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ABSTRACT

Recent advances in deep generative models have led to the development of methods
capable of synthesizing high-quality, realistic images. These models pose threats
to society due to their potential misuse. Prior research attempted to mitigate these
threats by detecting generated images, but the varying traces left by different
generative models make it challenging to create a universal detector capable of
generalizing to new, unseen generative models. In this paper, we propose to inject
a universal adversarial signature into an arbitrary pre-trained generative model,
in order to make its generated contents more detectable and traceable. First, the
imperceptible optimal signature for each image can be found by a signature injector
through adversarial training. Subsequently, the signature can be incorporated into
an arbitrary generator by fine-tuning it with the images processed by the signature
injector. In this way, the detector corresponding to the signature can be reused
for any fine-tuned generator for tracking the generator identity. The proposed
method is validated on the FFHQ and ImageNet datasets with various state-of-the-
art generative models, consistently showing a promising detection rate. Code will
be made publicly available.

1 INTRODUCTION

Recent advances in deep generative models Pan et al. (2019); Yang et al. (2022) have enabled the
generation of highly realistic synthetic images, which benefits a wide range of applications such as
neural rendering Isola et al. (2017); Park et al. (2019); Chan et al. (2022); Li et al. (2020), text-to-
image generation Ramesh et al. (2022); Reed et al. (2016); Zhang et al. (2017); Saharia et al. (2022),
image inpainting Pathak et al. (2016); Yu et al. (2018), super-resolution Ledig et al. (2017), among
others. As a side effect, synthetic but photo-realistic images pose significant societal threats due to
their potential misuse, including copyright infringement, the dissemination of misinformation, and
the compromise of biometric security systems.

To mitigate these risks, one straightforward approach is to imprint digital watermarks on generated
images during a post-processing phase. However, this post-processing step is usually decoupled
from the main model, making it difficult to enforce. Therefore, recent work has focused on a more
enforceable solution: using a deep model as a detector to identify synthetic images Nirkin et al.
(2021); Liu et al. (2021b); Guarnera et al. (2020); Wang et al. (2022); Sha et al. (2022). They manifest
effectiveness against known generators, i.e., those involved in the training dataset, but suffer from a
performance drop against unseen generators. This is due to the variability of the model “signatures”
hidden in the generated images across different models, as illustrated in Fig. 1 (a). Consequently,
these detection-based systems require frequent retraining upon the release of each new generator to
maintain their effectiveness, which is impractical in real-world applications.

In this work, we propose a more robust approach to identify synthetic images by integrating a
model-agnostic “signature" into any pre-trained generator. Since the signature is concealed within the
model parameters, it becomes non-trivial for malicious users to erase, and is inevitably included in the
generated contents, thereby facilitating detection. By using a universal signature (i.e., model-agnostic
signature), we can leverage the same detector to identify images from different generators, eliminating
the need for retraining the detector with the introduction of new generators.

To determine the optimal signature for images, we first train a signature injector W in an adversarial
manner against a classifier F (the detector). In particular, the injector W learns to add a minimal
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(a) Existing detectors suffer from poor generalization
against unseen generative models. 
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Figure 1: Illustration of securing deep generative models through universal adversarial signature.

alternation κ to a given image x to produce a slightly modified image x̂. The injector aims to make the
alternation κ as small as possible in order to retain image quality, while simultaneously maximizing
the detector’s accuracy, as shown in Fig. 1 (b). Importantly, the detector F is not necessarily designed
to be a binary classifier. It can be a multi-class classifier that produces a multi-bit binary code to
convey additional information to help track and identify the source of a generated image.

To implant such signatures into an arbitrary pre-trained image generative model G, we fine-tune G

using a set of images processed by W , resulting in a secured generator Ĝ, as demonstrated in Fig. 1
(c). Images generated by the secured generator Ĝ can be identified by F as Ĝ inherits the signatures
from W . In addition, as shown in Fig. 1 (d), the detector F is no longer associated with specific
generators during the training process, and therefore can be shared across different generators. As
the injector W and detector F can be reused for different pre-trained generators, the adversarially
learned signature becomes universal (model-agnostic) among all secured generators.

To demonstrate the effectiveness of the proposed method, we conduct extensive experiments on
the FFHQ Karras et al. (2019) and ImageNet Deng et al. (2009) datasets. Three state-of-the-art
generative models, namely LDM Rombach et al. (2022), ADM Dhariwal & Nichol (2021), and
StyleGAN2 Karras et al. (2020), are used in evaluations. The experimental results demonstrate that a
given generative model can learn to add the adversarial signatures to its outputs, making them more
recognizable by the generated image classifier, while not sacrificing the image quality.

The contributions of this paper are summarized as follows:

1. We propose to learn the optimal universal signatures through adversarial learning against a
classifier (i.e. the detector).

2. We propose to inject the universal adversarial signatures to secure an arbitrary pre-trained
image generative model. Secured generative models can share the same detector.

3. Our proposed universal adversarial signature is capable of carrying additional information,
such as the generator identity, for tracking the source of the images.

2 RELATED WORKS

Deep Generative Models Pan et al. (2019); Yang et al. (2022) have been greatly improved recently,
enabling realistic large-scale image and text synthesis Ramesh et al. (2022), Brown et al. (2020).
This field has undergone various mainstream models, including autoregressive models Salimans
et al. (2017), variational autoencoders Huang et al. (2018), normalizing flows Kingma & Dhariwal
(2018), generative adversarial models (GANs) Goodfellow et al. (2014); Karras et al. (2020); Esser
et al. (2021), and more recently, denoising diffusion models (DDMs) Ho et al. (2020); Rombach
et al. (2022). In particular, GANs and DDMs are capable of imposing threats to society due to their
potential abuse. This paper focuses on mitigating their potential threats.

Generated Image Detection is committed to mitigating the potential threats of the generated images.
The existing methods extract features to discover artifacts either in the spatial domain Nirkin et al.
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(2021); Guarnera et al. (2020); Sha et al. (2022) or frequency domain Liu et al. (2021b); Wang et al.
(2022). However, these passive detection models may not generalize well for unseen generative
models. In this paper, learning the adversarial signature entails actively modifying a generator to
make its outputs more recognizable, which is different from the existing work focused on generated
image detection. The scope of this paper is general-purpose generated image detection, which is not
limited to a specific type of media such as deepfake.

Image Watermarking Cox et al. (2007); Begum & Uddin (2020) can limit the misuse of digital
images, including the generated ones. Although watermarks vary in their visibility Nikolaidis & Pitas
(1998); Zhou et al. (2018), it is difficult for them to achieve robustness, imperceptibility, and high
capacity at the same time Begum & Uddin (2020). Besides, deep-learning-based methods involve
adding templates to the real images Asnani et al. (2022), or inserting watermarks into the generated
image Zhao et al. (2023a). However, these methods are subject to an impractical assumption that
malicious users will apply watermarks. Instead, we modify generative models to make adversarial
signatures inevitable.

Neural Network Fingerprinting addresses the challenges of visual forensics and intellectual property
protection posed by deep models Peng et al. (2022); Liu et al. (2021a). Model-specific GAN
fingerprints, either learned Yu et al. (2019) or manually-crafted Marra et al. (2019), can be used for
generated image detection and source tracking, but still has to be re-trained against new generators.
In contrast, our detector can be reused for any future generator.

3 OUR APPROACH

Given a set of images X , a typical deep generative model G learns the underlying distribution pX
of X , and can generate a realistic image from a random noise z, i.e., y ≜ G(z). Due to the threats
posed by the potential abuse of the outputs from the generator G, it is necessary to develop a classifier
F to distinguish the generated (signed) images from real ones, where F (·) ∈ (0, 1). A real image
x ∈ X is labeled as 0, while a generated image y is labeled as 1.

As discussed in Section 1, we explore modifying the parameters of a given generator G, to make its
outputs more recognizable by F , and hence securing the generator G. Our approach is a two-stage
method. Firstly, a signature injector W learns to generate adversarial signatures, while a classifier
F learns to detect them. The signature injector W is subsequently used for teaching an arbitrary
generative model G to generate recognizable images. The proposed method is illustrated in Figure 1
and summarized in Algorithms 1-2.

3.1 OPTIMAL ADVERSARIAL SIGNATURE

Consider a system consisting of a signature injector W and a classifier F . In the optimal case, F can
discriminate the signed images from clean images based on the subtle and imperceptible alternation
made by W (imperceptibility). The system is robust to image restoration attack if augmented by noise
(persistency), i.e. the signature cannot be removed by an image restoration model M . The following
propositions state the imperceptibility and persistency of the adversarial signatures in detail.

Proposition 3.1. (Imperceptibility) There exist optimal pairs of signature injector W and classifier
F : Rn 7→{0, 1}, so that for any image ∀x∈Rn, ∀ϵ>0, its distance to the signed image W (x) is
smaller than ϵ, and F correctly discriminates them, i.e., ∥W (x)−x∥<ϵ, and F (W (x)) ̸= F (x).

Proposition 3.2. Let e be a zero-mean, positive-variance additive noise. There exist noise augmented
W,F that satisfy the following condition: ∀ϵ > 0,Ee[∥W (x+e)−x∥] < ϵ and F (W (x)) ̸= F (x).

Proposition 3.3. (Persistency) The noise augmented W,F stated in Proposition A.3 is robust to
image restoration attack, as optimizing minM Ex,e[∥M(W (x+ e))−x∥] will result in M being an
identity mapping.

Proof. Please refer to the appendix.
Remark 3.4. Intuitively, when W (x+e) is close enough to x, the training of M to remove signatures
tends to fall into a trivial sub-optimal solution of copying the input to the output. Therefore, even if
W is disclosed to malicious users, it is still difficult to erase the signature.
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Algorithm 1: Training Signature Injector
1: Input: A set of images X;
2: Output: (1) Signature injector W ;
3: (2) Binary classifier F ;
4: Randomly initialize W and F ;
5: for i = 1 to MaxIteration_stage1 do
6: Randomly sample x ∈ X;
7: x̂←W (x);
8: Lrec ← ∥x̂− x∥22;
9: Random transformation for x and x̂;

10: Lcls ← logF (x) + log(1− F (x̂));
11: L← Lrec + λ · Lcls;
12: ∆W,∆F ← ∂L/∂W , ∂L/∂F ;
13: W,F ← Adam(W,F,∆W,∆F );
14: end for

Algorithm 2: Securing an Image Generator
1: Input: A set of clean images X;
2: A pre-trained generator G;
3: The signature injector W ;
4: Output: A fine-tuned generator Ĝ;
5: Ĝ← G;
6: X̂ ← {W (x)|x ∈ X};
7: for i = 1 to MaxIteration_stage2 do
8: Randomly sample a noise z;
9: Randomly sample x̂ ∈ X̂;

10: Update Ĝ using Ĝ(z) and x̂;
11: end for

3.2 UNIVERSAL ADVERSARIAL SIGNATURE INJECTOR

Given an image x, the signature injector model W adds an imperceptible alternation to it, resulting
in a “signed” image x̂ ≜ W (x), of the same size as x. The difference κ ≜ x̂− x is termed as the
“adversarial signature”, which varies with the input image x and the injector W . Meanwhile, the
classifier F aims to discriminate the signed image x̂ from the clean image x. In this paper, the signed
image x̂ is labeled as 1, while the clean image x is labeled as 0.

To find the desired pair of W and F as discussed above, the goal is to ensure that the signed image
x̂ is as close to the clean image x as possible, while the classifier F should correctly recognize the
signed images. The goal can be expressed as the following optimization problem:

min
W,F

Ex∥W (x)− x∥22, s.t. Ex [F (x) + (1− F (W (x))] = 0. (1)

By introducing the Lagrange multiplier, we obtain the following loss function:

L = Ex[∥W (x)− x∥22︸ ︷︷ ︸
Lrec

+λ (F (x) + 1− F (W (x)))︸ ︷︷ ︸
Lcls

]. (2)

The Lrec term in Eq. (2) is the mean squared error that enforces the signatures to be imperceptible
(not obviously impacting the image quality). The Lcls term can be seen as a classification loss that
encourages the classifier to distinguish the signed images from the clean images.

In practice, we find directly optimizing Eq. (2) through gradient descent methods results in λ = 0,
and the model copying the input to the output. Therefore, we empirically fix λ to a small value. In
addition, we replace the Lcls part with the commonly used cross-entropy loss. Therefore, W and F
are jointly trained by optimizing the following approximated loss function:

L = Ex∼pX
{Lrec(x;W ) + λ · Lcls(x;W,F )}, (3)

where Lrec(x;W ) = ∥W (x)− x∥22, (4)
and Lcls(x;W,F ) = logF (x) + log(1− F (W (x))). (5)

During training, the signature injector W and the generated image classifier F are, in fact, adversarial
against each other. The minimization of Lcls requires the injector W to add a sufficiently large and
easy-to-identify signature κ to make x̂ separatable from x; while the minimization of Lrec requires
the signature injector W to shrink the norm of κ for the sake of its imperceptibility, which makes the
signed image x̂ more difficult to be separated from x.

The overall process of this stage is summarized in Algorithm 1. Note, to make the signature κ
robust, both the original image x and the signed image x̂ are transformed before being fed to F . The
transformations involve commonly used augmentation operations, which are detailed in Section 4.

Albeit our method slightly resembles letting W produce adversarial examples to flip the prediction of
F , it is totally different from adversarial attack. Compared to, e.g., C&W attack Carlini & Wagner
(2017), our method generates the signed images in a single forward pass (instead of iteratively), and
jointly trains F (instead of freezing its parameters), which is totally different from adversarial attack.
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Binary Code Extension. By extending the binary classifier F to multiple outputs, the adversarial
signature will be able to carry additional information such as generator identity for tracking the
source of the generated images. To achieve this, we can first determine the binary code length as
n bits, which directly decides the number of all possible binary codes as 2n. The selection of n
(n > 0) depends on the number of user-predefined messages to be represented by the binary codes.
For instance, when n = 2, the binary codes for generators are 01, 10, and 11, while the code 00
is reserved for real images. During the training process, a random binary code except for 00 from
the 2n − 1 possible binary codes is chosen for every generated image. Next, the single classification
layer in F is extended into n classification layers in parallel for binary code prediction.

Meanwhile, the binary code is converted by a code embedding module into an embedding vector.
It comprises two linear layers and SiLU Hendrycks & Gimpel (2016) activation. The binary code
embedding is fed into injector W via AdaIN Karras et al. (2019) after every convolution layer for
modulating the signatures. Note, when n = 1 (default), a constant vector is used as the embedding.

3.3 SECURING ARBITRARY GENERATIVE MODEL

In order to make the adversarial signatures inevitable, it would be better if they could be integrated
into the model parameters through, for example, fine-tuning. In this way, the outputs from the
generators will be detectable by F , and hence the generative model is secured. Therefore, in this
stage, the signature injector W will process the training data, based on which an arbitrary given
(pre-trained) generative model is fine-tuned to learn the adversarial signatures. This conceptually
shifts the distribution the generator has learned towards the distribution of the signed images.

Specifically, given a set of training images X , the already trained signature injector W is used to
apply an adversarial signature to each image x ∈ X , resulting in a signed image x̂. Assume we have
an arbitrary already trained deep generative model G, which can generate an image y from a random
noise z, i.e., y = G(z). Then, the model G is fine-tuned using the signed images, resulting in the
model Ĝ, which generates a signed image ŷ from a random noise z, i.e., ŷ = Ĝ(z). By default,
the concrete loss function during fine-tuning is consistent with the original training loss of G. An
optional loss term, i.e., ξ · log(1− F (Ĝ(z))) can be appended to guide the training of Ĝ using the
trained classifier F (fixed), where ξ is a constant that controls the weight of this loss term. The overall
procedure of stage two is summarized in Algorithm 2.

As the fine-tuning process is agnostic to generator architecture, it is applicable to a wide range of
generative models, including but not limited to GANs Pan et al. (2019) and DDMs Yang et al. (2022).
As the W and F are fixed in the second stage, they are reusable for different generators.

Binary Code Extension. In this stage, a binary code can be assigned to a specific G. Every signed
image x̂ for fine-tuning G is generated by W with the assigned code.

Inference Stage. As the fine-tuned model Ĝ is expected to learn the signatures, the classifier F from
the first stage can be directly used to identify whether ŷ is a generated (signed) image.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method through experiments. Our
method is implemented in PyTorch Paszke et al. (2019). The code will be released in the future.

Datasets & Models. We adopt the U-Net Ho et al. (2020) architecture for signature injector W ,
and ResNet-34 He et al. (2016) as the classifier F . The proposed method is evaluated with two
datasets: FFHQ Karras et al. (2019) and ImageNet Deng et al. (2009); using three generative models:
LDM Rombach et al. (2022), ADM Dhariwal & Nichol (2021), and StyleGAN2 Karras et al. (2020)
at 256×256 resolution. We use their official training code for the experiments, except for StyleGAN2.
A third-party implementation1 is used for StyleGAN2. We sample 1,000 images from FFHQ as the
test set and use the remaining images for training. For experiments on ImageNet, we use the official
training split for training, and sample 1,000 images from the validation split as our test set. The image
quality (FID, PSNR) and classification accuracy (Acc, ROC) are evaluated on the test sets (1,000

1
https://github.com/rosinality/stylegan2-pytorch
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Table 1: Validating W and F in the first stage
when the length of the binary code is n = 1. The
symbols “↑” and “↓” mean “the higher the better”
and “the lower the better”, respectively.

Dataset Signature Injector W Classifier F
PSNR ↑ FID ↓ Accuracy (%) ↑

FFHQ 51.4 0.52 100.0
ImageNet 38.4 5.71 99.9

Table 2: Validating W and F in the first stage
when the length of the binary code is n = 2. The
symbols “↑” and “↓” denote “the higher the better”
and “the lower the better”, respectively.

Dataset Signature Injector W Classifier F
PSNR ↑ FID ↓ Accuracy (%) ↑

FFHQ 44.9 2.68 99.9

+Signature Signature +Signature Signature

Figure 3: Sample outputs from the signature injector W in stage one. The two columns on the left
correspond to FFHQ, while the rest correspond to ImageNet. The signature κ is visualized as the
pixel-wise L-2 norm, where the peak value varies across inputs.

images). The only exceptions are the FID scores in Tab. 3, which are evaluated on 50K randomly
generated images against the corresponding training sets following Rombach et al. (2022).

Hyper-Parameters. In stage one, the balance factor λ in Eq. (3) is set as 0.05 for the FFHQ dataset,
and 1.0 for the ImageNet dataset. The batch size is set as 24. The models are trained using the
Adam Kingma & Ba (2014) optimizer for 106 iterations, with the learning rate of 10−4. In stage two,
we follow the parameter settings of the respective generative models. The parameter ξ is empirically
set as 0.05 for StyleGAN2, and 0 for the remaining models.

Data Augmentation. The image transformation operations used to process x and x̂ for training
F are random rotation (the angle is uniformly sampled within [−30◦, 30◦]), random horizontal flip
(with 0.5 probability), and Gaussian blur (the variance is uniformly sampled within [0.01, 10]). Any
output of W and input to F will be clipped to [0, 1], and padded with the smallest constant error to
make it an integer multiple of 1/255, to ensure validity as an image.

Binary Code. By default, the binary code length is n = 1, which means F only predicts whether the
input is generated or not. For the n > 1 case, we specifically choose n = 2 to ensure a certain level
of generator diversity, while avoiding some unnecessary experiment cost for demonstration.

Evaluation Protocol. The experimental results are reported based on the test sets. (1) Signature
injector W : The κ is expected to be imperceptible to retain the image quality of x̂ compared to x.
Therefore, W is quantitatively evaluated using the peak signal-to-noise ratio (PSNR) and FID Heusel
et al. (2017) of its outputs. (2) Generated image classifier F : The generated/real binary classification
and binary code prediction are evaluated in classification accuracy. (3) Generator Ĝ: the fine-tuning
process of Ĝ is expected to make Ĝ add adversarial signatures while retaining image quality. Hence,
the FID of the generated signed image ŷ and the accuracy of F against Ĝ’s outputs is reported.

4.1 VALIDATING W AND F IN THE FIRST STAGE
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Figure 2: The ROC curves of F against W ’s
outputs on the FFHQ (left) and ImageNet (right)
datasets in the first stage (n = 1).

In the first stage, we validate the signature injec-
tor W for the image quality, and the classifier F
for the accuracy against the outputs of W . The
experiments are conducted on FFHQ and Ima-
geNet, respectively. The corresponding results
are shown in Table 1 and Table 2 for the n = 1
case and the n = 2 case, respectively.

According to Table 1, when the binary code is
1-bit, the adversarial signature can be added to
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Figure 4: Sample outputs from the fine-tuned generator Ĝ in stage two. The three columns on the left
correspond to the FFHQ dataset, while the two on the right correspond to the ImageNet dataset.

Table 3: Validating Ĝ and F in the second stage
when the length of binary code is n = 1. “FID∗” is
for the official pre-trained model; “FID” is for the
model reproduced with the respective official code;
“Acc.” is generated/real classification accuracy.

Dataset Generator G Ĝ F
FID∗ ↓ FID ↓ FID ↓ Acc. (%) ↑

FFHQ
LDM 9.36 9.70 9.20 100.0
ADM - 12.32 13.61 100.0

StyleGAN2 4.16 3.97 4.35 99.9

ImageNet LDM 7.41 6.72 5.48 100.0
ADM 6.38 7.36 6.65 100.0

Table 4: Validating Ĝ and F in the second stage
when the length of binary code is n = 2. See the
caption for Table 3 for the meaning of “FID∗”,
“FID”, and “Acc.”.

Dataset Model (code) G Ĝ F
FID∗ ↓ FID ↓ FID ↓ Acc. (%) ↑

FFHQ
LDM (01)

9.3
6

9.7
0

9.86

99
.8LDM (10) 9.20

LDM (11) 10.35

the outputs of W while retaining good image quality. This is reflected by 51.4 PSNR and 0.52 FID
on FFHQ, and 38.4 PSNR and 5.71 FID on ImageNet. The results on ImageNet (natural images) are
slightly worse than that on FFHQ (face images) due to the more complex distribution. Some images
with signatures are visualized in Figure 3.

Apart from the injector, the classifier F achieves 100.0% and 99.9% accuracy on FFHQ and ImageNet,
respectively. The corresponding ROC curves can be found in Figure 2. These results suggest that
although the learned signatures are small in L-2 norm, they are still highly recognizable by F .

According to Table 2, when the binary code length is n = 2, our method remains effective, as
suggested by the good image quality for W and high classification accuracy of F . Notably, since
the n = 2 case requires W to learn different variants of κ for different binary codes, the learning
becomes more difficult than in the n = 1 case, resulting in a slight performance gap.

4.2 VALIDATING Ĝ AND F IN THE SECOND STAGE

In the second stage, a pre-trained G is fine-tuned with W and F being fixed. We conduct experiments
accordingly to validate the fine-tuned generator Ĝ, and the classifier F against the outputs of Ĝ. The
results can be found in Table 3 and Table 4 for the n=1 and n=2 cases, respectively.

According to Table 3, when the binary code length is n = 1, the generator Ĝ can learn the adversarial
signatures from W , which makes its outputs more recognizable by F . Take the LDM model on the
FFHQ dataset as an example. The fine-tuned model Ĝ achieves a similar FID to its original counterpart
G. This indicates no significant output quality difference between G and Ĝ. To demonstrate this
qualitatively, we visualize some generated images in Figure 4.

Although the adversarial signatures the generator Ĝ has “inherited” are imperceptible, they are still
highly recognizable by F . This is quantitatively demonstrated by the 100.0% generated/real image
classification accuracy. The corresponding ROC curves can be found in Figure 5.
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Figure 5: The ROC curves of F against Ĝ (for our method) and G (for baseline method) in the second
stage (n = 1). The baseline method involves the “seen” case and the “unseen” case.

Table 6: Model sensitivity to λ on FFHQ dataset.

λ 1.0 0.1 0.05 0.01 0.005 0.001 0.00001 0.0

W
PSNR ↑ 37.5 42.8 51.4 52.1 52.7 54.9 63.0 67.5
FID ↓ 9.33 3.16 0.52 0.46 0.44 0.39 0.06 0.02

F Acc. (%) ↑ 100.0 100.0 100.0 100.0 100.0 100.0 99.6 50.0

Table 7: Robustness of adversarial signature after
common image transformations.

Transformation Gaussian blur Horizontal flip Rotation

F (Ĝ(z)) Acc. (%) ↑ 100.0 100.0 100.0

Table 8: Validating W and F when they are sep-
arately trained. The length of the binary code is
n = 1. The dataset is FFHQ.

Model Signature Injector W Classifier F
PSNR ↑ FID ↓ Accuracy (%) ↑

Jointly 51.4 0.52 100
Separately 23.4 140 50.1

Table 9: Validating W , F , and M in the first stage
with 1-bit binary code. The noise is Gaussian with
zero mean and 0.5 standard deviation.

Setting W F (W (x)) F (M(W (x)))
PSNR ↑ Acc. (%) ↑ Acc. (%) ↑

(w/o noise e, w/o Laux) 51.4 100.0 50.0
(w/o noise e, w/ Laux) 44.8 99.9 52.6
(w/ noise e, w/o Laux) 29.4 99.9 50.0
(w/ noise e, w/ Laux) 29.1 99.9 98.2

According to Table 4, when the binary code length is n = 2, the adversarial signatures can also be
effectively learned by the generators, which can still be detected by F .

4.3 COMPARISON TO STATE-OF-THE-ART METHODS

Table 5: Generated image detection accuracy
with 95% error bars. The first four rows are
based on the official pre-trained generators. The
last row is based on fine-tuned generators.

Detector \ Generator LDM ADM StyleGAN2

Baseline (Seen) 99.9±.006 99.7±.003 99.9±.006
Baseline (Unseen) 51.6±.031 49.8±.031 49.9±.031
Wang et al. (2020) 50.4±.031 49.9±.031 66.7±.029

Gragnaniello et al. (2021) 50.2±.031 49.9±.031 97.8±.009
Ours 100.0±.00 100.0±.00 99.9±.006

After verifying the effectiveness of our proposed
method, we compare it with a baseline method
and the state-of-the-art methods on FFHQ.

The baseline method corresponds to directly train-
ing the classifier F (ResNet-34) to differentiate
the generated images y from the original images
x. As shown in the first row of Table 5, if all three
generators (i.e., LDM, ADM, and StyleGAN2) are
seen by F , its accuracy is close to 100%. How-
ever, in the second row, the baseline method suf-
fers from poor generalization against unseen generators under the leave-one-out setting. For instance,
in the first column, the ADM and StyleGAN2 are seen by F , but not LDM. The accuracy of F against
the LDM outputs drops to mere 51.6%. The corresponding ROC curves can be found in Figure 5.

The generalization issue against unseen generators also exists with the state-of-the-art methods
including Wang et al. (2020); Gragnaniello et al. (2021), as shown in Table 5. In contrast, our method
can reuse the W and F for any generative model, and achieve high accuracy as long as its input is
from a fine-tuned generator.

5 DISCUSSIONS

In this section, we study the sensitivity of λ in Eq.(3), and some alternative method designs. We also
discuss how the desired characteristics mentioned in Section 1 are satisfied.

5.1 PARAMETER SENSITIVITY OF λ & PRE-TRAINED F

Sensitivity of λ. In Eq. (3), the parameter λ balances the two loss terms Lrec and Lcls, which are
adversarial against each other as discussed in Section 3.2. We conduct experiments with varying λ
values on FFHQ for the first stage, in order to study the sensitivity of λ. The results are shown in

8
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Table 6. When λ is gradually decreased from 1.0, the accuracy of F is not very sensitive. However, a
clear trend can be seen where W tries to sacrifice image quality in exchange for a lower cross-entropy
loss. When λ = 0, W is expected to learn the identity mapping, and F is not trained. As a result,
the reconstructed image is of high quality, and F behaves the same as a random classifier. Most
importantly, a nearly optimal pair of W and F can be found even if λ is very small, which leads to a
negligible image quality drop. This supports our theory in Proposition A.1.

Pre-trained F . To better understand the distinction between adversarial signatures and the features
used by baseline detectors, we replace the F with the pre-trained and fixed “Baseline (Seen)” classifier
from Table 5 in the first stage. This leads to significantly worse performance as shown in Table 8.
The results suggest that there is hardly any resemblance in features between our signature-based
classifier and a baseline classifier. Therefore, the adversarial signature is different from the features
used by the baseline detectors, and W and F should be jointly optimized.
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Figure 6: ROC for F (W (x)) & F (M(W (x))) in Table 9.

5.2 CHARACTERISTICS OF ADVERSARIAL SIGNATURE

Imperceptibility. This is enforced by Eq. (4). The imperceptibility is demonstrated by Table 1-2,
Figure 3 for the outputs of W ; and Table 3-4, Figure 4 for the outputs of Ĝ.

Persistency. (1) To make the signature in ŷ hard to be invalidated by image transformations, it is
learned with data augmentation (see Section 4). According to Table 7, F has gained robustness against
the image transformations. (2) A possible adaptive attack from a malicious user may involve obtaining
the inverse function of W , namely the restoration attack mentioned in Proposition A.5. To achieve
this, M learns to restore the original image x from the signed image x̂: LM = ∥M [W (x)]− x∥2.
Accordingly, the classifier F has to recognize the outputs of M by an extra loss term on top of
Eq. (3): Laux=EM{log(1−F (M [W (x)]))}. In the implementation, we approximate the expectation
over M using multiple snapshots of M jointly trained with W,F . The experimental results on
FFHQ can be found in Table 9 and Fig. 6. The default setting (Table 1) is without the noise e (see
Section 3.1), nor the Laux. When both the noise e and Laux are applied, it is still difficult to remove
the adversarial signatures even if the proposed method is disclosed to malicious users. The results
support Proposition A.5.

Inevitability. Once the generative model is fine-tuned, the adversarial signature will be inevitably
included in its outputs. Restoring G from Ĝ may require access to the training images without
signatures, with which a malicious user can already train new generators instead of using Ĝ.

Efficiency. (1) Inference: Our method only changes the generative model parameters. The inference
cost for Ĝ is identical to that of G. (2) Training: Assume r generative models are to be released one
by one. The cumulative complexity of re-training a detector every time upon the release of a new
generator is O(r2). In contrast, the complexity of the proposed method is O(r), because W and F
are reused once trained. Our method is efficient in terms of complexity.

6 CONCLUSIONS

The proposed method aims to modify a given generative model, making its outputs more recognizable
due to adversarial signatures. The adversarial signature can also carry additional information for
tracking the source of generated images. The experimental results on two datasets demonstrate the
effectiveness of the proposed method.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Table 6 in the main paper shows the effect of varying the parameter λ on the PSNR, FID and
classification accuracy. Here we visualize the signed images with different λ in Fig 7. We can see that
the signed images are almost visually indistinguishable from the original images for λ ∈ [1e− 5, 0.1].

1e − 5 1e − 4 1e − 3 1e − 2 1e − 1

Figure 7: Visualization of the signed images with varying λ.

To further demonstrate the robustness of the proposed method, here we report the accuracy with
JPEG comparison and center cropping in Table 10. The results with different image format and
resolutiosn are reported in Table 11. The results show that the proposed method is also robust to
JPEG comparison, center cropping, and resolution change.

Table 10: Generated image detection accuracy with JPEG noise and center cropping

JPEG quality 85 75 65 55
Accuracy 99.5 99.9 97.7 99.9

Crop size 220 200 180
Accuracy 99.9 99.6 88.0

Table 11: Generated image detection accuracy with different image format and resolutions.

Format PNG JPG
Accuracy 100.0 99.9

Resolution 256 512 768
Accuracy 100.0 100.0 100.0

Table 12 reports the comparisons of our method to the post-hoc watermarking method2 used by
StableDiffusion. As we have discussed in Sec. 3.1, our method applies optimal watermarks that

2https://github.com/ShieldMnt/invisible-watermark
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introduce the smallest amount of perturbation to the original images and therefore have less negative
impacts on the image quality. This can be seen from the higher PSNR of our method compared
to traditional watermarks. Table 13 reports the comparison results to a watermarking method for
diffusion models Zhao et al. (2023b). Our method achieves a higher detection accuracy and lower
FID, which indicates that our method yields more accurate detection with better image quality.

Table 12: Comparisons to post-hoc watermarking approaches.

Method Post-hoc Ours
PSNR 38.9 51.4

Table 13: Comparisons to watermarking of the diffusion models.

Method Zhao et al. (2023b) (4 bit) Zhao et al. (2023b) (128 bit) Ours
FID ↓ 1.37 4.79 0.52
Acc ↑ 65.0 99.9 100.0

A.2 PROOF OF PROPOSITIONS

Proposition A.1. (Imperceptibility) There exist optimal pairs of signature injector W and classifier
F : Rn 7→{0, 1}, so that for any image ∀x∈Rn, ∀ϵ>0, its distance to the signed image W (x) is
smaller than ϵ, and F correctly discriminates them, i.e., ∥W (x)−x∥<ϵ, and F (W (x)) ̸= F (x).

Proof. For simplicity, we consider the case when x ∈ R1. Let W (x) be an arbitrary irrational
number within (x− ϵ, x+ ϵ) when x is rational, and otherwise an arbitrary rational number within
(x− ϵ, x+ ϵ). Let F be a classifier that discriminates rational/irrational numbers. This pair of W,F
satisfies the given condition, and proves the existence of optimal watermarking systems.
Remark A.2. The W,F presented in the proof are not feasible for implementation in practice.
However, when W,F are deep neural networks, the existence of adversarial samples Szegedy et al.
(2013) implies that one can find a W (x) that flips the prediction of F while being very close to x.

Proposition A.3. Let e be a zero-mean, positive-variance additive noise. There exist noise augmented
W,F that satisfy the following condition: ∀ϵ > 0,Ee[∥W (x+e)−x∥] < ϵ and F (W (x)) ̸= F (x).

Proof. We can prove the existence of such W,F by constructing an example similar to the one in
Proposition A.1 and set e to a rational noise. The existence of such W,F can be proved in a similar
way as Proposition A.1, by setting e to a rational noise. Then we have E[∥W (x + e) − x∥] =
E[∥W (x+ e)− (x+ e) + e∥] ≤ E[∥W (x+ e)− (x+ e)∥] + E[∥e∥] < ϵ.

Lemma A.4. Let x and e be zero-mean positive-variance random variables. For any non-constant
mapping M , we have Ex,e[∥M(W (x+ e))− x∥] > 0.

Proof. Assume that E[∥M(W (x+e))−x∥] = 0. Then ∀x, e, M(W (x+e)) = x. If we let x = 0,
then M(W (e)) = 0, which is contradictory to the definition of M . Since the equal sign does not
hold, and an L-2 norm is always greater than or equal to 0, we have E[∥M(W (x+ e))− x∥] > 0.

Proposition A.5. (Persistency) The noise augmented W,F stated in Proposition A.3 is robust to
image restoration attack, as optimizing minM Ex,e[∥M(W (x+ e))−x∥] will result in M being an
identity mapping.

Proof. As shown in Proposition A.3, ∀ϵ > 0, E[∥W (x+ e)− x∥] < ϵ. According to Lemma A.4,
we have E[∥M(W (x + e)) − x∥] > 0. Therefore, for any mapping M , E[∥W (x + e) − x∥] ≤
E[∥M(W (x+e))−x∥]. Hence, W (M(x)) = M(x) is the solution for minM E[∥M(W (x+e))−
x∥].
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A.3 BROADER IMPACT

This work is intended to develop a system to mitigate the risk of image generation models by tracking
the source of generated images based on signatures. Malicious users may attack this system with
fake signatures, e.g. by adding a signature on a real image to make it classified as generated, and
compromise the credibility of true information. Potential mitigation strategies include gated release
of the watermark injectors, the use of longer multi-bit code and only releasing the code to the
corresponding owners of generative models.

A.4 LIMITATIONS

(1) The binary code length n limits the amount of additional information it can represent. However,
most relevant works are merely designed in the n = 1 case.

(2) We assume the training dataset without adversarial signature is not available to malicious users.
Once it is available, the malicious users may erase the signatures by fine-tuning the model on
the original training set. Table 14 demonstrates the trend of a decaying detection accuracy of the
signed LDM model, along the fine-tuning process on clean images. Nevertheless, its accuracy still
remains higher than a random classifier after 2200 steps, which means the signatures can persist for a
reasonable number of fine-tuning steps. Besides, preventing the signature decay when the attacker
fine-tunes the model on clean images is very challenging and not yet explored in literature.

Table 14: Detection accuracy decay during the fine-tuning process of the generative model on original
clean image training set.

Fine-tuning steps 400 800 1200 1400 1800 2200
Accuracy 100.0 99.8 98.5 88.3 74.9 64.8

While further fine-tuning on clean images implies the possibility to “erase” signatures, in practical
scenarios, the attackers usually cannot access the original training data and sufficient computational
resources. Those factors can effectively lower the practical risk of potential signature erasing by
attackers. When both data and computing resources are available to attackers, they can already train
an arbitrary clean generative model from scratch, in which case the persistence to fine-tuning will
turn ineffective in preventing any malicious use.

(3) The proposed method requires finetuning a pre-trained generative model to embed the signature.
A direction for future work is to explore the training-free framework to secure deep generative
models, e.g. by directly modifying model parameters to further reduce the cost.

A.5 THREAT MODEL

Our threat model assumes the signed image generator is released to the public while the training
datasets and the signature detector are kept private. Two use cases of our meethod are (1) reducing the
risk of the abuse of generated images, and (2) protect the digital copyright and intellecgual property
of the pre-trained generator.

A.6 DIFFERENCE FROM MODEL POISONING ATTACKS

There is a slight resemblance between the goal of poisoning attacks and the proposed signature.
However, they are completely different in the problem setting. The poisoning attack aims to mix
carefully designed data samples into the training data, and hence the poisoning attackers are releasing
training data, instead of any pre-trained model. In contrast, the threat model of our method is that the
model trainer only releases the pre-trained generator (with signature) to the public, while keeping the
training data and the corresponding detector private. Thus, poisoning attacks are incompatible with
our problem settings and threat model, despite the slight resemblance in their goals.
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A.7 HARDWARE

The signature injector is trained on an RTX A6000 GPU.

The generative models are finetuned using 4 RTX A6000 GPUs.
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