve within a small sub-
space for fine-tuning while freezing the remaining layers. Gradient Structured Sparsification (Grass)
(Muhamed et al., 2024) further reduces memory usage by applying sparse projection matrices to the
gradient, transforming the gradient matrix into a sparse vector space. This approach leverages sparse
representations to significantly decrease the memory footprint. In Ramesh et al. (2024) the authors
propose an approach that dynamically selects and updates a small subset of parameters, leading to
faster and more memory-efficient training without altering the model’s structure.

When working with high-dimensional data, a common approach is to project the data into a lower-
dimensional space, and many studies focus on tracking these subspaces as they evolve over time.
Balzano et al. (2011) introduces an incremental method for updating subspaces on the Grassmannian
manifold when data is partially observed. Zhang & Balzano (2016) and Kasai (2017) address the
challenges posed by noise in data streams and evolving environments, proposing methods to handle
such noise. Additionally, Blocker et al. (2023) presents a method for time-varying data based on
geodesics in Grassmannian space to track changes and update the subspace effectively.

3 SUBTRACK-GRAD: TRACKING THE GRADIENT SUBSPACE

Since gradients typically evolve within a small subspace, compressing this space can significantly
reduce the memory footprint of the optimizer. As demonstrated in Zhao et al. (2024) whenever the
gradient takes the general form

G =
∑
i

Ai +
∑
i

BiWCi (1)

where i denotes the batch index, and Bi and Ci are positive semi-definite (PSD) matrices, this
gradient can be projected onto a small subspace that remains nearly stable while ensuring that the
optimization process continues to converge, as discussed in Section 4 and Appendix A. However,
the gradient’s subspace is not always stable, making it crucial to track its changes for effective
optimization. GaLore (Zhao et al., 2024) addresses this by periodically performing SVD on gradient
matrices, while keeping the update frequency low to align with the assumption of a stable subspace.
This approach poses several challenges: 1) not all gradients converge to a stable subspace within
a few iterations, 2) SVD is computationally expensive, and increasing the frequency of updates to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 SubTrack-Grad

Require: Sequence of m × n gradients Gt with m ≤ n (w.l.o.g.), step-size η, rank r, subspace
update steps k
Initialize Subspace via SVD Decomposition:
P0 ← U [:, : r] , where U, S, V ← SVD(G0)
S0 ← P0 {The initial subspace}
for t = 1, . . . , T do

if t mod k = 0 then
Update subspace:
Glr = argminA ∥(St−1A−Gt)∥2 {Solving the least square problem}
R = Gt − St−1Glr {Computing the residual}
∇F = −2RG⊤

lr ≈ ÛF Σ̂F V̂
⊤
F {Computing the rank-1 estimation of tangent vector}

St = (St−1V̂F ÛF)

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St−1(I − V̂F V̂

⊤
F) {Updating the subspace}

else
Keep using previous subspace: St = St−1

Return final projected gradient to the optimizer: S⊤
t Gt

capture changes significantly raises both runtime and environmental costs, and 3) increasing the
update frequency contradicts the assumption of a stable subspace, as SVD is sensitive to noise and
does not account for the previously computed subspace or estimation error to regulate the extent of
change applied.

We propose Gradient Subspace Tracking, or SubTrack-Grad, a computationally efficient method for
tracking gradient subspaces. SubTrack-Grad utilizes both the orthogonal space and the previously
computed subspace to update the core subspace. Also, ass illustrated in 4, increasing the update
frequency does not significantly impact runtime. This approach effectively controls the amount of
change in the subspace, enabling more frequent updates without compromising the stability assump-
tion. The subspace is initialized using SVD as follows:

G0 = USV ⊤ ≈
r∑

i=1

siuiv
⊤
i , P0 = [u1, u2, ..., ur], Q0 = [v1, v2, ..., vr]. (2)

Here, G0 is an m × n gradient matrix at step 0, and U , S, and V are its SVD components, with r
denoting the specified rank. At each optimization step, the gradients are projected onto the subspace
of the left singular vectors if m ≤ n, or onto the right singular vectors otherwise, thereby optimizing
memory usage (Zhao et al., 2024). The optimization is performed within this subspace, after which
the gradient is projected back to allow full parameter tuning. For simplicity, we assume m ≤ n
without loss of generality, implying that S0 = P0, an m × r orthonormal matrix whose columns
span the underlying subspace.

At each iteration of pre-training or fine-tuning, the matrix St, representing the subspace at step t,
projects the gradient matrix Gt onto the subspace by G̃t = S⊤

t Gt, where G̃t will be a reduced r×n
matrix representing the projection of the original gradient onto a rank-r subspace. The optimizer
then performs optimization within this low-rank space, which substantially reduces the number of
state parameters and thus the memory usage. The optimizer outputs G̃O

t , which is then projected
back to the original space by Ĝt = StρtG̃

O
t , where ρt is a scalar representing the entry-wise regu-

larizer used in the optimizer, to be passed to the network.

As previously discussed, the gradient does not always evolve within a stable low-rank subspace;
hence, St, the orthonormal matrix spanning the core subspace, must be appropriately updated. In
SubTrack-Grad, we propose updating the subspace by moving along Grassmannian geodesics. This
approach leverages the previously computed subspace and the estimation error from earlier steps to
minimize abrupt changes and noise effects, as illustrated in Figure 2.

The underlying subspace is updated after a fixed subspace update interval of k steps. Let Ti denote
the i-th subspace update step for i ∈ {1, 2, 3, . . .}. To mitigate the impact of noise, we can com-
pute an accumulated gradient by averaging gradients across consecutive subspace update steps, as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Comparison of the Adam Optimizer Combined with GaLore and SubTrack-Grad on the Ackley
Function. Both optimizers took 100 steps, with the subspace update interval set to 10. As demonstrated, when
the scale factor is equal to 1, GaLore could not reach the global minimum of the function within 100 iterations
due to more frequent jumps compared to SubTrack-Grad. For a scale factor of 3, the length of jumps increases
further in Adam combined with GaLore. The 3D plots provide a clearer visualization of the dynamics of the
Ackley function and the optimization paths followed by each method in a single plot.

described in equation 3. However, our experiments, summarized in Table 1, indicate that in most
cases, using only the latest gradient achieves comparable results while reducing memory usage as
shown in Table 4. Furthermore, as evidenced in Tables 1, 2, and 3, this approach either outperforms
GaLore or delivers similar performance, even without relying on the accumulated gradient.

Gacc =
1

Tn − Tn−1

Tn∑
t=

Tn−1

Gt (3)

We frame the problem of identifying the subspace as selecting the appropriate element from the
Grassmannian, the set of all d-dimensional subspaces within an n-dimensional vector space (Ben-
dokat et al., 2024). Our objective is to minimize the Euclidean distance between the current subspace
and the observed gradient at each update step. The cost function is defined as:

F (St) = min
A
∥StA−Gt∥2F , (4)

where A is the solution to the least squares problem. The derivative of this function with respect to
St is given in equation 5, and R = Gt − StA lies in the orthogonal complement of St. To update
the subspace in the appropriate direction, we compute the tangent vector ∇F on the Grassmannian
manifold, as shown in equation 6 based on Edelman et al. (1998), where the second equality holds
because R is orthogonal to StS

⊤
t .
∂F

∂St
= 2(StA−Gt)A

⊤ = −2RA⊤ (5)

∇F = (I − StS
⊤
t)

∂F

∂St
=

∂F

∂St
= −2RA⊤ ≈ ÛF Σ̂F V̂

⊤
F (6)

The tangent vector∇F provides the direction for adjusting the subspace by accounting for the error
lying in the orthogonal complement. However, to minimize changes to the subspace, SubTrack-
Grad first computes a rank-1 approximation of∇F , determined by its largest singular value and the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

corresponding singular vectors obtained from its SVD, represented as ÛF Σ̂F V̂
⊤
F in the final equality

of equation 6. This approximation is then used to update the subspace.

As shown by Edelman et al. (1998); Bendokat et al. (2024), from which we have included the
necessary definitions and theorem in section 4, we can move along the Grassmannian geodesic in
the direction of the computed tangent vector, taking a step of size η, as presented in equation 7.

St+1(η) = (StV̂F ÛF)

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F) (7)

This update step preserves the orthonormality of St+1, ensuring it remains on the Grassmannian
manifold. The last term in equation 6, which is required when using thin-SVD instead of compact-
SVD, projects the previous subspace onto the orthogonal complement of V̂F . This ensures that the
portion of the subspace of St not updated in this step is still included. By leveraging the geometry
of the Grassmannian manifold, SubTrack-Grad effectively tracks the underlying subspace of the
gradient space. The pseudo-code for this method is provided in Algorithm 1.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence of SubTrack-Grad using theoretical analysis. To begin,
using SubTrack-Grad, the update rule for the weights of the networks is as follows:

Wt = W0 +

t′=t−1∑
t′=0

Ĝt′ (8)

As previously mentioned, we use left projection if m ≤ n, where m and n are the dimensions of
the original gradient matrix, and right projection otherwise. Thus, Ĝt′ can be computed as shown in
equation 9.

Ĝt′ =

{
St′ρt′(S

⊤
t′ Gt′), if m ≤ n

ρt′(Gt′St′)S
⊤
t′ , otherwise

(9)

Here, St′ is the projection matrix that projects the gradient onto the subspace, and ρt′ is a scalar
representing the entry-wise regularizer used in the optimizer. If we use the full projection, then Ĝt′

will be computed as shown below:

Ĝt′ = Sl
t′ρt′(S

l
t′
⊤
Gt′S

r
t′)S

r
t′
⊤ (10)

where Sl
t′ and Sr

t′ are the rank-r left and right projection matrices.

Definition 4.1 (L-continuity) A function f(X) has Lipschitz-continuity (L-continuity) if for any
X1 and X2, ∥f(X2)− f(X1)∥F ≤ L∥X2 −X1∥F

Theorem 4.1 (Convergence of SubTrack-Grad) Suppose gradient has the following form (also
equation 1) with functions Ai, Bi, and Ci being L-continuous as per Def. B.1 with constants LA,
LB , and LC w.r.t. weight matrix Wt; and ∥Wt∥F ≤ M ; where Wt denotes the weight matrix at
step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and N representing the number
of samples in a batch. Assuming that the projection matrices remain constant during the training.
Then for learning-rate µ and min(κt) > (LA +2LBLCM

2), the SubTrack-Grad, with ρt ≡ 1 (the
element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack-Grad converges.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The proof of Theorem 4.1 is provided in Appendix A, based on Zhao et al. (2024). Note that while
both GaLore and SubTrack-Grad assume that the projection matrices remain unchanged for the proof
of convergence, GaLore must limit the number of updates to ensure convergence, as each update can
potentially change the subspace entirely. In contrast, SubTrack-Grad leverages only rank-1 updates
to the subspace, preventing drastic changes with each update. While a deeper analysis of slowly
changing subspaces and their impact on convergence remains an open problem, in practice, this
allows SubTrack-Grad to perform more updates than GaLore.

The Grassmannian update rule presented in equation 7 is a direct application of Grassmann geometry
(Edelman et al., 1998; Bendokat et al., 2024).

Definition 4.2 (Exponential Map) The exponential map expp : TpM → M on a Riemannian
manifold M is a mapping that assigns to each tangent vector ∆ ∈ TpM the point γ(1) ∈ M ,
where TpM is the tangent space of M at p, and γ is the unique geodesic originating at p with initial
velocity ∆. This map establishes a relationship between geodesics and the Riemannian exponential,
such that γ(t) = expp(t∆) for t ∈ R.

Definition 4.3 (Stiefel Manifold) The Stiefel manifold St(n, p) parametrizes the set of all n × p
matrices U , with orthonormal columns, each representing a rank-p subspace of Rn.

Definition 4.4 (Grassmann Manifold) The Grassmannian manifold Gr(n, p) parametrizes the set
of all p-dimensional subspaces of Rn. Each point can be represented by a projection matrix P =
UUT , where U ∈ St(n, p).

Theorem 4.2 (Grassmann Exponential) Let P = UUT ∈ Gr(n, p) be a point on the Grass-
mannian manifold, where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace.
Consider a tangent vector ∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the
horizontal space at U in the Stiefel manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by
∆hor

U = Q̂ΣV T , where Q̂ ∈ St(n, r), Σ = diag(σ1, . . . , σr) contains the nonzero singular values of
∆hor

U with r = min(p, n− p), and V ∈ St(p, r). The Grassmann exponential map, representing the
geodesic emanating from P in the direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

The proof of Theorem 4.2 can be found in Appendix B. Leveraging this theorem, and incorporating
our notation in section 3, one can easily verify that the subspace update rule is as follows:

St+1(η) = (StV̂F ÛF)

(
cos Σ̂F η

sin Σ̂F η

)
V̂ ⊤
F + St(I − V̂F V̂

⊤
F)

This update rule generally converges to a stable subspace if the step size η decreases over time
(Balzano et al., 2011). However, a decreasing step size can impair the ability to accurately track and
adapt to subspace changes. Consequently, SubTrack-Grad uses a constant step size during training
and fine-tuning to effectively adjust subspaces. This approach does not hinder convergence, as
proved in Theorem 4.1, which guarantees convergence as long as changes are controlled to maintain
the stable subspace assumption.

5 EXPERIMENTS AND RESULTS

To ensure a fair comparison between SubTrack-Grad and baselines, we conducted fine-tuning and
pre-training experiments across various architectures and datasets; to measure performance, wall-
time, and memory consumption, while all shared hyperparameters remaine consistent.

Fine-Tuning Experiments. RoBERTa-Base was fine-tuned on GLUE tasks, while RoBERTa-Large
was used for fine-tuning on SuperGLUE datasets. For performance evaluation, the models were
fine-tuned on each task for 30 epochs, with the results for GLUE tasks presented in Table 1, and Su-
perGLUE results shown in Table 2. Table 1 compares the performance between using accumulated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Evaluating the performance of SubTrack-Grad and other baselines when fine-tuning RoBERTa-Base
on GLUE tasks for different ranks r. All hyperparameters are the same for each rank. The performance is
measured via Accuracy for QNLI, MNLI, SST-2, and RTE tasks, F1 for QQP and MRPC, Pearson Correlation
for STS-B, and Matthews Correlation for COLA, after fine-tuning for 30 epochs.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP Avg

Full-Rank 62.57 91.03 91.32 77.98 94.27 87.83 92.71 89.21 85.86

GaLore, r=4 (Zhao et al., 2024) 60.34 90.58 92.58 76.53 94.27 87.12 92.20 87.86 85.18

SubTrack(Acc)-Grad, r=4 (Ours) 61.32 90.64 92.66 77.98 94.15 86.85 91.85 87.50 85.37
SubTrack(Last)-Grad, r=4 (Ours) 61.07 90.63 92.83 76.89 93.81 87.20 91.73 86.73 85.11

GaLore, r=8 (Zhao et al., 2024) 58.54 90.61 91.30 74.37 94.50 87.34 92.71 87.99 84.67

SubTrack(Acc)-Grad, r=8 (Ours) 58.54 90.87 91.43 76.53 94.27 87.09 92.49 87.57 84.85

SubTrack(Last)-Grad, r=8 (Ours) 58.03 90.76 91.81 77.62 94.38 87.15 92.31 87.26 84.91

Table 2: Evaluating the performance of SubTrack-Grad and other baselines when fine-tuning RoBERTa-Large
on SuperGLUE tasks with rank 8. All hyperparameters are consistent across different methods. The perfor-
mance is measured via Accuracy for COPA, WIC, WSC, BoolQ, and AXg tasks, F1 for CB, and Matthews
Correlation for AXb, after fine-tuning for 30 epochs.

BoolQ CB COPA WIC WSC AXb AXg Avg

Full-Rank 85.29 91.76 48.00 71.94 63.46 57.68 100 74.02

GaLore (Zhao et al., 2024) 86.42 88.97 48.00 71.32 63.46 45.92 98.15 71.75

SubTrack-Grad (Ours) 85.81 91.76 53.00 71.47 63.46 47.93 100 73.35

Table 3: Evaluation loss comparison for pre-training different Llama-based architectures on C4 dataset after
10K iterations.

60M 130M 350M 1B 3B Avg
rank=128 rank=256 rank=256 rank=512 rank=512 -

Full-Rank 6.27 6.60 6.40 6.06 6.42 6.35

GaLore (Zhao et al., 2024) 3.65 3.44 3.52 5.59 5.90 4.42
SubTrack-Grad (Ours) 3.72 3.48 3.53 6.03 6.00 4.55

gradients and the last gradient matrix. In other experiments, we report results without gradient ac-
cumulation, increasing memory efficiency while maintaining performance. Figures 3b, 3e, 3c, and
3f compare wall-time and memory consumption during fine-tuning, with detailed reports provided
in Appendix C. For wall-time comparisons, models were fine-tuned up to a number of iterations
ensuring exactly five subspace updates, excluding evaluation steps, to provide an accurate runtime
comparison. SubTrack-Grad demonstrates significant efficiency improvements, reducing wall-time
by up to 20.57% on GLUE tasks (15% average reduction) and up to 65% on SuperGLUE tasks
(22% average reduction). Despite limiting updates to rank-1 modifications of the previous sub-
space, Tables 1 and 2 shows that SubTrack-Grad achieves comparable or even superior performance
compared to GaLore. Details of hyperparameters are provided in Appendix D.

Pre-Training Experiments. Different Llama-based architectures were pre-trained on C4 datasets.
Each architecture was trained for 10K steps, and their evaluation losses are reported in Table 3. The
diminishing increase in evaluation loss with larger model sizes highlights the importance of subspace
tracking in mitigating abrupt changes, particularly when modeling more complex architectures using
low-rank representations. For wall-time comparison, each architecture was trained for 2K iterations,
with the subspace update interval set to 200, ensuring exactly 10 subspace updates. For memory

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

Figure 3: Comparing the peak memory consumption and wall-time on different architecture and datasets. (a)
and (d) show the memory and wall-time measured on pretraining different Llama-architectures sizing from 60M
to 3B. (b) and (e) show the memory and wall-time measured on fine-tuning RoBERTa-Large on SuperGLUE
tasks. (c) and (f) show the memory and wall-time measured on fine-tuning RoBERTa-Base on GLUE tasks.
As demonstrated, GaLore can lead to 2.5 times longer wall-time in training Llama with 3B parameters, while
SubTrack-Grad significantly reduces this overhead, and shows minor additional memory requirements.

comparison, we used a batch size of 8, the largest size feasible on an NVIDIA A100 GPU with
40GB memory for the Llama model with 3B parameters. Figures 3a and 3d illustrate the memory
and wall-time comparisons, with detailed reports provided in Appendix C. Notably, GaLore incurred
a substantial 157% increase in wall-time compared to full-rank training for the model of size 3B,
whereas SubTrack-Grad exhibited only a 31% increase—representing a 49% reduction in wall-
time compared to GaLore. On average, SubTrack-Grad required 27% less training time across
these models, while exhibiting at most 3.7% memory overhead on the model with 3B parameters.
Additional architectural details for the Llama-based models are provided in Appendix E.

Time and Space Complexity. Table 4 provides memory requirements of the optimizer states and
the time complexity of the SVD operation considering an m × n gradient matrix with m ≤ n. As
discussed earlier, GaLore performs SVD on the gradient matrix to estimate the underlying subspace,
whereas SubTrack-Grad performs SVD on the rank-r tangent vector to update the subspace. Since
SVD is the a computationally expensive operation, comparing its time complexity highlights why
SubTrack-Grad is significantly more efficient than GaLore. As shown in Figure 3d, for pre-training
a Llama model of size 3B, GaLore incurs over 157% wall-time overhead, compared to 31% for
SubTrack-Grad. This demonstrates a 49% wall-time reduction compared to GaLore. Additionally,
the memory required for storing optimizer states in SubTrack-Grad, using the last gradient matrix,
is equivalent to GaLore’s, as confirmed experimentally in Figures 3a, 3b, and 3c.

Reducing Optimization Jumps. We argue that GaLore, which relies on a single gradient matrix
at each subspace update step for adjustment via SVD, is susceptible to noise from data and less im-
portant features. Figure 2 compares SubTrack-Grad and GaLore on the Ackley function to illustrate
potential jumps and deviations in the optimization process caused by GaLore’s projection approach.
These jumps prevent GaLore from reaching the global minimum within 100 steps when the scale
factor is set to 1. While increasing the scale factor to 3 enables GaLore to reach the global minimum,
it also results in larger jumps due to the higher scale factor. Additionally, Figure 5 in Appendix G
illustrates that the overall convergence during both pre-training and fine-tuning is similar to other
methods when using SubTrack-Grad.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Optimizer’s memory requirement in each method along with the time complexity of involved SVD
operations, considering a gradient matrix of dimension m× n and projection rank r where r ≪ m ≤ n.

Optimizer Memory SVD Time Complexity
Adam 2mn −
GaLore mr + 2nr O(nm2)

SubTrack(Acc)-Grad mn+mr + 2nr O(mr2)

SubTrack(Last)-Grad mr + 2nr O(mr2)

Runtime Consistency. Figure 4 compares the wall-times of GaLore and SubTrack-Grad across
subspace update intervals ranging from 50 to 500 while fine-tuning RoBERTa-Base on the COLA
task with an NVIDIA T4 GPU and pre-training a Llama-based architecture with 60M parameters
on the C4 dataset using an NVIDIA A100 GPU. The subspace update interval denotes the num-
ber of iterations between two updates; thus, increasing this interval reduces the update frequency.
As shown, GaLore’s runtime significantly increases with more frequent subspace updates, whereas
SubTrack-Grad maintains minimal runtime overhead regardless of the update frequency. In Table
14 different performance achieved on COLA dataset for different subspace update intervals can be
compared, illustrating that increasing the update frequency significantly raises GaLore’s runtime,
while the performance of the two methods remains very similar.

Figure 4: Comparing runtimes of GaLore and SubTrack-Grad. RoBERTa-Base is fine-tuned for 10 epochs
on COLA and Llama-60M is pre-trained for 2500 iterations on C4 dataset. Subspace update intervals range
from 50 to 500 in both experiments. Notice that by increasing subspace update interval, the update frequency
actually decreases, as it indicates the number of iterations between two subspace update steps. As demonstrated,
GaLore’s wall-time can increase drastically when update frequency increases.

6 DISCUSSION AND CONCLUSION

We proposed a computationally efficient method that projects gradients into a lower-dimensional
subspace, and preserves the previously computed subspace to incorporate gradient components from
the orthogonal complement to perform rank-1 updates. This approach reduces the frequency of
abrupt transitions between iterations and leverages the available information effectively.

In some cases, the extent of changes in the subspace may require updates of rank greater than 1;
the pre-training of Llama-based architectures is a clear example of this need. During our experi-
ments, we observed that applying updates as per equation 7, using the full-rank SVD of the tangent
vector from equation 6, can hinder convergence if the singular values of the tangent vector become
very small. Furthermore, simultaneously updating vector spaces associated with different singular
values caused convergence issues in some cases. Therefore, we restricted updates to rank-1 in this
paper, as this approach still enabled SubTrack-Grad to achieve performance comparable to or better
than GaLore, with reduced runtime. In future work, we plan to explore increasing the rank of up-
dates without compromising convergence. Additionally, dynamically selecting the step size could
eliminate the need for manual tuning as a hyperparameter and further enhance convergence.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory-efficient adaptive optimiza-
tion, 2019. URL https://arxiv.org/abs/1901.11150.

Laura Balzano, Robert Nowak, and Benjamin Recht. Online identification and tracking of subspaces
from highly incomplete information, 2011. URL https://arxiv.org/abs/1006.4046.

Thomas Bendokat, Ralf Zimmermann, and P.-A. Absil. A grassmann manifold handbook: basic
geometry and computational aspects. Advances in Computational Mathematics, 50(1), January
2024. ISSN 1572-9044. doi: 10.1007/s10444-023-10090-8. URL http://dx.doi.org/
10.1007/s10444-023-10090-8.

Cameron J. Blocker, Haroon Raja, Jeffrey A. Fessler, and Laura Balzano. Dynamic subspace estima-
tion with grassmannian geodesics, 2023. URL https://arxiv.org/abs/2303.14851.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016. URL https://arxiv.org/abs/1604.06174.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization, 2022. URL https://arxiv.org/abs/2110.02861.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Alan Edelman, T. A. Arias, and Steven T. Smith. The geometry of algorithms with orthogonality
constraints, 1998. URL https://arxiv.org/abs/physics/9806030.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace,
2018. URL https://arxiv.org/abs/1812.04754.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors, 2024. URL https://arxiv.org/abs/2402.03293.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients, 2024. URL https://arxiv.org/abs/2407.11239.

Hiroyuki Kasai. Fast online low-rank tensor subspace tracking by cp decomposition using recursive
least squares from incomplete observations, 2017. URL https://arxiv.org/abs/1709.
10276.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states, 2023. URL
https://arxiv.org/abs/2309.01507.

Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu. Owlore: Outlier-weighed layerwise sampled
low-rank projection for memory-efficient llm fine-tuning, 2024. URL https://arxiv.org/
abs/2405.18380.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023. URL https://arxiv.org/abs/2307.05695.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models, 2024. URL https://arxiv.org/abs/2404.02827.

11

https://arxiv.org/abs/1901.11150
https://arxiv.org/abs/1006.4046
http://dx.doi.org/10.1007/s10444-023-10090-8
http://dx.doi.org/10.1007/s10444-023-10090-8
https://arxiv.org/abs/2303.14851
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/physics/9806030
https://arxiv.org/abs/1812.04754
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1709.10276
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2309.01507
https://arxiv.org/abs/2405.18380
https://arxiv.org/abs/2405.18380
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2404.02827

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for
large language models with limited resources. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 8187–8198, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. URL https://aclanthology.org/2024.acl-long.
445.

Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training
using rank-1 sub-token projections, 2024. URL https://arxiv.org/abs/2405.17991.

Ionut-Vlad Modoranu, Mher Safaryan, Grigory Malinovsky, Eldar Kurtic, Thomas Robert, Peter
Richtarik, and Dan Alistarh. Microadam: Accurate adaptive optimization with low space over-
head and provable convergence, 2024. URL https://arxiv.org/abs/2405.15593.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Com-
pute efficient low-memory llm training with structured sparse gradients, 2024. URL https:
//arxiv.org/abs/2406.17660.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Lay-
erwise importance sampling for memory-efficient large language model fine-tuning, 2024. URL
https://arxiv.org/abs/2403.17919.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.
02054.

Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H. Laradji, and Mark Schmidt. Block-
llm: Memory-efficient adaptation of llms by selecting and optimizing the right coordinate blocks,
2024. URL https://arxiv.org/abs/2406.17296.

Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-LoRA: Enhancing parameter
efficiency of LoRA with weight tying. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.),
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 8694–8705,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.naacl-long.481. URL https://aclanthology.org/2024.naacl-long.481.

Jan Schneider, Pierre Schumacher, Simon Guist, Le Chen, Daniel Häufle, Bernhard Schölkopf, and
Dieter Büchler. Identifying policy gradient subspaces, 2024. URL https://arxiv.org/
abs/2401.06604.

Namrata Vaswani, Thierry Bouwmans, Sajid Javed, and Praneeth Narayanamurthy. Robust subspace
learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE Signal Pro-
cessing Magazine, 35(4):32–55, July 2018. ISSN 1558-0792. doi: 10.1109/msp.2018.2826566.
URL http://dx.doi.org/10.1109/MSP.2018.2826566.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning, 2024. URL https://arxiv.org/abs/2401.04151.

Can Yaras, Peng Wang, Wei Hu, Zhihui Zhu, Laura Balzano, and Qing Qu. Invariant low-
dimensional subspaces in gradient descent for learning deep matrix factorizations. In NeurIPS
2023 Workshop on Mathematics of Modern Machine Learning, 2023.

Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overparame-
terized low-rank learning & adaptation. arXiv preprint arXiv:2406.04112, 2024.

Dejiao Zhang and Laura Balzano. Global convergence of a grassmannian gradient descent algorithm
for subspace estimation, 2016. URL https://arxiv.org/abs/1506.07405.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo,
and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more, 2024. URL https:
//arxiv.org/abs/2406.16793.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024. URL
https://arxiv.org/abs/2403.03507.

12

https://aclanthology.org/2024.acl-long.445
https://aclanthology.org/2024.acl-long.445
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2405.15593
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2403.17919
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2406.17296
https://aclanthology.org/2024.naacl-long.481
https://arxiv.org/abs/2401.06604
https://arxiv.org/abs/2401.06604
http://dx.doi.org/10.1109/MSP.2018.2826566
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/1506.07405
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2406.16793
https://arxiv.org/abs/2403.03507

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A CONVERGENCE OF SUBTRACK-GRAD

Theorem 4.1 (Convergence of SubTrack-Grad) Suppose gradient has the following form (also
equation 1) with functions Ai, Bi, and Ci being L-continuous as per Def. B.1 with constants LA,
LB , and LC w.r.t. weight matrix Wt; and ∥Wt∥F ≤ M ; where Wt denotes the weight matrix at
step t, and M is a scalar value,

G =
∑
i

Ai +
∑
i

BiWCi.

Now, define B̂i,t = (Sl
i,t)

⊤Bi(Wt)S
l
i,t and Ĉi,t = (Sr

i,t)
⊤Ci(Wt)S

r
i,t, where Sl

i,t and Sr
i,t are the

rank-r left and right projection matrices; Bi(Wt) and Ci(Wt) denote the dependence of Bi and Ci

on the weight matrices Wt. Further letting Pt = Sl
t
⊤
GtS

r
t , and κt =

1
N

∑
i λmin(B̂i,t)λmin(Ĉi,t),

where λmin(·) denotes the minimum eigenvalue over each batch, and N representing the number
of samples in a batch. Assuming that the projection matrices remain constant during the training.
Then for learning-rate µ and min(κt) > (LA +2LBLCM

2), the SubTrack-Grad, with ρt ≡ 1 (the
element-wise regularizer of the optimizer) satisfies:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

That is, Pt → 0 and SubTrack-Grad converges.

proof. To demonstrate that SubTrack-Grad converges to the global minimum during training, we
begin by deriving the recursive form of the gradients.

Let ⊗ denote the Kronecker product. Then, vec(AXB) = (B⊤ ⊗A)vec(X).

By applying vec to the gradient form given in the theorem, we obtain:

gt = vec(Gt) = vec(
∑
i

Ai +
∑
i

BiWCi) = at −Dtwt (11)

where gt := vec(Gt), wt := vec(Wt), at := 1
N

∑
i vec(Ai,t), and Dt =

1
N

∑
i Ci,t ⊗Bi,t.

As defined in the theorem, let Pt = Sl
t
⊤
GtS

r
t . Its vectorized form can be expressed using the

Kronecker product as follows:

pt = vec(Pt) = vec(Sl
t

⊤
GtS

r
t) = (Sr

t
⊤ ⊗ Sl

t

⊤
)vec(Gt)

= (Sr
t ⊗ Sl

t)
⊤
vec(Gt) = (Sr

t ⊗ Sl
t)

⊤
gt

(12)

Now recalling Ĝt from equation 10, it can be written as:

Ĝt = Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤

Thus, its vectorized form will be:

vec(Ĝt) = ĝt = vec(Sl
tS

l
t

⊤
GtS

r
t S

r
t
⊤) = vec(Sl

tPtS
r
t
⊤)

= (Sr
t ⊗ Sl

t)vec(Pt) = (Sr
t ⊗ Sl

t)pt
(13)

This is where the constant subspace assumption becomes necessary. To derive the recursive form
of gt, we assume that the projection matrices remain fixed throughout training, i.e., Sr

t = Sr and
Sl
t = Sl. Consequently, we can restate equations equation 12 and equation 13 as follows:

pt = (Sr ⊗ Sl)
⊤
gt (14)

ĝt = (Sr ⊗ Sl)pt (15)

Then we can write the recursive form of gt:

gt = at −Dtwt = (at − at−1) + (Dt−1 −Dt)wt + at−1 −Dt−1wt

= et + at−1 −Dt−1(wt−1 + µĝt−1) = et + gt−1 − µDt−1ĝt−1
(16)

where et := (at − at−1) + (Dt−1 −Dt)wt.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Note that in deriving equation 16, we utilized the general form of the weight update rule, wt+1 =
wt−µgt, which can be rewritten as wt = wt+1+µgt. By applying this rule along with equation 11,
we arrive at the second equality in equation 16 as follows:

gt = at −Dtwt = at −Dtwt − gt−1 + gt−1

= at −Dtwt − at−1 +Dt−1wt−1 + at−1 −Dt−1wt−1

= at −Dtwt − at−1 +Dt−1(wt + µgt−1) + at−1 −Dt−1(wt + µgt−1)

= at −Dtwt − at−1 +Dt−1wt + µDt−1gt−1 + at−1 −Dt−1wt − µDt−1gt−1

= at − at−1 + (Dt−1 −Dt)wt + at−1 −Dt−1

To obtain pt from this recursive formulation, we can left-multiply by (Sr ⊗ Sl)
⊤, as shown in

equation 15:

pt = (Sr ⊗ Sl)
⊤
et + (Sr ⊗ Sl)

⊤
gt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1ĝt−1 (17)

Now, based on equation 14 and equation 15, pt can be written as:

pt = (Sr ⊗ Sl)
⊤
et + pt−1 − µ(Sr ⊗ Sl)

⊤
Dt−1(S

r ⊗ Sl)pt−1 (18)

Let define:

D̂t := (Sr ⊗ Sl)
⊤
Dt(S

r ⊗ Sl) =
1

N

∑
i

(Sr ⊗ Sl)
⊤
(Ci,t ⊗Bi,t)(S

r ⊗ Sl)

=
1

N

∑
i

(Sr⊤Ci,tS
r)⊗ (Sl⊤Bi,tS

l)

(19)

Then we can expand equation 18 and show that:

pt = (I − µD̂t−1)pt−1 + (Sr ⊗ Sl)⊤et (20)

Note that Sl and Sr are orthonormal matrices. This is ensured because the subspace is initialized
using the SVD of G0, and the Grassmannian update rule provided in equation 7 preserves the or-
thonormality of the subspace matrices throughout training. Since Sl and Sr are orthonormal, we
have Sl⊤Sl = I and Sr⊤Sr = I . Consequently, we can bound the norm of the second term in
equation 20 as follows:

∥(Sr ⊗ Sl)⊤et∥2 = ∥vec(Sl⊤EtS
r)∥2 = ∥Sl⊤EtS

r∥F ≤ ∥Et∥F (21)

Here Et is the matrix form of et, and as declared before, et := (at− at−1) + (Dt−1−Dt)wt, thus:

Et :=
1

N

∑
i

(Ai,t −Ai,t−1) +
1

N

∑
i

(Bi,t−1WtCi,t−1 −Bi,tWtCi,t) (22)

Next, we need to find an upper bound for the norm of each term in equation 22 to establish an upper
bound for ∥Et∥F . Based on the assumptions of the theorem, Ai, Bi, and Ci exhibit L-Lipschitz
continuity with constants LA, LB , and LC , respectively. Additionally, ∥Wt∥F is bounded by a
scalar M . We have:

∥At −At−1∥F ≤ LA∥Wt −Wt−1∥F = µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F (23)

In the first equality, we apply equation 8, while the last equality holds due to equation 15 and the
orthonormality of the projection matrices. The subsequent two inequalities can be derived similarly
using these equations.

∥(Bt −Bt−1)WtCt−1∥F ≤ LB∥Wt −Wt−1∥F ∥Wt∥F ∥Ct−1∥F
= µLBLCM

2∥Pt−1∥F
(24)

∥BtWt(Ct−1 − Ct)∥F ≤ LC∥Bt∥F ∥Wt∥F ∥Wt−1 −Wt∥F
= µLBLCM

2∥Pt−1∥F
(25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We can now derive the bound for ∥Et∥F as follows:

∥Et∥F ≤ µLA∥G̃t−1∥F ≤ µLA∥Pt−1∥F + µLBLCM
2∥Pt−1∥F + µLBLCM

2∥Pt−1∥F
= µ(LA + 2LBLCM

2)∥Pt−1∥F
(26)

To calculate the norm bound for the first term in equation 20, we first need to establish the bounds
for D̂t. This involves estimating the minimum eigenvalue of D̂t.

If we define γmin,i,t = λmin(S
l⊤Bi,tS

l)λmin(S
r⊤Ci,tS

r), then it follows that
λmin((S

l⊤Bi,tS
l) ⊗ (Sr⊤Ci,tS

r)) = γmin,i,t. Consequently, D̂t will satisfy the following
inequality for every unit vector v:

v⊤D̂tv =
1

N

∑
i

v⊤
[
(Sl⊤Bi,tS

l)⊗ (Sr⊤Ci,tS
r)
]
v ≥ 1

N

∑
i

γmin,i,t (27)

this actually provides a lower bound for eigenvalues of D̂t, thus:

λmax(I − µD̂t−1) ≤ 1− µ

N

∑
i

γmin,i,t−1 (28)

considering the definition of κt in the theorem, we can now easily show that:

∥Pt∥F ≤ [1− µ(κt−1 − LA − 2LBLCM
2)]∥Pt−1∥F .

and completing the proof.

While SubTrack-Grad utilizes right/left projections to reduce memory consumption, the proof is
presented using both projection matrices to ensure generality. Here, we demonstrate how the proof
proceeds under the assumption m ≤ n (without loss of generality), which allows the use of the left
projection matrix.

Using the left projection matrix, the current formulation of Pt, defined as Pt = Sl
t
⊤
GtS

r
t , simplifies

to Pt = Sl
t
⊤
Gt. Similarly, Ĝt = Sl

tS
l
t
⊤
GtS

r
t S

r
t
⊤ reduces to Ĝt = Sl

tS
l
t
⊤
Gt. From this point, the

proof continues by substituting Sr
t with the identity matrix, allowing the derivation of the vectorized

forms of gt, ĝt, pt, and related terms.

The remainder of the proof remains largely unaffected. It can be readily verified that the recursive
formulation of gt is unchanged. Although the definition of Pt is modified, it continues to satisfy the
bounds required for convergence, ensuring that Pt converges to 0 when the left projection matrix is
used.

B GRASSMANN EXPONENTIAL

Theorem 4.2 (Grassmann Exponential) Let P = UUT ∈ Gr(n, p) be a point on the Grass-
mannian manifold, where U ∈ St(n, p) is the orthonormal basis of the corresponding subspace.
Consider a tangent vector ∆ ∈ TP Gr(n, p), and let ∆hor

U denote the horizontal lift of ∆ to the
horizontal space at U in the Stiefel manifold St(n, p). Suppose the thin SVD of ∆hor

U is given by
∆hor

U = Q̂ΣV T , where Q̂ ∈ St(n, r), Σ = diag(σ1, . . . , σr) contains the nonzero singular values of
∆hor

U with r = min(p, n− p), and V ∈ St(p, r). The Grassmann exponential map, representing the
geodesic emanating from P in the direction ∆, is given by:

ExpGr
P (t∆) =

[
UV cos(tΣ)V T + Q̂ sin(tΣ)V T + UV⊥V

T
⊥
]
,

where V⊥ ∈ Rp×(p−r) is any orthogonal complement of V .

proof. Using Grassmannina mathematics, we know that every ∆ ∈ TPGr(n, p) is of the form

∆ = Q

(
0 BT

B 0

)
QT =

[
Q

(
0 −BT

B 0

)
QT , P

]
(29)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then the lift of ∆ ∈ TPGr(n, p) to Q = (U U⊥) can also be calculated explicitly as follows:

∆hor
Q = [∆, P]Q = Q

(
0 −BT

B 0

)
(30)

To resume our proof, we need to define the orthogonal group and specifying its tangent space.

Definition B.1 (Orthogonal Group) The orthogonal group O(n) is defined as the set of all n× n
matrices Q over R such that QTQ = QQT = In, where QT is the transpose of Q and In is the
n× n identity matrix:

O(n) = {Q ∈ Rn×n | QTQ = In = QQT }.

Then the tangent space of the orthogonal group O(n) at a point Q, denoted TQO(n), is defined as
the set of matrices of the form QΩ, where Ω ∈ Rn×n is a skew-symmetric matrix, i.e., ΩT = −Ω:

TQO(n) = {QΩ | Ω ∈ Rn×n,ΩT = −Ω}.

The geodesic from Q ∈ O(n) in direction QΩ ∈ TQO(n) is calculated via

ExpO
Q(tQΩ) = Q expm(tΩ), (31)

If P ∈ Gr(n, p) and ∆ ∈ TPGr(n, p) with ∆hor
Q = Q

(
0 −BT

B 0

)
, the geodesic in the Grassman-

nian is therefore

ExpGr
P (t∆) = πOG

(
Q expm

(
t

(
0 −BT

B 0

)))
. (32)

where πOG is the projection from O(n) to Gr(n, p). If the thin SVD of B is given by

B = UT
⊥∆hor

U = UT
⊥Q̂ΣV T

with W := UT
⊥Q̂ ∈ St(n − p, r),Σ ∈ Rr×r, V ∈ St(p, r). Let W⊥, V⊥ be suitable orthogonal

completions. Then,

expm

(
0 −BT

B 0

)
=

(
V V⊥ 0 0
0 0 W W⊥

)cos(Σ) 0 − sin(Σ) 0
0 Ip−r 0 0

sin(Σ) 0 cos(Σ) 0
0 0 0 In−p−r

V T 0
V T
⊥ 0
0 WT

0 WT
⊥

 ,

which leads to the desired result when inserted into equation 32. For more mathematical details, you
can refer to Edelman et al. (1998), Bendokat et al. (2024), or other useful resources on Grassmann
geometry.

C MEMORY AND TIME COMPARISON

Table 5 presents the wall-times measured to compare the computational efficiency of SubTrack-
Grad and GaLore. Additionally, Table 6 shows the peak memory consumption for each architecture
during training, using the hyperparameters detailed in 13, on an NVIDIA A100 GPU with 40GB
of memory. These values were used to create the bar plots shown in 3a and 3d. For wall-time
comparisons, each architecture was trained for 2,000 steps, ensuring exactly 10 subspace updates
while excluding evaluation steps. The number of subspace updates was doubled compared to the
fine-tuning experiments because larger models and more complex tasks naturally require more fre-
quent updates. This adjustment allowed for more accurate measurements considering this demand.
For memory comparisons, a batch size of 8 was used across all architectures to maintain almost
consistent memory requirements for the input data.

Table 7 and Table 8 present the wall-time and peak memory consumption, respectively, for fine-
tuning RoBERTa-Base on GLUE tasks. These values were used to generate the bar plots shown
in 3c and 3f. For wall-time comparisons, the same settings were used, but evaluation steps were
excluded, and fine-tuning was limited to 2500 iterations to ensure exactly 5 subspace update steps
during the process.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Wall-time comparison for pre-training Llama-based architectures with varying model sizes on the C4
dataset. The experiments consist of 2000 iterations, corresponding to exactly 10 subspace update steps. The last
two columns present the average percentage change in runtime relative to Full-Rank and GaLore, respectively.

60M 130M 350M 1B 3B w.r.t FR w.r.t GaLore
rank=128 rank=256 rank=256 rank=512 rank=512

Full-Rank 524.0 1035.1 1396.4 974.9 1055.9 - -

GaLore 547.8 1094.2 1589.0 1729.5 2715.5 +53.94% -

SubTrack-Grad 534.9 1061.0 1465.9 1191.1 1385.7 +13.08% -26.54%

Table 6: Peak memory consumption comparison when pre-training Llama-based architectures with different
sizes on C4 dataset. The last two columns present the average percentage change in memory consumption
relative to Full-Rank and GaLore, respectively.

60M 130M 350M 1B 3B w.r.t FR w.r.t GaLore
rank=128 rank=256 rank=256 rank=512 rank=512

Full-Rank 2.47 3.67 7.24 18.48 34.57 - -

GaLore 2.36 3.47 6.42 14.88 25.81 -20.32% -

SubTrack-Grad 2.39 3.48 6.55 15.39 26.76 -17.91% +3.02%

Table 9 and Table 10 present the wall-time and peak memory consumption for each method when
fine-tuning RoBERTa-Large on SuperGLUE tasks. These values were used to generate the bar plots
shown in 3b and 3e. For wall-time comparisons, as with GLUE tasks, evaluation steps were omitted
to ensure accurate measurements of fine-tuning time, and the number of iterations was adjusted to
include exactly 5 subspace updates during fine-tuning.

D FINE-TUNING ROBERTA

RoBERTa-Base was fine-tuned on GLUE tasks using the hyperparameters detailed in Table 11,
matching those reported in the GaLore (Zhao et al., 2024) for rank-4 and rank-8 subspaces, with a
subspace update interval set at 500 iterations.

We also fine-tuned RoBERTa-Large on SuperGLUE tasks using the hyperparameters from Luo et al.
(2024), as detailed in Table 12, with the exception that we fine-tuned each task for 30 epochs.

E PRE-TRAINING LLAMA-BASED ARCHITECTURES

To manage resources, we pre-trained all five Llama-based architectures for 10,000 iterations using
hyperparameters reported in Table 13. While larger models typically require more iterations, this
setup was sufficient for comparing methods rather than creating perfectly optimized models.

F TIME AND PERFORMANCE CONSISTENCY

Table 14 demonstrates that increasing the update frequency significantly increases GaLore’s runtime,
while the performance of both methods remains comparable. This underscores SubTrack-Grad’s
efficiency in reducing runtime without sacrificing performance. Notably, this advantage becomes
even more pronounced for tasks that demand more frequent updates.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Wall-time comparison when fine-tuning RoBERTa-Base on GLUE tasks for different ranks r up to
a number of iterations to exactly include 5 subspace update steps. The last two columns present the average
percentage change in runtime relative to Full-Rank and GaLore, respectively.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP w.r.t FR w.r.t GaLore

Full-Rank 114.5 131.5 146.4 279.0 107.1 152.3 167.4 126.8 - -

GaLore (r=4) 195.7 195.1 200.2 325.8 185.7 206.8 216.5 190.4 +40.20% -

SubTrack(Acc)-Grad (r=4) 155.7 158.0 172.7 305.7 147.5 175.0 192.2 155.8 +19.40% -14.78%

SubTrack(Last)-Grad (r=4) 152.6 161.1 170.2 303.8 155.0 178.5 191.8 157.3 +20.05% -14.31%

GaLore (r=8) 188.0 195.6 196.5 328.3 187.1 208.0 217.1 189.4 +39.58% -

SubTrack(Acc)-Grad (r=8) 149.4 159.1 171.2 304.9 148.9 177.1 192.1 156.8 +19.14% -14.65%

SubTrack(Last)-Grad (r=8) 151.2 160.8 170.6 305.1 151.0 177.1 193.0 158.9 +19.86% -14.13%

Table 8: Peak memory consumption when fine-tuning RoBERTa-Base on GLUE tasks for different ranks r.
The last two columns present the average percentage change in memory consumption relative to Full-Rank and
GaLore, respectively.

COLA STS-B MRPC RTE SST-2 MNLI QNLI QQP w.r.t FR w.r.t GaLore

Full-Rank 3.55 4.05 3.85 13.39 3.42 21.97 14.92 11.08 - -

GaLore (r=4) 3.23 3.93 3.52 12.45 3.68 21.73 14.59 10.26 -3.78% -

SubTrack(Acc)-Grad (r=4) 3.45 4.17 3.90 12.31 3.17 19.85 14.29 10.14 -6.51% -2.84%

SubTrack(Last)-Grad (r=4) 3.23 3.62 3.52 12.45 2.93 21.84 13.86 9.93 -6.40% -2.73%

GaLore (r=8) 3.23 3.93 3.53 12.45 3.68 21.74 14.59 10.26 -3.67% -

SubTrack(Acc)-Grad (r=8) 3.45 4.18 3.90 12.32 3.18 19.86 14.29 10.15 -6.40% -2.83%

SubTrack(Last)-Grad (r=8) 3.23 3.62 3.53 12.45 2.93 21.84 13.86 9.94 -6.40% -2.83%

G CONVERGENCE VS. WALL-TIME

Figure 5 depicts the changes in the training loss function relative to wall-time. The results demon-
strate that SubTrack-Grad’s wall-time reduction has minimal impact on the learning process, show-
casing a convergence pattern comparable to other methods without introducing significant compu-
tational overhead.

Figure 5: The figures present changes in training loss relative to wall-time for pre-training the Llama-3B
architecture on the C4 dataset and fine-tuning RoBERTa-Large on the BoolQ dataset. They demonstrate that
SubTrack maintains the overall learning process for both pre-training and fine-tuning while avoiding significant
computational overhead.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Wall-time comparison when fine-tuning RoBERTa-Large on SuperGLUEup to a number of iterations
to exactly include 5 subspace update steps. The last two columns present the average percentage change in
runtime relative to Full-Rank and GaLore, respectively.

BoolQ CB COPA WIC WSC AXb AXg w.r.t FR w.r.t GaLore

Full-Rank 1406.3 171.5 35.1 250.4 216.4 470.7 52.1 - -

GaLore (r=8) 1536.8 272.2 235.3 483.0 393.2 661.4 219.9 +46.07% -

SubTrack-Grad (r=8) 1468.0 198.1 82.2 326.1 266.7 542.0 86.6 +14.09% -21.89%

Table 10: Peak memory consumption comparison when fine-tuning RoBERTa-Large on SuperGLUE. The last
two columns present the average percentage change in memory consumption relative to Full-Rank and GaLore,
respectively.

BoolQ CB COPA WIC WSC AXb AXg w.r.t FR w.r.t GaLore

Full-Rank 20.16 15.15 7.86 7.96 9.11 11.51 7.81 - -

GaLore (r=8) 19.08 12.53 5.32 5.94 7.26 7.98 5.34 -20.32% -

SubTrack-Grad (r=8) 19.09 12.40 5.12 5.95 7.06 8.00 5.35 -20.84% -0.66%

Table 11: Hyperparameters of fine-tuning RoBERTa-Base on GLUE tasks.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
SubTrack(Acc)-Grad Step-Size 0.001 0.001 1.5 0.1 0.0001 0.001 1.0 1.0
SubTrack(Last)-Grad Step-Size 0.1 0.001 5.0 5.0 0.01 1.0 8.0 10.0

Rank Config. r = 4
α 4

Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
SubTrack(Acc)-Grad Step-Size 0.001 0.01 15.0 3.0 0.001 0.001 1.0 1.0
SubTrack(Last)-Grad Step-Size 0.1 0.1 5.0 13.0 0.1 1.0 5.0 10.0

Rank Config. r = 8
α 2

Max Seq. Len. 512

Table 12: Hyperparameters of fine-tuning RoBERTa-Large on SuperGLUE tasks.

BoolQ CB COPA WIC WSC AXb AXg

Batch Size 16 16 16 16 16 16 16
Epochs 30 30 30 30 30 30 30

Learning Rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
SubTrack-Grad Step-Size 0.1 1.0 50.0 50.0 1 1.0 1.0
Subspace Update Interval 500 100 100 500 250 500 100

Rank Config. r = 8
α 4

Max Seq. Len. 512

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 13: Hyperparameters of pre-training Llama-based architectures.

60M 130M 350M 1B 3B

Hidden 512 768 1024 2048 4096
Intermediate 1376 2048 2736 5461 11008

Heads 8 12 16 24 32
Layers 8 12 24 32 32

Batch Size 256 128 64 8 8
Rank 128 256 256 512 512
Steps 10K 10K 10K 10K 10K

Table 14: Comparing changes in performance while decreasing the subspace update interval (increasing the
frequency of subspace updates) on fine-tuning RoBERTa-Base on COLA task.

500 450 400 350 300 250 200 150 100 50

GaLore’s Wall-Time 458.79 460.19 471.36 483.04 495.83 520.28 556.14 605.1 715.87 1038.79
GaLore’s Performance 0.5358 0.5285 0.5385 0.5356 0.5309 0.54821 0.5332 0.5387 0.5463 0.5463

SubTrack-Grad’s Wall-Time 408.22 408.44 408.47 409.25 409.17 409.76 410.29 411.77 413.35 417.07
SubTrack-Grad’s Performance 0.5332 0.5382 0.5364 0.5385 0.5354 0.5364 0.5416 0.5385 0.5364 0.5673

20

	Introduction
	Related Works
	SubTrack-Grad: Tracking the Gradient Subspace
	Theoretical Analysis
	Experiments and Results
	Discussion and Conclusion
	Convergence of SubTrack-Grad
	Grassmann Exponential
	Memory and Time Comparison
	Fine-Tuning RoBERTa
	Pre-Training LLama-Based Architectures
	Time and Performance Consistency
	Convergence vs. Wall-Time

